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Introduction

epuis I'introduction d’un nouvel invariant polyndmial des noeuds par Jones [14] en 1984,
d’inattendus et spectaculaires liens entre la théorie purement algébrique des groupes quan-
tiques et la topologie des noeuds et variétés de dimension 3 se sont révélés.

En 1989, Reshetikhin et Turaev [40] ont construit un invariant des variétés de dimension 3 (en
les représentant par chirurgie le long d’entrelacs et en colorant ceux-ci a I’aide de représentations
simples d’un groupe quantique), donnant ainsi une justification rigoureuse aux prédictions du
physicien Witten [S51]. Suivirent divers travaux permettant de calculer ces nouveaux invariants et
mettant en évidence qu’ils s’étendent a une théorie topologique quantique des champs (TQFT) en
dimension 2+ 1, voir Kirby et Melvin [20], Lickorish [25, 26, 28], Blanchet, Habegger, Masbaum,
Vogel [3, 4], Turaev [47], Kassel, Rosso, Turaev [16].

Durant cette période, d’autres invariants des variétés de dimension 3 furent construits, en par-
ticulier ceux de Hennings [12, 13] (définis directement a partir d’une algébre de Hopf quasitrian-
gulaire, c’est a dire sans utiliser ses représentations) et ceux de Kuperberg [21] (qui associe aux
diagrammes de Heegaard d’une 3-variété un scalaire défini a partir des constantes de structure
d’une algebre de Hopf involutive).

Récemment, étant donné un groupe discret 7, Turaev [48] a introduit la notion de n-catégorie
modulaire et a montré qu'une telle catégorie permet la construction d’une théorie homotopique
quantique des champs (HQFT) en dimension 2 + 1 et, plus particulierement, la construction d’in-
variants des z-fibrés principaux sur les 3-variétés. Le cas 7 = 1 est celui des invariants des 3-va-
riétés définis dans [40, 47]. Des exemples de m-catégories sont les catégories de représentations
de structures algébriques appelées m-cogebres de Hopf, également introduites dans [48].

Le but de cette these est de développer, a partir d’une n-cogebre de Hopf quasitriangulaire
(resp. involutive), une théorie analogue a celle de Hennings (resp. de Kuperberg) dans le cadre des
n-fibrés principaux sur les variétés de dimension 3.

La these est composée de deux parties. Dans la premiére (Chapitres 1 a 3), nous établissons
les propriétés algébriques des m-cogebres de Hopf nécessaires pour les constructions topologiques
faites dans la seconde partie (Chapitres 4 et 5).

Fixons un groupe discret 7 et rappelons brievement qu’une n-cogebre de Hopf est une famille
H = {H,}qer d’algebres (sur un corps k) munie d’une comultiplication A = {A,3 : Hyp —
H, ® Hg}y gex, d’une counité € : H; — k et d’une antipode § = {S, : Hy — H,-1}qex qui vérifient
certaines conditions de compatibilité. Le cas 7 = 1 est celui des algebres de Hopf (en particulier
H est une algébre de Hopf). Comme remarqué par Enriquez [9], quand le groupe 7 est fini, une
m-cogebre de Hopf peut étre vue comme une prolongation centrale de I’ algebre de Hopf F(rr) des
fonctions sur 7, c’est a dire une algebre de Hopf A munie d’un morphisme de Hopf F(r) — A
dont I’image est centrale.

De nombreuses notions de la théorie des algebres de Hopf peuvent s’étendre aux m-cogebres
de Hopf. En particulier, une r-intégrale (a droite) d’une w-cogebre de Hopf H = {H,}qer €5t une
famille 4 = (1, : Hy = K)qer de formes linéaires telles que (4, ® idHﬁ)Aa,ﬁ = Agp 1g pour tous
a,fB € . Un élément n-grouplike de H est une famille g = (g4)aer € [yerH, telle que e(g;) = 1
et Ay g(8ap) = 8o ® gp pour tous a, B € 7.
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Dans le premier chapitre, nous nous intéressons principalement aux m-cogebres de Hopf H =
{H,}oer de type fini, c’est a dire telles que chaque H,, soit de dimension finie. Un des résultats prin-
cipaux de ce chapitre est I’existence et I’unicité (a multiplication scalaire pres) des z-intégrales :

THEOREME 1.13. L’espace des m-intégrales a droite (resp. a gauche) d’une n-cogeébre de Hopf de
type fini est de dimension 1.

Pour prouver ce résultat, nous étudions les modules z-gradués rationnels, nous introduisons
la notion de m-comodule de Hopf et généralisons le théoreme fondamental des modules de Hopf
(affirmant qu’un module de Hopf est isomorphe au module de Hopf trivial associé¢ a son sous-
module des coinvariants, voir [24]) aux w-comodules de Hopf.

Comme pour les algebres de Hopf, I'unicité des n-intégrales assure que toute m-cogebre de
Hopf H = {H,}qer de type fini possede un élément n-grouplike, dit distingué, qui mesure le
défaut d’une n-intégrale a droite de H a €tre une n-intégrale a gauche de H. Généralisant [39],
nous établissons des relations entre I’élément n-grouplike distingué, 1’antipode et les m-intégrales
d’une m-cogebre de Hopf de type fini (Théoreme 1.16). Ces relations ont un rdle capital dans la
construction de traces pour les m-cogebres de Hopf (voir le Chapitre 2) et dans les constructions
topologiques du Chapitre 4 (notamment de la théorie homotopique quantique des champs).

Nous montrons qu’une w-cogebre de Hopf H = {H,}.er de type fini est semisimple (c’est a
dire chaque H, est semisimple) si et seulement si H; est semisimple. Nous définissons la cose-
misimplicité des m-comodules et des m-cogebres, et nous utilisons les m-intégrales afin de donner
des criteres pour qu’une m-cogebre de Hopf soit cosemisimple (Théoréme 1.24). Ces criteres nous
permettent d’établir certaines propriétés concernant les m-cogebres de Hopf de type fini et involu-
tives (voir la Section 1.6) qui sont utilisées dans le Chapitre 5 pour généraliser les invariants de
Kuperberg.

Dans le deuxiéme chapitre, nous étudions les -cogebres de Hopf quasitriangulaires et ruban-
nées. Rappelons (voir [48]) qu’une m-cogebre de Hopf H = {H,},c, est dite croisée si elle est
munie d’une famille ¢ = {¢p : Hy — Hg,p-1}aper d’isomorphismes d’algebres, appelée croise-
ment, qui préserve la comultiplication et la counité et qui définit une action de x, c’est a dire telle
que s = @pp. Une m-cogebre de Hopf quasitriangulaire (resp. rubannée) est une m-cogébre
de Hopf croisée H = {H,}qer munie d’'une R-matrice R = {R,3 € Hy ® Hg}oper (resp. d’une
R-matrice et d’un twist § = {6, € H,}ser) Vérifiant des axiomes qui généralisent ceux donnés
dans [7] (resp. [40]) et dans lesquels apparait le croisement ¢. Le cas 7 = 1 est celui des algebres
de Hopf. Quand 7 est abélien et ¢ est trivial, on retrouve la définition d’une algebre de Hopf
n-colorée quasitriangulaire (resp. rubannée) donnée par Ohtsuki [34].

La notion de trace pour une algebre de Hopf s’étend aux m-cogebres de Hopf croisées. Une
n-trace d’une m-cogebre de Hopf croisée H = {H,}qer est une famille tr = (tr, : Hy — K)oer
de formes linéaires vérifiant tro(xy) = try(yx), try-1(S o (X)) = tre(x) et trgep-1(pp(x)) = try(x) pour
tous @, € met x,y € H,. Les m-cogebres de Hopf rubannées munies d’une m-trace sont utilisées
dans le Chapitre 4 pour généraliser les invariants de Hennings. Le résultat principal du deuxieme
chapitre est I’existence, sous certaines conditions techniques, de n-traces. Pour prouver ce réslutat,
nous généralisons les principales propriétés des algebres de Hopf quasitriangulaires et rubannées
(voir [8, 15, 38]). En particulier, étant donné une n-cogebre de Hopf quasitriangulaire H, nous
introduisons (a I’aide de la R-matrice et du croisement ) les éléments de Drinfeld (généralisés) et
nous montrons qu’ils permettent de calculer I’élément m-grouplike distingué de H (Théoreme 2.7).
Lorsque H est rubannée, le twist et les éléments de Drinfeld de H permettent la construction d’un
élément m-grouplike G = (Gg)eer qui implémente le carré de I’antipode par conjugaison. Cet
élément mr-grouplike, les m-intégrales et leurs relations avec 1’élément m-grouplike distingué sont a
la base de la construction des m-traces. Par exemple, nous obtenons :
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TutorEME 2.14. Soit H = {H,}qer une m-cogébre de Hopf rubannée, de type fini et unimodulaire
(c’est a dire I’algebre de Hopf H, est unimodulaire). Soit (1y)qer une m-intégrale a droite de H.
Si H est semisimple ou cosemisimple, alors (x € Hy, = A,(GoX) € K)yer est une n-trace de H.

Quand le groupe  est fini, les définitions et résultats principaux concernant les 7-cogebres de
Hopf quasitriangulaires et rubannées peuvent étre réécrits, de maniere intrinséque, dans le langage
des prolongations centrales de I’algébre de Hopf des fonctions sur 7.

Les deux premiers chapitres ont fait 1’objet d’un article [50].

Dans le troisieéme chapitre, nous introduisons et étudions les w-algeébres de Hopf catégorielles
qui jouent un réle important dans la partie topologique (voir Section 4.3). Une m-algebre de Hopf
dans une catégorie tressée est une famille A = {A,}qer d’0bjets munie de morphismes de structure
qui vérifient des axiomes duaux a ceux d’une m-cogebre de Hopf. En utilisant la propriété univer-
selle de factorisation des coends, nous construisons explicitement une r-algebre de Hopf catégo-
rielle A = {A,}qeer dans la composante neutre de chaque m-catégorie rubannée (Théoréme 3.5).
Lorsque 7 = 1, nous retrouvons les algebres de Hopf catégorielles de Lyubashenko [30]. Lorsque
la m-catégorie est celle des représentations d’une m-cogebre de Hopf rubannée H = {H,},c, de
type fini et unimodulaire, nous relions les intégrales de A et H (ce résultat est un des points clé de
la démonstration du Théoréme 4.18) :

TutorEME 3.8. Les m-intégrales catégorielles de A sont en bijection canonique avec les m-inté-
grales de H.

La deuxiéme partie de la thése est consacrée a la généralisation des invariants de Hennings
(Chapitre 4) et de Kuperberg (Chapitre 5) a des invariants des fibrés principaux plats sur les variétés
de dimension 3. Fixons un groupe discret 7 (I’étude des fibrés principaux plats se ramene a celle
des fibrés principaux dont la fibre est discrete).

Rappelons qu’Hennings [12, 13] a défini un invariant des noeuds et des 3-variétés en termes
d’intégrales sur certaines algébres de Hopf. Kauffman et Radford [17] ont clarifié les rapports
entre cet invariant et les algebres de Hopf et ont simplifié la construction d’Hennings. Dans
le quatrieme chapitre, partant d’une m-cogebre de Hopf rubannée H = {H,},c, munie d’une
n-trace tr = (try)qer, NOus donnons une version améliorée de la méthode de Kauffman-Radford
pour construire un invariant Inviy (L, g) des paires (L, g), ou L est un entrelacs parallélisé et
g:m(S 3\ L) - mestun morphisme de groupe (Théoreme 4.3). Cette construction s’effectue en
colorant les segments verticaux d’un diagramme générique de L par 7 via le morphisme g, en
décorant les croisements du diagramme ainsi 7r-coloré avec la R-matrice R = {R, g}oer, €n concen-
trant les éléments algébriques de cette décoration, grice aux morphismes de structure de H, puis
en les évaluant avec la n-trace tr = (try)qer. La preuve du Théoréme 4.3 consiste a montrer que
les mouvements de Reidemeister colorés rendent compte de I’équivalence des paires (L, g), puis
a vérifier I’invariance par rapport a ces mouvements en utilisant les propriétés des m-cogebres de
Hopf quasitriangulaires et rubannées et de leurs m-traces établies dans le Chapitre 2 (en particulier
les Lemmes 2.4, 2.5 et 2.9).

Nous donnons des exemples de calculs (faits a ’aide de w-cogebres de Hopf construites a
partir de bicaractéres de ) montrant que I’invariant Invg ) est non trivial.

Lorsqu’une ni-trace tr* construite 2 partir d’une 7-intégrale A est utilisée, I’invariant Inv{z 1y
peut &tre normalisé en un invariant 7y (M, &) des m-fibrés principaux & au dessus des 3-variétés M.
Cette construction s’effectue en présentant I’espace de base M par chirurgie le long d’un entrelacs
parallélisé L, en définissant g : 1S3\ L) — x al’aide de la monodromie du 7-fibré, puis en
normalisant I’invariant Invz (L, g).

THEOREME 4.12. Si H = {H,}qer est une m-cogebre de Hopf rubannée, unimodulaire et de type
fini, alors Ty est un invariant des n-fibrés principaux sur les variétés de dimension 3.
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Pour prouver ce résultat, nous montrons que les mouvements de Kirby colorés rendent compte
de I’équivalence des m-fibrés principaux sur les 3-variétés, puis nous vérifions I’invariance par
rapport a ces mouvements grace aux propriétés des m-intégrales (en particulier le Théoreme 1.16),
sachant que nous utilisons une 7-trace construite a partir d’une m-intégrale.

L’invariant 7y est non trivial (nous donnons un exemple de calcul pour des Z/nZ-fibrés sur
certains espaces lenticulaires en utilisant les Z/nZ-cogebres de Hopf décrites dans [34]) et coin-
cide avec celui de Hennings lorsque 7 = 1.

Rappelons que Turaev [48] a construit un invariant 7¢ des n-fibrés principaux sur les 3-variétés
a partir d’une mr-catégorie modulaire C. En général, la catégorie des représentations Rep(H) d’une
m-cogebre de Hopf rubannée, unimodulaire et de type fini H n’est pas modulaire, mais elle permet
souvent la construction d’une catégorie Cy modulaire (voir [S]). Dans ce cas, les invariants 7y et
¢, sont en général différents (voir [17] pour le cas m = 1). Cependant, nous obtenons :

TuioriME 4.18. Si Rep(H) est modulaire, les invariants Ty et Trep(r) coincident.

La technique employée pour montrer ce résultat, esquissée dans [18, 29] pour le cas 7 = 1,
utilise les m-algebres de Hopf catégorielles étudiées dans le Chapitre 3 (en particulier les Théo-
remes 3.5 et 3.8) qui permettent de relier I’approche catégorielle de [48] avec celle algébrique
développée ici. Plus précisément, la comparaison s’effectue en réécrivant I’invariant de Turaev a
I’aide des m-intégrales d’une m-algebre de Hopf catégorielle de Rep(H) qui est explicitée au moyen
des morphismes de structures de H.

Rappelons brievement qu’une théorie homotopique quantique des champs en dimension 2 + 1
ayant pour but un espace X peut &tre vue comme une théorie topologique quantique des champs
pour les surfaces et les 3-cobordismes munis d’une classe d’homotopie d’applications vers X.
De méme qu’une théorie topologique quantique des champs donne naissance a des invariants des
variétés de dimension 3, une théorie homotopique quantique des champs ayant pour but I’espace
d’Eilenberg-Mac Lane K(xr, 1) donne naissance a des invariants des z-fibrés principaux sur les
variétés de dimension 3.

THEOREME 4.27. Sous les hypothéses du Theoreme 4.12, I'invariant Ty s’étend a une théorie
homotopique quantique des champs en dimension 2 + 1 (pour surfaces connexes) ayant pour but
I’espace d’Eilenberg-Mac Lane K(r, 1).

Dans [21], Kuperberg a construit, a I’aide d’une algebre de Hopf involutive, un invariant des
3-variétés en les présentant par des diagrammes de Heegaard. Le résultat principal du cinquieéme
chapitre est la généralisation de cette construction au cadre des n-fibrés principaux sur les varié-
tés de dimension 3. Elle s’effectue en présentant I’espace de base d’un n-fibré principal sur une
3-variété par un diagramme de Heegaard que 1’on colore par 7 grace a la monodromie du fibré et
auquel on associe des constantes de structures d’une m-cogebre de Hopf involutive.

THEOREME 5.5. Toute m-cogebre de Hopf H = {Hy}aer qui est involutive, de type fini, et telle
que dim Hy # 0 (dans le corps de base k), permet la construction d’un invariant Ky des n-fibrés
principaux sur les variétés de dimension 3.

Pour prouver ce résultat, nous montrons que les mouvements de Reidemeister-Singer colo-
rés rendent compte de 1’équivalence des n-fibrés principaux sur les 3-variétés, puis nous vérifions
Pinvariance par rapport a ces mouvements en utilisant les propriétés des m-cogebres de Hopf in-
volutives (voir en particulier la Section 1.6 et les Lemmes 5.1 et 5.2).

L’invariant Ky est non trivial (nous donnons des exemples de calculs pour des Z/2Z-fibrés
sur certains espaces lenticulaires en utilisant une Z/27Z-cogebre de Hopf involutive [49] dérivée
de I’algebre de Hopf de Kac-Paljutkin) et coincide avec celui de Kuperberg lorsque 7 = 1.
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Cette these est organisée de la manieére suivante. Le Chapitre 1 est consacré a 1’étude des
m-cogebres de Hopf et le Chapitre 2 a celle des m-cogebres de Hopf quasitriangulaires. Dans le
Chapitre 3, nous étudions les m-algebres de Hopf catégorielles. Le Chapitre 4 est consacré a la
généralisation des invariants de Hennings et le Chapitre 5 a celle des invariants de Kuperberg. Dans
I’ Annexe A, nous étudions les Z /nZ-cogebres de Hopf de [34]. Finalement, dans I’ Annexe B, nous
calculons la valeur de certains invariants en utilisant la Z/2Z-cogebre de Hopf involutive de [49].






CHAPTER 1

Hopf group-coalgebras

he notion of a Hopf group-coalgebra, introduced in [48], generalizes that of a Hopf alge-

bra. We will use Hopf group-coalgebras to construct Hennings-like (see Chapter 4) and
Kuperberg-like (see Chapter 5) invariants of flat bundles over 3-manifolds. The aim of the present
chapter (together with the following) is to lay the algebraic foundations needed for these topolog-
ical purposes.

Given a (discrete) group xr, a Hopf m-coalgebra is a family H = {H,}qe, of algebras (over a field
k) endowed with a comultiplication A = {A, g : Hyg — H, ® Hglogen, @ counit € : Hy — Kk, and
an antipode S = {S, : Hy = H,-1}4er Which verify some compatibility conditions. Basic notions
of the theory of Hopf algebras can be extended to the setting of Hopf m-coalgebras. In particular,
a (right) m-integral for a Hopf mr-coalgebra H is a family of k-forms A = (1, : Hy — K)eer such
that (1, ® idHﬂ)Aa”g = Agg lgforall a,B € m.

In this chapter, we mainly focus on Hopf m-coalgebras of finite type, that is Hopf 7-coalgebras
H = {H,}qer with each H,, finite-dimensional. The first main result is the existence and uniqueness
(up to a scalar multiple) of a m-integral for such a Hopf m-coalgebra. To prove this result, we
study rational m-graded modules, introduce the notion of a Hopf 7-comodule, and generalize the
fundamental theorem of Hopf modules (saying that a Hopf module is isomorphic to the trivial
module associated to its submodule of coinvariants, see [24]) to Hopf 7-comodules.

As for Hopf algebras, the uniqueness of the m-integrals assures that any finite type Hopf 7-coal-
gebra contains a m-grouplike element, called distinguished, which measures the defect of a right
n-integral to be a left m-integral. Generalizing [39], we study the relationships between this ele-
ment, the antipode, and the n-integrals. As a corollary, we give an upper bound for the order of
S .18 o whenever « € r has a finite order.

The notions of semisimplicity and cosemisimplicity can be extended to the setting of Hopf
n-coalgebras. We show that a finite type Hopf m-coalgebra H = {H,}qe, 1S semisimple (that
is each H, is semisimple) if and only if H; is semisimple. We define the cosemisimplicity for
m-comodules and m-coalgebras, and we use m-integrals to give necessary and sufficient criteria for
a Hopf m-coalgebra to be cosemisimple.

When the ground field k is of characteristic zero, a Hopf n-coalgebra H = {H,}qer Which is
involutory (that is § ,-1.5, = idg, for all @ € ) is semisimple and cosemisimple and verifies that
dim H,, = dim H, whenever H, # 0.

This chapter is organized as follows. In Section 1.1, we review the basic definitions and prop-
erties of Hopf m-coalgebras. In Section 1.2, we discuss the notions of a rational -graded module
and of a Hopf m-comodule. In Section 1.3, we use these notions to establish the existence and
uniqueness of m-integrals. Section 1.4 is devoted to the study of the distinguished m-grouplike
element. In Section 1.5, we discuss the notion of a semisimple (resp. cosemisimple) Hopf 7-coal-
gebra. Finally, in Section 1.6, we study involutory Hopf m-coalgebras.



2 1. HOPF GROUP-COALGEBRAS

1.1. Basic definitions

Throughout this thesis, we let 7 be a discrete group (with neutral element 1) and k be a field
(although much of what we do is valid over any commutative ring). We set k* = k \ {0}. All
algebras are supposed to be over k, associative, and unitary. The tensor product ® = Qy is always
assumed to be over k. If U and V are k-spaces, oyy : U® V — V ® U will denote the flip map
defined by opyy(u®v)=v@uforallue UandveV.

1.1.1. m-coalgebras. We recall the definition of a m-coalgebra, following [48, §11.2]. A
n-coalgebra (over k) is a family C = {C,}qer of k-spaces endowed with a family A = {A,p :
Cop — Cq ® Cglgpger of k-linear maps (the comultiplication) and a k-linear map ¢ : C; — k (the
counit) such that

(1.1)  Ais coassociative in the sense that, for any «, 3,y € 7,
(Aa,ﬁ ® idCy)Aaﬂ,y = (idca ® Aﬂ,y)Aa,ﬁy;
(1.2) foralla €n, (idc, ® €)A,,1 =idc, = (e ®idc,)Al ..
Note that (C1, A} 1, €) is a coalgebra in the usual sense of the word.

Sweedler’s notation. We extend the Sweedler notation for a comultiplication in the following
way: for any «, € m and ¢ € C,p, we write

Aa’,g(c) = Z Cla) ®C2p) € Co® Cﬁ,
(©)
or shortly, if we leave the summation implicit, A, g(c) = ¢(1,0) ® c2p)-
The coassociativity axiom (1.1) gives that, for any «, 5,y € m and ¢ € C,py,

CLap)La) B CLap2p) B C2y) = Ca) @ Capyp) B Cpyy):
This element of C, ® Cg ® C,, is written as c(1,4) ® c2,8) ® €@3,5). By iterating the procedure, we
define inductively ¢(1,4,) ® * + * ® C(n,a,) fOr any ¢ € Cy,...q,,.

1.1.2. Convolution algebras. Let C = ({C,}, A, €) be a m-coalgebra and A be an algebra with
multiplication m and unit element 14. For any f € Homy(C,,A) and g € Homy(Cg, A), we define
their convolution product by

f*g=m(f®gAsp € Homy(Cop, A).
Using (1.1) and (1.2), one verifies that the k-space
Conv(C, A) = @y Homy(Cy, A),

endowed with the convolution product * and the unit element €14, is a m-graded algebra, called
convolution algebra.

In particular, for A = k, the n-graded algebra Conv(C, k) = @,c,C,, is called dual to C and is
denoted by C*.

1.1.3. Hopf n-coalgebras. Following [48, §11.2], a Hopf n-coalgebra is a n-coalgebra H =
({Hy}, A, €) endowed with a family S = {S, : Hy = Hg-1}qer of k-linear maps (the antipode)
such that
(1.3) each H, is an algebra with multiplication m, and unit element 1, € H,;

(1.4) e:Hy —»kand Ay : Hyp — H, ® Hg (for all o, B € m) are algebra homomorphisms;
(1.5) forany a €,

Ma(S gt ®idp, )Age1 4 = £lg = ma(idy, ® S 4-1)Ay o1
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We remark that the notion of a Hopf nr-coalgebra is not self-dual and that (Hy,my, 11, Aq1,&,51)
is a (classical) Hopf algebra.

The Hopf m-coalgebra H is said to be of finite type if, for all @ € n, H,, is finite-dimensional
(over k). Note that it does not mean that @, H, is finite-dimensional (unless H, = O for all but a
finite number of « € 7).

The antipode S = {S,}qer Of H is said to be bijective if each S is bijective. Unlike [48,
§11.2], we do not suppose that the antipode of a Hopf 7-coalgebra H is bijective. However, we
will show that it is bijective whenever H is of finite type (see Corollary 1.14(a)) or quasitriangular
(see Lemma 2.5(¢c)).

A useful remark is that if H = {H,}.e, is @ Hopf m-coalgebra with antipode S = {S 4 }qer, then
Axiom (1.5) says that S, is the inverse of idH(f1 in the convolution algebra Conv(H, H,-1) for all
a €.

In the next lemma, generalizing [45, ProrosiTioN 4.0.1], we show that the antipode of a
Hopf n-coalgebra is anti-multiplicative and anti-comultiplicative.

LemwMma 1.1. Let H = ({Hy, my, 1.}, A, &,8) be a Hopf n-coalgebra. Then
(a) Sq(ab) =S ,(b)S y(a) forany a € mand a,b € H,;
(b) So(1y) = 1,-1 for any a € n;
(©) Ag14-1Sap = OH, \.Hy (So®Sp)Aypforany a,p € n;
d) &S| ==e

Proof. The proof is essentially the same as in the Hopf algebra setting. For example, to show
Part (c), fix @, € 7 and consider the algebra Conv(H, Hg1 @ Hy1) with convolution product =
and unit element ¢ = elg1 ® 1,1, Using Axioms (1.2), (1.4), and (1.5), one easily checks that
Aﬁ—l’a—lsaﬁ * Aﬁ—l’a—l = e and Aﬁ—l’a—l *OH, ) Hy (So ®Sp)Ayp = e. Hence we can conclude that

Aﬂ—l’a—lsaﬁ = O-Ha—lsHﬁ—l(Sa ®S,3)Aa’,3. O

CoroLLARY 1.2. Let H = {H,}yex be a Hopf n-coalgebra. Then {a € n|H, # 0} is a subgroup
of m.

Proof. Set G = {a € n|H, # 0}. Firstly 1; # 0 (since &(1;) = 1x # 0) and so 1 € G. Then
let @, € G. Using (1.4), Ay p(lep) = 1, ® 1g # 0. Therefore 1,3 # 0 and so a5 € G. Finally, let
a € G. By Lemma 1.1(b), S ,-1(1,-1) = 1, # 0. Thus 1,1 # 0 and hence o' € G. ]

1.1.3.1. Opposite Hopf n-coalgebra. Let H = {H,},c, be a Hopf m-coalgebra. Suppose that the
antipode S = {S4)oex of H is bijective. For any a € x, let H,® be the opposite algebra to H,.
Then H = {H"},ex, endowed with the comultiplication and counit of H and with the antipode
SP={(§P =5 ;}1 }aer» 1s @ Hopf m-coalgebra, called opposite to H.

1.1.3.2. Coopposite Hopf m-coalgebra. Let C = ({C,}, A, €) be a m-coalgebra. Set
Co’ =Cot and ATR=0c At

Then CP = ({C; P}, A°P, &) is a w-coalgebra, called coopposite to C. If H is a Hopf m-coalgebra
whose antipode S = {S, }ocr is bijective, then the coopposite 7-coalgebra H*°P, where H, ¥ = H -
as an algebra, is a Hopf m-coalgebra with antipode S = {§;F = § ;1 aern-

1.1.3.3. Opposite and coopposite Hopf r-coalgebra. Let H = ({H,}, A, &,5) be a Hopf n-coal-
gebra. Even if the antipode of H is not bijective, one can always define a Hopf m-coalgebra oppo-

site and coopposite to H by setting Ho""F = HZIE ' AZI}’;OP = Azolg , £PCP = ¢ and SPP = § 1.
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1.1.3.4. The dual Hopf algebra. Let H = ({H,,, mq, 1,}, A, €, S ) be a finite type Hopf 7-coalgebra.
The n-graded algebra H* = @®,¢,H, dual to H (see §1.1.2) inherits a structure of a Hopf algebra
by setting, forall« e mand f € H},,

A(f) = my(f) € (Ho ® Ho)" = H, ® H,,

e(f) = f(y), and S(f) = f o S,-1. Note that if H, # O for infinitely many a € &, then H* is
infinite-dimensional.

1.1.3.5. The case r finite. Let us first remark that, when x is a finite group, there is a one-to-
one correspondence between (isomorphic classes of) m-coalgebras and (isomorphic classes of)
m-graded coalgebras. Recall that a coalgebra (C, A, g) is n-graded if C admits a decomposition as
a direct sum of k-spaces C = @,¢,C, such that, for any a € 7,

A(C,) C Z Cs®C, and &£(C,) =0 ifa# 1.
By=a

Let us denote by p, : C — C, the canonical projection. Then {C,}.er 1S a m-coalgebra with
comultiplication {(p, ® pﬁ)AICQ/f }apex and counit g|c,. Conversely, if C = ({Cy}, A, €) is a m-coal-
gebra, then C = ®,¢,C,, is a n-graded coalgebra with comultiplication A and counit & given on the
summands by

- e ifa=1
Alc, = A and E&|c = .
< ,3723 P . {o ifa+1

Let now H~= ({Hgy,my, 14}, A, €,5) be a Hopf m-coalgebra, where « is a finite group. Then the
coalgebra (H, A, &), defined as above, is a Hopf algebra with multiplication 77, unit element 1, and
antipode S given by

_ me ifa=p - ~
m = , 1= l,, and S = S
|H(Y®Hp {0 ifa £ 8 ;T a ;r a
When H is of finite type and 7 is finite, the Hopf algebra H* (see §1.1.3.4) is simply the dual
Hopf algebra H*.
Note that if & is a finite group, then the notion of a Hopf m-coalgebra coincides with that of a
central prolongation of the Hopf algebra of functions on 7 (see Section 2.3.1).

REMARK. When 7 is finite, the structure of m-comodules over a m-coalgebra C = {C,}qer (The-
orem 1.4), the existence of m-integrals for a finite type Hopf n-coalgebra H = {H,}qcr (The-
orem 1.13) and their relations with the distinguished m-grouplike element (Theorem 1.16) can
be deduced from the classical theory of coalgebras and Hopf algebras by using C = @4e;C, Or
H = ®,c:H, (defined as in §1.1.3.5). Nevertheless, for the general case, self-contained proofs
must be given.

In general, the results relating to a quasitriangular Hopf 7-coalgebra (see Sect. 2.1-2.2) cannot
be deduced from the classical theory of quasitriangular Hopf algebras, even if r is finite. Indeed,
an R-matrix for a Hopf m-coalgebra H (whose definition involves an action of x, see §2.1.2) does

not necessarily lead to a usual R-matrix for the Hopf algebra H.

1.2. Modules and comodules

In this section, we introduce and discuss the notions of m-comodules, rational z-graded mod-
ules, and Hopf m-comodules. They are used in Section 1.3 to show the existence of integrals.
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1.2.1. m-comodules. Let C = ({C,}, A, €) be a m-coalgebra. A right n-comodule over C is a
family M = {Mg}sex of k-spaces endowed with a family p = {po5 : Mop — My ® Cgloper Of
k-linear maps (the structure maps) such that

(1.6) forany «,8,y €,

(Pap ®1dc,)papy = (idy, ® Apy)papy;

(1.7) forany a € nr, (idp, ® €)pa.1 = 1dyy, .

Note that M; endowed with the structure map pp; is a (usual) right comodule over the coal-
gebra C.

If 7 is finite and C = @y, C,, is the m-graded coalgebra defined as in §1.1.3.5, then M leads to
a m-graded right comodule M = ®yexM,, over C with comodule map p = Za”geﬂ Pap (see [32]).

A m-subcomodule of M is a family N = {N,}qen, Where N, is a k-subspace of M, such that
Pap(Nog) C Ny ® Cg for all @, € m. Then N is a right r-comodule over C with induced structure
maps.

A m-comodule morphism between two right 1-comodules M and M’ over C (with structure
maps p and p’) is a family f = {f, : My — M,}sen of k-linear maps such that p;ﬁ fop =
(fo ®1idcy)pap for all @, B € m.

Sweedler’s notation. We extend the notation of Section 1.1.1 by setting, for any «,8 € 7 and
m e Mg,

paﬁ(m) = MmM,a) ® M(18) € M, ® Clg.

Axiom (1.6) gives that, for any «, 5,y € m and m € Mgy,

M0,ap)(0.0) ® M(0,ap)(1,8) ® M(1,y) = M(0,a) @ M(18y)(1,8) @ M(1By)(2.)-

This element of M, ® Cg ® C, is written as m(q ) ® m(1 g) ® m(2,4). By iterating the procedure, we
define inductively mg,qq) ® M(1,0,) ® * * * ® My 0, fOr any m € Myyq,...a,,-

Let N = {Ny}qer be a m-subcomodule of a right 7-comodule M = {M,},er Over a m-coalgebra
C. One easily checks that M/N = {M,/N,}qer is a right 7-comodule over C, with structure maps
naturally induced from the structure maps of M. Moreover this is the unique structure of a right
m-comodule over C on M/N which makes the canonical projection p = {p, : My = My/Ny}aer @
m-comodule morphism.

If f={fy: My = M]}qer is a m-comodule morphism between two right 7-comodules M and
M’, then ker(f) = {ker(fy)}aer s @ m-subcomodule of M, f(M) = {f,(My)}qer is a m-subcomodule
of M’, and the canonical isomorphism f = {f, : M,/ker(f,) — fo(My)}aer is a m-comodule
isomorphism.

ExampLE 1.3. Let H = {H,}qer be a Hopf m-coalgebra and M = {M,}e, be a right 7-comodule
over H with structure maps p = {pqglager- The coinvariants of H on M are the elements of the
k-space

{m = (my)eer € al;[”Ma | Pap(Map) = my ® 1g for all @, B € ).
For any a € r, let M be the image of the (canonical) projection of this set onto M,. It is easy

to verify that M°H = {Mf,"H }Jaer 18 a right m-subcomodule of M, called the m-subcomodule of
coinvariants.
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1.2.2. Rational 7-graded modules. Throughout this subsection, C = ({C,}, A, €) will denote
a m-coalgebra and C* = @,e,C,, its dual m-graded algebra (see §1.1.2). In this subsection we
explore the relationships between right 7-comodules over C and r-graded left C*-modules.

Recall that a left module M over a n-graded algebra A = ®,c,A, is graded if M admits a
decomposition as a direct sum of k-spaces M = @,e.M, such that A, Mg C Mg for all a,B € n.
A submodule N of M is graded if N = ®4c,(N N M,). The quotient M/N is then a left 7-graded
A-module by setting (M/N), = (M,+N)/N for all @ € n. This is the unique structure of a r-graded
A-module on M/N which makes the canonical projection M — M/N a graded A-morphism.

Let M = &, M, be a r-graded left C*-module with action  : C*®@ M — M. Set M, = M.
For any «, 8 € 7, define

(1.8) Pap : Map = Homu(Cp, M) by pap(m)(f) = y(f ® m).
There is a natural embedding

M, ®Cp = Homy(Cj, M) m®c o (f = fe)m).

Regard this embedding as inclusion, so that M, ® Cp C Homy (C%, M,). The m-graded left C*-

module M is said to be rational if paﬁ(ﬁaﬁ) C M(,@Cﬁ for all @, B8 € &. In this case, the restriction
of p, g onto M, ® Cp will also be denoted by

(1.9) Pap: Mag — M, ® Cp.

The definition given here generalizes that of a rational w-graded left module given in [32] and
agrees with it when 7 is finite.
The next theorem generalizes [32, THEOREM 6.3] and [45, THEOREM 2.1.3].

THEOREM 1.4. Let C = {Cy}oer be a m-coalgebra and C* be its dual n-graded algebra. Then

(a) There is a one-to-one correspondence between (isomorphic classes of) right t-comodules
over C and (isomorphic classes of) rational n-graded left C*-modules.

(b) Every graded submodule of a rational n-graded left C*-module is rational.

(c) Any n-graded left C*-module L = @®qyexLq has a unique maximal rational graded sub-
module, noted L™, which is equal to the sum of all rational graded submodules of L.
Moreover, if p = {paplaper is defined as in (1.8), then (Lrat)y = 9@7 p;’lﬂ(Za ® Cp) for

af=y"!
any y € m.
Before proving the theorem, we need two lemmas. Let M = {M,},c, be a family of k-spaces
and p = {pep : Mop — M, ® Cgloper be a family of k-linear maps. Set M = ®yexM,, Where
My, =M, . Let v, : C*® M — M be the k-linear map defined on the summands by

O

Car ’M(Yﬂ ® ldC(Y _ ldM(Yﬂ ® <,>

Myp®C,®C,

o o= We®pgp1, o — -7
Ca®Mﬁ—>Ca®M(ylg®Ca Maﬁ®]k=Ma,3,

where (, ) denotes the natural pairing between C;, and C,,.

LemMa 1.5. (M, p) is a right n-comodule over C if and only if (M, W) is a n-graded left C*-
module.

Proof. Suppose that (M, p) is a right 7-comodule over C. Firstly, using (1.7), we have that
Yp(e®@m) = m o-1)e(m1,1y) = m for any m € M,. Secondly, for any f € C;,, g € C;,and m € M,,
we have

Yp(fg®@m) = mo apy1)f8M1.ap)
Mo apyyHS (M1.0))8(M2.p)
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Yp(f ® Mo (5y)-1)8(m(1,8)))
= Yp(f @ Yp(g @m)).
Moreover, by construction, ¢,(C, ® Mlg) C Malg for any a, 8 € 7. Hence (M, Y,) is a m-graded left

C*-module. .
Conversely, suppose that (M, ) is a left 7-graded C*-module. Axiom (1.7) is satisfied since

(idpr, ® €)pa,1(m) = Y,(e®m) = mforall « € mand m € M, = Ma—l. To show that Axiom (1.6)
is satisfied, let &, 8,y € mand m € M,p,. Set

8 = (Pap ®idc, oup.,(m) — (idu, ® Agy)pas,(m) € My ® Cs® C,.

Suppose that 6 # 0. Then there exists F € (M, ® Cg® C,)* such that F(6) # 0. Now M; ® C[’; ®C,
is dense in the linear topological space (M, ®Cg®C,)* endowed with the (M, ® Cs®C, )-topology
(see [1, paGge 70]). Thus (M;®C;®C;)O(F+6L) # 0, where 6+ = {f € (M,®Cp®C,)*| f(6) = 0}.
Then there exists G € M, ® C;, ® Cf; such that G(0) # 0. Now, forall f e M, g€ C;, and h € Cf;,
we have

fo wp(g ® wp(h ®m))
S ov,(gh®m)
(f g h)(idM(Y ® A,B,y)pa,ﬁy(m),

i.e., (f ® g ® h)(6) = 0. Therefore G(6) = 0, which is a contradiction. We conclude that 6 = 0 and
then (po s ® idc, )papy = (idum, ® Agy)pa sy Hence (M, p) is a right r-comodule over C. m|

(f LR h)(pa,,B ® idcy)pafﬁ,y(m)

LeEmMA 1.6. Let (M = @4 My, &) be a rational n-graded left C*-module. Then M = (M) per,
endowed with the structure maps p = {pq gl per defined by (1.9), is a right m-comodule over C.

Proof. Lety, : C* ® ﬁ - ﬁ be the map defined as in Lemma 1.5. It is easy to verify that

(M, vp) = (M,y). Thus (M, ¥,) is a m-graded left C*-module and hence, by Lemma 1.5, (M, p) is
a right 7-comodule over C. O

Proof of Theorem 1.4. Part (a) follows directly from Lemmas 1.5 and 1.6. To show Part (b),
let N be a graded submodule of a rational 7-graded left C*-module (M, ). Let pop : Nalg —
Homy (C%, N,,) defined by pog(m)(f) = Y(f ® m). Suppose that there exist o, € mrand n € Nalg
such that p, g(n) ¢ Ny ® Cp. Since M is rational, we can write p,g(n) = Zf: | ni®c € M, ® C.
Without loss of generality, we can assume that the ¢; are k-linearly independent and n; ¢ N,. Let
fe C; such that f(c;) = 1 and f(c;) = 0 fori > 2. Now y(f®n) = Zle nif(c;) =n; ¢ N, = N1,

contradicting the fact that N is a graded submodule of M. Thus paﬁ(ﬁaﬁ) C N,&C gforalla,p € m.
Hence N is rational. _ _
Let us show Part (c). Denote by - the left action of C* on L. Set L, = L,-1 and pog : Log —

Hom]k(C;;,Za) given by p,g(m)(f) = f - m. Recall Ly ® Cp can be viewed as a subspace of
Homy(C%, L,) via the embedding Ly ® Cp = Hom]k(C;,Za) given by m@ c — (f — f(c)m).
Define M, = naﬁzyqp;}ﬁ(E@Cﬁ) C L, forany y € m,and set M = &, M,. Fixa,p e n, f € C},
and m € Mg C Lg1. Letu,v € m such that uv = (@B)~'. We can write Puva(m) = Zle i ®c; €
L, ® C,qo. Now, for any g € C;,

k k
g-(f-m)=(ef)-m=) efe)li= ) &f(Cicm)ion i
i=1 i=1
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Then p, ,(f - m) = ZL l; ® f(ciew)ciy € L, ® C, and so f-me p;}v(iu ® C,). Hence
Jom € Ny—py p;’lv(zu ® C,) = M,p. Therefore M is a graded submodule of L. Moreover one
easily checks at this point that paﬁ(ﬁaﬂ) CM,® Cp for any a, B8 in 7. Thus M is rational.
Suppose now that N is another rational graded submodule of L and denote by 0 = {04 g} gex
its corresponding z-comodule structure maps (see Lemma 1.6). Fix v € & and let @, 8 € 7 with
af = y~!. By the definition of Pop and g, p and of the embedding Ny ® Cp C L, ® Cp C
Homg(C}, Ly), it follows that pagly = Qap : Neg = Na ® Cp. Thus pap(N,) = 0apNep) C
No® Cp € Ly ® Cp, and s0 Ny, C p (Lo ® Cp). This holds for all @,8 € x such that o = y™'.
Thus N, C ﬁaﬁ:y-lp;jg(za ® Cg) = M, for any y € n. Hence N C M. Therefore M is the
unique maximal rational graded submodule of L and is the sum of all rational graded submodules
of L. O

REMARK. It follows from Lemma 1.6 and Theorem 1.4(c) that a unique “maximal” right z-co-
module (M) over a w-coalgebra C = {C,}4er can be associated to any n-graded left C*-module
M.

1.2.3. Hopf n-comodules. In this subsection, we introduce and discuss the notion of a Hopf
m-comodule.

Let H = ({H,}, A, &,5) be a Hopf n-coalgebra. A right Hopf n-comodule over H is a right
m-comodule M = {M,},er over H such that

(1.10) M, is aright H,-module for any « € r;

(1.11) Let us denote by y, : M, ® H, — M, the right action of H, on M, and by p = {04 g} gex
the w-comodule maps of M. These structures are required to be compatible in the sense
that, for any «, 8 € «, the diagram of Figure 1.1 is commutative.

7 af Pa s

Maﬂ ® Haﬁ Maﬁ M, ® Hﬁ
paﬁ@Agﬁ Yo ®mg
M, ® Hg ® H, ® Hpg M, ®H, ® Hs ® Hg

idMg ®0—Hﬂ’H‘1 ®idHﬂ

Ficure 1.1. Compatibility of the structure maps of a right Hopf 7-comodule

When 7 = 1, one recovers the definition of a Hopf module (see [24]).
Note that Axiom (1.11) means that p,g : My — M, ® Hg is H,g-linear, where M, ® Hg is
endowed with the right H,g-module structure given by

(m®h)-a= lﬁa(m ® a(l’a)) ® ha(zﬁ).

A Hopf n-subcomodule of M is a m-subcomodule N = {N,}qer of M such that N, is a H,-
submodule of M, for any @ € n. Then N is a right Hopf 7-comodule over H.

A Hopf n-comodule morphism between two right Hopf 7-comodules M and M’ is a 7-comod-
ule morphism f = {f, : My — M]}qser between M and M’ such that f, is H,-linear for any
@ €.
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ExampLE 1.7. Let H = {H,}qer be a Hopf m-coalgebra and M = {M,}4e, be a right 7-comodule
over H, with structure maps p = {poglapger. Forany @ € &, set (M ® H), = M, ® H,. The
multiplication in H, induces a structure of a right H,-module on (M ® H), by setting (m ® h) <
a = m ® ha. Define the r-comodule structure maps &, : (M ® H),p — (M ® H), ® Hg by

Eap(m® h) = m,0) ® h(1,0) ® M ph2p)s

where we write as usual p, g(m) = m o) ® m(1 gy and A, g(h) = h(1,q) ® hp). One easily verifies
that M ® H = {(M ® H)y}qer 18 a right Hopf 7-comodule over H, called trivial.

In the next theorem, we show that a Hopf m-comodule can be canonically decomposed. This
generalizes the fundamental theorem of Hopf modules (see [24, ProposiTiON 1]).

THEOREM 1.8. Let H = {Hy}oer be a Hopf m-coalgebra and M be a right Hopf n-comodule over
H. Consider the m-subcomodule of coinvariants M°? of M (see Example 1.3) and the trivial right
Hopf n-comodule MY ® H (see Example 1.7). Then there exists a Hopf n-comodule isomorphism
M=MHQH.

Proof. We will denote by - (resp. <) the right action of H,, on M,, (resp. on (M*°" ® H),) and
by p = {paplaper (tesp. & = {€o glaper) the m-comodule structure maps of M (resp. of M©H @ H).
For any @ € &, define P, : My — M, by Po(m) = mg,a) - S -1(m(; o-1)). Remark first that, for any
m € My, (Py(m))qer 1s a coinvariant of H on M. Indeed, for all o, € m,

Pap(Popg(m) = pap(mo.ep) S @py1 (M1 apy1))

= Pap(M©.ap) - DapS op)y-1 (M1 qpy-1y) by (1.11)

= M) " So1(M3o-1y) ® M pg)Sg-1(mpp1)) by Lemma 1.1(c)

= M) - Sa-1(8(m(1,1))m(2’a-1)) ® lﬁ by (15)

= M) Se1(mg 1) ®lg by (1.2)

= Py(m)® 1.
For any a € n, define f, : (M*°? ® H), — M, by f(m ® h) = m - h. Then f, is H,-linear
since fy(m®h)-a=m-h)y-a=m-ha = fo((m®h) < a)foral me Mfl"H and h,a € H,.
Moreover (f, ® ide)faﬁ = papfop for all @, € n. Indeed let m € M;%H and h € H,pz. By the
definition of M;OH , there exists a coinvariant (1, ),c; of H on M such that m,g = m. In particular
Pap(m) = my ® lg. Thus

(fa ® ide)é:a,ﬁ(m ® h)

Ma = hi1a) ® hap)
= pap(m) - Ayp(h)
Pap(m-h) by (1.11)
= Pap(fop(m @ h)).
Then f = {fy}aer : M ® H — M is a Hopf m-comodule morphism. To show that f is an
isomorphism, we construct its inverse. For any a € x, define g, : M, — (M*°? ® H), by
8o = (P, ®1dp,)p1,o- The map g, is well-defined since (P, (m)),e, is a coinvariant of H on M for
all m € My, and is H,-linear since, for any x € M, and a € H,,,
(Po ®idp,)p1,0(x - a)
= Puo(x0,1) " a@,1)) ® X(1,0)d2a) by (1.11)
= (X0 1) S o1 (X(1,0-1)420 1) ® X203, by (1.11)
= X0 (@108 01 (42,018 o1 (X(1.0-1)) ® X(2.0)4(3,0)
= X0 S 1(X(1e1) ® XomE(an,)ace by (1.5)

ga(x-a)
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= X0, " Sa,—l (X(l’a,—l)) ® X2,0)a by (1.2)
= &) <a.
Moreover (g, ® idHﬂ)pa”g = &,88ap Tor all @, 5 € m. Indeed, for any x € Mg,
Eap(8ap(X) = Eap(Pap(x0,1)) ® X(1,08))
= Pop(x0,1))0.0) ® X(1.08)(1,0) ® Pap(X(1,1))(1,5X(1.08)2.8)>

and so, since (Py(X(0,1)))yex 1S a m-coinvariant of H on M,

Po(x0,1)) ® X(1,0) ® X2,8)
8a(X(0,0)) ® X(1,8)
(8o ®1dp,)pa p(X).

Eap(8ap(x))

Thus g = {ga}aer : M — M*°" ® H is a Hopf m-comodule morphism. It remains now to verify
that g4 fo = idyeorgpy, and foge = idpy, for any @ € n. Let m € MH and h € H,. By the
definition of Mfl"H , there exists a coinvariant (m,),e, of H on M such that m, = m. In particular,
Plo(m) =m;® 1, and Py(my) =my - S 4-1(1,-1) =m -1, = m. Then
gafa(m® h) ga(m - h)

= go(m)<h since g, is H,-linear

= (Po(m)®1ly) <h

= mQh.

Finally, for all x € M,,

Jaga(X) = (X0.) Safl(x(l’a,—l))) “ X(2,0)
= X0 (S 1(X(1 e ) X))
= Xowe(xa,1) la by (L.5)
x by (1.7).

Hence g = f~! and f and g are Hopf m-comodule isomorphisms. O

1.3. Existence and uniqueness of 7-integrals

In this section, we introduce and discuss the notion of a m-integral for a Hopf w-coalgebra. In
particular, by generalizing the arguments of [45, §5], we show that, in the finite type case, the
space of left (resp. right) m-integrals is one-dimensional.

1.3.1. n-integrals. We first recall that a left (resp. right) integral for a Hopf algebra (A, A, &, S)
is an element A € A such that xA = g(x)A (resp. Ax = &(x)A) for all x € A. A left (resp. right)
integral for the dual Hopf algebra A* is a k-linear form A € A* verifying (f ® 1)A = f(14)A (resp.
(A® f)A = f(14)A) for all f € A*. Let us extend this notion to the setting of a Hopf 7-coalgebra.

Let H = ({Hy, mq, 14}, A, €,5) be a Hopf m-coalgebra. A left (resp. right) n-integral for H is a
family of k-linear forms A = (A4)aer € e H,, such that, for all @, € m,

(1.12) (idHa ® ﬂﬁ)Aaﬁ = ﬂaﬁ 1o (resp. Ay ® idHﬁ)Aa’ﬁ = ﬂaﬁ lﬁ ).

Note that 4, is a usual left (resp. right) integral for the Hopf algebra H.

If we use the multiplication of the dual n-graded algebra H* of H (see §1.1.2), we have that
A = (Ae)aern € ey, is a left (resp. right) m-integral for H if and only if fAg = f(1,) Aup (resp.
1,8 = g(1y) Agp) forall a,f € mand f € H, (resp. g € H,;‘,).

A n-integral A = (Ay)aer for H is said to be non-zero if Ag # 0 for some g € 7.
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LemMA 1.9. Let A = (Ay)qer be a non-zero left (resp. right) n-integral for H. Then A, # 0 for all
a € 7 such that H, # 0. In particular 1y # 0.

Proof. Let A = (Ay)qex be aleft m-integral for H such that Az # 0 for some f € mand leta € &
with H, # 0. Then Hg,-1 # 0 (by Corollary 1.2) and so 1g,-1 # 0. Using (1.12), we have that
(idea_1 ® Aa)Ago-1 o = Aplge-1 # 0. Hence A, # 0. The right case can be done similarly. O

REMARK. Let H = {H,}qer be a finite type Hopf n-coalgebra. Consider the Hopf algebra H* dual
to H (see §1.1.3.4). If H, = 0 for all but a finite number of a € m, then A = (Ag)oer € HperH), is
a left (resp. right) m-integral for H if and only if ), 4, is a left (resp. right) integral for H*. If
H, # 0 for infinitely many « € &, then H* is infinite-dimensional and thus does not have any non-
zero left or right integral (see [46]). Nevertheless we show in the next subsection that H always
has a non-zero m-integral.

1.3.2. The space of n-integrals is one-dimensional. It is known (see [45, COROLLARY 5.1.6])
that the space of left (resp. right) integrals for a finite-dimensional Hopf algebra is one-dimensional.
In this subsection, we generalize this result to finite type Hopf 7-coalgebras.

Let H = {H,}qex be a Hopf m-coalgebra (not necessarily of finite type). The dual m-graded
algebra H* of H (see §1.1.2) is a m-graded left H*-module via left multiplication. Let (H*)™ be its
maximal rational 7-graded submodule (see Theorem 1.4(c)). Denote by H° = (H*)" = {H}}yer
the right 7-comodule over H which corresponds to it by Lemma 1.6. Recall that H; C H’ _, for
any a € m. The r-comodule structure maps of H° will be denoted by p = {04 g}a.ger-

LemmMma 1.10. Let A = (Ag)ger € HoenH,,. Then Ais a left n-integral for H if and only if (Ad,-1)eer
is a coinvariant of H on H" (see Example 1.3).

Proof. Suppose that A is a left m-integral for H. Fix y € n. Let a, 8 € 7 such that a8 = y. We
have that p, g(1,-1) = 1,-1 ® 1g € H:® Hg since fA,-1 = f(lg) A, forall f € H[’;. Therefore
Ayt € Nap=y p;’lﬁ(H_j; ® Hg) = (H*)f;‘f1 = H, see Theorem 1.4(c). Hence, since pqp(Aop)-1) =
A1 ® g for all @, B € 7, (A,-1)aex 18 a coinvariant of H on H". Conversely, suppose that (A,-1)qex
is a coinvariant of H on H". Let @, € m. Then pyp)1 4(Ag) = Adag ® 1o, 1€, fAg = f(la) Agp for
all f € H},. Hence A is a left nr-integral for H. m]

For all & € nr, we define a right H,-module structure on H, by setting
(f — a)(x) = f(xS(a))

forany f € H),a€ Hy,and x € H,-1.
LemwMma 1.11. H® is a right Hopf m-comodule over H.

Proof. Let us first show that for any a,f € m, f € H,;,a € Hup, and g € H;,
(1.13) 8(f — a) = fo.e) — an.w(8 fapacp)
where (, ) denotes the natural pairing between H [’; and Hg. Remark first that

lg®Sopla) = &lan1)) lg®Saplanes) by (1.2)

Sp-1(app-1))acp ® Seplaa.ep) by (1.5)
Sa,(a(l,a))(l”g)a(zﬁ) ® Sa,(a(l’a,))(z,(aﬁ)fl) by Lemma 1. I(C).

Then, for all x € H,-1,
X(1,8) ® X(2,(ap) 1S ap(@)
= xS o(a1.0)apa2p) @ X2,p)1)S o(A1.0)) 2,81
(xS a(aq.o))a.paep ® (XS o(an.e))eepy by (1.4),
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and so

g(f — a)x) (& xapXf — a, x(2,(aﬁ)*1)>

(& X1 [s X2 ap)1)S ap(@))

(&, (xS olaq.e))apacp))fs (XS (a0, @p)1))

((aep — &F) — a@.a)(0),

where — is the left Hg-action on H; defined by (b — I)(y) = l(yb) for any [ € HZ, and b,y € Hp.
Then

g(f —a) = ((aep — &F) — auw
= (ﬁo’a)<a(2’ﬁ) — g’ﬁl,ﬂ)» ~ a(l,a) by definition Ofpa/ﬁ
= fow — aq.0(8 fapacp)
and hence (1.13) is proved.

Recall that the 7-comodule structure map p, g of H® is, via the natural embedding H, ® Hg C
H® Hpg — Hom]k(H[’;, H?), the restriction onto H, ® Hg of the map &, : H(Dxﬁ — Homy(H};, H})
defined by &,5(f)(g) = gf. Lety € n. By (1.13) we have that, for any a, 8 € & such that o8 =y,
f€eH),anda € H,,

fa,ﬁ(f —a)= f(O,a/) — d(1,0) ® f(lﬁ)a(zﬁ) € (H; — a(l,a)) ® ng C H_; ® ng.

Therefore, by Theorem 1.4(c), f — a € ﬂaﬁ:«yf;,};(H_;®Clg) = HJ. Hence the action of H,, on H) is
well-defined. This is a right action because S, is unitary and anti-multiplicative (see Lemma 1.1).
Finally, Axiom (1.11) is satisfied since (1.13) says that p, g(f ~— a) = fo,0) — a1,0) ® f1pa02p)
forany a,B €, f € H,;, and a € Hyp. Thus H" is a right Hopf 7-comodule over H. O

By Theorem 1.8, the Hopf 7-comodule H® is isomorphic to the Hopf 7-comodule (H®)*°/ @ H.
Let f={fy:(H D)g"H ® H, — H}}qen be the right Hopf -comodule isomorphism between them
as in the proof Theorem 1.8. Recall that f,(m ® h) = m — hforany a € n, m € (HD)ffH , and
heH,.

LemMA 1.12. If there exists a non-zero left n-integral for H, then S, is injective for all a € m.

Proof. Suppose that 4 = (Ay)qer 1S @ non-zero left m-integral for H. Leta € n. If H, = 0,
then the result is obvious. Let us suppose that H, # 0. Then H,-1 # 0 by Corollary 1.2 and so
Ayt # 0 by Lemma 1.9. Let h € H, such that §,(h) = 0. By Lemma 1.10, 1,1 € H(D,C"H. Now
Ja(Ag-1 ® h) = A,-1 ~— h =0 (since S ,(h) = 0). Thus 4,-1 ® h = 0 (since f, is an isomorphism)
and so i = 0 (since 4,1 # 0). O

THEOREM 1.13. Let H = {H,}oer be a finite type Hopf n-coalgebra. Then the space of left (resp.
right) m-integrals for H is one-dimensional.

Proof. For any a,B € , since H is of finite type and H; = H:ﬂ’ we have that dim H?, ® Hpg =

dim Homy (H *,H_;k,) < +4o00. Therefore the natural embedding H_;j ® Hg — Homk(Hg,,H_;) is an
isomorphism. Thus H* is a rational n-graded H*-module (see §1.2.2) and so H], = H;_l for all
a € . Now dim(HD)‘i"H = 1 since (HD)‘;"H ® H = HY, dim H; = dim H} < +oo, and dim H; # 0
(since 11 # 0 because &(1;) = 1x # 0). Hence there exists a m-coinvariant (/4 )qer of H on H°
such that | # 0. Set A, = ¢ ,-1 for any @ € n. By Lemma 1.10, A = (4y)qex 15 a left r-integral for
H. Moreover A; = 1 # 0 and so A is non-zero.

Suppose now that 6 = (94 )aer 1s another left m-integral for H. Let @ € n such that H, # 0.
By Lemma 1.12, §, and S ,-1 are injective (since there exists a non-zero left integral for H) and
so dim H, = dim H,1. Therefore dim(H°)¢°! = 1 since (H°)®°" ® H, = HS and 0 # dim H,, =
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dim H < +00. Now A,-1,0,-1 € (Hu)g"H by Lemma 1.10 and 4,-1 # 0 (by Lemma 1.9). Hence
there exists k, € k such that 6,-1 = k4 4,-1. If @ € 7 is such that H, # 0, then

kidi 1y = 61 1y = (idg, ® 64-1)Ag g1 = kalidg, ® Ap-1)Ag o1 = kedi Lo,

and thus k, = ky (since A4; # 0 and 1, # 0). If @ € 7 is such that H, = 0, then 6, = 0 = A, and so
0o = k1 A,. Hence we can conclude that ¢ is a scalar multiple of A.

To show the existence and the uniqueness of right m-integrals for H, it suffices to consider
the opposite and coopposite Hopf m-coalgebra H°P°°P to H (see §1.1.3.3). Indeed A = (Ag)ger €
MyerH, is a right n-integral for H if and only if (4,-1)aer is a left m-integral for H°P°P. This
completes the proof of the theorem. O

CoroLLARY 1.14. Let H = {H,}oer be a finite type Hopf n-coalgebra. Then

(a) The antipode S = {S 4 }oex of H is bijective.
(b) Let a € n. Then H}, is a free left (resp. right) H,-module for the action defined, for any
f€H,anda,x € H,, by

(a— f)x) = fxa) (resp. (f < a)(x) = f(ax)).

Its rank is 1 if H, # 0 and 0 otherwise. Moreover, if A = (Ag)gex is a non-zero left (resp.
right) nt-integral for H, then A, is a basis vector for H,.

Proof. To show Part (a), let @ € 7. By Lemma 1.12 and Theorem 1.13, S, : H, — H,-1 and
S, ¢ Hy1 — H, are injective. Thus dim H, = dim H -1 and so S, is bijective. To show Part (b),
let A = (dg)eer be a non-zero left m-integral for H and fix @ € n. If H, = 0, then the result is
obvious. Let us suppose that H, # 0. Recall that H, | = Hj and f,1 : (H)®H @ Hyr — H,
defined by f ® h — S ,-1(h) — f is an isomorphism. Since 0 # A, € (H*)gOH, dim(H*)ffH =1,
and § -1 is bijective, the map H, — H,, defined by h — h — A, is an isomorphism. Thus (H},, =)
is a free left H,-module of rank 1 with vector basis A,. Using H°PP (see §1.1.3.3), one easily
deduces the right case. O

1.4. The distinguished r-grouplike element

In this section, we extend the notion of a grouplike element of a Hopf algebra to the setting
of a Hopf m-coalgebra. We show that a m-grouplike element is distinguished in a finite type Hopf
m-coalgebra and we study its relations with the m-integrals. As a corollary, for any « € r of finite
order, we give an upper bound for the (finite) order of S ,-15 .

1.4.1. n-grouplike elements. A 7-grouplike element of a Hopf m-coalgebra H = {H,}qer 1S a
family g = (go)aer € HaerH, such that Ay 3(gep) = go ® g for any a, B € m and &(g1) = Iy (or
equivalently g; # 0). Note that g; is then a (usual) grouplike element of the Hopf algebra H;.

One easily checks that the set G(H) of m-grouplike elements of H is a group (with respect
to the multiplication and unit of the product monoid Il,e,H,) and if g = (g4)aexr € G(H), then
g_l = (S 4-1(80-1))aer-

We remark that the group Hom(rr, k*) acts on G(H) by ¢g = (¢(@)ga)aer for any g = (ga4)aer €
G(H) and ¢ € Hom(r, k™).

LemMmA 1.15. Let H = {H,}qer be a finite type Hopf n-coalgebra. Then there exists a unique
n-grouplike element g = (84)aex Of H such that (idy, ® Ag)Agpg = Agp 8o for any right m-integral
A = (Ag)aer and all @, B € .

The m-grouplike element g = (g4 )qer Of the previous lemma is called the distinguished n-grou-
plike element of H. Note that g, is the (usual) distinguished grouplike element of the Hopf algebra
H,.
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Proof. Let 1 = (Ay)qer be a non-zero right m-integral for H. Let v € n. For any ¢ € H,
(pA,-10)aexn is a right m-integral for H and thus, by Theorem 1.13, there exists a unique k, € k
such that pA,-1, = kyd, for all @ € 7. Now (p k) € H;",* = H, (dim H, < +co). Therefore
there exists a unique g, € H, such that pd,-1, = ¢(gy)d, for any @ € w and ¢ € H). Then plg =
@©(8q)Agp for any a, B € mand ¢ € Hy and hence (idy, ® A3)Ay g = Aop 8o forall a, B € m. Leta, B €
n. If Hyp = 0, then either H, = 0 or Hg = 0 (by Corollary 1.2) and so A, g(gap) = 0 = g0 ® g5.
If H,p # O then, for any ¢ € Hy, and ¢ € Hp, kpydop = (@)A1 = (A1) = kypdg = kpkyAdop and
thus kgy = kyky (since A, # 0 by Lemma 1.9), that is Ay 3(ge8) = go ® gs. Moreover &(g1)A; =
(e®A1)A1; = Ay and so &(g1) = 1 (since A; # 0 by Lemma 1.9). Then g = (g4)qer 1 a m-grouplike
element of H. Since all the right m-integrals for H are scalar multiple of A, the “existence" part of
the lemma is proved. Let us now show the uniqueness of g. Suppose that i = (hy)qer 1S another
such r-grouplike element of H. Let A = (A4 )qer be a non-zero right -integral for H. Fix @ € «. If
H, =0,thenh, =0 =g,. If H, # 0, then 4, # 0 (by Lemma 1.9) and so there exists a € H, such
that A, (a) = 1. Therefore g, = Ao(a)g, = (idu, ® A1)Ay1(a) = Ao(a)hy = h,. This completes the
proof of the lemma. O

1.4.2. The distinguished 7-grouplike element and r-integrals. Throughout this subsection,
H = {H,}4er will denote a finite type Hopf m-coalgebra.

Since H; is a finite-dimensional Hopf algebra, there exists (e.g., see [37]) a unique algebra
morphism v : H; — k such that if A is a left integral for H;, then Ax = v(x)A for all x € H;.
This morphism is a grouplike element of the Hopf algebra H7, called the distinguished grouplike
element of H{. In particular, it is invertible in H and its inverse v~!is also an algebra morphism
and verifies that if A is a right integral for Hy, then xA = v~!(x)A for all x € H;.

For all @ € n, we define a left and a right H}-action on H, by setting, for any f € Hy and
a€ Hg,,

f—=a=aqnflacy) and a— f= flaq)ac.a-
The next theorem generalizes [39, THEOREM 3]. It is used in Section 2.2 to show the existence of
traces.

THEOREM 1.16. Let A = (Ay)oer be a right n-integral for H, g = (8q4)acr be the distinguished
n-grouplike element of H, and v be the distinguished grouplike element of H{. Then, for any a €
and x,y € H,,

(@) A(xy) = (S 418 oy — V) X);
(b) Aa(xy) = Aa(y S 418 oV — g3 ' xg0)):
(c) ﬂa-l(sa(x)) = Ao (8aX).

Before proving Theorem 1.16, we establish the following lemma.
LemMA 1.17. Let A = (Ay)aex be a right n-integral for H, « € nr, and a € H,,.
(a) If Ais a right integral for H\ such that A;(\) = 1, then
Se(a) = Aa(Aq1,a)@) Ao 01);
(b) If A is a left integral for Hy such that A;(A) = 1, then
S (@) = W(ahi.0) Ay
Proof. To show Part (a), let @ € n. Define f € H, by f(x) = Ao(A1,0)X) A1y for any
x € H,. If = denotes the product in the convolution algebra Conv(H, H,-1) (see §1.1.2), then, for
any x € Hy,
(f*1dg_)x) = (A0 X1.0) Ao X201
Ao(AX)1,0)) (AX)20-1y by (1.4)
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&(x) Aa(A(1,0)) Aoty  since A is aright integral for H,
= ex) A (A) 1,1 by (1.12)
e(x) 1,1 since 4;(A) = 1.

Therefore, since 1dH _, is invertible in Conv(H, H,-1) with inverse S, we have that f = S, that
is Sqo(a) = (A a)a) Aoy forall a € H,. Part (b) can be deduced from Part (a) by using the
Hopf n-coalgebra HP (see §1.1.3.1). ]

Proof of Theorem 1.16. We use the same arguments as in the proof of [39, THEOREM 3], even
if we cannot use the duality (since the notion a Hopf z-coalgebra is not self dual). We can assume
that A is a non-zero right m-integral (otherwise the result is obvious). To show Part (a), let @ € &
and x,y € H,. Since A; is a non-zero right integral for the Hopf algebra H7, there exists a left
integral A for H; such that A;(A) = 41(S1(A)) = 1 (cf [39, ProprosiTion 1]). By Lemma 1.17(b)
fora =S ,15.( — v), we have that

(1.14) Sa(y = v) = Aa(S 415y = V) A,0) Aoty
It is easy to verify that (V_l/ly)%,r is a right m-integral for H and A — v is a right integral for H;
such that (V"' 2;)(A — v) = 1. Thus Lemma 1.17(a) fora =y — v gives that
S =v) = (7ANA = V)10 O = VA = Ve

= 7 A(Aqwy) =V Agey by (1.4)

= A((Aaoy) =) =V DAger

= ((Aq,ey) — &) Aae

= A(A10Y) Aoty by (1.2).
Hence, by comparing with (1.14), we obtain that

(1.15) AaN1,0) V) Mooy = Aa(S 018 (Y — V) Aa) Ao 1)

Now (4,8 ,-1)yer is a right mr-integral for H°°P and A is a left integral for HTOP with (4;51)(A) = 1.
Thus, applying Lemma 1.17(b) fora = § _}1 (x) € H,P, we get

SNTS L) = 268 o1 (S (DA 1) Ay,

that is
(1.16) X = A(l,a)/laf(Sa-l (A(z’a—l)) )C).
Finally, evaluating (1.15) with 4,(S ,-1(-)x) and using (1.16) gives A4 (xy) = A(S ,-1S oy — V) X).

To show Part (b), let @ € m and a,b € H,. For any y € r, let us define ¢, € (H(;p’wp)* by
Py(x) = Ay-1(8y-1%) for all x € H.gp “%P Using Lemma 1.15, one easily checks that ¢ = (&y)yer 18
a right z-integral for H°P°°P. Let us denote by x°P the multiplication of Hzﬂmp and by <—°°P the
right action of (H(I)p’wp)* on Hzf”lwp defined by h <P f = (f ® id)Aiogfl(h). Then, since v~! is
the distinguished grouplike element of (HOp’COP)* Part (a) with x = g;'b and y = g;'ag, gives
that ¢,-1(x XP y) = o1 (S PS PPy =P y~1) xP ), that is Ag(ab) = Aa(bS 41Sa (v =
84 aga)).

Let us show Part (c). For any « € n, define ¢, € H}, by ¢o(x) = A,(gox) for all x € H,. Since
(Pa)aer and (A,-18 ¢)aer are left m-integrals for H which are non-zero (because A is non-zero, g
is invertible, and S is bijective), there exists k € k such that ¢, = k4,15, for all @ € & (by

Theorem 1.13). As above, let A be a left integral for H; such that 1;(A) = 4;(S1(A)) = 1. Recall
that e(g;) = 1. Then 1 = A;(A) = A1(e(g1)A) = A1(g1A) = kA1 (S 1(A)) = k. Hence A,-1S 4 = ¢q
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for all @ € 7, that is A,-1(S 4(x)) = A4(gex) for all @ € m and x € H,. This completes the proof of
the theorem. |

The following corollary will be used later to relate the distinguished grouplike element of a
finite type quasitriangular Hopf w-coalgebra to the R-matrix.

CoroLLARY 1.18. Let A be a left integral for Hy and g = (84 )aex be the distinguished nt-grouplike
element of H. Then, for all a € 7,

A(LQ,) ® A(la—l) = Sa_lSQ(A(zm)ga ® A(La—l).

Proof. We can suppose that A # 0. Let @ € n. Remark that it suffices to show that, for all
feH

(1.17) FA o) Aoy = (A a1) So1S o(A2.w)8a-

Fix f € HZ_I. Let 4 = (4,)yex be a non-zero right n-integral for H (see Theorem 1.13). By
multiplying A by some (non-zero) scalar, we can assume that A;(A) = 4;(S1(A)) = 1. By Corol-
lary 1.14(b), there exists a € H,-1 such that f(x) = A,-1(ax) for all x € H,-1. By Lemma 1.17(b),
So1(a) = 1@ 51)) S 1S o(A@.)). Thus

(1.18) So1(a)ga = f(A(l,af‘l)) St Sa(A(2,a))ga-

Since (4,8 ,-1)yer is a right r-integral for H°P°°P and A is a right integral for HlOp ““P such that
(A4S 1(A) = 1, Lemma 1.17(a) applied to HP-°°P gives that

S -1a) = /laSa—l(aA(z’a—l))A(l’a).

Then, by using Theorem 1.16(c), we get

S p-1(@)ga AgS o1 (aA(z,a—l)) A(l,a)ga

(1.19) Ao1(8a1aM 2 0-1)) A(1.0)8a-

Now, since A is left integral for Hy,

AN1,0)8a ® A(z,a—l)ga—l = Ay o1 (Ag1) = V(gD ALy ® A(z,a—l)-

Therefore

-1
a1

A1,0)8a ® 81N o-1) = N(1,0) ®V(81) 8o-1aN2,4-118
and so, using (1.19) and then Theorem 1.16(a),

Ag-1(V(g1) 8o aA(Z,a/_l)g;}l A1)
Ag 181 S oS 4-1(8.}) = VMga1ah i 41) Adt.a)-

S - 1(@ga

Now S .S a,—l(g;fl —v)=wg)™! g;}l since g7! = (ggl = Sp-1(gp-1))ger 1s a m-grouplike element
and v is an algebra morphism. Thus

S 1(@8a = 1Al 01) A1) = [(A2,0-1) A1)

Finally, by comparing the last equation with (1.18), we get (1.17). O
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1.4.3. The order of the antipode. It is known that the order of the antipode of a finite-
dimensional Hopf algebra A is finite (by [37, THEOREM 1]) and divides 4 dim A (by [33, Propo-
stToN 3.1]). Let us apply this result to the setting of a Hopf m-coalgebra.

Let H = {H,}qer be a finite type Hopf m-coalgebra with antipode S = {S,}eer. Let @ €
n of finite order d and denote by (@) the subgroup of m generated by a. By considering the
(finite-dimensional) Hopf algebra ©ge(q)Hp (coming from the Hopf (@)-coalgebra {Hg}ge(qy, as in
§1.1.3.5), we obtain that the order of S ,-1S, € Autag(H,) is finite and divides 2 }ze(,y dim Hpg.
As a corollary of Theorem 1.16, we give another upper bound for the order of S ,-15,.

CoRroLLARY 1.19. Let H = {H,}pex be a ﬁm’te type Hopf n-coalgebra with antipode S = {S 4}aen-
If a € 7 has a finite order d, then (S(rlS(,)MGhH”LIl =idp,.

Note that if @ € & has order 2, then Corollary 1.19 gives that S gdimH‘ = idy,, since in this
case S, is an endomorphism of H,,.
Before proving Corollary 1.19, we establish the following lemma.

LemMA 1.20. Let H = {H,}oex be a finite type Hopf m-coalgebra, g = (g4)aer be the distinguished
n-grouplike element of H, and v be the distinguished grouplike element of Hy. Then

(8018 (0) = go(v = x = v g,
forall @ € mand x € H,.

Proof. Leta € mand x,y € H,. If H, = 0, then the result is obvious. Let us suppose that
H, # 0. Let A = (1,),ex be a non-zero right r-integral for H. Then

Ao(8av = x = v g'y)
= A0S 4 1So0v ! = g lg,(v = x = v Mg lg,)) by Theorem 1.16(b)
= A0S 18 0(x — v
= Ao(S - 1854(S -1 o (x — v_l) —v)y) by Theorem 1.16(a)
= A,((SoS a-l)z(x — vt y)y) sinceS o135 ¢ 1s comultiplicative
= Al(SaS 4 1) (x <= &)y)
= Aa((SaS o) (X))

Now, by Corollary 1.14(b), H,, is a free right H,-module of rank 1 for the action defined by
(f € a)x) = f(ax) for any f € H}, and a, x € H,, and 4, is a basis vector of (H,,, <). Thus, since
the above computation says that

Ao <9 8a(v = x = v g" = A 9 (SaS 1)),
we conclude that (Sa,—lSa)z()C) =go(v = x — v‘l)ggl. O

Proof of Corollary 1.19. Let a € r of finite order d. Consider the distinguished m-grouplike
element g = (g4)eer Of H and the distinguished grouplike element v of Hy. Using Lemma 1.20,
one easily shows by induction that, for all x € H, and [ € N,

(1.20) (S 1S ) (x) = gh() = x — v hgl.

Recall that the order of a grouplike element of a finite-dimensional Hopf algebra A is finite and
divides dim A (see [33, THEOREM 2.2]). Therefore g has a finite order which divides dim H; and
v has a finite order which divides dim H; = dim H;. Now, since a? = 1 and (gg,lIn H )ger € G(H),

i dim H dim H
gadim = @€ Mm@ D = it L) = 14 = 1,.
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Then, for all x € H,, by (1.20),

(SQ,—ISQ)deimHl(x) — gidimHl(VddimHl — oy V—ddimHl)g;ddimHl

lo(e = x —98)l, = x

Hence (S ,-15 o )2¢dim 1 = idg, . O

1.5. Semisimplicity and cosemisimplicity

In this section, we define the semisimplicity and the cosemisimplicity for Hopf m-coalgebras,
and we give criteria for a Hopf m-coalgebra to be semisimple (resp. cosemisimple).

1.5.1. Semisimple Hopf 7-coalgebras. A Hopf m-coalgebra H = {H,, }4c, is said to be semisim-
ple if each algebra H, is semisimple.

Note that, since any infinite-dimensional Hopf algebra (over a field) is never semisimple
(see [46, CoroLLARY 2.7]), a necessary condition for H to be semisimple is that H, is finite-
dimensional.

Lemma 1.21. Let H = {H,}qex be a finite type Hopf n-coalgebra. Then H is semisimple if and
only if Hy is semisimple.

Proof. We have to show that if H; is semisimple then H is semisimple. Suppose that H; is
semisimple and fix @ € x. Since H,, is a finite-dimensional algebra, it suffices to show that all left
H,-modules are completely reducible. Thus let M be a left H,-module and N be a submodule of
M. Since H is a finite-dimensional semisimple Hopf algebra, there exists a left integral A for H;
such that e(A) = 1 (cf [45, TueorEM 5.1.8]). Let p : M — N be any k-linear projection which is
the identity on N. Let P : M — N be the k-linear map defined, for any m € M, by

P(m) = A(l,a) : p(Sa_l(A(Z,(y‘l)) : m)a
where - denotes the action of H, on M. The map P is the identity on N since, for any n € N,
P(n) = A(l,a) : P(S(rl(/\(z,ofl)) ‘n) = A(l,a) : (S(rl(A(z,(rl)) - n)
= (AawSe1(Noe1)) - n=eN)ly-n=n
Let h € H,. Using (1.2) and the fact that A is a left integral for H;, we have

A(l,a) ® A(Z’a—l) ®h = Aa,a—l (S(h(l’l)) A) ® h(z,a)
Aa/’a/—l (h(l,l)A) ® h(z’a,)
ha.a M) ® hoa1yApe1) © R0,

and so

A1y ®S o1 (Noo1Dh = haoAida) ®S o1 (Mo e 1) A2 0-1)hG.a)
= haaopAie ®S (A(z’a—l))S o1 (h(z’a,—l))h(ia) by Lemma 1.1(c)
= hawehen) Aw ®Se-1(Age1)le by (1.5)
= hAqo® SQ,—I(A(Z’Q,—I)) by (1.2).

Therefore, for all h € H, and m € M,
P(h . m) = A(LQ,) . p(Sa—l(A(z’a—l))h . m) = hA(l,a) . p(Sa/—l(A(z’a—l)) . m) =h- P(m).

Hence P is H,-linear and ker P is a H,-supplement of N in M. O
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1.5.2. Cosemisimple 7-comodules and 7-coalgebras. Let C be a m-coalgebra and M be a
right 7-comodule over C. If {N' = {Né}ae,r},-el is a family of w-subcomodules of M, we define their
sum by {Xic; Nilaer. It is easy to see that it is a 7-subcomodule of M. We denote it by Y,c; N'.
This sum is said to be direct provided Y;c; N, is a direct sum for all @ € . In this case Y;; N’
will be denoted by @;c;N'.

A right r-comodule M = {M,},e, is said to be simple if it is non-zero (i.e., M, # 0 for some
« € m) and if it has no w-subcomodules other than 0 = {0},¢, and itself.

LemMA 1.22. Let M be a right m-comodule over a n-coalgebra C. The following conditions are
equivalent:
(a) M is a sum of a family of simple n-subcomodules;
(b) M is a direct sum of a family of simple n-subcomodules;
(¢) Every m-subcomodule N of M is a direct summand, i.e., there exists a n-subcomodule N’
of M such that M = N @& N'.

Proof. Let us show that Condition (a) implies Condition (b). Suppose M = Y;c; M' is a sum
of simple 7-submodules. Let J be a maximal subset of / such that  jc; M/ is direct. Let us show
that this sum is in fact equal to M. It suffices to prove that each M’ (i € I) is contained in this sum.
The intersection of our sum with M' is a 7-subcomodule of M', thus equal to 0 or M'. If it is equal
to 0, then J is not maximal since we can adjoin i to it. Hence M' is contained in the sum.

To show that Condition (b) implies Condition (c), suppose M = @;c;M' and let N be a rr-sub-
comodule of M. Let J be a maximal subset of / such that the sum N + @ jc; M Jis direct. The same
reasoning as before shows this sum is equal to M.

Let us show that Condition (c) implies Condition (a). Let N be the m-subcomodule of M
defined as the sum of all simple m-subcomodules of M. Suppose that M # N. Then M = N & F
where F is a non-zero m-subcomodule of M. Let us show that there exists a simple 7-subcomodule
of F, contradicting the definition of N. By Theorem 1.4(a), F = ®penFa (where Fo,=F 1) 1s a
rational 71-graded left C*-module, which is non-zero. Letv € F, v # 0. The kernel of the morphism
of m-graded left C*-modules C* — C*v is a n-graded left ideal J # C*. Therefore J is contained
in a maximal n-graded left ideal / # C* (by Zorn’s lemma). Then //J is a maximal m-graded left
C*-submodule of C*/J (not equal to C*/J), and hence /v is a maximal n-graded C*-submodule
of C*v, not equal to C*v (corresponding to //J under the n-graded isomorphism C*/J — C*v).
Moreover, by Theorem 1.4(b), it is rational since it is a submodule of the rational module F. So
we can consider the 7-subcomodule Iv of M (see Lemma 1.6). Write then M = Iv & L where L
is -subcomodule of M. Therefore M = Iv @ L and so C*v = Iv & (L N C*v). Now, since Iv is a
maximal 7-graded C*-submodule of C*v (not equal to C*v), we have that L N C*v is a non-zero
n-graded C*-submodule of F which does not contain any r-graded submodule other than 0 and
itself. Moreover, by Theorem 1.4(b), L N C*v is rational since it is a 7-graded C*-submodule of

the rational 7-graded C*-module F. Finally L N C*v is a simple z-subcomodule of F. O

A right r-comodule satisfying the equivalent conditions of Lemma 1.22 is said to be cosemisim-
ple. A m-coalgebra is called cosemisimple if it is cosemisimple as a right 7-comodule over itself
(with comultiplication as structure maps).

When 7 = 1, one recovers the usual notions of cosemisimple comodules and coalgebras.

When 7 is finite, a m-coalgebra C = {C,}qer is cosemisimple if and only if the m-graded
coalgebra C = @,¢,C, (defined as in §1.1.3.5) is graded-cosemisimple (i.e., is a direct sum of
simple 7-graded right comodules).

LemwMmaA 1.23. Every n-subcomodule or quotient of a cosemisimple right m-comodule is cosemisim-
ple.
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Proof. Let N be a m-subcomodule of a cosemisimple right 7-comodule M. Let F' be the sum of
all simple -subcomodules of N and write M = F@®F’. Therefore N = F&(F'NN). If F' NN # 0,
it contains a simple w-subcomodule (see the proof of Lemma 1.22). Thus F "N =0and N = F,
which is cosemisimple. Now write M = N @ N’. Since N’ is a sum of simple 7-subcomodules (it
is a m-subcomodule of M and thus cosemisimple) and the canonical projection M — M/N induces
a r-comodule isomorphism between N’ onto M/N, we obtain that M/N is cosemisimple. O

1.5.3. Cosemisimple Hopf 7-coalgebras. A Hopf m-coalgebra H = {H,}qer 1S said to be
cosemisimple if it is cosemisimple as a m-coalgebra. A right r-comodule M = {M,},e, Over H is
said to be reduced if, for all « € n, M, = 0 whenever H, = 0.

The next theorem is the Hopf m-coalgebra version of the dual Maschke Theorem (see [45,
§14.0.3]).

THEOREM 1.24. Let H = {H,}oenx be a Hopf m-coalgebra. The following conditions are equiva-
lent:

(a) Every reduced right n-comodule over H is cosemisimple;

(b) H is cosemisimple;

(c) There exists a right m-integral A = (Ay)eer for H such that 1,(1,) = 1 for some a € n;

(d) There exists a right m-integral A = (Ay)qer for H such that 1,(1,) = 1 for all a € m with
H, # 0.

Proof. Condition (a) implies trivially Condition (b). Moreover Condition (c) is equivalent
to Condition (d). Indeed Condition (d) implies Condition (c) since H; # 0 (by Corollary 1.2).
Conversely, suppose that 5 € m is such that Ag(1g) = 1. Let @ € m such that H, # 0. Then
Ao(le) 151, = (g ®idy )5 10(1e) = A1) 1g-14 = 1g-1,. Now 1g1, # 0 by Corollary 1.2.
Hence 4,(1,) = 1.

Let us show that Condition (b) implies Condition (d). Consider H as a right 7-comodule over
itself (with comultiplication as structure maps). For any « € 7, set N, = kl,. Since the comulti-
plication is unitary, N = {N,}eer 1S a m-subcomodule of H. Therefore N is a direct summand of H
(since H is cosemisimple). In particular there exists a 7-comodule morphism p = {py}eer : H > N
such that p, |y, = idy, for all @ € &r. For any @ € m, since N, = k1, there exists a (unique) k-form
Ao € H, such that p,(h) = A.(h) 1, for all h € H,. Let us verify that 4 = (dy)qer 15 a right
n-integral for H. Let , 8 € m. Since p is a 7-comodule morphism, we have that

(1.21) /laﬁ 1, ® lﬁ = Aa,ﬁpaﬁ =(pe ® idHﬂ)Aa”g = Ayl ® idHﬂ)Aa”g.

If H, = 0, then either Hg = 0 or Hyp = 0 (by Corollary 1.2) and s0 Aap 15 = 0 = (e ® idp,)Aa -
If H, # 0, then there exists f € H, such that f(1,) = 1 and so, by applying (f'®idg,) to both sides
of (1.21), we get that Ay 15 = (1o ® idy,)As g Therefore A is a right 7-integral for H. Finally, let
a € msuch that H, # 0. Then 4,(1,)1, = po(1y) = 1, (since 1, € N,) and so A,(1,) = 1 (since
1o #0).

To show that Condition (d) implies Condition (a), let M = {M,}q4er be a reduced right m-co-
module over H with structure maps by p = {04 glegexr and N = {Ny }oer be a m-subcomodule of M.
By Lemma 1.22, we have to show that N is a direct summand of M. Define 6, : H,-1 ® H, — k
by 0o (x ® y) = Ao (S ,-1(x)y) for all @ € . We first prove that, for any .,y € 7,

(1.22) (idH, ® 6ap)(Dg (apy1 ®1dH,,) = (00 ®idy,)(idy_, ® Agp).
Indeed, for any x € H,-1 and y € H,p,
(idp, ® 6ap)(Ag (ap)yt ®1dp,,)(X ®Y)
= X5 Aap(S @py (X2 ap) 1))
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x(1.8 (Ao ®1dp,)Aa (S (op)1 (X2,0p-1))y) by (1.12)
= xapSp1(xas1)yep Aa(S o-1(X3,0-1))Y1.0)) by Lemma 1.1(c)
= yep Aa(S o1 (e(x1,1)X2.0-1))Y(1.0) by (1.5)
= (S 1(0)yam)yeps by (1.2)
= (6o ®idpyy)(idy,_, ® Ao p)(x®Y).
Let g : M} — Nj be any k-linear projection which is the identity on N;. Define, for all @ € r,
Po = (ldy, ® 60)(Pg 01 © g ®idy, P10 : My — Ny.
For any «, 8 € 7, using (1.6) and (1.22), we have

PapPap = Paplidn,, ®6ap)Papapy1 © 9 ®idH,.)P1.08
= (idy, ®idu, ® 6ap)(Pap ®1dH ;1 )Pap,0py' © 4 ® 1dH,5)P1.08
= (idy, ®idp, ® dap)((1dn, ® Ag (g1 )Pae-1 © 4 ®1dH,,)P1.08
= (idy, ® (idp, ® 60p)(Ag op)y1 ®1dH,,)) (0401 © g ®1dH,,)P1.0p
= (idy, ® (60 ®1dp,)(1dy |, ® Agp))(Pg 01 © 4 ®1dH,,)P1,08
= (idy, ® 0¢ ® 1dp,) (P4 01 © ¢ ® idy, ® idp,)(idy, ® Ao p)P1.ap
= (idy, ® 6o ®1dp,) (0401 © g ®1dy, ® 1dp,) (P10 ® 1dHy)Pap
= (P ®idgy)pap.
Thus p = {pg}aer 1s @ 7-comodule morphism between M and N. Leta e randn € N,. If H, = 0,
then N, = 0 (since M and thus N is reduced) and so p,(n) = 0 = n. If H, # 0, then
Pa(m) = nomde(S o1 o-1)N2a)  since gly, = idy,
n0.0eMna,1)de(le) by (1.5)
n by (1.7) and since A,(1,) = 1.

Therefore g is a m-comodule projection of M onto N and consequently N is a direct summand of
M (namely M = N @ ker g). This finishes the proof of the theorem. O

CoroLLARY 1.25. Let H = {H,}oex be a Hopf n-coalgebra. Then

(a) If H is cosemisimple, then the Hopf algebra H; is cosemisimple;
(b) If H is of finite type, then H is cosemisimple if and only if H is cosemisimple.

Proof. To show Part (a), suppose that H is cosemisimple. By Theorem 1.24 and Corollary 1.2,
there exists a right -integral 4 = (Ay)qer for H such that A;(1;) = 1. Since A; is a right integral
for Hy such that 4;(1;) # 0, H; is cosemisimple (by [45, THEorREM 14.0.3]). Let us show Part
(b). Suppose that H is of finite type and H; is cosemisimple. By [45, THEOREM 14.0.3], there
exists a right integral ¢ for Hy such that ¢(1;) = 1. By Theorem 1.13, there exists a non-zero
right 7r-integral A = (A4 )een for H. In particular, 4; is a non-zero right integral for H}. Therefore,
since H; is finite-dimensional, there exists k € k such that ¢ = kA; (by [45, THEOREM 5.1.6]).
Thus (kA )eer 1S a right m-integral for H such that k4;(1;) = 1. Hence H is cosemisimple by
Theorem 1.24. O

CoroLLARY 1.26. Let H = {H,}ocr be a finite type Hopf m-coalgebra over a field k of character-
istic 0. Then H is semisimple if and only if it is cosemisimple.

Proof. By Lemma 1.21, H is semisimple if and only if H; is semisimple, and by Corol-
lary 1.25(b), H is cosemisimple if and only if H; is cosemisimple. It is then easy to conclude
using the fact that, in characteristic 0, a finite-dimensional Hopf algebra is semisimple if and only
if it is cosemisimple (see [23, THEOREM 3.3]). m|
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CoroLrary 1.27. Let H = {H,}oer be afinite type cosemisimple Hopf n-coalgebra. If g = (g4)aern
is the distinguished m-grouplike element of H, then g = 1 in G(H), i.e., g, = 1, for all a € n.
Consequently, the spaces of left and right m-integrals for H coincide.

Proof. Leta € m. If H, = 0, then g, = 0 = 1,. Suppose that H, # 0. By Theorem 1.24,
there exists a right w-integral A = (4,)ye, for H such that 4,(1,) = 1 and A;(1;) = 1. Then g, =
Aa(1y) 8o = (dH, ® A1)A1(14) = 41(11) 14 = 1,. Moreover, by Theorem 1.13 and Lemma 1.15,
the spaces of left and right m-integrals for H coincide. O

1.6. Involutory Hopf 7-coalgebras

In this section we give some results concerning involutory Hopf m-coalgebras which are used
for topological purposes in Chapter 5. A Hopf m-coalgebra H = {H}qer 1 said to be involutory if
the antipode S = {S 4 }qer 18 such that § ,-15, = idpy, for all @ € 7.

If A is an algebra and a € A, then r(a) € End(A) will denote the right multiplication by a
defined by r(a)(x) = xa. Moreover, Tr will denote the usual trace of k-linear endomorphisms of a
k-space.

LemMA 1.28. Let H = {H,}oer be a finite dimensional Hopf n-coalgebra with antipode S =
{Salaen Let A = (Ag)aer be a right n-integral for H and A be a left integral for H, such that
A1(A)=1. Let a € m. Then

(@) Tr(f) = (S o1 (A 20-1)) (A1) for all f € EndHy,;

(b) Tr(r(a) o S ,-1S4) = €(A) Ay(a) forall a € Hy;

(c) IfHy # 0, then Tr(S 1S o) # 0 if and only if H is semisimple and cosemisimple;

(d) If Hy # 0, then Tr(S 418 o) = Tr(S?).

Proof. To show Part (a), identify H}, ® H, and End(H,) by (p ® a)(x) = p(x)a for all p € H,
and a, x € H,. Under this identification, Tr(p ® a) = p(a). Let f € End(H,). We may assume that

f =po®aforsome p € H, and a € H,. By Corollary 1.14(b), since A is non-zero, there exists
b € H, such that p = A,(b---). Now,

b= ﬂa(bA(l,a))Sa—l(A(z,a-l)) = p(A(L(l))Saf‘l(A(Z,a‘l)) by Lemma 117(b)
Therefore

Tr(f)

pla) = Aq(ba)
= (S o1 (A1) P(A(1,0))
= (S 1 (A o1)f(A1)
Let us show Part (b). Let a € H,. Then
Tr(r(@) 0 S-180) = Aa(S-1(A@, 1))S o-1S a(A1,0))a) by Part (a)

= (S 1S (NN, 1))a)

= Ao(S -1(e(A)1,-1)a)

= e(A)A,(a)

To show Part (c), suppose H, # 0. Since Tr(S ,-154) = €(A)d,(14) (by Part (b)), one easily
concludes using the facts that H is semisimple if and only if e(A) # 0 (by Lemma 1.21 and
[45, TuEorREM 5.1.8]) and H is cosemisimple if and only if 2,(1,) # O (by Theorem 1.24 since
H, #0).

Let us show Part (d). By using (1.12), we have 4;(11) 1, = (41 ® idg,)A; (14) = A1) 1o,

and so 4,(1,) = A1(1y) since 1, # 0 (because H, # 0). Therefore, by applying Part (b) twice, we
obtain that Tr(S ,-15,) = €(A) Ao(1y) = e(A) A1 (11) = Tr(Sf). m|
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CoroLLARY 1.29. Let H = {H,}oer be a finite dimensional involutory Hopf n-coalgebra over
a field of characteristic p. Let @« € m with H, # 0. If p = 0 is of characteristic 0 or p >
|dim H, — dim H{|, then dim H, = dim H;.

Proof. By Lemma 1.28(d), we have Tr(S ,-1S,) = Tr(Sf), that is (dim H,)1x = (dim Hy)1
(since H is involutory). One easily concludes by using the hypothesis on the characteristic of the
field k. O

CoroLLARY 1.30. Let H = {H,}qex be a finite dimensional involutory Hopf m-coalgebra. Suppose
that dim H| # 0 in the ground field k of H. Then H is semisimple and cosemisimple.

Proof. This follows from Lemma 1.28(c), since Tr(S %) = Tr(idg,) = dim H; # 0. O






CHAPTER 2
Quasitriangular Hopf group-coalgebras

Hennings-like invariants of flat bundles over link complements and over 3-manifolds.

Following [48], a crossing for a Hopf n-coalgebra H = {H,}qer 18 a family of algebra
isomorphisms ¢ = {gg : H, — Hﬁaﬂ_l}aﬁeﬂ which preserves the comultiplication and the counit,
and yields an action of 7 in the sense that ggps = @gg. A crossed Hopf n-coalgebra H = {H,}qex
is quasitriangular (resp. ribbon) when it is endowed with an R-matrix R = {R, 3 € H, ® Hg}y pex
(resp. an R-matrix and a twist 0 = {6, € H,}qer) verifying some axioms which generalize the
classical ones given in [7] (resp. [40]).

The notion of a trace for a Hopf algebra can be extended to the setting of Hopf m-coalgebras:
by a m-trace for crossed Hopf m-coalgebra H = {H,}qer, We shall mean a family of k-forms
tr = (try : Hy = K)qer Which verifies try(xy) = trge(yx), tr-1(S o(x)) = try(x), and trgep-1(pp(x)) =
try(x) forall @, € mand x,y € H,,.

The main result of this chapter is the existence of n-traces for a semisimple (resp. cosemisim-
ple) finite type unimodular ribbon Hopf 7-coalgebra. To prove this result, we generalize the main
properties of quasitriangular Hopf algebras (see [8, 15, 38]). In particular, we introduce and study
the (generalized) Drinfeld elements of a quasitriangular Hopf 7-coalgebra H, we compute the dis-
tinguished w-grouplike element of H by using the R-matrix, and we show that the twist of a ribbon
Hopf m-coalgebra leads to a m-grouplike element which implements the square of the antipode by
conjugation.

When 7 is a finite group, we can reformulate the main definitions and results concerning Hopf
n-coalgebras into the language of central prolongations of the Hopf algebra of functions on 7.

This chapter is organized as follows. In Section 2.1, we study crossed, quasitriangular, and
ribbon Hopf m-coalgebras. In Section 2.2, we construct n-traces. In Section 2.3, we give an abstract
formulation of the main definitions and results in the case x finite. Finally, we give examples of
Hopf group-coalgebras in Section 2.4.

Q uasitriangular Hopf group-coalgebras are the algebraic data used in Chapter 4 to construct

2.1. Quasitriangular Hopf n-coalgebras

In this section, we recall the definitions of crossed, quasitriangular, and ribbon Hopf 7-coal-
gebras given by Turaev in [48], and we generalize the main properties of quasitriangular Hopf
algebras to the setting of Hopf m-coalgebras.

2.1.1. Crossed Hopf 7-coalgebras. Following [48, §11.2], a Hopf n-coalgebra H = {H, }qex
is said to be crossed provided it is endowed with a family ¢ = {¢g : H, — Hpgopi }aper Of k-linear
maps (the crossing) such that

(2.1) each gg: Hy — Hp,p-1 is an algebra isomorphism;

(2.2) each g preserves the comultiplication, i.e., for all @, 8,y € 7,
(‘70,3 ® SD,B)Aa,y = Aﬁaﬁ”,ﬂyﬂ*”’oﬂ 5

(2.3) each g preserves the counit, i.e., egg = &;

(2.4) @ is multiplicative in the sense that gg = @ppp for all B,5" € m.

25
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Lemma 2.1. Let H = {Hy}oer be a crossed Hopf n-coalgebra with crossing . Then

(@) ¢yn, =1idg, for all a € n;

(b) <p[;1 = @g-1 forall B € m;

(¢) ¢ preserves the antipode, i.e., pgS o = S gop-10p for all @, € n;

(d) If A = (Aa)aex is a left (resp. right) n-integral for H and B € m, then (Agop-19p)acr is also
a left (resp. right) n-integral for H;

() If g = (84)aer Is a m-grouplike element of H and 3 € n, then (p(gp-10p))aer is also a
n-grouplike element of H.

Proof. Parts (a), (b), (d) and (e) follow directly from the axioms of a crossing. To show Part
(c), let @, € n. Using the axioms, it is easy to verify that <p[;IS pap19p * 1y = €l,1 in
the convolution algebra Conv(H, H,-1) (see §1.1.2). Thus, since S, is the inverse of idHa—l in
Conv(H, H,-1), we have that galngﬁaﬁ_lgaﬁ = So and 50 Sgup-1908 = @pSa- O

CoroLLARY 2.2. Let H = {H,}qer be a finite type crossed Hopf n-coalgebra with crossing .
Then there exists a unique group homomorphism ¢ : © — K* such that if 1 = (Ag)qex s a left or
right m-integral for H, then Ag,p-1¢p = ©(B)A, for all a,p € m.

Proof. Let A = (Ag)qer be anon-zero left z-integral for H. For any § € 7, since (Agyp-149p)aer 18
a non-zero left m-integral for H (by Lemma 2.1(d)) and by the uniqueness (within scalar multiple)
of a left m-integral in the finite type case (see Theorem 1.13), there exists a unique ¢(8) € k* such
that Ag,s-198 = Y(B)A, for all @ € n. Using (2.4) and Lemma 2.1, one verifies that ¢ : 7 — k*
is a group homomorphism. Since any left n-integral for H is a scalar multiple of A, the result
holds for any left m-integral. Finally, let 1 = (d,)qer be a right m-integral for H. Since the
antipode is bijective (H is of finite type), and using Lemma 2.1(d) and the fact that (1,15 o)eer
is a left m-integral for H, we have that, for all @, € 7, Agop-195 = Agap-1S go-15-198S ;_11 =

PP S oS L = 0B =

LemMA 2.3. Let H = {Hy}oer be a finite type crossed Hopf n-coalgebra with crossing ¢. Let ¢ be
as in Corollary 2.2. Then, for any 8 € «,
(@) If A is a left or right integral for Hy, then pg(A) = G(B)A;
(b) If v is the distinguished grouplike element of Hy, then vgg = v;
(©) If § = (8a)aex is the distinguished nt-grouplike element of H, then (o) = gpap-1 for all
a €T

Proof. Let us show Part (a). Let A be a left integral for H;. We can assume that A # 0
(if A = 0, then the result is obvious). By Lemma 2.1 and (2.3), x¢p(A) = @a(gg-1(0)A) =
wp(epp-1(x) A) = &(x) pg(A) for any x € Hy. Thus @g(A) is a left integral for H;. Therefore, since
H is finite-dimensional and A # 0, there exists k € k such that pg(A) = kA. Let 2 = (d4)oer be
a non-zero right rr-integral for H. We have that p(8)A1(A) = A1 (gg(A)) = A1 (kA) = kA1 (A). Now
A1(A) # 0 (because A is a non-zero left integral for H; and 4; is a non-zero right integral for HY).
Hence k = @(B) and so @g(A) = @(B)A. It can be shown similarly that the result holds if A is a
right integral for H;.

Let us show Part (b). If A is a left integral for Hy, then, for all x € Hy, A x = @g-1(gp(A) gp(x)) =
ep-1 (V(pp(x)) ga(A)) = vipp(x) A (since @g(A) is a left integral for Hy). Thus, by the uniqueness of
the distinguished grouplike element of the Hopf algebra H}, we have that vgg = v.

To show Part (), let A = (A4 )aer be aright 7-integral for H. By Lemma 2.1(d), (Ag-1,59p-1)aer
is also a right n-integral for H. Then, for any @,y € «, using (2.2) and Lemmas 1.15 and 2.1, we
have

(lng ® /]’)/)AQ'J’ = ‘pﬁrl (idHﬂap—l ® /‘L)/‘pﬁ71 )Aﬁaﬁikﬁyﬁil ‘pﬁ



2.1. Quasitriangular Hopf n-coalgebras 27

= @p-1(dayPp-198 8pap-1)

= Aoy Pp-1(8pap1)-
Hence, by the uniqueness of the distinguished m-grouplike element (see Lemma 1.15), we have
that ¢g-1(8gap-1) = 8o and S0 ¢p(ga) = gpap-1 forall @ € . O

2.1.1.1. The opposite (resp. coopposite) Hopf m-coalgebra. Let H = {H,},e, be a crossed Hopf
m-coalgebra with crossing . If the antipode of H is bijective, then the opposite (resp. coopposite)
Hopf n-coalgebra to H (see §1.1.3.1 and §1.1.3.2) is crossed with crossing given by gozpl Y =

©plm, (resp. (,o;()p lger = @plu ) forall @, B € 7.

2.1.1.2. The mirror Hopf n-coalge_bra. Let H = ({H,}, A, €,S,¢) be a crossed H_opf m-coalgebra.
Following [48, §11.6], its mirror H is defined by the following procedure: set H, = H,-1 as an

algebra, Ay g = (9 ® idHﬁil)Aﬁ—la—lﬁﬁ—l, €=2¢83S4 = @S, and Eﬂlﬁn = gaingfl. It is also a
crossed Hopf m-coalgebra.

2.1.2. Quasitriangular Hopf r-coalgebras. Following [48, §11.3], a quasitriangular Hopf
m-coalgebra is a crossed Hopf m-coalgebra H = ({H,}, A, ¢, S, ¢) endowed with a family R =
{R,p € H, ® Hg}y ger Of invertible elements (the R-matrix) such that

(2.5) forany @, € mand x € Hyg,

Ra’ﬁ . Aa’,g(x) = O'ﬁ’a(gﬁa—l ® ing)Aaﬁa‘l,a(x) : Ra’ﬁ
where o, denotes the flip map OHgH, : Hp® Hy > Hy ® Hp;
(2.6) forany a,f €,

(idH(Y ® Aﬁ,y)(Ra/,ﬁy) = (Ra/,y)lﬁ3 : (Ra,,B)IZ)/
(Ao p ®idp, ) (Repy) = [(idn, ® ¢g-1)(Ry gyp-1)]183 - (Rpy)a23
where, for k-spaces P, Q and r = ijj®qj eP®Q,wesetrpp, =r®l, e PR O®H,,
re3 = 1, ®re H,®@ P® O, andr1,33 = ijj®lﬂ®qj €P®Hﬁ®Q;
(2.7)  the family R is invariant under the crossing, i.e., for any «, 3,y € m,

(98 @ ) (Ray) = Rgop-1 gyp-1-
Note that Ry ; is a (classical) R-matrix for the Hopf algebra H.
When 7 is abelian and ¢ is trivial (that is, ggly, = idg, for all @, € ), one recovers the
definition of a quasitriangular w-colored Hopf algebra given by Ohtsuki in [34].
If 7 is finite, then an R-matrix for H does not necessarily give rive to a (usual) R-matrix for
the Hopf algebra H = @,c.H, since an action of x is involved (see Sect. 2.3.4). However, if the
group 7 is finite abelian and if ¢ is trivial, then R = 2apen Rap is an R-matrix for H.

Notation. In the proofs, when we write a component R, g of an R-matrix as R, g = a, ® bg, it is
to signify that R, g = >};a; ® b; for some a; € H, and b; € Hg, where j runs over a finite set of
indices.

We now generalize the main properties of quasitriangular Hopf algebras (see [8, 15]) to the
setting of quasitriangular Hopf m-coalgebras.

LemMma 2.4, Let H = ({H,}, A, &, S, ¢, R) be a quasitriangular Hopf n-coalgebra. Then, for any
a,pB,y €,

(@) (6®idy,)(Ria) = 1o = (idp, ® ©)Ra1):

(b) (S 4100 @ idp,)(Ry-1 5) = R;i; and (idy, ® Sﬁ)(R;,;;) =R, p1;



28 2. QUASITRIANGULAR HOPF GROUP-COALGEBRAS

©) (Sa®Sp)Rap) = (o @idu,_ )Ry 5-1);
(d) (Rﬁ,y)a23 : (Ra,y)l,lB . (Ra/,ﬁ)127
= (Rap)12y - [(idp, ® op-1)(Ry gy 13 - (Rpy)a23-

Part (d) of Lemma 2.4, which is the Yang-Baxter equality for R = {R, g}e gex, first appeared
in [48, §11.3]. We prove it here for completeness sake.

Proof. Let us show Part (a). We have
Rie = (e®idy, ®idy,)(A1 ®idy,)(Rie) by (1.2)
= (e®idy, ®idy, )([(idg, ® e1)R1,)]11,3 - (R10)1,23) by (2.6)
= (e®idy, ®idy,)(Ri)113 - (Rio)i23) by Lemma 2.1(a)
= (e®idy, ®idy, (Ri)1,3) - (€®idy, ®idy, )(R1a),23) by (14)
= (11 ®(E®idy,)R10) - Rig.

Thus 11 ®(e®idg, )(R1,0) = 11 ®1, (since Ry 4 is invertible). By applying (¢ ®idg,) on both sides,
we get the first equality of Part (a). The second one can be obtained similarly.
To show the first equality of Part (b), set

& = (my ®idp,)(S o1 ®idp, ®1dp,)(Ag-1 o ®1dp,)(Ry p).
Let us compute & in two different ways. On one hand,
& (me ® idp,)(S o1 ®idp, @ 1dy)([(idE |, ® ¢o-1)(Ro-1 gpa-1)]103 - (Rap)e-123) by (2.6)
(S a! @ Qa1 )(Ra‘l,aﬂa‘l) : Ra,,B
= (S 190 ®idp,)(Ry-15) - Rep by (2.7).

On the other one,

&

(elo ®idp,)(R1p) by (1.5)
l,®1g by Part (a).

Comparing these two computations and since R, g is invertible, we get the first equality of Part (b).
The second one can be proved similarly by computing the expression ¥ = (idp, ® mg-1)(idy, ®

iy, ® Sp)idn, ® Ag1 p)(R.).
Part (¢) is a direct consequence of Part (b) and Lemma 2.1(a) and (c).
Finally, Part (d) follows from axioms (2.5) and (2.6):
(Rgy)a23 - (Ray)ips - (Rap)izy
= (Rgy)a2s - (idpy, ® Ag,)(Ropy)
= (idy, ® Rgy - Agy)(Rapy)
= (idpy, ® oy sl@s1 ®1du,)Agp1 5 - Rpy)(Rapy)
= (idp, ® oy s(ps1 @ idy,))((Rap)ipys13 - (Rogys-1)128) - (Rgy)a23
= (Rapay - [(dn, ® gg-1)(Ry gyp-1)]183 - (Rpy)a23-
This completes the proof of the lemma. O
2.1.3. The Drinfeld elements. Let H = ({H,, mq, 14}, A, €, 5, ¢, R) be a quasitriangular Hopf
m-coalgebra. We define the (generalized) Drinfeld elements of H, for any « € «, by
Uy = Mo (S o100 ®1dp, )0y o1 (Ry o-1) € Hy.
Note that #; is the Drinfeld element of the quasitriangular Hopf algebra H; (see [8]).

Lemma 2.5. Forany a,B €,
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(a) ug is invertible and u;l =ma(idy, ® S 4-18 )0 0,0 (Raa);
() S 418 o(Pa(x) = ugxu;! for all x € Hy;
(c) The antipode of H is bijective;
(d ‘pﬁ(ua) = Ugap-1y
@) S 1 (uy-1ug = ugS ,-1(u,-1) and this element, noted c, verifies
CaPu-1(X) = @o(X)cq for all x € Hy;
(H) Aa,ﬁ(uafﬁ) = [O-ﬁ,a(ide ® Soa)(Rﬁ,a) ’ Ra,,B]_l (ug ® uﬁ)
= (g ® M,B) : [O'ﬁ,a(ﬁoﬁ-l ® idHa)(Rﬁ,a) “(Po1 ® wﬁ—l)(Ra,ﬂ)]_l;
(&) &) =1

Proof. We adapt the methods used in [8] to our setting. Let us prove Parts (a) and (b). We first
show that for all x € H,,

2.8) S 418 o(@ality = g x.
Write R, ,-1 = dq ® by-1 so that u, = S 4-1(¢a(by-1))a,. Let x € H,. Using (1.1) and (2.5), we
have that
Raya-1)120 - (idh, ® A1 )Ag 1 (X) = (041 o(@o-1 @11, )Ap-1 ¢ ® 1dH,)ALa(X) - (Ry o120 5
that is, ag X(1,0) ® be-1X2,0-1) ® X3.0) = X2.0)8a ® Po-1(X(1,0-1))Da-1 ® X(3,0)- Evaluate both sides of
this equality with (idg, ® S ,-1¢00 ® S 415 o). reverse the order of the tensorands and multiply
them to obtain
S 018 0aPa(X3.0))S 010 (bg-1X2,0-1))AaX(1.0) = S 018 ¢Pa(X3.0)S 01 Pa(Pa-1 (X(1,0-1))be-1)X(2.0) -
Now, by Lemmas 1.1(a) and 2.1(c), the left-hand side is equal to
S 01008 a(X3,0))S ¢-10a(X(2,0-1))S o1 (Pa(by-1))aaX(1,0)
= S 10a(X2,0-1)S ¢ (X3.0))UaX(1.0)
= So19ae(xen)l-DueX1,0) by (1.5)
= uee(X1)X1,0) Since S ,-19,(1,-1) = 1,
= uyx by(1.2),
and, by Lemma 1.1(a), the right-hand side is equal to
S 418 0a(X3,0))S 01 (Pa(be-1))S o1 (X(1,0-1))X2.0) G
S 018 0P (E(x(1,1)X2,2))S o1 (Pa(by-1))ae by (1.5)
= S,1Sepa(Xu, by (1.2).
Thus (2.8) is proven. Let us show that u, is invertible. Set
U = mo(idp, ® S 418 0)Ta,0(Raa) € Ho.
By Lemma 2.4(b) and (2.7), Ry.o = (idp, ®S 4-1)(¢0 ® goa)(R;}a ). Write R;}a,l = ¢, ®d,-1. Then
Uy = S 4-1(Pa(dy-1))S 418 o(Pa(cy)) and agcy @ by-1d,-1 = 14, ® 1,-1. Now
Ulty =S 41 (Pa(dy-1))S 418 a(@alca)tta
= S 1(@ald,-1)ugcy by (2.8) with x = ¢,
= S 1(@aldy-1))S o1 (@a(by-1))aacq
= S, 1(pa(by1d,1))agc, by Lemma 1.1(a)
= So1(@alpg-1e = la.

It can be shown similarly that u,u, = 1,. Thus u, is invertible, u;l = Uy, and 80 S 15 4 (pe (X)) =
uaxu[‘ll for any x € H,,.
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Part (¢) is a direct consequence of Part (b). Part (d) follows from (2.1), (2.4), and (2.7). Let us
show Part (e). For any x € H,,
S o1 (Ug-1)UgPy-1(X)
= S 1(uy-1)S 418 o(X)u, by Part (b)
= So1(Uy-1)8 415 oS -1 (<paflS;_11 (po(X))u, by Lemma 2.1(c)
= S o1 (1tg1)S g1 (g1 S L (a0t ua by Part (b)
= @a(0)S -1 (uy,-1)u,  since S -1 is anti-multiplicative.
In particular, for x = u,, one gets that S -1 (u,-1)uy :~uaS a-1(Ug-1).
For the proof of the first equality of Part (f), set Ry g = 05,0(1dn, ® @a)(Rp,). By Lemma 2.1
and (2.7), we have also that R, g = 0,0(p,-1 ® idHa)(Raﬁa_lﬂ). We first show that for all x € H,g,

(2.9) Rog Rop Dap(X) = (0o ® 05)Aap(@(ap1(X) - Rap - Rap.

By (2.5), Rg o - Aga(@e-1(x)) = Tap(Pp1 ®ide)Aﬁaﬂ_1ﬁ(goa_1 (x)) - Rg . Evaluate both sides of this
equality with the algebra homomorphism o 4(idn, ® ¢,) and multiply them on the right by R g
to obtain

O-ﬁ,a(idH/; ® ‘pa/)(Rﬁ,a) : O-,B,ar(idHﬂ ® Soa)Aﬁ,a(SDa’l(-x)) : Ra,ﬁ
= (@aypp-1 ® 1) Agyp1 g(P-1(X)) - 0p.0(1dH, ® Ya)(Rpa) - Rap-
Then, using (2.2), (2.4), and (2.5), one gets equality (2.9). Set now

8 = Eaﬁ . Raﬁ . Aaﬁ(uaﬁ).

We have to show that & = u, ® ug. Write Rogapyt =7® S8, Rop =aa ® bg, and ﬁaﬁ = Cq ® dp.
Then uas = S (4p)-1 (Pap())T = apS (4p)-1(s)r. We have that

& = ﬁa,ﬂ ’ Ra,ﬁ ’ Aa,ﬁ(waﬁs (@B)7! (s)r)

= Rop- - Rap  Dap(@apS ap1(9) - BDap(r) by (1.4).
Therefore, using (2.9) for x = ¢upS (4p)-1(s) and then Lemmas 1.1(c) and 2.1(c), we obtain that

&

(Pa ® ) - Aap(S (apy1(5) - Rap - Rag - Dap(r)
(Pa ® €9)0p.a(S 51 ® S ¢ 1)Ag-1 41 () - Rap - Ragp - Dag(r)
PaS a-1(S@,0-1))Cabal (1) ® ©pS g1 (51 p-1))dpbpriap
S o1 (@a(82,0-1)))CalaT(1,0) ® S g-1(9p(s1 g-11))dpbpr.p).-
Now H, ® Hg is aright H, ® Hg ® H,-1 ® Hg-1-module under the action

(x®y) « ("1 @hy ® h3 ® ha) = S o-1(pa(h3))xhy ® S g-1(gp(ha))yhy.

For any k-spaces P, Q and any x = }; p;®q; € P®Q, we set X124 = x®1,® 15 € PRORQH,® Hp,
Xaps = 2jla®pj®lg®q; € Hy, ® P® Hp ® Q, etc. Then

&

Ca ® dp < GaT(1,0) ® DpT2.0-1) ® S201) @ (15
= Rop « Raping-1p1 - (Bap ® Tt g1 Mgt o 1) (R (1)
= Rap « Rep)izgipt - (Rop ®idyy_, ®idy )
(Ropa-iop1 - Ropp-1)10-13) by (2.6)
= Rup « Rapiog g1 Bap®idy_, ®idy_N(Rypo)ip1)
“(Aap®idy , ®idp,_ N(Rogg1)ie-13) by (1.4).
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Therefore, by (2.6) and Lemma 2.4(d),
& = Rop« Ropina-1p - [(dp, ® 0p-)(Ry po-15-)] 1535
“(Rgo-1)a23p1 - [(dH, ® @p-1)(Ry g-D]1pa-14 - (Rgg-1)a2a-14
= Rop« (Rgo-1)a23pt - Ry o1ip3p-1 - (Rap)i2e-151
. [(id[-[ﬂ ® gﬂﬁ—l)(Ra/’ﬁ—l)] 1Ba14 * (Rﬂ,ﬁ‘l)a/2a‘14‘
Write Rg, = g ® f, and Rp o1 = hg ® ky-1. Then ﬁaﬁ = po(fo) ® eg and so
ﬁa,ﬁ « (R,B,a‘l)a23ﬂ‘1
= Sa'*l (‘paf(kcrl N@a(fo) ® eﬁh,B
= O',B’a,(idHﬂ ® oS 41 )((ide ® S;_ll Y(Rp.a) - Rp 1) by Lemma 2.1(c)
= 0pa(idh, ® S, )R, - Rp,1) by Lemma 2.4(b)
= 1,® lﬁ.
Writing R, ,-1 = m, ® n,-1, we obtain
1, ® lﬁ “ (Ra’a—l)la/—l3ﬁ—l =S - 10(ny-1)Mmg ® lﬁ = Uy ® lﬁ.
Therefore
E= Uy ® 1’3 “ (ROZ,,B)lZQ/_lﬂ_l . [(ldHa ® ‘Pﬁ-l)(Ra,,B-l)]l,Ba-14 . (Rﬂ,ﬁ‘l)a/2a/‘l4'
Write now R, -1 = pa ® gg-1. Then
Uy ® lg « (Raﬁ)lza,—lﬁ—l - [(dp, ® (,Dﬁ—l)(Ra,ﬁ—l)]lﬁa,—l;‘
= UglgPa ® Sﬁ—l (Qﬂ—l )bﬁ
= (e ® 1p) - (idpy, ® S p-)((idp, ® S ;1 )(Rarp) - Ryp1)
= (e ®lp) - (idy, ® Sﬁ-l)(R;’lﬁ,1 “Ry,p-1) by Lemma 2.4(b)
= Uy ® lﬁ.

Hence & = u, ® 1p « (Rgp-1)a2e-14- Finally, write Rgp-1 = xg ® yg-1. Then & = uy ®
Sp-1(pp(yg-1))Xp = g ® ug. This completes the proof of the first equality of Part (f). Let us
show the second one. Using the first equality of Part (f) and then Part (b), we have that

Napltap) = [0pa(idh, ® 0o)Rpa) - Rapl™ - (o ® up)
= (o ®up)  (Pg1(S41Sa) " ®pg1(Sp1Sp) ")
([0p.0(idp, ® ©a)(Rpa) - Rapl ™),
and so, by Lemmas 2.1 and 2.4(c),
A ptap) = (ta ® ug) - [0p0(@p1 ® idp, ) Rpa) - (Pt ® 9p-1)(Rap)] ™.
It remains to show Part (g). We have
up = (e®idy)A11(u;) by (1.2)
= (e®idy)(e11(R1.1) - Ri)™ - (uy ®up)) by Part (f)
= (e®idy)(R1)™" - (idy, @ &)(R11)™" - swu; by (1.4)
= &(up)u; by Lemma 2.4(a).

Now u; # 0 since u; is invertible (by Part (a)) and H; # 0 (by Corollary 1.2). Hence e(u;) = 1.
This finishes the proof of the lemma. O
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2.1.3.1. The coopposite Hopf 7-coalgebra. Let H = {H,},c, be a quasitriangular Hopf 7-coalge-
bra with R-matrix R = {R, g}e ger- By Lemma 2.5(c), the antipode of H is bijective. Thus we can
consider the coopposite crossed Hopf 7-coalgebra H°P to H (see §2.1.1.1). It is quasitriangular
by setting Rig = (o ® ide_1 )(R;fl’ ﬁ_l) =(S,® idHﬂ_l )(R, g-1)- The Drinfeld elements of H and

H® are related by u;, " = M;L-

2.1.3.2. The mirror Hopf 7-coalgebra. Let H = {H,},c, be a quasitriangular Hopf 7-coalgebra

with R-matrix R = {R, g}qger. Following [48, §11.6], the mirror crossed Hopf n-coalgebra H to

H (see §2.1.1.2) is quasitriangular with R-matrix given by R, g = O"B—I’Q,—I(R[;_llya_l). The Drinfeld

elements associated to H and H verify i, = S o(ug) ™"

The following corollary of Lemma 2.5 will be used in Section 2.1.4 to compute the distin-
guished 7m-grouplike element from the R-matrix.

CoROLLARY 2.6. Let H = {H,}oen be a quasitriangular Hopf m-coalgebra. For all @ € n, set
ly = Sa-l(ua-l)_lua = Ma/Sa—l(Ma/—l)_l € H,. Then

(@) € = (Ly)aer is a m-grouplike element of H;

(b) (Sa—ISQ)Z(X) = &,xﬁ;l forall @ € mand x € H,,.

Proof. Let us show Part (a). Denote by u, the Drinfeld elements of the mirror Hopf 7-coal-
gebra H to H (see §2.1.3.2). Since u, = S o(1te)™", Lemma 2.5(f) applied to H gives that, for any
a,B e,

B p(S a1 (1)) = Opalpt @idn,)(Rg.a)
(o1 ® SDﬁ’l)(Ra,ﬁ) ’ (‘S‘ar’l(“af’l)_1 ® Sﬁ’l(uﬁfl)_l)'
Now, by Lemma 2.5(f),
Aapltap) = (o ® tp) - [0p.a(Pp1 ®idp, ) (Rpa) - (01 ® @p-1)(Rap)] ™.

Thus we obtain that A, g(€op) = Agglitap) - Ao (S (Qﬁ)q(u(aﬁ)q)_l) = {, ® {g. Moreover &({1) =
e S1(u)™) = e)e(S 1) = e(uy)e(uy)™ = 1 by (1.4) and Lemma 1.1(d). Hence ¢ =
(ba)acr € G(H). B

To show Part (b), let @ € mand x € H,. Applying Lemma 2.5(b) to H and then to H gives that

S 418 o (S o1 (ty-1) " P (X)S 1 (t1y-1))
= S 1808 01(y-1)"1) S 418 0(@a(X)) S 18 o (S 41 (tty-1))
= U g1 (1) XS ot (g !

= lxt;.

(S 1S (x)

This completes the proof of the corollary. O

2.1.3.3. The double of a crossed Hopf n-coalgebra. The Drinfeld double construction for Hopf
algebras can be extended to the setting of crossed Hopf n-coalgebras, see [52]. This yields exam-
ples of quasitriangular Hopf m-coalgebras.



2.1. Quasitriangular Hopf n-coalgebras 33

2.1.4. The distinguished 7m-grouplike element from the R-matrix. In this subsection, we
show that the distinguished 7-grouplike element of a finite type quasitriangular Hopf m-coalgebra
can be computed by using the R-matrix. This generalizes [38, THEOREM 2].

THEOREM 2.7. Let H = {Hy}qer be a finite type quasitriangular Hopf n-coalgebra. Let g =
(8a)aer be the distinguished mn-grouplike element of H, v be the distinguished grouplike element
of H, { = ((o)aexr € G(H) be as in Corollary 2.6, and ¢ be as in Corollary 2.2. We define
ho = (idp, ® v)(Ro,1) for any a € nr. Then

(@) h = (hy)aer is a n-grouplike element of H;

(b) g =90 Yhin G(H), i.e., go = pl) "oy for all a € n.

Proof. We adapt the technique used in the proof of [38, THEOREM 2]. Let us first show Part (a).
For any a, 8 € m, using (2.6), the multiplicativity of v, and Lemma 2.3(b), we have that
Auplheg) = (Aap®V)(Rop 1)
= (idp, ®idg, ® v)([(idn, ® ¢g-1)(Ra1)]1p3 - (Rp.1)a23)
= ((dy, ® vpp-1)(Ra,1) ® 1p) - (1o ® (idp, ® V)(Rp 1))
= ((dy, ®V)(Ra1) ® 1p) - (1o ® hp)
= h,® hﬁ.
Moreover, using Lemma 2.4(a), e(h;) = (¢®v)(R1,1) = v(11) = 1. Thus h € G(H).

To show Part (b), let @ € 7 and A be a non-zero left integral for H;. We first show that, for
any x € H,1,

(210) A(l’a) ® XA(Z’Q—I) = Sa—l()C)A(l’a) ® A(Z,a"l)
and

(211) A(La—l)x ® A(Q’a) = A(l,d_l) ® A(Q’Q)Sa—l(x “— V).
Indeed

A(l,a) ® )CA(Z’Q,—I) 8()6(1’1)) A(l,a) ® X(Z’Q—I)A(z’a—l) by (1.2)
= Sa/—l(x(l,a‘l))-x(Z,a/)A(l,a/) ® X(3’a—l)A(2’a—l) by (15)
S o1 (X1 1) (X2, ) A)(1,0) ® (X2,1)A) 201y by (1.4),

and so, since A is a left integral for Hy,

A(l,a) ® xA(z,a-l) = S, (X(La—l)8()((2’1)))/\(1’@) ® A(z’a—l)
= Safl(x)A(La) ® A(z’a—l) by (1.2).
Similarly,
A(La—l)x ® A(2,a/_l) = A(l,a/_l)x(l,a_l) ® A(Q’Q)S(X(z’l)) by (12)

Ao )X10 ) ® Aoy X208 o1 (X3 e-1y) by (L1.5)
(Axa.1))1,e1 ® (Axa,1)2.0)S o1 (X20-1)) by (1.4),

and so, since A is a left integral for Hy,

A(l’a—l)x ® A(z’a,—l) = A(La—l) ®@ARw)S o1 (v(x(l,l)) X(z’a—l))
= A(l’a—l) ® A(Z’Q)Sa-l(x — V).

Write R, -1 = aq ® b,-1. Recall that u, = §,-104(by-1)a,. By Lemma 2.4(c) and (2.7),
Ry14 = Salag) ® oS o-1(by-1). Thus uy-1 = S48 4-1(by-1)S o(aq) and so, using Lemma 2.5(b)
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and (d), S -1 (uy-1) = S‘l(u -1) = aqS 4-1(by-1). Then
A(z S o1 (@a(bo1) — V)aa ® A o1y
= AQa)da ® A o0 1)<pa(b -1) by (2.11) for x = ¢a(b,-1)
= (dg, ® a)(A@.a0)ta ® ¢o-1 (A a-1))Do1)
= (idg, ® a)(@al(1.0) ®by-1Ap 1)) by (2.5)
= (idy, ® a)(@aS o-1(by-1)A1,0) ® A e-1y) by (2.10) for x = b,
= S 1(Ug-1)A1e) ® Pa(Ap 1))
= (o1 ®1dp_ ) @aS o1 (Ug-1)Pa(A(1,0) ® Pa(A0-1)) by (2.4)
= (@o-1 ®1dy_ ) @aS o1 (Ug-1)Pa(N)(1,0) ® Pa(A)20-1) by (2.2).
Now ¢4(A) = p(a) A by Lemma 2.3(a) and
Ao ® A1) =S ¢18 a(A2,0))8a ® A1 o1
by Corollary 1.18. Therefore
A(z S o1 (@a(bo-1) — V)ag ® A 41
= W) (o1 ®idy N @aS o1 (Ug-1)S 418 o (A2,0))80 ® Ay o-1))
= W@ S 41 (1P 1S 018 a(A2,0)) P01 (8a) ® A(1,01
= W@)S 4 1(Ug-1)Pe-18 418 e (A2,0))8a ® A1 o1y by Lemma 2.3(c).
Let A = (4,),ex be right m-integral for H such that A;(A) = 1 (see the proof of Corollary 1.18).
Applying (idy, ® A,-1) on both sides of the last equality, we get
A1 (A1) Aaa)S o1 (Pa(bo-1) = V)ag = P(@) S o1 (U118 015 o(Ag-1 (A1 0-1) A2.0))80rs
and so, since A,-1(A(j o-1)) Aoy = A(A)1y = 1, by (1.12),
(2.12) S o1 @albo1) = Vg = F@) S 41 (g
Write Ry 1 = ¢, ® d; so that h, = v(d)c,. Since, by (2.2) and Lemma 2.3(b), ¢,(x) — v =
@o(x — v) for all x € H,-1, we have that
g ® (¢a(by1) — V) g ® Pa(by-1 = V)
(dy, ® v @ @o)(1dpy, ® Ay o-1)(Ry o-1)
(idn, ® v ® ©a)(Ry.a-1)11:3 - (Ra,1)120-1) by (2.0)
agv(dy) Ca ® a(by-1)
aohe @ @o(by-1).
Therefore S ,-1(¢a(by-1) “— V)ag = S ,-1(@e(by-1))aqhey = ugh,. Finally, comparing with (2.12),

we get 9(@) S o-1(ty-1)8e = Uahy. Hence go = @(a) ' ohy, since €y, = S -1 (uy-1)" uy. This
finishes the proof of the theorem. O

2.1.5. Ribbon Hopf 7-coalgebras. Following [48, §11.4], a quasitriangular Hopf 7-coalge-
bra H = ({H,}, A, &, S, ¢, R) is said to be ribbon if it is endowed with a family 0 = {6, € H,}qer of
invertible elements (the twisr) such that
2.13) @u(x) = H;Ixé?a forall @ € mand x € H,;

(2.14) So(6,) = 6,1 forall @ € ;
(2.15) @p(6a) = Opop-1 for all @, B € m;
(2.16) for all ,p € m,

Aa,ﬁ(gaﬁ) =0, ® gﬁ) : O-ﬁ,a((goa‘l ® idHa)(Raﬂa‘l,a)) : Ra,ﬁ-
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Note that 6, is a (classical) twist of the quasitriangular Hopf algebra H,.

Lemma 2.8. Let H = ({H,}, A, €,S,¢,R,0) be a ribbon Hopf n-coalgebra. Then
(@) @ -1(x) = GaxH;I forall o € mand x € Hy;
(b) &6)) = 1;
(¢) If @ € & has a finite order d, then Hz is a central element of H,. In particular 0y is
central;
(d) Oyuy = uy0, for all a € nr, where the u, are the Drinfeld elements of H.

Proof. Part (a) is a direct consequence of (2.13), (2.15), and Lemma 2.1. Let us show Part (b).
We have
0y = (e®idy)A11(61) by (1.2)
= (e®idy)(01 ®0;)-01,1(R1,1) - R1;1) by (2.16) and Lemma 2.1(a)
= (e®idy )01 ®0)) - (idy, ®&)(Ry1) - (e®idy)(Ry1) by (1.4)
= &(61)8; by Lemma 2.4(a).
Now 6; # 0 since it is invertible and H; # 0 (by Corollary 1.2). Hence £(¢;) = 1. To show Part
(c), let @ € 7 of finite order d. For any x € H,, using (2.4), Lemma 2.1 and (2.13), we have that
X = @1(x) = @ua(x) = <pf£(x) = H;dxé?g and so ng = xé?g. Hence Hg is central in H,. Finally, let
us show Part (d). Using Lemma 2.5(d) and (2.13), we have that u, = ¢,(1ty) = 9;114&9&, and so
Oty = Uy0,. O

2.1.5.1. The coopposite Hopf n-coalgebra. Let H = {H,},c, be a ribbon Hopf 7-coalgebra with
twist 6 = {6, }qaer- The coopposite quasitriangular Hopf 7-coalgebra HP (see §2.1.3.1) is ribbon

Ccop __

with twist 6, = 9‘_11.
a

2.1.5.2. The mirror Hopf n-coalgebra. Let H = {H,},c, be a ribbon Hopf ﬂ—coalgebra with twist
0 = {0, }oer- Followillg [48, §11.6], the mirror quasitriangular Hopf m-coalgebra H (see §2.1.3.2)
is ribbon with twist 6, = 9;_11.

2.1.6. The spherical 7-grouplike element. Let H = ({H,}, A, &, S, ¢, R, 0) be a ribbon Hopf
n-coalgebra. For any a € w, we set (see Lemma 2.8(d))
Gy = Ouy = u,0, € H,.

LeEMmMmA 2.9. (@) G = (Gy)aer is a m-grouplike element of H;
(®) ¢p(Go) = Gpgup-1 for all a,B € mi;
(©) So(Gy) = G;}l forall @ € ;
(d) 9;2 =cq forall @ € m, where cq = S -1 (Up-1)Utg = UaS ,-1(U,-1) as in Lemma 2.5(e);
(e) So(uy) = G;}lua-lG;}l forall @ € &,
(f) Sp-1Sa(x) = GaxG;Ifor all e mand x € H,.
The n-grouplike element G = (G, )qer Of the previous lemma is called the spherical m-group-
like element of H.
Proof. Let us show Part (a). Firstly e(Gy) = &(61u;) = €(01)e(u;) = 1 by Lemmas 2.5(g)
and 2.8(b). Secondly, for any a, 8 € «, using (2.16) and Lemma 2.5(f),
Aa,,B(Gaﬁ) = Aa,ﬁ(eaﬁuaﬁ)
Aa,ﬂ(eaﬂ) : Aa,ﬂ(uaﬂ)
(0o ® Op) - [05.0((pe-1 ®1dp, ) (Rope1.0)) - Rapl
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[0pa((@a-1 ®1dp,) Ropa-1.0)) - Rapl™ - (o ® ug)
= G4® Gﬁ.

Thus G = (Gy)aer € G(H). Part (b) follows directly from Lemma 2.5(d) and (2.15), and Part
(c) from the fact that G is a m-grouplike element. By Part (c) and (2.14), 9;2 = uaG;19;1 =
UgS a—l(Ga—l)9;1 = uyS a_l(Ga_ma_l)H;l = ¢, and so Part (d) is established. Let us show Part
(e). By (2.14) and Part (c), G;}luafl = 9;_11 = Sa(%l) = Sa(G;lua) = Sa(ua)Sa(Ga)_l =
S o(e)G,4-1. Therefore S, (uy) = G;}luaqG;}l. Finally, to show Part (f), let x € H,. Using
Lemmas 2.5(b) and 2.8(a), we have

S 18 e(x) = uagaa_l(x)u;1 = uaeaxeglugl = Gangl.
This completes the proof of the lemma. O

In the following corollary of Theorem 2.7, we compute the distinguished 7-grouplike by using
the spherical m-grouplike element.

CoRroLLARY 2.10. Let H = {H,}oer be a finite type ribbon Hopf n-coalgebra. Let g = (g4)aex be
the distinguished n-grouplike element of H, G = (Gy)aer be the spherical n-grouplike element of
H, h = (ho)aex € G(H) as in Theorem 2.7, and @ as in Corollary 2.2. Then ¢g = G*h in G(H),
ie, P(a)gy = G2hy forall a € .

Proof. For any a € 7, p(a)g, = S a—l(ua—l)_luaha = Héu[zlha = Géha by Theorem 2.7(b) and
Lemma 2.9(d). O

2.2. Existence of r-traces

In this section, we introduce the notion of a n-trace for a crossed Hopf n-coalgebra and we
show the existence of m-traces for a finite type unimodular Hopf m-coalgebra whose crossing ¢
verifies that ¢ = 1. Moreover, we give sufficient conditions for the homomorphism ¢ to be trivial.

2.2.1. Unimodular Hopf r-coalgebras. A Hopf n-coalgebra H = {H,}.e, is said to be uni-
modular if the Hopf algebra H; is unimodular (it means that the spaces of left and right integrals
for H, coincide). If H| is finite-dimensional, then H is unimodular if and only if v = &, where v is
the distinguished grouplike element of H;.

If 7 is finite, then a left (resp. right) integral for the Hopf algebra H = @,c.H, (see §1.1.3.5)
must belong to Hi, and so the spaces of left (resp. right) integrals for H and H; coincide. Hence,
when r is finite, H is unimodular if and only if A is unimodular.

One can remark that a semisimple finite type Hopf m-coalgebra H = {H,}4e, is unimodular
(since the finite-dimensional Hopf algebra H, is semisimple and so unimodular). Note that a
cosemisimple Hopf m-coalgebra is not necessarily unimodular.

2.2.2. n-traces. Let H = ({H,}, A, €, S, ¢) be a crossed Hopf n-coalgebra. A m-trace for H is
a family of k-linear forms tr = (try)qer € oerH,, such that, for any @, 8 € mand x,y € H,,

2.17) trg(xy) = tro(yx);
(2.18) tre-1(Sq(x) = tro(x);
(2.19) trgep-1(pp(x)) = tra(x).

This notion is motivated mainly by topological purposes: n-traces are used in Chapter 4 to
construct Hennings-like invariants (see [13, 17]) of principal m-bundles over link complements
and over 3-manifolds.

Note that tr; is a (usual) trace for the Hopf algebra H;, invariant under the action ¢ of x.
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In the next lemma, generalizing [13, ProprosiTioNn 4.2], we give a characterization of the
m-traces.

LemMmA 2.11. Let H = {H,}oer be a finite type unimodular ribbon Hopf n-coalgebra with crossing
@. Let A = (Ag)aer be a non-zero right n-integral for H, G = (Gy)aer be the spherical n-grouplike
element of H, and ¢ be as in Corollary 2.2. Let tr = (tty)ger € HyerH,,. Then tr is a n-trace for H
if and only if there exists a family z = (2o)aer € UaenHgy satisfying, for all @, € 7,

(@) tro(x) = 1,(Gozex) for all x € Hy;

(b) z, is central in H,;

(C) Sa(za) = a(a/)_lz(y*l;

(d) ¢p(za) = P(B)zgap-1-

Proof. We first show that, for all @ € 7 and x,y € H,,

(2.20) Ao (Goxy) = Ao(Goyx),
and
(2.21) D)1 (S () = 2(G2x).

Indeed, let v be the distinguished grouplike element of H{. Since v = & (H is unimodular),
Theorem 1.16(a) gives that A, (Gyxy) = Ao(S 4,-15 o(¥) Gox). Now, by Lemma 2.9(f), S ,-15 ,(y) =
GayG[_ll. Thus A,(Gyxy) = A,(G,yx) and (2.20) is proven. Moreover, Corollary 2.10 gives that
o(a)g, = nyha, where ¢ = (gq¢)eer 18 the distinguished m-grouplike element of H and h, =
(idg, ®V)(Rqa.1). Since v = ¢ and by Lemma 2.4(a), h, = (idy, ®€)(Ra1) = 1o. Thus gpla)g, = G?I.
Now A,-1(S o(x)) = A(gax) by Theorem 1.16(c). Hence p(@)A,-1(S o(x)) = /la(G[zlx) and (2.21) is
proven.

Let us suppose that there exists z = (24 )eer € IlperH, verifying Conditions (a)-(d). For any
a,femand x,y € H,,

Ao(Goazexy) by Condition (a)
= Aa(Gayzex) by (2.20)

= Au(Gyzeyx) since z, is central
= tro(yx) by Condition (a),

tre (xy)

tre-1Sa(x) = Ap-1(Go124-15 o (X))
= Pa)d,-1(S a(Ggl)S «(22)S o(x)) by Condition (c) and Lemma 2.9(c)
= D@)Ay-1(S o(x2,G;")) by Lemma 1.1(a)
= (G2xz,G;') by (221)
= /la(GazaGangl) since z, 1s central
= tra(GaxG;I)
= try(x) since tr, is symmetric,
and

g1 (9p(X) = Agap-1(Gpop-12g0p-195(X))
= 'gE(,B)_l/lﬁaﬁ_l (08(Go)gp(za)pp(x)) by Condition (d) and Lemma 2.9(b)
= 0B Apap 1 (9p(Gaza))
= 3B ' F(B)1e(Gazax) by Corollary 2.2
= trg(x).
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Hence tr is a n-trace.
Conversely, suppose that tr is a m-trace. Recall that H, is a right H,-module for the action
defined, for all f € H;, and a, x € H,, by

(f — a)(x) = f(ax).
By Corollary 1.14(b), (H,, <) is free, its rank is 1 (resp. 0) if H, # O (resp. H, = 0), and 4, is a
basis vector for (H,, —). Thus, for any @ € x, there exists w, € H, such that tr, = A, < w,. Set
Zo = G;'w,. Let us verify that the family z = (z,)aer verify Conditions (a)-(d). By the definition
of z,, Condition (a) is clearly verified. Let @ € 7 and x € H,. For any y € H,,,
(Ao — Gaza X)) Ae(Gozaxy)
= traf(xy)
= tro(yx) by (2.17)
= Ao(Gozayx)
= Aa(Gexzay) by (2.20)
= (Ao = GoXxza)(Y).
Therefore A, — Gu2oXx = Ao — Goxz,. Hence Gozox = Goxz, (since A, is a basis vector for
(H}, <)) and so zox = xz,. Condition (b) is then verified. Let @ € x. For any x € H,,
(Aot = G 18 o(20))(X) Ag1(G 18 o(za)X)
= 2,108, ' (02,G,") by Lemmas 1.1(a) and 2.9(c)
= B0 (G3S; (026G, by 2.21)
= 'ga\(a)_l/la(GazaS ;l(x)) by (2.20) and since z, is central
= @) (S, ()
= @) Mr,1(x) by (2.18)
= (ot = G @@ 250

We conclude as above that S ,(z,) = ?ﬁ(a)_lzml, and so Condition (c) is satisfied. Finally, let
a,B € . Forany x € H,,

(Ao — a(ﬁ)GaSDﬁ-l (Zﬁaﬁ‘l ))(x)

P(B)Aa(Gopp1(2g0p5-1)X)

= Agop1(08(Gagp-1(2gap-1)X)) by Corollary 2.2
= Agop-1(Gpap-12805-19p(x)) by Lemma 2.9(b)
= gy (pp(x))

= tro(x) by (2.19)

= (Ao = GazZa)(X).

Thus G,z, = Zﬁ(ﬁ)Ga(pﬁ—l (2gap-1) and s0 @p(za) = Zﬁ(ﬁ)zﬁaﬂq. Hence Condition (d) is verified and
the lemma is proven. O

In the setting of Lemma 2.11, constructing a m-trace from a right m-integral 4 = (dy)gex
reduces to finding a family z = (z4)eer Which satisfies Conditions (b)-(d) of Lemma 2.11. Let us
give two possible choices of the family z.

Let A be a left integral for H; such that A;(A) = 1. Setz; = Aand z, = Oif @ # 1. This family
Z = (Za)aer verifies Conditions (b)-(d) since H is unimodular (and so A is central and S {(A) = A)
and by Lemma 2.3(a). The n-trace obtained is given by try = e and tr, = 0 if @ # 1.



2.3. The case 7 finite: an abstract reformulation 39

If the homomorphism ¢ of Corollary 2.2 is trivial (that is, (@) = 1 for all @ € ), then
another possible choice is z, = 1,. In the two next lemmas, we give sufficient conditions for the
homomorphism g to be trivial.

LemMA 2.12. Let H = {H,}oer be a finite type crossed Hopf m-coalgebra with crossing ¢. If H is
semisimple or cosemisimple or if ggly, = idy, for all B € m, then ¢ = 1.

Proof. Let B € n. If H is semisimple, then H| is semisimple and thus there exists a left integral
A for Hy such that &(A) = 1 (by [45, THEOREM 5.1.8]). Now ¢g(A) = ¢(B)A by Lemma 2.3(a).
Therefore, using (2.3), ¢(8) = ¢(B)e(A) = e(@PB)A) = epg(A) = &(A) = 1. Suppose now that
H is cosemisimple. By Theorem 1.24, there exists a right -integral A = (A4 )qer for H such that
A1(11) = 1. Then @(B) = (B)A1(11) = A1(ga(11)) = A1(1;) = 1. Suppose finally that @gly, = idg,.
Let 4 = (A4)qer be a non-zero right m-integral for H. Then ©(8)A1 = A1gpla, = A1 and thus
©(B) = 1 (since A; # 0 by Lemma 1.9). |

LemMA 2.13. Let H = {Hy}qer be a finite type ribbon Hopf m-coalgebra with crossing ¢ and twist
0 = {0 }aen. Let A = (Ay)aer be a right n-integral for H. If 11(61) # 0, then ¢ = 1.

Proof. Let B € m. By (2.1.5.c) and Corollary 2.2, 1;(01) = A1(pp(61)) = ¢(B)11(01). Therefore
©(B) = 1 since 11(0;) # 0. O

We conclude with the following theorem, which follows directly from Lemma 2.11 (by choos-
ing z, = 1, for all @ € ) and Lemmas 2.12 and 2.13.

THEOREM 2.14. Let H = {H,}qer be a finite type unimodular ribbon Hopf n-coalgebra with
crossing ¢ and twist 0 = {0,}oen. Let A = (Ag)aer be a right n-integral for H and G = (Gy)ger
be the spherical nt-grouplike element of H. Suppose that at least one of the following conditions is
verified:

(a) H is semisimple;

(b) H is cosemisimple;

() 41(61) #0;

(d) @gly, = 1idy, forall B € .

Then tr = (try)een, defined by try(x) = 1,(Gox) for all « € m and x € H,, is a n-trace for H.

2.3. The case 7 finite: an abstract reformulation

The aim of this section is to give, when 7 is a finite group, an intrinsic formulation of the main
definitions and results concerning Hopf 7-coalgebras. Throughout this section, we suppose that
is a finite group.

2.3.1. Central prolongations of F(r). Let us recall that the Hopf algebra F () = k™ of func-
tions on 7 has a basis (e, : @ — K)qer defined by e,(8) = 643 Where 64, = 1 and 6,5 = 0 if
a # 3. The structure maps of F () are given by:

€weg = 0apCas lFm = Z eq, Aley) = Z eg®ey, &(ey) =041, and S(ey) =e4-1.

aen By=«a

By a central prolongation of F(rr) we shall mean a Hopf algebra A endowed with a morphism
of Hopf algebras F(r) — A which sends F(rr) into the center of A. The morphism F(r) — A
is called the central map of A. A central prolongation of F () whose central map is injective is
called a central injection of F(r).
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2.3.2. Hopf n-coalgebras as central prolongations of F(xr). By Section 1.1.3.5, since 7« is
finite, any Hopf n-coalgebra H = ({(Hy, Ma, 1o)}aens {Aaglapens €S alaer) gives rise to a Hopf
algebra H = ®,¢,H, with structure maps given by:

Alg, = Z Mgy, ElH, =6a1&  TlHeH, = OapgMa, 1= Z l,, and § = Zsa-

By=a aen QEm

The k-linear map F(r) — H defined by e, — 1, clearly gives rise to a morphism of Hopf algebras
which sends F(r) into the center of H. Hence H is a central prolongation of F(r).

The following lemma, due to Enriquez [9], asserts that the correspondence which assigns to
every Hopf m-coalgebra H = {H,,},ex the central prolongation H of F(r) is one-to-one:

Lemma 2.15. Let i be a finite group.

(a) The set of (equivalence classes of) Hopf n-coalgebras is in one-to-one correspondence
with the set of (equivalence classes of) central prolongations of F(r);

(b) The set of (equivalence classes of) Hopf n-coalgebras H = {Hy}qer with Hy, # 0 for all
a € 7 is in one-to-one correspondence with the set of (equivalence classes of) central
injections of F(r).

Proof. Let H = {H,},er be a Hopf m-coalgebra. As remarked above, H gives rise to a Hopf
algebra (H, A, &,§) which is a central prolongation of F(r) with central map F(r) — H given by
eq > 1,. Suppose that H, # 0 for all @ € &. In particular 1, # 0 for all @ € 7 and so (14)aer
is free (since H = @®yc H,). Therefore, if x = > aer Xa€a € ker(F(m) — H), where x, € k, then
Y wer Xale = 0 and so x, = O for all @ € x, that is, x = 0. Hence F(r) — H is injective and H is a
central injection of F(r).

Conversely, let A be a central prolongation of F(xr). We still denote by e, € A the image of
eq € F(m) under the central map F(r) — A of A. Set H, = Ae, for any @ € n. Since F(n) — A
is a morphism of Hopf algebras and each e, € A is central, we have that the family {H,}.e, is a
Hopf m-coalgebra with structure maps given by

Mo = €q - Mly,gH,, lo =€a, Dop=(ea®ep) Aln, &e=¢€lp, and Sq=e41-Sly,.

Furthermore we have that H = A as a central prolongation of F(rr), where H = ®,c,H, is the
central prolongation of F(rr) associated to {H,}qer as above. Finally, if the central map F(r) — A
of A is injective, then e, # 0in A and so H, = Ae, # 0 for all @ € 7. O

Using the correspondence of Lemma 2.15, let us translate the main definitions and results
concerning Hopf m-coalgebras (with 7« finite) into the language of central prolongations of F(r).

2.3.3. Crossed central prolongations of F(r). Let (A,A,&,5) be a central prolongation of
F (). We still denote by e, € A the image of e, € F(rr) under the central map F(r) — A of A. Let
Autyop(A) be the group of Hopf automorphisms of the Hopf algebra A. The central prolongation
A of F(r) is said to be crossed if it is endowed with a group homomorphism ¢ : 7 — Autyepi(A)
(the crossing) such that gg(eq) = eg,p-1 for all @, € 7.

If A is a crossed central prolongation of F(rr) with crossing ¢, then the map ¢ : A — A defined
by

xXeEA P p(x) = Z Ya(X)e, € A
aem

is an isomorphism of algebras. Remark that pS¢ = S.

A crossed central prolongation A of F(r) with crossing ¢ : 1 — Autyepr(A) leads to a bialgebra
A¥, called g-associated to A, defined by AY = A as an algebra and with comultiplication and counit
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given, for any x € A, by

Af(x) = Z OAA(@y-1 ®1dAA(X) - (o ® 14) and  &(x) = &(x).
Em

Note that when 7 is abelian and ¢ : 7 — Autygpr(A) is the trivial morphism, then A¥ = AP,

When the antipode of a crossed central prolongation A of F(r) is bijective, then the bialgebra
A¥ p-associated to A is a Hopf algebra with antipode S¥ = goS~!. The Hopf algebra A¥, endowed
with the central map of A, is a central prolongation of F (). Furthermore, the homomorphism
¢ 1 — Autyepr(A) is also a homomorphism 7 — Autyepr(A¥) and defines a crossing for A¥. Note
that we have (A¥)? = A as a crossed central prolongation of F ().

By Corollary 2.2 and Lemma 2.3, a morphism ¢ : 7 — Kk* is associated to the crossing
¢ 1 — Autyeps(A) of a finite-dimensional crossed central prolongation A of F(r) in such a way
that, for any 8 € 7,

o Apg = @(B) A for any left or right integral A for A*;
o p(A) = ¢(B) A for any left or right integral A for A.

2.3.4. Quasitriangular central prolongations of F (). Let A be a crossed central prolonga-
tion of F(rr) with crossing ¢ : m — Autyepr(A). Let (A%, A?, &%) be the bialgebra ¢-associated to
A. The crossed central prolongation A of F(r) is said to be quasitriangular if it is endowed with
an invertible element R € A ® A (the R-matrix) such that:

e RA(x) = A’(x)R for any x € A;
e (ida ® A)(R) = Ri3 Ri2;

e (A? ®1da)(R) = Ra3 Ry3;

® (g ®pp)(R) = Rforall 5 €.

Note that when 7 is abelian and ¢ is trivial, then R is a usual R-matrix for A (since in this case
A¥ = A°P),

By Lemma 2.5(c), the antipode of a quasitriangular central prolongation A of F(rr) is bijective.
Then the central prolongation A% of F(rr) is quasitriangular with R-matrix:

R? = 04, 4(id4 ® )(R).
By Lemma 2.4, the R-matrix of a quasitriangular central prolongation A of F(rr) verifies that:
e (¢®idy)(R) = 14 = (idy ® &)(R);
e (oS ®idy))(R) =R = (idg ® STH(R).
Let A be a quasitriangular central prolongation of F(rr). We define the Drinfeld element of A
by:
u=m(@oS ® idg)oaa(R).
By Lemma 2.5, we have that:
u is invertible and u~' = m(ids ® S2)(R);
S? 0 @(x) = uxu! for any x € A;
¢p(u) = ufor all B € m;
e(u) =1;
Aw) = (RR) " (u @ u).

By Corollary 2.6, the element £ = uS(u)~' = S (u)~'u is a grouplike element of A such that
S2(x) = ¢xt~! for any x € A. By Theorem 2.7, if A is moreover finite-dimensional, then ¢ is
related to the distinguished grouplike element g of A by e¥g = ¢h, where ¢ and h are grouplike
elements of A defined by ¢¥ = Y, 9(@)e, and h = (ids ® v)(R). Here v is the distinguished
grouplike element of A*.
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2.3.5. Ribbon central prolongations of F (). A quasitriangular central prolongation (A, ¢, R)
of F(r) is said to be ribbon if it is endowed with an invertible element 8 € A (the twist) such that:
o(x) = 07 'x0 for all x € A;

S =0,
¢p(0) = O for all B € m;
AB) = (14 ®0)Rr1 (0 ® 14)R.

Note that if 7 is abelian and ¢ is trivial, then ¢ = id4, that is, € is central, and so we recover
the usual axioms of a twist of A.

If (A, ¢, R, 6) is a ribbon central prolongation of F(rr), then the quasitriangular central prolon-
gation (A%, ¢, R?) ¢-associated to A is ribbon with twist 8% = 6.

By Lemma 2.9(d), the twist 8 of a ribbon central prolongation of F (i) verifies that 072 = uS (u),
where u is the Drinfeld element of A.

The spherical element of a ribbon central prolongation A of F(n) is G = Qu = uf, where u is
the Drinfeld element of A. By Lemma 2.9, we have that:

e G is a grouplike element of A;
e 3(G) = Gforall g em;

o S(u) =G uG™;

e S2(x) = GxG~! for any x € A.

By Corollary 2.10, the distinguished and spherical grouplike elements of a finite-dimensional
ribbon central prolongation of F(rr) are related by e*g = G’h, where ¢ = Y ,c, p(@)e, and
h = (idg ® v)(R).

Let A be a finite-dimensional ribbon central prolongation of F(xr) which is unimodular (that
is, the Hopf algebra A is unimodular). We suppose that the morphism @ : 7 — K* is trivial (this
is the case for example when A is semisimple or cosemisimple or when ¢ = id4). Let A be a
right integral for A*. Then, by Lemma 2.11 and Theorem 2.14, the k-form tr : A — k defined by
tr(x) = A(Gx) for all x € A is a trace for A which is ¢-invariant, i.e., such that tr(pg(x)) = tr(x) for
any femand x € A.

2.4. Examples

In this section, we give some examples of Hopf 7-coalgebras. They will be used in Chapter 4
and 5 to explicitly compute some topological invariants.

ExampLE 2.16. As remarked in [48], a crossed Hopf group-coalgebra HY = {HZ},er can be
derived from a (classical) Hopf algebra (H, A, €,S) and an action ¢ : m — Autyepr(H) of 7 on H
by Hopf algebra automorphisms by setting H; = H (as an algebra), Ay s = A, e = €, S, = S, and
¢g = ¢(P) for any a,f € .

When 7 is a subgroup of the group of grouplike elements of H, then 7 acts on H by conjugacy.
In this case, the Hopf m-coalgebra obtained is denoted by H" = {H},¢,. Furthermore, if H is qua-
sitriangular (resp. ribbon) with R-matrix R € H ® H (resp. twist v € H), then H” is quasitriangular
(resp. ribbon) by setting R” 5= (g ®a HR (resp. 67, = val).

ExampLe 2.17. Let 7 be a group and ¢ : 7 X 1 — k* be a bicharacter of x, that is, verifying
c(a,By) = c(a,B)c(a,y) and c(aB,y) = c(a,y)c(B,y) for all @,B,y € n. Then the crossed Hopf
n-coalgebra k'Y constructed from the (trivial) Hopf algebra k and the trivial action of 7 on k (see
Example 2.16) is a ribbon Hopf 7-coalgebra with R-matrix and twist given by R, g = c(a, 8) 1x®1k
and 6, = c(a,a). This ribbon Hopf m-coalgebra is denoted by k¢. The Drinfeld elements of k¢
are u, = c(e, ®)"!. Moreover K¢ is finite dimensional and unimodular and (id)aey is a two-sided
m-integral and a n-trace for k€. This Hopf m-coalgebra is used in Section 4.1.7.
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ExampLE 2.18. Following [49], we give an example of an involutory Hopf Z/2Z-coalgebra H =
{Hy, H} over C. It corresponds to the Kac-Paljutkin Hopf algebra viewed as a central injection of
F(Z2/22).

Set Hy = Co® Co® CoC and H| = Mat,(C) as algebras. Let {ey, e2, e3, e4} be the (standard)
basis of Hy and {e] 1, €12, €21, €22} be the (standard) basis of H;. The counit € : Hy — C is given
by &(e1) = 1 and &(ep) = &(e3) = &(eq) = 0. The comultiplication is given by

A0’0(€1)=€1®€1 +ter®ey+e3®e3+e4®eq
A0,0(€2)=€1®€2+€2®€1 te3®eq +e4Qe3
A0’0(€3)=€1®€3+€3 ®elter®eqs +e4Qe
A0’0(€4)=€1®€4+€4®€1 ter®e3+e3®e

Api(er)) =e1®ej+er®ente3®e +es®epn
Api(e1p) =e1®ejp—iex®er) —e3®epties®ey
Api(er)) =e1®ex)+iex®ejp—e3®ey) —ies®en
Api(exp) =e1®exp+er®e 1 +e3®ern +es®ey

Arpler)) = e 1 ®e+ep@e+e) 1 ®ez+enQey
Arple1p) =e1p®ep +iey 1 ®ep—ejp®e3— ey ey
Arpler)) = e 1 ®e; —iep®e—ep1®e3+iep®ey
Arplerp) =exp®ej+e; 1 ®ex+exp®e3 +ep 1 ®ey

Arien) =%(e11®ei1+en®en+ein®ein+er ®ent)
Ari(er) = 5(e11 ®erp+era®epg +ien®er —iex) ®er)
Aji(e3) =5(e11®e1 +e2p®en—e1p®ep—ex1®en 1)
Aji(es) = 5(e11®en+e2p®e1 1 —iep®er +ien; ®epn)

The antipode is given by So(ex) = ex forany 1 < k < 4 and S(ex;) = e forany 1 < k,[ < 2.
One can verify that this leads an involutory Hopf Z/2Z-coalgebra.

Some numerical computations concerning this Hopf Z/2Z-coalgebra (used in Section 5.3) are
given in Appendix B.

ExampLE 2.19. Recall that, when 7 is an abelian group, a ribbon Hopf z-coalgebra with trivial
crossing is a ribbon m-colored Hopf algebra in the sense of [34]. Following [35], we give an
example of a ribbon Hopf (%Z) /Z-coalgebra, where N is a fixed positive integer, which is derived
from finite dimensional quotients of U,(sl>).
Fix an integer r > 2. Sett = exp(é—’;) and g = > = exp(iT”). For any x € R, * will denote the
scalar exp(’g—f). In particular, ¢* = ** = exp(m%). Note that if x’ = x mod 4r, then ' = r*.
For each a € (%Z) /Z, let A, be the associative algebra over C with generators a%, e, and f,
subject to the following relations:
a¥e=g¥ea¥, avf=q¥fav, ef-fe="SHL,
e = 0’ fr — 0’ a4r — t—4ra.

2-
21—

The family A = {Ay}eer 1S @ Hopf (%Z)/ Z-coalgebra by setting:

Aepla) =av @av, Aggle)=e®@a'+a®e, Aupg(f)=fO®a' +a® ],
€la) =1, e(e) =0, e(f) =0,

Selav)=av, Sale)=—q e, Salf)=—qf.
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We endow A with the trivial crossing, that is, ¢gls, = ida,. The crossed Hopf (%Z)/ Z-coalgebra
A =1{A,} awe(L2)/z is ribbon with R-matrix

L @ =" —raytepyira—n-n o jop ~(l+a)
Rap = Z Z e T fldT e eaT
’ r [n]!
n=0 k,leZ/4rZ

and twist 6, = a*" ‘l)u;I, where the u, are the Drinfeld elements of A. Here [n] = L,
[#]! = [n][n —1]---[1], and [O]! = 1.

Some results concerning this Hopf (%Z) /Z-coalgebra (used in Example 4.13) are established
in Appendix A.




CHAPTER 3

Categorical Hopf group-algebras

Hennings-like invariant 74 of principal m-bundles over 3-manifolds will be constructed in

Chapter 4 from a finite type unimodular ribbon Hopf m-coalgebra H = {H,}qer. In [48],
Turaev constructed another invariant 7¢ of such bundles from a modular w-category C = Lye,Cy .
In order to compare them in the case C is the category Rep(H) of representations of H, one has
to relate the algebraic approach to the categorical one. The appropriate notion which allows us to
link these two approaches is that of a Hopf m-algebra in a braided category. The aim of the present
chapter is to study such objects. In particular we explicitly construct them from coends and we
study their categorical integrals.

This chapter is organized as follows. In Section 3.1, we review the basic definitions and
properties of m-categories. In Section 3.2, we study the coends in a m-category. In Section 3.3, we
introduce the notion of a Hopf m-algebra in a braided category and we construct such categorical
Hopf m-algebras from coends. Finally, in Section 3.4, we study the so-constructed categorical
Hopf m-algebra and their z-integrals in the particular cases of a r-category of representations or of
a finitely semisimple m-category.

3.1. Basic facts on 7-categories

In this section, we review the basic definitions and facts on n-categories introduced by Turaev
in [48]. For further details, the reader should refer to [48].

3.1.1. m-categories. Let C be a strict monoidal category with unit object 1. Note that every
monoidal category is equivalent to a strict monoidal category in a canonical way (see, e.g., [22]).
A left duality in C associates to any object U € C an object U* € C and two morphisms
evy : U"® U — 1 and coevy : 1 — U ® U* such that
(3.1) (dy ®evy)(coevy ®idy) = idy;
(3.2) (evy ®idy-)(idy- ® coevy) = idy-.
Note that we can (and we always do) impose that evy = idy and coevy = idj.
A monoidal category C is said to be k-linear if the following conditions are satisfied:

(3.3) all sets of morphisms Hom¢(U, V) in C are k-spaces;
(3.4) both the composition and the tensor product of morphisms are k-bilinear.
We say that a k-linear category C splits as a disjoint union of subcategories {C,} numerated
by certain « if:
(3.5) eachC, is a full subcategory of C;
(3.6) each object of C belongs to C,, for a unique «;
(3.7) for U € C, and V € Cg with @ # 3, then Hom¢(U, V) = 0.
A m-category over K is a k-linear monoidal category with left duality C which splits as a
disjoint union of subcategories {C,}qer such that
(38) ifUeC,andV € Cg, then U®V € Cyp;
(3.9) if U € Cy, then U* € C,-1.

45
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We shall write C = U,e,C, and call the subcategories {C,} of C the components of C. The
category C; corresponding to the neutral element 1 € x is called the neutral component of C.
Conditions (3.8) and (3.9) show that C; is closed under tensor product and taking the dual object.
Condition (3.8) implies that 1 € Cy. Thus C; is a k-linear monoidal category with left duality.

An automorphism of a k-linear monoidal category C with left duality is an invertible k-linear
(on the morphisms) functor ¢ : C — C which preserves the tensor product, the unit object, and the
duality, that is, for any objects U, V € C and any morphisms f, g in C,

(3.10) (1) =1;

G.1D eUeV)=el)®eV);

(3.12) (U") = p(U)";

(B.13) o(f®g) = ¢(f) ®¢(g);

(3.14) @(evy) = evyw) and @(coevy) = Coevyy).

The group of automorphisms of C is denoted by Aut(C).

3.1.2. Crossed r-categories. A crossed m-category over K is a n-category C endowed with a
group homomorphism ¢ : 7 — Aut(C) such that

(3.15) forall @,p € m, the functor ¢, = ¢(@) : C — C maps Cg into Cyp,-1.

Notation. For any objects U € C,, V, V' € Cg, and any morphism f: V — V" in C, we set
W= 0a(V) €Coppr and  Uf = 0u(f) -V V.

In particular, YU = ¢,(U) € C, for any U € C,.

Note that for any objects U,V,W € C and any morphism f : V — V'’ in C, we have the
following identities:

Yvew)=""velw, eV = Y, vy = vy,
=", =" =V, Up =1, “Wop="rolr,
Ureg =Yfe Y, Yidy) = iduy, Yevy) = evyy,
Ycoevy) = coevuy, UeVr = U(Vf), If = U(U*f) = U*(Uf) =f.

3.1.3. Braided n-categories. A braided n-category is a crossed m-category C endowed with
a system of invertible morphisms {cyy : U® V — WeuU Yuvec (the braiding) satisfying the
following three conditions:

(3.16) for any morphisms f : U — U’,g : V — V’ such that U, U’ lie in the same component
of C, we have

cov(feg) ="e® ey
(3.17) for any objects U, V, W € C,
cugvw = (cyvy ®1dy)(idy ® cyw)  cuvew = (idvy ® cyw)(cyy ® idw)

(3.18) the action of 7 on C preserves the braiding, i.e., for any @ €  and any objects V, W € C,

PLa(CV,W) = Cpu(V),.0u(W)-

Note that if in (3.16) the objects U, U’ do not lie in the same component of C then both sides
of the equality (3.16) are equal to 0 and have the same source U ® V but may have different targets.
For m = 1, we obtain the standard definition of a braided monoidal category.



3.1. Basic facts on n-categories 47

A braiding in a crossed m-category C satisfies a version of the Yang-Baxter identity: for any
objects U, V, W € C,

(CUV’UW ®idy) (idUV ®cyw) (cyy ®idy) = (idU®vW ®cuyy) (CU,VW ®1idy) (idy ® cyw).

Applying (3.17)to U =V =1 and V = W = 1 and using the invertibility of cy 1 and ¢ ¢, we
obtain that cy g = cp,py = idy for any object U € C.

3.1.4. Ribbon 7-categories. A ribbon n-category is a braided n-category C endowed with a
family of invertible morphisms {6y : U — YU}yec (the twist) satistying the following condi-
tions:

(3.19) for any morphism f : U — V with U, V lying in the same component of C,
ovf =Ny
(3.20) for any object U € C,
By ®idy+)coevy = (idvy, ® Oy )eoevuy;

(3.21) for any objects U,V € C,

Ouev = Cuevy Uy Cuy vy Oy ® by);

(3.22) the action of 7 on C preserves the twist, i.e., for any « € 7 and any object V € C,

0a(Ov) = O, v).

It follows from (3.21) that ; = id;.

For m = 1, we obtain the standard definition of a ribbon monoidal category.

The neutral component C; of a ribbon n-category C is a ribbon category in the usual sense of
the word.

A ribbon m-category C canonically has a right duality by associating to any object U € C its
left dual U* € C and two morphisms evy : U® U* — 1 and coevy : 1 — U* ® U defined by

(3.23) évy = evuycuy - Oy ® idy);
(3.24) coevy = (idy+ ® O )cy vy) ™ coevy.

Note that we have eévy = idg and coevy = idy.

3.1.5. Dual morphisms. Axiom (3.20) is better understood when it is rewritten in terms of
dual morphisms. For a morphism f : U — V in a monoidal category with left duality, the dual (or
transpose) morphism f* : V* — U* is defined by

(3.25) [ =(evy ®idy-)(idy+ ® f ® idy+)(idy+ ® coevy).

It follows from (3.2) that (idy)* = idy-. It is well-known that (fg)* = g*f* for composable
morphisms f, g. Axiom (3.20) can be shown to be equivalent to

(HU)>k = GU(U*)-
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3.1.6. Trace and dimension. Let C be a ribbon m-category. Following [48], the quantum
trace of an endomorphism f : U — U of an object U € C is defined by

(3.26) trq(f) = evy(f ® idy+) coevy € Ende(1) = Home(1, 1).

It is clear that for any k € k, we have trq(kf) = ktry(f). For any 8 € m, we have trq(¢p(f)) =
@p(trg(f)) where on the right hand side g acts on End¢c(1).

For any morphisms f : U — V, g : V — U in C, we have trq(fg) = trg(gf), and for any
endomorphisms f, g in C, we have try(f*) = trq(f) and trg(f ® g) = trq(f) trq(g).

The quantum dimension of an object U € C is defined by

(3.27) dimqU = try(idy) = evy coevy € Ende(1).

Note that isomorphic objects have equal dimensions and, for any objects U, V and § € &, we
have dimqU" = dimqU, dimgpp(U) = @g(dimqU), and dimg(U ® V) = dimqU dimyV'.

For morphisms and objects of the neutral component C; C C, the definitions above coincide
with the standard definition of the quantum trace and dimension in a ribbon category. This implies
that for any f € End¢(1), we have try(f) = f. In particular, dimg1 = try(idg) = idy.

3.1.7. Graphical calculus. Let C be ribbon n-category. Any morphism in C can be graph-
ically represented by a plane diagram. This pictorial calculus will allow us to replace algebraic
arguments involving commutative diagrams by simple geometric reasoning.

A morphism f : V — W in C is represented by a box with two vertical arrows oriented
downwards, as in Figure 3.1(a). Here V, W should be regarded as “colors” of the arrows and f
should be regarded as a “color” of the box. More generally, a morphism f : V;®--- @ V,, —
Wi ®---® W, may be represented as in Figure 3.1(b).

w Wy | W, w \% V*
L 5 | =] = idv= | idyes | =

\% Vi [V % Vv
a@f:V-oWw (b) Tensor product o f:V:> W (d) The identity

Ficure 3.1. Plane diagrams of morphisms

We also use vertical arrows oriented upwards under the convention that the morphism sitting
in a box attached to such an arrow involves not the color of the arrow but rather the dual object. For
example, a morphism f : V* — W* may be represented in four different ways, see Figure 3.1(c).
The symbol “=" displayed in the figures denotes equality of the corresponding morphisms in C.

The identity endomorphism of an object V € C or of its dual V* will be represented by a
vertical arrow as depicted in Figure 3.1(d). Note that a vertical arrow colored with 1 may be
deleted from any picture without changing the morphism represented by this picture. The empty
picture will represent idy .

The tensor product f ® g of two morphisms f and g in C is represented by placing a picture of
f to the left of a picture of g. A picture for the composition g o f of two (composable) morphisms
g and f is obtained by putting a picture of g on the top of a picture of f and by gluing the
corresponding free ends of arrows.
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The braiding cyw : Vo W — YW ® V and its inverse c‘_,lw :YWeV —» Ve W, the twist

Oy : V — YV and its inverse 0“,1 : YW — V, and the duality morphisms evy : V*® V — 1,
coevy 1 1 - V@V evy : VO V" — 1, and coevy : 1 — V* ® V are represented as in
Figures 3.2(a), 3.2(b), and 3.2(c) respectively. The quantum trace of an endomorphism f : V — V
in C and the quantum dimension of an object V € C may be depicted as in Figure 3.2(d).

Yw 1% VW\ 1% w /W
Low | = Law | =
1% w 1% \W Yw 1% VW/ 1%

(a) Braiding

dp g p

(b) Twist

O el s, e
evy = coevy = Ccvy = coevy =
\4 % Vv Vv % Vv

(¢) Duality morphisms

1% %
try(f) = dim,V =

(d) Trace and dimension

Ficure 3.2.

Note that all the axioms involving the structural morphisms of a ribbon m-category can be
traduced in the pictorial language described in this section (see [47] for the case # = 1). For
example, for any objects U, V € C, we have the graphical equalities of Figure 3.3 which describe
Axiom (3.21).

3.1.8. Category of representations of a Hopf n-coalgebra. Let H = ({H,},A,&,5) be a
Hopf m-coalgebra. Following [48, §11.7], a n-category Rep(H) can be associated to H. Moreover,
if H is crossed (resp. quasitriangular, ribbon), then Rep(H) is crossed (resp. braided, ribbon).

The category Rep(H) is the disjoint union of the categories {Rep,(H)}qoer, Where Rep,(H) is
the category Rep(H, ) of finite-dimensional left H,-modules and of H,-linear homomorphisms.
The tensor product and the unit object in Rep(H) are defined in the usual way using the comul-
tiplication A and the counit &. For any U € Rep,(H), we have U* = Homy (U, k) € Rep,-1(H),
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U®VU U®VU U®VU \ U®VU U®VU U®VU
N
Y
= = *
UsVv

W

o

U 14 U* * Vv U Vv

Ficure 3.3.

where a € H,-1 acts as the transpose of x € U — §,-1(a) - x € U. The duality morphism
evy : U"® U — 1 = ks the evaluation pairing; it gives rise to coevy in the usual way (cf. [47,
CuapTer XI]). The conditions defining a Hopf -coalgebra ensure that Rep(H) is a w-category.

Suppose that H is crossed with crossing ¢. Then each ¢ : Hy, — Hpg,p-1 defines an au-
tomorphism ¢g of Rep(H) as follows: if U € Rep,(H), then ¢g(U) € Repﬁaﬁ_l(H) has the same
underlying k-space as U and each a € Hg,g-1 acts as multiplication by @g-1(a) € H,. Every Hy-lin-
ear homomorphism U — U’ is mapped to itself considered as a Hg,g-1-linear homomorphism. It
is easy to check that Rep(H) is a crossed m-category.

When H is quasitriangular, the R-matrix R = {R, g}qper of H induces a braiding in Rep(H)
as follows: for U € Rep,(H) and V € Repﬁ(H), the braiding cyw : VO W — YW ® V is the
composition of multiplication by R, g, the flip map V® W — W ® V, and the k-isomorphism
W®V =YW ®V which comes from the fact that W = YW as k-spaces. The conditions defining an
R-matrix ensure that {cyw}yw is a braiding in Rep(H).

If H is ribbon, then the twist 6 = {0,},e, of H induces a twist in Rep(H) as follows: for any
H,-module V, the morphism 6y : V — "V is the composition of multiplication by 6,, € H, and the
k-isomorphism V — YV which comes from the fact that YV = V as k-spaces. One easily verifies
that Rep(H) is ribbon.

Lemma 3.1. Let H = {H,}oer be a ribbon Hopf n-coalgebra and G = (Gy)eer be the spherical
n-grouplike element of H. Then, for any M € Rep,(H), f € M*, and m € M,
evu(m® f) = f(Gy - m).
Proof. Letus write R, ,-1 = a, ® b,-1. Recall that
Uy = Mu(S 190 ®1dp, )0y 0 1(Ry o1)

= Mm(S g1 ®Y-1)0441(Ry 1) by Lemma2.1 and (2.7)

= S, 1(b-1)p,-1(ay).
Then

eVu(m® f) = evg,m © Cgan,me © Oy ® idy)(m ® f)
= eV, (by1 + [ ® @o-1(aa)ly - m)
= f(So1(Dg-1)pg-1(aa)bq - m)
= f(ugly -m)
= f(Gq - m).
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We immediately deduce from Lemma 3.1 that, in the category of representations of a ribbon
Hopf 7-coalgebra H = {H}qer, We have trq(f) = Tr(G, - f) and dimg(M) = Tr(G,, - idys) for any
M € Rep,(H) and f € Endy, (M), where Tr denotes the usual trace of k-linear endomorphisms.

3.1.9. Finitely semisimple 7-categories. Let C be a k-linear category. An object V of C is
said to be simple if Endc(V) = kidy. Since we suppose that k is a field, we have that if V, W are
non-isomorphic simple objects of C, then Hom¢(V, W) = 0. It is clear that an object isomorphic
or dual to a simple object is itself simple.

An object D of C is a direct sum of a finite family (U;);c; of objects of C if there exist, for each
i € I, two morphisms p; : D — U; and ¢, : U; — D verifying
: idy, ifi=yj,
1dp = ; 4i° P and predi= {0 otherwise.

Note that the object D and the morphisms {p;, g;}ic; are unique up to an isomorphism in C.
A rm-category C = U,e,C, is said to be finitely semisimple if it satisfies:
(3.28) the unit object 1 € Cy is simple;
(3.29) for each a € n, the set J, of the isomorphism classes of simple objects of C, is finite;
(3.30) for each « € «, finite direct sums exist in C;
(3.31) for each « € m, every object of C,, is a finite direct sum of simple objects of C,,.

Axiom (3.31) implies that if U,V are objects of C, then Hom(U, V) is a finite-dimensional
k-space.

A m-category is said to be premodular if it is ribbon and finitely semisimple (see [5] for the
case m = 1). Note that the m-category of representations of a finite type semisimple ribbon Hopf
m-coalgebra is premodular.

Let C be a premodular 7-category. The action of 7 on C transforms simple objects into simple
objects and so Axiom (3.28) and the equality ¢, (idy) = idy imply that any @ € 7 acts in Endg(1) =
k as the identity. Therefore the dimension of objects of C is invariant under the action of m: for
any V € C and @ € &, we have dim(g,(V)) = ¢,(dim(V)) = dim(V).

3.2. Dinatural transformations and coends

In this section, we first recall some basic facts on dinatural transformations and coends. Then
we focus on the case of a m-category.

3.2.1. Basic definitions. Recall that to each category C we associate the opposite category
C°P in the following way: the objects of C°P are the objects of C and the morphisms of C°P are
morphisms f°P, in one-one correspondence f +— f°P with the morphisms in C. For each morphism
f: U — Vof C, the domain and codomain of the corresponding f°P are as in f°P : V — U (the
direction is reversed). The composite f°Pg°P = (gf)°P is defined in C°P exactly when the composite
gf is defined in C. This makes C°P a category.

Let C and B be two categories. A dinatural transformation d : F = b between a functor
F : C® XxC — B and an object b € B is a function d which assigns to each object ¢ € C a
morphism d. : F(c,c) — b of B, called the component of d at c, in such a way that for every
morphism f : ¢ — ¢’ of C, the diagram of Figure 3.4 is commutative.

A coend of the functor F is a pair {a,i : F = a) consisting of an object a € B and a dinatural
transformation i from F to a which is universal among the dinatural transformation from F to a
constant, that is, with the property that, to every dinatural transformation d : F — b, there exists a
unique morphism /4 : a — b such that, for all object ¢ € C,

(3.32) d.=hoi,.
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F@Gd,f
F(c' o) 2920 per o)
F(f,id.) dy
F(c,c) b

de

Ficure 3.4. Dinatural transformation

By using the factorization property (3.32), it is easy to verify that if (a,i : F - a) and
(a',7 : F = a’) are two coends of F, then they are isomorphic in the sense that there exists an
isomorphism / : @ — &’ in B such that i/. = I o i, for all object ¢ € C.

3.2.2. Coends and r-categories. Let C = Il,¢,C, be a ribbon n-category. For any « € n,
define a functor F,, : Cof x C, — C) by

(3.33) F,(X,Y)=X"®Y and F.(f,g)=f"®g
for all objects X € Co¥, Y € C,, and all morphisms f in Co¥, g in C,.

Let us suppose that, for all @ € x, the functor F, admits a coend (A,,i : F, — Ag,) (the
omission of a subscript @ in the notation of the function i is unambiguous). In this setting, the
morphisms iy : X* ® X — A, will be graphically represented as in Figure 3.5.

A(Y A(l

X X X X

Ficure 3.5.

LemMma 3.2. Let o, € m and an object Z € Cy. Suppose that & is a function which assigns to
objects X € Co, Y € Cgamorphisméxy : X* @ X®Y*®Y — Zin Cy in such a way that, for any
morphisms f : X — X" inCqand g : Y — Y in Cg, the diagram of Figure 3.6 is commutative.
Then there exists a unique morphism h : A, ® Ag — Z such that éxy = h o (ix ® iy) for all objects
X€eCyandY € Cp.

Proof. Let an object Y € Cg. Define a function ¢ ¥ which assigns to every object X € C, the
morphism {}g X*®X - Z® Y* ®Y defined in Figure 3.7(a), that is,

£y = (€xy ® idy-oy)(idx-gxer ® coevy @ idy)(idyex ® COEVY).

Using the commutativity of the diagram of Figure 3.6 and the properties of the duality, it is
easy to verify that /¥ : F, > Z® Y* ® Y is a dinatural transformation. Therefore it factorizes
through the coend, i.e., there exists a unique morphism ay : A, — Z®Y*®Y** such that {}; = ayoiy
for all object X € C,.
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idy+®fQidy+®g

X/*®X®Y/*®Y X/*®X/®Y/*®Y/
fr®idx®g ®idy Exryr
X'XY"'®Y Z
Exy
Ficure 3.6.
[))(l = dY =
(@) (b)
Ficure 3.7.

Now, for any object Y € Cg, definedy : Y*®Y — A, ® Z as in Figure 3.7(b). We claim that d
is a dinatural transformation from Fg to A, ® Z. Indeed, if f : ¥ — Y’ is a morphism in Cg, then
by using the commutativity of the diagram of Figure 3.6, we have the equalities of Figure 3.8.

Ficure 3.8.

Hence, by using the uniqueness of the factorization morphism (via the coend) for the dinatural
transformation depicted in Figure 3.9(a), we obtain the equalities described in Figure 3.9(b) and
then dy o (f* ® idy) = dy’ o (idy~ ® f).
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(a) b)

Ficure 3.9.

Therefore d is a dinatural transformation from Fg to A, ® Z and thus factorizes through a
morphism b : Ag — A7, ® Z with dy = b o iy for every Y € Cg. Set now

h=(&va, ®idy)(ids, ®b) : Ay ® Ag — Z.

For any X € C, and Y € Cg, we have the equalities of Figure 3.10, that is, £xy = h o (ix ® iy).
Hence the existence part of the lemma is proved.

Ficure 3.10.

To show the uniqueness part, let us suppose that there exists another morphism /2’ : A, ® Ag —
Z such that éxy = b’ o (ix ® iy) for all X € C, and Y € Cg. For any X € C, and Y € Cg, we have

Zx

(éxy ® idygy)(idx-exey ® coevy ® idy)(idx-gx ® coevy)

(h’ ® idy+gy)(ix ® iy ® idy+gy)(idx+gxey* ® coevy ® idy)(idx+gx ® CFOTC—’V)/)
and so, by the uniqueness of the factorization morphism (via the coend),

ay = (h/ ® idy*@,y)(l.Aw iy ® idy*@,y)(idAw@Y* ® coevy ® ldy)(ldAH ® C’(Tei\ly).
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Therefore dy = (id4: ® h')(coev,, ® iy) and then, by the uniqueness of the factorization morphism
(via the coend), b = (ida; ® h')(coeva, ® ida,). Hence

h = (eva, ® h')(ida, ® coeva, ®ida,) = h'.
This completes the proof of the lemma. O
The following corollary can be deduced from Lemma 3.2 by a straightforward induction.

CoroLLARY 3.3. Let n be an integer > 1, ay, . ..,a, € n, and an object Z € C. Suppose that & is
a function which assigns to objects X1 € Cq,, ..., Xy € Cq, a morphism

,,,,,

in Cy in such a way that, for any morphisms f| € Hom(;al (Xl,Xi), ..+, Jn € Homg, (X, X)), the
diagram of Figure 3.11 is commutative. Then there exists a unique morphism

h:Ay ® - ®A,, —Z

such that éx, . x, = ho (ix, ® --- ® ix,) for all objects X; € Cq,, ..., X, € Cy,.

,,,,,

idxi* ®f1 ®"'®idx;[k ®fn

X'eX|®--- X, ®X, XX/ ® - 0X,'®X,

7 ®idy, ®--8f; ®idy, Exr

XX ®--®X, X, 4

Ficure 3.11.

3.3. Categorical Hopf r-algebras

In this section, we first introduce the notion of a Hopf 7-algebra in a braided category. Then
we show that the family of coends of the functors (3.33) leads a categorical Hopf w-algebra.

3.3.1. Hopf r-algebras in a braided category. The notion of a Hopf 7-coalgebra is not self-
dual. The dual notion is that of a Hopf m-algebra. It is obtained by dualizing the axioms of a Hopf
m-coalgebra. In this subsection, we introduce the notion of a categorical Hopf m-algebra.

Let (8,®,1) be a (usual) braided category with braiding ¢ = {cyy : U®V — V& Ulyves.
By a Hopf m-algebra in B, we shall mean a family A = {A,}.e, Of Objects of B, equipped with the
following families of morphisms in B :

a multiplication m = {myg : Ay ® Ag — Agglagers
aunitny:1 — Aj;

a comultiplication A = {A, : Ay = Ay @ Aulaer;
acounit £ = {g, : Ay = L}gers

an antipode S = {S, : A,-1 = Agleen:

verifying, for all @, 3,y € m,

(3.34) (Ay ®ida,)Ay = (ida, ® Ap)Ay;

(3.35) (e, ®idy,) =ids, = (ida, ® €4,)Ay;
(3.36) mup (Mg p® idAy) = Mg py(ida, ® mg,);
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(3.37) mq,1(ida, ®n) = ida, = m1o(7®1dy,);

(3.38) Agpmap = (Map ® map)(ida, ® ca,.a, ®1da,)(Ag ® Ap);
(3.39) Aim=non;

(3.40) gopmap = €4 ® £p;

(3.41) gp=idy;

(3.42) my14(S 1 ®1da, )AG =&y = My o-1(1dg, ® S ,-1)A,.

By dualizing the notion of a m-integral, we get the notion of a categorical m-integral in a
categorical m-algebra. By a right m-integral for the categorical Hopf m-algebra A, we shall mean a
family u = {uy : 1 = Agyleer of morphisms in B such that, for all @, € ,

(3.43) maﬁ(ya ® idAp) = Hap EB : A,B — Aaﬁ.

By a left (resp. right) cointegral for the categorical Hopf algebra A, we shall mean a mor-
phism ¢ : A; — 1 such that
(3.44) (idg, ® @)A1 =ne: A} — Ay (resp. (e®idy)A; =ne:A; — Ap).

In the next lemma, as in Lemma 1.17, we compute the antipode from a m-integral and a coin-
tegral.

Lemma 3.4. Let u = {y}oer be a right m-integral for a categorical Hopf m-algebra A = {Ay}aen
in8B. Fixa en.
(a) If e is a right cointegral for Ay, then

ey So = (emy o1 ®1dg,)ida, ® ca,a, - )(Aafa ®1da _,);

(b) If the antipode is bijective (that is, each S, is invertible in B) and e is a left cointegral
for Ay, then
ey ST1 = (ida, ® emy o-1)(Aghta ®ida_ ).
Proof. Let us prove Part (a). Set f = euy my o-1(Se ®1da_)A4-1 © Ap-1 = Ay. On one hand
we have that
myo(f ® S o)A,
= ept1 Ma(Myo-1(Se ®1da _)A-1 @ S)Ap 1
= ety Mia(my 0 ®ids,)(Se ®ids | ®S Ay ®ids Ay
= ep1 Mg,1(ida, ® my-1,)(Se ®idy | ® So)(ida | ® Ay-1)A,-1 by (3.34) and (3.36)
= et Mg 1(Sa ®My-1,(1da | ® Sa)Ay-1)Ap1
= 1 Ma1(Sa ®NE-1)Ay-1 by (3.42)
eur S¢ by (3.35) and (3.37).
On the other one, since
f = neui g, by (3.42)
(e®idag )Aimy o-1(He ®1ds ) by (3.43) and (3.44)
(emy o1 @My o-1)(1da, ® Ca,a,, ®1da ) Aotte ® Ay-1) by (3.38),

we have that

ml,a(f ® Sa)Aa‘l
= myo((emy 41 @ my, ,-1)(idy, ® CApA, 1 ® idAa—l YAt ® Ap-1) ® S o)A -1
= (emy 41 @ myo(m, 1 ®idy,))(ids, ® CApA, ® idA(f1 ® S o) Aapta @ (Ay-1 ® idA(f1 A1)
= (e ma,a’l ® md,l(idAg ® mofl’a))(idAﬂ ® CAmAH—l ® idAa,l ® Sa)(Aaﬂa ® (idA(fl ® Aa”l )Aa”l)
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by (3.34) and (3.36)
= (@M ® Mg )(((da, ® caa ) Aafta @ida ) @Myt (S oot ®ida_IAL1)AL
= (emg o1 ®mg,1)((ida, ® ca,a,_ )Aopta ®ids ) ®NE,1)Ap-1 by (3.42)
= (eMgqnr ®idy,)ida, ® a4 ) Agity ®ids ) by (3.35) and (3.37).

Hence we can conclude that eyy S, = (em, o1 ®1dy,)(ids, ® CAgA,1 YAgte ® id/s‘a_1 ).

Let us show Part (b). As in the algebraic case, since the antipode is bijective, we can define
a coopposite Hopf m-algebra AP = (AP}, to A by setting A;¥ = A,, mzog = Mgp, N°P =1,
AT = ca,a, My 85" = g, and S¥ = S ;_11 for any a, 8 € m. Since e is a right cointegral for A(I:Op
and p = {ug}eer 18 a right m-integral for AP, Part (a) applied to AP gives

cop

cop _
e Sa - (ema,a,—l

® id geon)(id geow ® g0 yeon )AL g ®id o),

that is,

-1
a-!

e S 5 = (emy o1 ®idy,)(1da, ® ca,a (€A, A, Dale ®1dy )

= (emg o1 ®1dp,)(ida, ® ca,a )(Ca 4, ®1ds ) (Agpta ®1ds )
= (e My o1t @ idAzY)cAmAa‘gAa—l (Agta ® idAa—l ) by (3.17)

= ca,a(ida, ® ey oy 1) (Aotta ®ids ) by (3.16)

= (idy, ®emgy o-1)(Agpta ® idAH—l ).

This completes the proof of the lemma. O

3.3.2. The coends as a categorical w-algebra. Let C = 11,¢,C, be a ribbon n-category. For
any « € 7, let F, : Cof X C, — Cj be the functor defined as in (3.33).

We suppose that, for every a € r, there exists a coend (A,,i : F, — Ag) of F,. Our goal in
this section is to show that the family A = {A,}qer Of Objects of C; admits a structure of a Hopf
m-algebra in C.

Let us define the structural morphisms:

e Let a € . For any object X € C,, set

ix®iyx

XXX X — A, ®A,,

AX X ®X idy* ®coevyx®idy
see Figure 3.12. Since i : F, — A, is a dinatural transformation, the function which
assigns to objects X € C, the morphism Ay is a dinatural transformation. Therefore
it uniquely factorizes through the coend (A,,i : F, — A,), i.e., there exists a unique
morphism A, : A, = A, ® A, such that Ay = A, o iy for all objects X € C,,.

Ficure 3.12. Ay : X' X - A, ® A,

e Let a € m. The coevaluation evy : X* ® X — 1 forms a dinatural transformation from F,,
to 1. Therefore there exists a unique morphism &, : A, — 1 such that evy = &, o ix for
all objects X € C,.
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e Leta,p € n. For any objects X € C,and Y € Cg, letmyy : X* @ X®Y*®Y — A,p be
the morphism of C; defined by the diagram of Figure 3.13(a). Since i : Fop — Aypisa
dinatural transformation and by using the naturality (3.16) of the braiding, the function
which assigns to objects X € C, and Y € Cg the morphism my y satisfies the hypothesis
of Lemma 3.2. Therefore there exists a unique morphism m,g : Ay ® Ag — Agp with
myy = mgqg o (ix ® iy) for all objects X € C, and Y € Cg.

e The unitis definedbyn:1=1"®1 . Ay

e Leta € m. Forany object X € C-1,let Sy : X*®X — A, be the morphism of C; defined
by the diagram of Figure 3.13(b). Since i : F, — A, is a dinatural transformation and
by using the naturality of the braiding (3.16) and of the twist (3.19), we have that the
function S is a dinatural transformation from F,-1 to A,. Therefore there exists a unique
morphism S, : A,-1 = A, such that Sx = S, o ix for all objects X € C,-1.

(@)myy : X'®@X®Y'®Y — Ay D)Sx: XX - A, @Sy : X' ®X > A,

Ficure 3.13. Structural morphisms of A = {A}eer

THEOREM 3.5. Let us consider the family A = {A,}oer Of 0bjects of Cy, endowed with the co-
multiplication A = {Ay}oen, the counit &€ = {gq}oen, the multiplication m = {mq gly gen, the unit
n: 1 — Ay, and the antipode S = {S o }oer defined above. Then
(a) A ={Ay}aer is a Hopf m-algebra in the category Cy;
(b) Each S, : A1 = A, is invertible in Cy and its inverse S ;1 i Aqg — A, is the factor-
ization morphism (through the coend (Ay,i : Fo = Ay)) of the dinatural transformation
S’ : Fy = A1 defined by the diagram of Figure 3.13(c);
(¢c) The antipode satisfies S ,-1 0 S, = 04, for all a € 7.
Note that (Ay,my 1,1,A1,&1,51) is a (usual) Hopf algebra in the category C;.
The case 7 = 1 was first shown in [30].

Proof. Let us show Part (a). Let ¢ : F, > A, ® A, ® A, be the dinatural transformation
defined, for any object X € C,, by

Ex = (ix®ix ®ix)(idy ® coevy ® coevy ®idy) : X @ X —» A, ® A, ® A,,.
By considering the equalities of morphisms depicted in Figure 3.14, we have that
(ida, ® Ap)Agix = Ex = (A ®1dy,)Agix.
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Therefore, by the uniqueness of morphism which factorizes the dinatural transformation & through
the coend (A,,i: F, — A,), we obtain that Axiom (3.34) is satisfied.

Ficure 3.14.

Lety : F, — A, be the dinatural transformation defined, for any object X € C,, by
Ux = (ix @ evy)(idy- ® coevy @ idy) : X* @ X — A,.

Using the rigidity axioms (3.1)-(3.2), we obtain that ¢y = ix = (evy ® ix)(idy- ® coevy ® idy).
Therefore
Ux = (idA(, ®Sa)AaiX = idAaix = (Sa ®idAa)AaiX-
and so, by the uniqueness of the factorization of ¢ through the coend (A,,i : F, — A,), we obtain
that Axiom (3.35) is satisfied.
Recall that the braiding verifies cy3 = ¢1,y = idy for all object U € C,. Therefore, for any
object X € C,, we have that

Mq,1(ida, ® Mix = mx1(idy-gx ® coevy) = ix = mq x(coevy @ idy-gx) = mj o(n @ ida, )ix,

and so, by the uniqueness of a factorization through a coend, Axiom (3.37) is satisfied.

By using the naturality of the braiding (3.16), the rigidity axioms (3.1)-(3.2), and the unique-
ness of the factorization morphism described in Corollary 3.3, Axiom (3.36) can be deduced from
the equalities of Figure 3.15, where empty boxes represent the appropriate identity morphism.

By the same reasoning, Axioms (3.38) and (3.40) may be deduced from the equalities depicted
in Figures 3.16 and 3.17 respectively.

Since evy = idy and coevy = idy, we have that Ajp = Ajip = Ap = A1(i1 ®i1) = Ai(n® 1)
and g1 = 1ip = &1 = evy = idy. Therefore Axioms (3.39) and (3.41).

Finally, by using the naturality of the braiding (3.16) and of the twist (3.19), the rigidity
axioms (3.1)-(3.2), the definition (3.23) of the right evaluation ev, and (3.21), we have that Ax-
iom (3.42) is a consequence of the equalities depicted in Figure 3.18, where the symbol “=” means
that we use the commutativity property of a dinatural transformation (see the commutative diagram
of Figure 3.4). Hence we can conclude that A = {A,}.c is a Hopf m-algebra in the category C;.

By using the same arguments, Parts (b) and (c) are verified in Figures 3.19 and 3.20 respec-
tively, where S/, : A,-1 — A, is the morphism in C; which factorizes the dinatural transformation
S’ Fq > A1, depicted in Figure 3.13(c), through the coend (A,,i : F, — Ag). O

3.4. Particular cases

In this section, we study the categorical Hopf m-algebra of Theorem 3.5 and their n-integrals
in the cases of a w-category of representations or of a finitely semisimple n-category. We show in
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A afy
YorzeXyex
XY Z®X Y®X

A aBy
X® YZ®X Y®oX
XeYzeXyeX

X X

Ficure 3.16. (l’l’layﬁ ® ma,ﬁ)(idAa ® CAnAp ® idAﬁ)(A(, ® Aﬁ)(ix ®iy) = Aaﬁma,ﬁ(ix ® iy)

particular that for a m-category Rep(H) of representations of a Hopf n-coalgebra H = {H,}4er, the
categorical m-integrals are in one-to-one correspondence with the m-integrals of H.

3.4.1. Coends in a m-category of representations. Let H = {H,},c, be a finite type Hopf
n-coalgebra and Rep(H) = 1l,c,Rep, (H) be its m-category of representations (see Section 3.1.8).
Fix a € . Set

(3.45) A, = H,, = Homyg(H,, k).
It is a finite-dimensional left H;-module under the action defined, for all # € Hy, x € H,, and
f €Ay, by

<h > f’ -x> = <fa Sa_l (h(l,a_l))x}l’(z,a)%
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ARINRT:

X X Y Y X X Yy X X Y Y

yex

I

7

_//
I8

Ficure 3.17. sa,[ima,ﬁ(iX ®iy) = (g, ® 8ﬁ)(ix ®iy)

Ay Ay Ay
X* * X* * *
(X®X") X xx) (X®X") X xex) XX AN yrax
X X X X X X
v
Ay Ay Ay
XX AN yrox XX AN yrox
= 1 = =
X X X X X X X X

F1GURE 3.18. my-1 o (S -1 ®1da,)Ayix = n&aix

where (, ) denotes the usual pairing between a k-space and its dual. Given a module M € Rep,(H),
letiy : M*® M — A, be the map defined, for all / € M*, m € M, and x € H,, by

(in(l®@m), x) =(l,x-m),

where - denotes the left action of H, on M.
Let F,, : Rep,(H)°® x Rep,(H) — Rep,(H) be the functor defined as in (3.33).

LeEmMA 3.6. Let H = {Hy}qer be a finite type Hopf n-coalgebra. Then

(@) (Ag,i: Fy = Ay)isacoend of F,,.

(b) If ¢ : Foy — Z is a dinatural transformation from F, to a module Z € Rep,(H), then the
(unique) morphism r : Ay, — Z such that &y = r o iy for all M € Rep,(H) is given by
fehy=Hy o r(f) = én,(f ® Lo).
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F1Gure 3.20. S,S ,1ix = 04, ix

Proof. Firstly, for any module M € Rep,(H), the map iys is H-linear. Indeed, for all / € M,
meM,xeH,, and h € H;, we have that
(ip(h - (l®m)), x) (im(h o1y - L® haq) - M), X)
= (h(l,a-l) lx- (h(2,a) -m))
= (LS o 1M o1y - (x- (h2) - m)))
= (L(So1(hq o-1))xa02.0) - 1)
= (h>iy(l®m),x) by the definition of the action » of H; on A,.

Let us verify that i : F, — A, is a dinatural transformation. Let f : M — N be a H,-linear
morphism in Rep,(H) and / € N*, m € M. Then, for all x € H,,
(in(I ® f(m)), x) (L, x - f(m))
{, f(x-m)) since fis H,-linear
(D, x - m)
{im(f* (1) ® m), x),
that is, iy(I ® f(m)) = ip(f*() ® m). Thus i : F, — A, is a dinatural transformation.

Let ¢ : F, — Z be a dinatural transformation from F, to a module Z € Rep,(H). We have to
verify that it uniquely factorizes through i : F, — A,. We first show that, for any M € Rep,(H),
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l e M*, and m € M, we have

(3.46) Em(l@m) = &x, (in(l@m) ® 1)

Indeed, let ¢ : H, — M be the H,-linear morphism given by ¢(h) = h - m. Since ¢ is a dinatural
transformation, we have that £y/(I ® ¢(1,)) = én,(¢*(1) ® 1,). This last equality is exactly (3.46),
since ¢*(I) = iy (I ® m).

Define now r : A, = Zby f = r(f) = én,(f ® 1,). It is Hi-linear since, for any f € A, and
h € H;, we have

h-r(f)

h-ép,(f®1q)

= &, (h-(f®1,)) since &y, is Hi-linear

= &u,(h o1y [ O M)

= ép,Gu,(h o1y f®hoa) ® 1) by (3.46)

= &ép,((h> f)®1,) by the definition of the action » of H; on A,

= r(h> ).

The map r factorizes ¢ through the coend since (3.46) says exactly that &y = r o iy, for all the
modules M € Rep,,(H).

It remains to verify that this factorization is unique. Since iy, : H, ® H, — A, is surjective
(because ig, (H, ® 1,) = H, = A,) and r o iy, = &g, the map r is uniquely determined. This
completes the proof of the lemma. O

Let H = {H,}qex be a finite type ribbon Hopf n-coalgebra and {(A,,i : F, — A,) be the
coend of F, as in Lemma 3.6(a). Since the m-category Rep(H) of representations of H is ribbon,
Theorem 3.5 ensures that the family A = {A,}qer admits a structure of a Hopf m-algebra in the
category Rep;(H). Moreover, using Lemma 3.6(b), its structural morphisms can be explicitly
described in terms of the structure maps of the Hopf m-coalgebra H = {H,}.c,. Nevertheless, it
is more convenient to write down its pre-dual structural morphisms. Indeed, for example, since
A, = H}, as a k-space and H = {H,}ser 1s of finite type, the pre-dual of the multiplication
Mep . Aq ® Ag — Aup of A is a morphism Agfjﬁ : Hyp — H, ® Hg such that (Agfjﬁ)* = mgyg. That
yields a family HBd = {HEG‘}OZE,r of k-algebras, where Hgd = H, as a k-space, endowed with a
comultiplication ABY = {AESB : Hf,g - Hgd ® Hgd}aﬁeﬂ, a counit & : H?d — k, and an antipode
SBd = (g Bd : Hgd - Hg’fil }aer- These structure maps, described in Lemma 3.7, verify the same
axioms as those of a Hopf 7-coalgebra except that the usual flip maps are replaced by the braiding
of Rep,(H). The family HBd = {Hgd}ae,r is called the braided Hopf n-coalgebra associated to H.
When 7 = 1, we obtain a braided group in the sense of [31].

Lemma 3.7. Let H = ({Hy}, A e, S, ¢,R, 0) be a finite type ribbon Hopf n-coalgebra. Then the
structure maps of the braided Hopf n-coalgebra H®Y = {HP3} . associated to H can be described
as follows: for any a,f3 € 7,

e HB = H, as an algebra;

e forall x € Hg'g,

AB,%(X) X2.0)8a ® S g-1(b1(1 g1)P a1 (X(1,0pa-1))D12,8)

= Sa,—l (Cl(l,a-l))x(l,a)cl(la) ® Sﬁ—l (dﬁ—l )X(zﬁ),
where Ry 1 = ao ® by and Ry g1 = ¢1 @ dg-1;

&Bd = o
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e forall x € H,,
Sd(x)

S a(ae)0? 1S o(X)tg-1by1
S (@2)S o(X)S o (1) by,

where R, -1 = aq ® b,-1 and the u, are the Drinfeld elements of H.

Proof. Leta e mand f € A, = H,,. By Lemma 3.6(b) and Theorem 3.5, the comultiplication
A, of A is given by

Aaf(f) AHa(f(g) la/)
(ig, ®ig,)evy: ® coevy, ®idy, )(f ® 1,)

D in(f@e)®in, (e ® 1),

k

where (ex)y is a basis for H, with dual basis (¢, ). Therefore, for all x,y € H,,

Dol x®Y) = > (in,(f ® ex), 1) (i, (€} ® 1a),3)
k

D fa e €y 1)
k

fx ) e e

k

S(xy).

Likewise the counit &, of A is given by &,(f) = evy, (f ® 1,) = f(1,). Hence A, = H, as a
coalgebra and so H2 = H,, as an algebra.

Leta,B € mand f € H,, g € Hg. By Lemma 3.6(b) and Theorem 3.5, the multiplication m, g
of A is given by ma g(f ® 8) = mu, u,(f ® lo ® g ® 1p). Write Ry 1 = an ® by. By (2.6), we have

Rap)ipg-13(Ryg-112p = (1dh, ® Ag-1 p)(Ra 1) = do ® by g-1) ® D12 ).
Then mq g(f ® 8) = iy, (Hp)eH, (D115 - §® [ ®bi2p) ® ae) and so, for any x € Hop,

(Map(f®8),x) = (biag)-8®f,x-(biap ®aa))
(f ® 8 X2.a)@a ® S p-1(D1(1 p1)Pa-1(X(1,0pa-1))D12,8))-

Hence we obtain that AB%(x) = X ® S g-1(D1(1 g-1)Pa1 (X(1 apa-1))b102,5) TOr any x € Hfg.

p

Note that, by using the commutativity property of dinatural transformations (see Figure 3.4),
the morphism my y defined in Figure 3.13(a) where X € Rep,(H) and Y € Repﬁ(H) can also be
depicted as in Figure 3.21(a). Write Rig1=c1® dﬁ—l. By (2.6) we have

[(idHa,—l ® 90(1’1)(Ra,aﬂ’la’l)] 1&’13(Ra,ﬁ’1)0123 = (Aafl,(l ® ide—l )(Rl’ﬁ—l) = Cl(l,(lfl) ® Cl(z’a) ® dﬁ—l .
Then mq 5(f ® 8) = in,eH,(Ci(10-1) - [ ® dg-1 - g® Ci2,a) ® 1) and so, for any x € Hyg,

(Map(f®8),x) = (i) f®dg1-g x-(Cl2a) ® 1p))
= (f®8 S 1(Ci1,e1)X1.0)C12.0) ® S g-1(dg-1)X2.p))-
Hence we obtain that Agfjﬁ(x) =8 o 1(Cr1,0-1)X( 1,a?c 12.0) ® S g-1(dg-1)x2.p) for any x € Hg,g‘

The unit pof Ais givenbyn : k 2 k@ k —%+ A,. Therefore, for any h € Hy, we get that
P4(h) = (i1 ® 1),y = (1, h - 1) = e(h).
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(@myy : X" XY ' ®Y — Ay b)Sx: XX - A,

Ficure 3.21.

Let M € Rep,-1(H) and m € M. Define ¢,, € M** by setting ¢, = (eVy Q id s+ )(m @ coev y+).
Let (ex)x be a basis for M with dual basis (e} )x and bidual basis (¢, ). Using Lemma 3.1, we have

Om = Z evu(m®e) e = Z e (Gy -m) e
k k
and so, for any f € M*,
on(f) =D €(Ga-m) e ()= ). ei(Go-m) fler) = ) €(Ga - m)ex) = f(Go - m).
k k k

Finally leta e mrand f € A,-1 = H:ﬂ‘ By Lemma 3.6(b) and Theorem 3.5, the antipode S,
of A is given by S ,(f) = SH(Y—I (f®l,1)= i¢(y—1(Ha—l)*(¢b(Y—l ® Oyay - f) where R, -1 = ag ® b1
Then, for any x € H,,

(Sa(f),x) @b,-1> % (Oata - [))
<¢ba_1 p ‘par(x)eaaa . f>
(pa(X)bpaq - f, Ga’lba*1>

= ([:50(a0)0,-15 o (0a(X)Go-1Dg-1).

Now, using Lemmas 2.1(c) and 2.8(a), we have

S (@a(X))Go = @a(S o (X)Gy = HaflSa(x)H;_llGaq = 0,18 o (X)uy-1.

Therefore (S,(f),x) = (f,S a(aa)éi_lS a(X)u,-1b,-1). Hence we obtain that, for any x € Hg’d,
S840 = Sa(aa)6> S a(Xity-1b1.

By using the commutativity property of dinatural transformations, the morphism S x defined
in Figure 3.13(b) where X € Rep,-i1(H) can also be depicted as in Figure 3.21(b). Then we have
that SH(Y—I (f®1,1) = iijl (¢ga_1ba_1 ®a, - f) and so, for any x € H,,

(Sa(f):x)

<¢9{1_1b0_1 ’ xaa : f>
(xaq - f,Go-10,-1D4-1)
(fs S a(ae)S o(X)G 4-10,-1Dy-1).
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Now S (ite) = Sa(Geb,") = 6.1,G !, by (2.14) and Lemma 2.9(c) and 50 G,-10,1 = Sa(ua) ™"
Therefore (S ,(f),x) = {f, Sa(aa)Sa(x)Sa(ua)‘lba_l). Hence we obtain that, for any x € Hgd,
S Bd(x) = 85,(a,)S o (x)S a(ua)_lba—l. This completes the proof of the corollary. O

In the next theorem, we relate the right m-integrals for the Hopf 7-coalgebra H = {H, }oex With
the right -integrals for the categorical Hopf m-algebra A = {A,}eer-

THEOREM 3.8. Let H = {H,}qen be a finite type unimodular ribbon Hopf m-coalgebra and A =
{Aq}aer be the Hopf m-algebra in Rep,(H) constructed from H as above. Let A = (Ag)ager €
yerH,,. For any a € 7, define p1o : k — Ay by puo(1) = Ao. Then the following assertions are
equivalent:

(@) A = (Ag)aer is a right n-integral for H;

(b) u = (Ug)aer is a right m-integral for A.

Note that one may add in Theorem 3.8 a third item giving an equivalent version of (a), (b)
in terms of the braided Hopf m-coalgebra HBd = {Hgd}aeﬂ associated to H (see Lemma 3.7).
Nevertheless, we do not want to do it here since this would take too much place (in particular, one
has to generalize Theorem 1.16 to the setting of braided Hopf m-coalgebras) and we do not use it
in the sequel.

Before proving Theorem 3.8, we need some lemmas. Recall that > denotes the left action of
Hyon A, = H, given by (hv f,x) =(f, S o-1(hq o-1))Xh2q)) forall h € Hy, x € Hy, and f € H,,.

LemMA 3.9. Let H = {H,}oen be a finite type ribbon Hopf n-coalgebra and HBd = {H}fd}aeﬂ be
its associated braided Hopf nt-coalgebra. Let « € mand f € H,,. If h> f = e(h) f for all h € Hj,
then (f ® idHﬂ)Ag% = (f ®idyy)Agp for all B € m.

Proof. Letp € m. Write R g-1 = ¢ ® dg-1. For all x € H,p, we have
(f @ idp)A(x)

<f, Safl (Cl(l,ofl))x(l,a)cl(Z,a/)> S’B—l (dlg—l )X(zyg) by Lemma 3.7

= (1> [, X)) S g-1(dp-1)x2.)

= (ele) [, X)) S g-1(dpg-1)x2p)

= (fixa.) Sp1(e(c)dg-1)xep)

= (f,x1,0) Sﬂ—l (Ip)x2p by Lemma 2.4(a)

= (f®idpy)Agp(x).

O

Lemma 3.10. Let H = {Hy}aer be a finite type unimodular ribbon Hopf m-coalgebra and A =
(Ae)aer be a right m-integral for H. Then, for any @ € n, x € H,, and h € Hy,
ﬂa(Sa—l(h(l,a—l))Xh(la)) = g(h)dy(x).

Proof. We can suppose that A is non-zero (otherwise the result is immediate). Let A € H| be
a right integral for H; such that 4,(A) = 1. Recall that A is also a left integral for H; (since H is
unimodular). Then

Aa(S o1 (h(y o-1))XN2.0))

= A1 (A a1y e 1) (A Xh2,e) by Lemma 1.17(a)
Ao 1(S oS o1 (1 o1y — N 01) Aa(S 418 a(h2.0))A2.0)%) by Theorem 1.16(a)
Ag-1(S oS 41 (h(l’a,—l))A(La—l)) Ao (S o185 o (h2,0))A2,0) X)-

Now

SQS a-! (h(l,a/‘l))A(l,a/‘l) ® Sa/—ISa(h(Z,a/))A(Z,a/)
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= (SaSa1 ®S8 4150801 4(N) - Ayt o(A)
= Ay1o(S3(h) - Ay1o(A) by Lemma 1.1(c)
= Ag1o(STA) by (1.4
= &S f(h)) Ay1 o(A)  since Ais a left integral for H;
e A o1y®AN2a by Lemma 1.1(d).
Therefore, using (1.12), we obtain that

Aa(S o1 (B o-1)XR2,0)) = E(R) Ag-1(A(1 o1)) Ada(A2,0)X) = (1) A(A1(A) 1o X) = £(R) Ao ().

m]

Proof of Theorem 3.8. Suppose that A = (1,)eer 1S a right -integral for H. By Lemma 3.10,
we have that > A, = &(h) A, for all @ € m and h € H;. Therefore, using (1.12) and Lemmas 3.7
and 3.9, we have that

(Ao ®idy,)AG = (1o ®idg,)Aap = dop g = Aop 13

for all @, 8 € n. Hence, since the structural morphisms of A are dual to those of HBY, we get
that m, g(, ® idAp) = uop &g for all @, B € mr, where m = {mg gloper and & = {&,}0er denote the
multiplication and counit of A. Moreover, Lemma 3.10 says exactly that all the u, : k — A, are
H-linear. Therefore y = (y)eer 18 a right m-integral for A.

Suppose that i = ((g)eer 1s a right m-integral for A. Therefore, since the structural morphisms
of HBd are pre-dual to those of A, (3.43) gives that (4, ®idHﬁ)AB‘}j, = Aug 12‘1 for all o, 8 € 7. Since
all the u, : k — A, are H,-linear, we have that i> 1, = hx>,ua(l)’= Uo(h-1) = e(h) (1) = e(h) Ay
for all @ € mand h € H; and so, by Lemma 3.9, (1, ® idHﬁ)Agfiﬁ = (1o ® idp,)A g for all @, B € 7.
Hence, since lgd = 1 by Lemma 3.7, we get that (1, ® idHﬂ)Aa”g = Agp 1, thatis, 4 = (Ag)aex 15
a right m-integral for H. O

3.4.2. Coends in a finitely semisimple r-category. Let C = 1l,,C, be a finitely semisimple
n-category. Fix @ € m. Recall that the set J, of isomorphism classes of simple objects of C, is
finite. Let {VJ”.‘} jeJ, bE a representative set of J,. We set:

(3.47) B,= & (VO)*@V?e(C.
jelo ! /

Recall that there exist morphisms p;? B, — (V;.’)* ® V;.’ and q;? : (V;.’)* ® V;.’ — B, such that

id Qy* @ if 7 = k
(3.48) idp, = Z q; ° p§ and Pjodq) = { Vjrev; J

- 0 otherwise

Let X be an object of C,. By (3.31), we can write X = @,¢cAV,, where A is a finite set and j, € J,.
In particular, there exist morphisms f; : X — V;’l and g, : V;’l — X with

: idye ifA=24
(3.49) idy=>'giofy and  frogy=1 U L
EA 0 otherwise
We set
(3.50) iy = D40 (&), ®f;): X ®X > By,

AeN
Let F, : CY x C, — Cy be the functor defined as in (3.33).
LemMma 3.11. (B, i’ : Fo = By) is a coend of F,,.
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Proof. We first remak that, for any j € J,,
(3.51) l'v;y = q?.
Indeed let f, g € EndCU(VJ”.‘) such that idvjr_r =go f. Since VJ”.‘ is a simple object of C,, there exists
k € k such that f = kidv}w. Since idv}r = go f, the scalar k is non-zero and g = k™! idv;w. Therefore
Eve = ¢ 0 (8" ®f) = ¢f o (k™ idwey ® kidye) = g7 o (idvey ®idye) = ¢

Let us verify that i/ : F, — B, is a dinatural transformation. We first show that, for any
J. k € J, and any morphism f : V;.’ — V' in C,, we have

(3.52) g Gdvey ® ) = ¢5(f* ®idys) : (V) @ V¥ = By

If j # k then f = O (since V;.’ and V}' are non-isomorphic simples objects) and so both sides of
(3.52) equal 0. If j = k, then there exists x € k with f = xidv;r. Therefore f* = xid(v;r)* and so
q;.’(id(vjr_r)* ®f)= xq?‘(id(v;w)* ® idv;_w) = q;.’(f* ® idV}w). Hence (3.52) is proven.

Let ¢ : X — X’ be a morphism in C,. By (3.31), X = @AEAV;Z and X’ = @,veA/VZ, where A,
A’ are finite sets and j,, ji € J,. In particular, there exist morphisms f; : X — VJ@'Z, gy VZ - X,
f/{, X - VZ/’ and g;/ : VJ@':/ — X’ with

(3.53) idy= > giofi and  idy= > grofr.
AeEA XeN

Then

>4 @ f),8) by (3.50)

AeN
= > 45, @ e f,000) g0 f)) by(3.53)

AeN AeN

= ), 4, Gdwr » (0808}, © f)

AeA VelN

iy o (idy~ ® ¢)

= > 4], 420 ®idv: ), @ f) by (3.52)
AeA Ve’ ’

DN A IO BRI

AeA VeN
= > d5(&¢ 8 f) by (3.53)
AeN
= iyo(¢"®idy) by (3.50).

Hence i’ : F, — B, is a dinatural transformation.

Let £ : F, — Z be a dinatural transformation from F, to an object Z € C;. We have to
verify that it uniquely factorizes through i’. We first show the uniqueness of the factorization: let
us suppose that there exists & : B, — Z with &y = h o i for all object X € C,. Therefore, using
(3.48) and (3.51), we have

h=hoidg, =ho () qloph =) (hog)op)=) &uopl,
JTa Jl JTa

and so £ is uniquely determined.
It remains to show that & = ) jc;. fv;r o p;’ is suitable. Let an object X = @ ep VZ € Cq, where
A is a finite set and j,; € J,. In particular there exist f; : X — V;’ﬂ and g, : Vj”.‘l — X morphisms
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in Cy withidy = Y ea 810 f1, f1oga = idv;r ,and fHogy =0if 2 # 2. Since ¢ is a dinatural
pl
transformation, we have that, for any 1 € A,

(3.54) Exo(idy ®gy) = gve © (g, ®idx).
Then
& = Exolidy ®() g0 f1)

AeA

= ng o (idx* ® ga) o (idy- ® f2)

AeA

= Qv e@erf) by(3sd

AeA

= (3 i O \x (3 *

- vau °idw; yevy © (828 f1)
AeA

= D v opy o) o(gi®f) by (3.48)
AeA

= Y éwopio(d 4t o (g ®f)
ke, /161}
Ja=

= O &wopho() g} o @ f) since pfoq} = 0if k # jy
ked, AeN
= holy.
This completes the proof of the lemma. O

Let us suppose that C = U,e,C, is moreover ribbon, that is, C is premodular. By Theo-
rem 3.5(a), the family B = {B,}q.cr is @ Hopf m-algebra in C;. Note that since the object 1 € C is
simple, there exists a (unique) 0 € J; such that V! = 1. Up to replacing V& by 1, we can assume
that V! = 1.

0

LemMmaA 3.12. e = p(l) : By — 1 is a non-zero left and right cointegral for the categorical Hopf
algebra B.

Proof. Recall that i}, = q;.’ for any j € J,, see (3.51). We first remark that, for any j € Ji,
J

vl
j

(3.55) (idp, ®9)A o i, =neol
J

Indeed, since i;/ L= q}. and by (3.48), we have
j

QM®@M0% @@@gﬁ@@@M%w®mww®m¢

(q} ® péq})(id(v})* ® coevy1 ® idv})

(qo ®1d1)(idg ® coevy ®idg) = ¢ if j=0
0 if j#0
and
gy ifj=0
0 ifj#0’

wom=&%d=%%@={
J
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LetX € C;. By 3.31), X = eB,zeAVJl.ﬁ where A is a finite set and j, € J;. There exist f} : X — V}A
and g, : V}A — X morphisms in C; with idy = > ca g0 fa, faogar = idV}}, and fyogy =0if
A # A'. Then

(idp, ® €)A| o i

Z(idB1 ® e)Ali;,} (g%, ®f;,) by (3.50)
AeA

D ineocil (g5, ®f;) by (3.55
AeA !
neoiy by (3.50)
Hence, by the uniqueness of the factorization of the dinatural transformation (idp, ® €)Aj o i :
F| — B through the coend (B;,i’ : F; — B;), we obtain (idg, ® e)A| = ne.

Likewise we can show that (¢ ® idg,)A; = 7 e. Finally, since eq(l) = p(l)q(l) = idy, we have that e
is non-zero. O

LemMma 3.13. Let u = {uqtaer be a right n-integral for the categorical Hopf m-algebra B =
{Bo}aer- Then there exists k € k such that, for all @ € r,

o = k Z dimg(V) iy © COBVys.
J€Ja
Proof. Recall that i}, = q;? for any j € J,, see (3.51). We first remark that, for any a € r,
J

there exists a family of scalars (xj.’ )jel, € k’» such that

Ho = Z xG q?c’o‘e“vv;r.
Jj€la
Indeed, for any j € J,, since the object V;.’ is simple, there exists a (unique) scalar x;’ with
x?idv;r = (5IV7 ® idv;r)(idv;r ® p;?,ua) : V;.’ — VJU.‘. Therefore p?‘,ua = xj.‘
using (3.48), o = X jey, Q?P?‘/la = Djel, x;, CIS-IC’O‘GTVV;-
Lete = p(l) : By — 1. By Lemma 3.12, e is a categorical right cointegral for B;. Using (3.48),

we have

coevye and so, by
J

_ (S e N |
ey = Z Xj PodgCORVy!t = XpCOeVL = X;.
Jjeh
Then, since the antipode of B is bijective (by Theorem 3.5(b)),

xoidweyeve = epr pigj by (3.48)
= e piS;LS14]
= (P} ®emy o 1)(Dopta ®S 4-147) by Lemma 3.4(b)
= (doyeve ® enmg o-1)(p§ ®idp,)Agkta ® S o-145).

Now
(P ®idp)Aota = D X (P} ®idp,)AqgfcOOVY:
ked,
= Z X (p;.’qg ® qg)(id(v;j)* ® coevye ® idye )c’(?c“vv]g
ked,
= x;.’ (id(v;r)@v;r ® q;.’)(id(v;r)* ® coevyr ® idv;r)c’o‘eivv;r by (3.48).
Therefore

1- . . . . —
Xy 1d(v;r)*®v7 = x;.’ (1d(v;r)*®v;r ®emy o1 )((1d(v;r)*®v;r ® q;.’)(ld(v;r)* ® coevye ® 1dv;r)coevv;r ®S a—lq?’)
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and so
xpdimg(V)idye = xp&vye coevyridye by (3.27)
= (Vyr ®idye)(idyy ® X id(yeyve)(coevye ® idye)
= xj (evyr @idye)(idvegveyeys ® €my 1)
(idye ® (id(voyove ® q?)(id(v}r)* ® coevye ® idye )C'GGTVV}Y ® So-147)
(coevv;r ® idv;r)

= en x;? idv;r by the equalities depicted in Figure 3.22.

FiGure 3.22.

Hence, since en = p(l)q(l) = idy by (3.48), we obtain that x;.’ = x(l) dimq(VJO.‘). The scalar k = x(l) is
thus suitable. O






CHAPTER 4
Hennings-like invariants of group-links and
group-manifolds

n[12, 13], Hennings constructed invariants of links and 3-manifolds in terms of right integrals
I on certain Hopf algebras. Kauffman and Radford [17] clarified the relationships between these
invariants and Hopf algebras and simplified Hennings’ construction.

The purpose of this chapter is to give a method of defining, in a similar way of [17], an
invariant of framed links in S whose components are colored in some sense by the group 7 and
then to normalize it to an invariant of principal n-bundles over 3-manifolds. The algebraic data
which allows to do this are Hopf mr-coalgebras, studied in Chapters 1 and 2.

Starting from a ribbon Hopf n-coalgebra H = {H,},e, endowed with a m-trace tr = (try)ger,
we give an improved version of the Kauffman-Radford method of [17] in order to construct an in-
variant Invg (L, g) of framed links L endowed with a group homomorphism g : 7;(S 3\L) >«
(called m-links). This construction is made by coloring the vertical segments of a generic diagram
of L with 7 via the homomorphism, by decorating the crossings with the R-matrix, by concentrat-
ing this algebraic decoration with the structure morphisms of H, and then by evaluating the result
with the n-trace tr = (try)eer. We show that the Reidemeister moves colored in some sense by
7 report the equivalence of the pairs (L, g), and we verify the invariance under these moves by
using properties of quasitriangular and ribbon Hopf m-coalgebras and of their n-traces established
in Chapter 2. We give examples of computations (by using Hopf 7-coalgebras constructed from
bicharacters of ) which shows that this invariant is not trivial.

When a n-trace constructed from a r-integral is used, the invariant Invz 1, may be nor-
malized to an invariant 75(M, &) of principal n-bundles & over 3-manifolds M (called m-mani-
folds). This construction is made by presenting M by surgery along a framed link L, by defining
g : m(S3\ L) — x by means of the monodromy of the n-bundle, and then by normalizing
Inv(g 4ay(L, g). We show that the Kirby moves colored in some sense by 7 report the equivalence
of principal 7-bundles over 3-manifolds, and we verify the invariance under these moves by us-
ing the properties of m-integrals and the fact that a n-trace constructed from a z-integral is used.
This invariant is not trivial (we give an example of computation for some Z/nZ-bundles over lens
spaces, starting from the Hopf Z/nZ-coalgebras of [34]) and coincides with the Hennings’ one
when = 1.

In general, this invariant is different from that of Turaev [48]. We show that they agree if
we start from a ribbon Hopf m-coalgebra such that its category of representations is modular. The
technique employed to prove this result uses the categorical Hopf m-algebras, studied in Chapter 3,
which allows us to relate the categorical approach of [48] with the algebraic one developed here. In
particular, we rewrite the Turaev invariant in terms of m-integrals of a categorical Hopf m-algebra.

Finally, we show that the invariant 7y extends to a homotopy quantum field theory in dimen-
sion 2 + 1 (for connected cobordisms between connected surfaces) with target the Eilenberg-Mac
Lane space K(m, 1), that is, a topological quantum field theory for (connected) surfaces and (con-
nected) cobordisms endowed with a homotopy class of maps to K(r, 1).

73
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This chapter is organized as follows. In Section 4.1, we construct an invariant of s-links.
In Section 4.2, we normalize it to an invariant of 7-manifolds. In Section 4.3, we compare this
invariant of 7-manifolds with that of Turaev. Finally, in Section 4.4, we show that our invariant of
m-manifolds extends to a homotopy quantum field theory in dimension 2 + 1.

4.1. Invariants of r-links

In this section, we generalize the Kauffman-Radford method to construct Hennings-like in-
variants of framed links endowed with a morphism from their fundamental group to x, by using a
ribbon Hopf w-coalgebra.

4.1.1. n-links. Following [48], a n-link in S disa triple (L, z, g) where L is a framed link in S 3,
z € 3\ L (the base point), and g : 1 (S3\ L,z) —» misa group homomorphism. Recall that a link
L=LU---UL, is framed if each of its components L; is provided with a longitude Z,- cS3\L
which goes very closely along L; (or equivalently with an integer n;, called framing number, which
is related to Z,- by n; = lk(Z,-, L;) where a parallel orientation for L; and Z,- is chosen). The framing
of a framed link L will be denoted by L= Zl u---u Zm

Two n-links (L, z,¢) and (L',7’,g’) are said to be equivalent if there exists an orientation-
preserving homeomorphism 4 : S — 3 such that (L) = L, L) =1L, h(z) =7, and goh.=g
where £, : 11(S3\ L,z) = 7 (S3\ L', 7) is the group isomorphism induced by % in homotopy.

4.1.2. n-colored link diagrams. By a generic diagram of a framed link we shall mean a
diagram of the link, arranged with respect to a vertical direction and with blackboard framing,
such that the only critical points of the height function are crossings and extrema and the height
function is non-degenerate in all extremal points (i.e., in a neighborhood of any extremal point,
the diagram looks like a cap or a cup). The segments of a generic diagram delimited by extremal
points and under-crossings are called the vertical segments of the diagram.

A m-colored link diagram is a generic diagram of a framed link such that each of its vertical
segments is provided with an element of &, called the color of the vertical segment, in such a way
that for crossings and extrema the colors are related as in Figure 4.1.

apal  a B Blap L
KX e Y

Ficure 4.1.

Two m-colored link diagrams are said to be equivalent if one can be obtained from the other
by a finite sequence of isotopies (in the class of generic link diagrams) which preserve the colors
of the vertical segments and of moves of Figure 4.2.

Note that -colored link diagrams can be associated to a w-link (L, z, g) by the following proce-
dure: regularly project the framed link L onto a plane from the base point, i.e., consider a generic
diagram of L such that the base point z corresponds to the eyes of the reader. Color then the vertical
segments in the following way: a vertical segment is colored by @ = g([u]) € m where u repre-
sents a loop that, starting from the base point z (the eyes of the reader) above the diagram, goes
straight to the segment, encircles it from left to right (i.e., in such a way that its linking number
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Ficure 4.2. Equivalence moves for n-colored link diagrams

Ficure 4.3. Coloration of diagrams of 7-links

with the segment oriented downwards is 1), and returns immediately to the base point as shown in
Figure 4.3.

Reciprocally, using the Wirtinger presentation of knot groups (see, e.g., [27]), one easily ver-
ifies that a w-colored link diagram determines (up to equivalence) an unique n-link. Moreover the
operations defining the equivalence of m-colored link diagrams can be realized by an ambient iso-
topy and thus by an equivalence between the z-links they determine. Hence equivalent x-colored
link diagrams define equivalent z-links. We show in the next lemma that the converse is also true.

Lemwma 4.1. Two rn-links are equivalent if and only if all their n-colored link diagrams are equiv-
alent.

Proof. Let us first verify that two n-colored diagrams D and D’ of a same n-link (L, z, g) are
equivalent. Let p and p’ be two directed projections which leads to D and D’ respectively. Think
of the set of directed projection as points on a unit sphere > c S3, centered in the base point z,
endowed with the induced topology. A standard argument (general position) shows that singular
projections (those that not lead to generic diagrams) are represented on S2 by a finite number of
curves (see [6]). Then choose on 2 a path s from p to p’ in general position with respect to the
curves of singular projections. When such a curve is crossed, the m-colored link diagram will be
changed by a move I,, ..., V,, depending on the type of singularity corresponding to the singular
curve that is, crossed. Moreover parts of s between the singular curves correspond to isotopies (in
the class of generic link diagrams) which preserve the colors of the vertical segments.

It remains to show that for a fixed projection, the m-colored diagrams obtained from two equiv-
alent n-links are equivalent. Let (L, z, g) and (L', 7/, g’) be two equivalent n-links and fix a directed
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projection onto a plane P which leads to generic diagrams of L and L’. Since (L, z, g) and (L', 7', g")
are equivalent, there exists an orientation-preserving homeomorphism 4 : S — S3 such that
h(L) = L, h(Z) =1, h(z) = 7, and g’ o h, = g. Since h is an orientation-preserving homeomor-
phism of S, it is isotopic to the identity, i.e., there exists a family (i;).j0,1] of homeomorphisms
of §3 such that hy = idgs and h; = h. By translating the plane P (with respect to the direction
of the projection), we can assume that all the /,(z) remains in the same half-space delimited by P
and, by general position argument, we can suppose that the projection onto P of the framed link
h;(L) is a generic diagram for all but a finite number of ¢ € [0, 1] which correspond to Reidemeister
moves for framed links. Using this finite sequence of transformations and the coloring homomor-
phisms g o (ht_l)* : 1 (h(L), hy(z)) — 7, one easily deduces that the m-colored diagrams obtained
by projecting (L, z,g) and (L', 7', g") onto P are equivalent. O

4.1.3. n-links compatible with a crossed Hopf r-coalgebra. Let H = {H,},c, be a crossed
Hopf m-coalgebra with crossing ¢. A m-link (L, z, g) is said to be compatible with H or, shortly,
H-compatible if, for any component C of L, for any path y : [0,1] — § 3\ L connecting the base
point z € S3 \ L to a point y(1) € C, and for any orientation v of C, the following conditions are
satisfied:

(4.1)  g(A(y,,)) belongs to the center Z(rr) of 7;

(42) Pe(Ay)H = idHﬁ for all,B €

where A, = [y‘lgy] em(S3\ L,z)is the homotopy class of the loop y‘l C v (here the oriented
circle C is viewed as a loop based on the point y(1)).

Lemma 4.2. Let H = {Hy}qer be a crossed Hopf n-coalgebra and (L, z, g) be a nt-link.

(@) If, for any component C of L, there exist a pathy : [0,1] — S- 3\ L connecting the base
point 7 € § 3\Ltwa point y(1) € C and an orientation v of C such that 4.1) and (4.2)
hold, then (L, z, g) is H-compatible.

(b) If (L,z,g) is H-compatible and if p is a homeomorphism of S* (preserving or revers-
ing the orientation), then the n-link (o(L), p(z), g © p;') is H-compatible. In particular
H-compatibility is preserved under equivalence of n-links.

(¢) (L,z,g) is H-compatible if and only if it is HP-compatible, where HP is the crossed
Hopf n-coalgebra coopposite to H.

Proof. Let us show Part (a). Suppose first that the opposite orientation —v for C is chosen.
Then A, —,) = /l(_lv) and so Ay,—y) € Z(n) and @g(s, ) = <p;(1/1( )= = id (by Lemma 2.1). Suppose
secondly that y” is another path in § 3\ L connecting the base point z to C. Then there exists a loop
£in S3\ L based on z such that v’ is homotopic to y{ in (S3\L,z). Set E=1[l]e m(S3\L,z). We

have that A, ) = [y’_lay’] = [f‘ly‘layf] = f‘l/l(%v)f and so

gy ) = 8 Ay n8) = 8(6) 7 8(Ay0)) 8(6) = 8(6) 7" 8(€) 8(Ay) = 8(Aiy)-

Hence g(/l(y v)) (S Z(T[) and QDg(/l(y ) = = QDg(/l(yv)) = id.
To show Part (b), fix a component C of L. Let y : [0,1] — $3\ L be a path connecting the
base point p(z) € S 3\ p(L) to a point y(1) € p(C ) = p(C ) and v be an orientation of p(C ). Then

Ay = [y O] = o™ NCP™ N = pelAp119) o100y

where p~!(v) is the orientation of C induced by p~! from the orientation v of p(C~‘ ). Therefore we
have that (g o p;l)(/l(%,,)) = 8(Ap-1(5)p-1(vy))- Hence (4.1) and (4.2) are satisfied since (L, z,g) is
H-compatible.
Part (c) follows directly from the fact that QDZTII_)I cop = PalH, for all @, € 7. m]
B
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4.1.4. Invariants of n-links. Fix a ribbon Hopf n-coalgebra H = ({H,}, A, &, S, ¢, R, ) with
bijective antipode, endowed with a z-trace tr = (try),e,. We now give a method to define an in-
variant of H-compatible 7-links, which generalizes that of Kauffman-Radford [17] for computing
Hennings’ invariants.

Let(L=L;U---UL,,zg) bea H-compatible 7-link.

(A). Present the m-link (L, z, g) by a m-colored link diagram (as explained in Section 4.1.2).

(B). Each crossing of the m-colored link diagram is decorated with elements of the Hopf
m-coalgebra H = {H,}qe, and with discs labelled by elements of & (which represent the action
of ¢) as shown in Figure 4.4, where R, = a, ® bg and Rg1, =51 ® d,. Recall that it is im-
plicit in this formalism that there is a summation over all the pairs a,, bg and S g-1(cg-1), do. The
diagram obtained after this step is called the flat diagram of L. Note that the flat diagram of L is
composed by m closed plane curves (possibly endowed with labelled discs), each of them arising
from a component of L. These closed plane curves are called the components of the flat diagram
of L. The component of the flat diagram of L arising from the component L; of L is called the flat
diagram of L;. The algebraic decoration of the flat diagram of L consists in the points decorated
by elements of H.

QX/; |_> “%ﬁ QX ﬁ'_' S g1(cg)

Ficure 4.4. Algebraization of a m-colored link diagram

(C). On each component of the flat diagram of L, the algebraic decoration is concentrated in
a point other than extrema and labelled discs, according to the rules of Figure 4.5, where @, € n
anda,b € H,.

a a
of Ve Yo (st ) #f=to
a a a
pgla) a
a — a —

Ficure 4.5. Rules for concentrating the algebraic decoration

_.
R

——
]l

Q

In that way we get elements vi € Hy,,..., vy € Hy,:

Vm
a
V1 V2 "
(0%
aq 2
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Note that v; = 1,, if the flat diagram of L; is free of algebraic decoration.

(D). For 1 < i < m,letd, be the Whitney degree of the flat diagram of L; obtained by traversing
it upwards from the vertical segment where the algebraic decoration have been concentrated. The
Whitney degree is the total turn of the tangent vector to the curve when one traverses it in the given
direction. For example:

Finally set
Il’lV{H,tr}(L, Z, g) = tral (Ggl1 Vl) Ce tram (nyr:lnvm),

where G = (Gy)qer 1S the spherical m-grouplike element of H.
Recall that H-compatibility is preserved under equivalence of z-links (see Lemma 4.2(b)).

THEOREM 4.3. Let H = {H,}qen be a ribbon Hopf m-coalgebra with bijective antipode, endowed
with a n-trace tr = (try)ger. Then Invig yy is an invariant of H-compatible n-links.

The theorem is proven in the next subsection.

This invariant is not trivial (we give explicit computations in Examples 4.8 and 4.9).

When 7 = 1, Inv{y ) equals the Hennings’ invariant of framed links (in the Kauffman-Radford
formulation of [17]) calculated from the ribbon Hopf algebra H ?p (endowed with the R-matrix Rl"ll

and the twist 91‘1) and the trace try.
4.1.5. Proof of Theorem 4.3. We first remark that, when concentrating the algebraic decora-

tion as explained in Step (B), we can identify the curls, in a compatible way with normalization of
the invariant by the Whitney degree, as in Figure 4.6.

a 1% a a
Ficure 4.6. Identification of the curls

Indeed, since S ,-15 o(x) = Gangl for all @ € 7 and x € H, (by Lemma 2.9), the identification is
justified by:

S(z’lsa(x)
Ga
X
x = GoxG;' =8 ,18,(0) = = = x
G;!
a (07 a a a

Moreover, since @, = @op by (2.4), ¢1|n, = idy, by Lemma 2.1(a), ¢S, = S Bap-198 by
Lemma 2.1(c), and an element a € H, is replaced by gp(a) (resp. ¢g-1(a)) when it crosses upwards
(resp. downwards) a disc labelled by S (see Figure 4.5), the labelled discs can be moved, gathered,
or collapsed as in Figure 4.7.

To demonstrate Theorem 4.3, we have to show that:
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O O
U O 3

Ficure 4.7. Rules for concentrating labelled discs

(1) for a given n-colored diagram of a n-link, the scalar obtained by performing Steps (B),
(C), and (D) is well-defined (that is, independent of the manner of applying the these
steps);

(11) the scalar Inv(y (L, z, g) does not depend on the choice of a w-colored diagram for the
n-link (L, z, g);

(tr) two equivalent z-links give rise to the same scalar.

Proor or (1). Consider a n-colored diagram of a z-link (L = U | L;, z, g) and apply Step (B)
(note that there is only one way to apply it). Recall that the obtained diagram is called the flat
diagram of L. Fix 1 < i < m and choose a point p; on the flat diagram of L; other than extrema,
labelled discs, and points decorated by algebraic elements. Denote by «; the color of the (vertical)
segment of p; and by d; the Whitney degree of the flat diagram of L; obtained by traversing it
upwards from p;. Letv; € H,, be a result of concentrating the algebraic decoration on p;. We have
to verify that the scalar tral.(Gfl{iv,-) is independent of the manner of concentrating the algebraic
decoration on the point p; and that it does not depend on the choice of the point p;.

To show that the scalar trai(Gf,iiv,-) is independent of the manner of concentrating the algebraic
decoration on the point p;, we choose another point g; on the flat diagram of L; (other than ex-
trema, labelled discs, and points decorated by algebraic elements). The couple of points (p;, g;)
divides the flat diagram of L; into two arcs. Following the rules of Figure 4.5 and since the Hp are
associative, the @g are isomorphisms of algebras, and the Sz are anti-isomorphisms of algebras,
there is a unique manner to concentrate the algebraic decoration of each arc on a point located
just above p; (resp. below p;). We denote by #(q;) € H,, (resp. b(q;) € H,,) the result of these
concentrations, see Figure 4.8.

t(Qi) € Ha,-

Ficure 4.8.

To show that the scalar trai(Gf,iiv,-) is independent of the manner of concentrating the algebraic
decoration on the point p; amounts then to verify that tr,, (Gﬁ"l.v(q,-)) does not depend on the choice
of the point g;, where v(q;) = t(q;)b(g;).

If g; moves through an arc of the flat diagram for L; which does not contain any algebraic
decoration, then #(g;) and b(g;) clearly remain unchanged and thus tr,, (Gg’;.v(q,-)) also.
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Suppose that ¢g; goes through a point decorated by some element a € Hy (for some § € n).
Consider two points g; and g located respectively above and below the point decorated by a (see
Figure 4.9). Let A (resp. A’) be the arc of the flat diagram of L; delimited by ¢; and p; (resp.
g; and p;) which does not contain the point g; (resp. g;). As above there is an unique manner
to concentrate the algebraic decoration of the arcs A and A’ on two points located just above
and below p; (see Figure 4.9). Moreover, using the rules of Figure 4.7, there is an unique way
to collapse the labelled discs of the arc A (resp. A’) into a unique labelled disc located above g;
(resp. below g}). Denote by a € 7 (resp. @’ € n) the label of this disc (see Figure 4.9).

qi qi qi
a ~> a ~> , a
q; Di q; Di q; Di
L Li a; @
L

L

FiGure 4.9.

LemMA 4.4, ¢, -1 = @,.

Proof. Consider the initial flat diagram of L; (i.e., the one obtained just after applying Step (B))
and traverse it downwards from ¢;. Starting with y = 1 € x, each time a disc labelled by some
B € m is encountered, replace y by yf5”, where v = 1 (resp. v = —1) if the labelled disc is
traversed downwards (resp. upwards). By this procedure, after a complete turn around the flat
diagram of L;, we obtain an element y.,q € 7. Now each labelled disc of the flat diagram for L;
comes from a crossing of the diagram of L, see Step (B). Thus y < yf results from the situation
depicted in Figure 4.10(a) and y « B! results from the situation depicted in Figure 4.10(b).
Therefore (recall that L is arranged with blackboard framing) the result ye,q is the image under
g of the (homotopy) longitude L; (which is here oriented downwards from gi). Since the n-link
(L,z,8) is H-compatible, we have that yenq € Z(n) and ¢, = id. Moreover the steps y < ¥
and y « yB~! are clearly compatible with the rules of Figure 4.7 and so yeng = @’a. Therefore
go;/l_lgoa = Qo'Pa = Pa’a = Py = 1d by (2.4) and Lemma 2.1. Hence ¢,/-1 = ¢,. O

Finally there is two cases to consider: the algebraic decoration concentrated just above p; can
arise from either the arc A or the arc A’, see Figure 4.11.

In Case I, there exists k € Z (resp. [ € Z) such that k + % (resp. [ + %) is the Whitney degree of
the arc A oriented upwards from g; (resp. the arc A’ oriented downwards from ¢;), that is, half of
the number of half-turns of the tangent vector to the curve as one traverses it in the given direction

(with the sign convention ~= +% and v~= —%). In this setting we have that d; = —(k+ %)+(l + %) =
—k + [. Then, using Lemmas 2.9(f) and 4.4, we obtain
4.3) 1G7) = (S 1S )" o1 (@a(@)1(q) = G5, S 41 (Pa(@)GZY - 1(g1)
and
(4.4) b(@) = B@)S 1S 0)'S 41 (81 (@) = DGIGhS 1 (al@)Gy)-
Therefore
e, (G (g) =t (Gat(g)b(g))

t1,(G5 G, S o1 (pa( @Gl 1a)b(q}) by (4.3)
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KX

(@)
L; L; L; L;
N\ or >€ . \<
% , K FANE
(b)
Ficure 4.10.
A A A
a; E(l’,‘ ;
@
b 1(qi) qi b 1(q;)
i a Di
b b(q) q; » b(qi)
(@)
a; Ea',- a;
A A A
Case 11

Ficure 4.11.

= 11,(Gl,S o1 (0a(@)G, G 1aDb(q))  since d; =~k +1
=t (Go(@)D(G)GL,S o1 (9a(@)G,) by (2.17)

= tr,,(Gat(g)b(g) by (4.4)

= tr,(Gav(g)).

In Case II, there exists k € Z (resp. [ € Z) such that k (resp. [) is the Whitney degree of the arc
A oriented upwards from g; (resp. A’ oriented downwards from ¢;). Then d; = k — [ and, using
Lemmas 2.9(f) and 4.4, we obtain that

4.5) 1Gi) = (S 418 0) (0o1@)1(q)) = Go, pa@)Gt(g))
and

(4.6) b(g}) = b(g)(S 415 0)" (#a(@) = b(g)G a(@)GLY.
Therefore

e, (GIV(G)) = tra,(GUHg)b(g))
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= ta,(Got(g)b(a)G ea(@)G,) by (4.6)
= (G pa( @G Galt()b(g)) by (2.17)
= (GG, 0o(@)G'1(g))b(g))  since d; = k—1
=t (Git(g)b(g)) by (4.3)
= 1o, (G v(g).
In every case, we get that try, (Gi’;.v(q; ) = try, (Gi’;.v(q,-)). The scalar tr, (Gi’;.vi) is hence inde-
pendent of the manner of concentrating the algebraic decoration on p;.

Let us show that try, (Gi’;.v,-) does not depend on the choice of the point p;. Firstly, if we move
p;i across an extremum, then the color «; is replaced by a/l._l, the element v; is replaced by S Zy(vi),

where v = +1 if we move the point p; across a maximum from left to right or across a minimum
from right to left and v = —1 otherwise, and the Whitney degree d; is replaced by —d;. Now

(G480 00)) = (87 (GES Y (v) by Lemma 2.9(c)
= tr,1(S%,(mGY)) by Lemma 1.1(a)

= tr,,GE) by (2.18)
= tro,(Gavi) by (2.17).
Thus try, (Gg"l.v,-) remains unchanged by moving p; across an extremum.
Secondly, if we move p; through a disc labelled by g, then the color «; is replaced by ;87
where v = +1 (resp. v = —1) if we move the point p; upwards (resp. downwards) through the

labelled disc, the element v; is replaced by ¢g+(v;), and the Whitney degree d; remains unchanged.
Now

trﬁvaiﬁ—v((pﬁv(G(d;i)(pﬁv(vl')) by Lemma 2.9

= tigap(9p (Gav)) by (2.1)
= trg,(GYv) by (2.19).

g0 (Grg 508 (V1))

Therefore trai(Gf,ii v;) remains unchanged by moving p; through a labelled disc. The scalar trai(Gf,iiv,-)
is hence independent of the choice of the point p; on the flat diagram of L;.

Proor orF (11) aND (111). By Lemma 4.1, it suffices to verify that if we apply Steps (B), (C), and
(D) to two equivalent m-colored link diagrams (which represent H-compatible m-links), then we
get the same scalar. Recall that two m-colored link diagrams are equivalent if one can be obtained
from the other by a finite sequence of isotopies which preserve the colors of the vertical segments
and of moves 1,-V,, of Figure 4.2.

It is straightforward that Inv{g ) remains unchanged under isotopies (in the class of generic
link diagrams) which preserve the colors of the vertical segments and under the move I,,.

To show the invariance under the move Il, g, write Ry g = mq®ng and Ry-1 og4-1 = Fo1 ®fypo-1.
We have that

Sa‘l (ra‘l )ma ® Py-1 (ta ! )nﬂ

(S a! ® idH/;)(idHa,l ® S%fl )(Rafl,a'ﬁafl) : Ra,ﬂ

(S o1 ®1dp,)(pe ®1dp,)(Ry-14) - Rap by Lemma 2.1 and (2.7)
R,j-Rap by Lemma 2.4(b)
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= 1,91 B-

Therefore:

% D

< Sa—l (ra—l ) ZQBU—l
afa”! > ’ = = -
\ e S o 1(rg-1)my Po-1t a1 )n/g 1o 1ﬁ
@ ,3 mey ng a B

Here the symbol “=" means that the flat diagrams are related by a finite sequence of isotopies (in

the class of generic flat diagrams) and of moves of Figures 4.5, 4.6, and 4.7. The invariance under
the first equivalence of Il g is then verified. For the second one, this can be done similarly.

To show the invariance under the move Ill, g, write R,g = a, ® bg, Rg, = mg ® n,, and
Roy = 1o ®1,. By (2.7), we have that Rg,-1 4ya-1 = (0o ® 0a)(Rpy) = palmg) ® @a(ny). Then:

aByBla”! \
-1
aya
Qﬁ(l’71 / —
a \B\\ y

Moreover, writing Rypyp1 = Ca® dﬁ,yﬁ—l, we have that:

By e aBa”! \

O

aaCap  bgmg -1 (dgyg-1)ny

Now

Folo ® mgbg @ nyty, = (Rpy)a23(Ray)13(Rap)12y
= (Rapayl(idn, ® @g-1)(Ry gy5-1)]183(Rpy)a23 by Lemma 2.4(d)
= daCo ® bgmg @ wg-1(dg,g-1)n,,.
Hence the invariance under the move IIl, g, is verified.
The invariance under the first equivalence of the move IV, g follows from:

=g X=X

where R, g = a, ® bg. For the second one, this can be done similarly.
To show the invariance under the move V,,, we first remark that:

P g
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Indeed, write Ry o = aq ® b,. Since u;l =S, s ;}l(ba)aa by Lemma 2.5(a), we have that:

\ @

“ SEIS;}l(ba)aa w! alle” = e

Moreover, since

a

-1

u i = me(idy _ ®S4S 1)1 41(Ry1,-1) by Lemma 2.5(a)
= Ma-1(idy |, ® S80S )01 1 (S 01 ® S 1) (Raa) by Lemma 2.4(c)
= S71(ba)S o(palan))

and so

G,'S 1S a(@al@a)be = 8415} (ba)So(9a(@a))G,-1) by Lemmas 1.1(a) and 2.9(c)
= 8o Guo)
= §,1(0,-1)
= 6, by(2.14),

we have that:

C/ — b? = = G- =
b, ¢ 7/
(Y\‘ ¢ ! Sa" Sd(afl)bw Sofl Sa(‘pcfl (aq))by “

We can conclude by remarking that ¢,(6,) = 6, = ¢,-1(6,) by (2.15) and Lemma 2.8(a) and so

that:
O
0 -
a a

/ L ©
P e

It’s then easy to verify the invariance under the last move of V,:

J @ @ @
\3 — 3;_’1 007 =1, = = =
| G (@) (@) i

This completes the proof of Theorem 4.3.

We can show similarly that:
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4.1.6. Basic properties of Invy . Throughout this subsection H = {H,}qe, Will denote a
ribbon Hopf m-coalgebra with bijective antipode, endowed with a z-trace tr = (try)gex-

Let (L, z, g) be a H-compatible n-link. Fix @ € z. Then (L, z, aga™") is clearly a H-compatible
n-link.

Lemma 4.5. Invig(L, z,aga™t) = Invige (L, 2, 9).
When @ € Im(g), this follows from the invariance of Inv(z «; under the moves of Figure 4.2.

Proof. The lemma follows directly from the facts that, for all a,,y € n, the ¢, are algebra

isomorphisms, Ryg,-1 4yq-1 = (0a®Pa)(Rpy), S apa-1Pa = YaS ps $a(Gp) = Gpo-1, and trygo-1900 =
trg. O

Let (L,z, g) be a H-compatible n-link. Suppose that L is the disjoint union of two framed
links L; and L,. Since L and L, are contained in two disjoint 3-balls in S 3 by the Van Kampen
theorem, there exist two morphisms g; : m(S3\ L;,z) —» nand g m(S 3\ Ly,7) = msuch
that the diagram of Figure 4.12 is commutative, where the horizontal arrows are induced by the
embeddings (S \ L,z) < (S3\ L;,z) and (S3\ L,z) < (53 \ Ly,2). It is straightforward that
(L1,z,81) and (Lo, z, g») are H-compatible.

TS\ Li,2) ~— m(S*\ L,z2) — m(S3\ Lo, 2)

% £
g

Ficure 4.12.

LemMmA 4.6. Inviy o) (L, 2, 8) = Invig (L1, 2, g1) Invig 0y (L2, 2, 82).

Proof. Choose a m-colored diagram for (L, z, g) such that the diagrams for L; and L, are dis-
joint. It suffices then to remark that the z-colored sub-diagram consisting in L; (i = 1,2) is a
n-colored diagram for (L;, z, g;). O

Let (L, z, g) be a H-compatible z-link. Consider a mirror image of L, that is, the framed link
obtained by taking the image of L (and of its framing L) by an orientation-reversing homeomor-
phism p : §3 — §3. Let HP be the ribbon Hopf 7-coalgebra coopposite to H. It is endowed
with a 7r-trace tr°P = (tr,-1)oer. By Lemma 4.2, (o(L), p(2), g © p;') is H-compatible and (L, z, g)
is H®°P-compatible.

Lemma 4.7. Invigm(o(L), p(2), g © p3 1) = Invgeon greony (L, 2, 8).

Proof. Let h be an orientation-preserving homeomorphism of S 3 such that A(L) ¢ R? = §3\co,
h(z) = (0,0, 1), and the projection of the framed i(L) onto RZx0isa generic diagram D which
lies in ] — 00, O[xR x 0. Let r be the orientation-reversing homeomorphism of §3 = R U oo given by
r(o0) = oo and r(x, y, z) = (—x, Y, z). The projection of ro h(L) onto R2x0 is then a generic diagram
D’ of r o h(L) which lies in ]0, +co[XR x 0. Note that D’ can be obtained from D by applying the
plane symmetry 7' = rjg2,( With respect to the line 0xXRx0. Color, as in Section 4.1.2, the diagrams
D and D’ to obtained 7-colored diagrams of (h(L), h(z), g © h7'Yyand (roh(L), roh(z), gohy' orh)
respectively.

Let us remark that if « is the color of a vertical segment of D, then the color of the correspond-
ing segment of D’ is o' Indeed, if yis a loop based on A(z) = ro h(z) such that @ = g o h N (D),
then go by o r ! ([roy ') = go h'([y])™! = @', see Figure 4.13.
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Ficure 4.13.

Denote by D (resp. D’f) the flat diagram of (L) (resp. r o h(L)) obtained from D (resp. D’) by
applying Step (B) of Section 4.1.4 with H°P (resp. H). The flat diagrams Dy and D’f are the image
one of the other under the symmetry 7 (the labels of the discs remaining unchanged). Indeed, if
we write R, g-1 = aq ® bg-1 so that Rig =S, ® ide_1 YRy 1) = S alaq) ® bg-1, then the diagram
of Figure 4.14 is commutative.

Iwith HCP Iwith H

r _
S o(dq) byt by Salda) — Salaa)HFbg

———
Dy D_'f
Ficure 4.14.
Let Ly,...,L, be the components of L. For any 1 < i < m, choose a point p; (other than

extrema, labelled discs, and points decorated by algebraic elements) on the flat diagram of a com-
ponent i(L;) of A(L) and denote by p! = T(p;) the corresponding point on D}.. Since H, P = H,
as an algebra, Sg¥ = S, and goz()p = (g, we have that to apply the rules of Figures 4.5 with HP
to Dy is equivalent to apply these rules with H to D}. (for example, the diagram of Figure 4.15
is commutative, where @ € 7 and a € H,* = H,-1). Therefore we can concentrate the algebraic
decoration of Dy (resp. D’f) on p; (resp. p) to obtain an element v; € H;?p (resp. v € Ha;l) in
such a way that v; = v/. Let d; (resp. d’) be the Whitney degree of the flat diagram of h(L;) (resp.

r o h(L;)) oriented upwards from p; (resp. p}). Since T is a plane symmetry with respect to a
vertical line, we have that d; = —d;. Therefore

IV ggeo greony (R(L), h(z), g o h™ 1)

CO| Coprd;
I trg, P (G, ) i)
—d;
= H?i1tra;1(Ga_-1Vi)
= Tt (GY )
= Mz Mo 1(O Y

= Invigu(ro h(L),r o h(z),g o h;' o).
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aﬁ T ma
o ! a !

ﬂsz"%a):S;l(a) T s;%mm
o ! a !

N————— —

D_ f D}

Ficure 4.15.

By Theorem 4.3, since r o i o p~! and h are orientation-preserving homeomorphisms, we have

Invi 110 (p(L). p(2), g © p;') = InVprey(r © B(L), r 0 h(z), g o b 0 1"
and
InV greon greon) (L, 2, g) = Invygzeon yeor) (R(L), h(2), g © h;Y).
Hence Inv(g,y(p(L), p(2), g © p51) = Invgzeon yreony (L, 2, g). O

4.1.7. Examples. In this subsection, we give some examples of computations of the invariant
Inv{g of Theorem 4.3 which show that Invg ) is not trivial.

ExawmpLE 4.8. Fix an integer n > 2, set 7 = Z/nZ, and define a bicharacter ¢ : X7 — C* of m by
setting c(a (mod nZ), b (mod nZ)) = e’ Let us consider the ribbon Hopf n-coalgebra H = C¢
(see Example 2.17) endowed with the n-trace tr = (id¢)ger. Let O € S 3 be the framed trivial knot
with framing k € Z and let z; € §3\ Oy. For any [ € Z, define g; : mS3\Opz) =27 » n by
gi(1) = [(mod nZ). The n-link (O, zx, g;) is clearly H-compatible (since 7 = Z/nZ is commutative
and the crossing of H = C¢ is trivial). One easily gets that

-1 pk
1) (G g1y bi1)
c(l (mod nZ), I (mod nZ))*

2imki2
= e n .

InV{H,tr}(Ok, ks 81)

. 2in
In particular Invg41(O1,21,80) = 1 # en = Invig (01,21, 81)-

ExampLE 4.9. Consider the trefoil 7" as in Figure 4.16(a). The Wirtinger presentation of the group
of Tism(T) = {(x,y,z|xy = yz = zx). Let g : m(T) — n. Denote @ = g(x), 8 = g(y), and y = g(2).
The coloration by g of the diagram of T is depicted in Figure 4.16(b). Let H = {H}4e, be a ribbon
Hopf n-coalgebra endowed with a trace tr. Suppose that the 7-trefoil represented by Figure 4.16(b)
is H-compatible. Write Rg-1 ,-1 = 2,;ai®bj, Ry = 3 j¢;®dj, and Ry g = 2 €1 ® fi. The detailed
application of Steps (B) and (C) of Section 4.1.4 is given in Figure 4.16(c). Therefore we get that

Vir1)(T5 8) = ) tra(Gapy1S 5 (@S L (fi)djerS o1 (S 41658 4 ().
i.jk
Fix an integer n > 2, set 7 = Z/nZ, and consider the ribbon Hopf m-coalgebra H = C° (see
Example 2.17), where ¢ : 71Xt — C* is the bicharacter of 7 given by c(a (mod nZ), b (mod nz)) =

2im

en . The family tr = (id¢)qer s a m-trace for H. Note that all n-links are H-compatible (since
= Z/nZ is commutative and the crossing of H = C¢ is trivial). For [ € Z/nZ, we define

| m(T) ={x,y,zlxy=yz=2x) — Z/nZ
8l X, Y, 2 -l
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©y-1 S,§1 (allslg—l] (fi)djerS o-1(D)S 41988 4(cj)

(0)

Ficure 4.16.

Then )
6irl
Invicew (T, 81) = e(=1, =D (L, D) (1, 1) = exp(——).

For example, for n = 6, we get that Inv(g (T, go) = 1 # —1 = Invigy(T, g1).

4.2. Invariants of r-manifolds

Our goal in this section is to normalize the invariant of m-links constructed in the previous
section to an invariant of principal w-bundles over 3-manifolds.

4.2.1. m-manifolds. Recall that 7 is a discrete group. Following [48], a m-manifold is a couple
(M, &) where M is a closed, connected, and oriented 3-manifold and £ is a principal m-bundle over
M, that is, since  is discrete, a regular covering M — M with group of automorphisms 7. The
space M (resp. M) is called the total space (resp. base space) of £&. Two m-manifolds (M, &) and
(M’, £') are said to be equivalent if there exists an homeomorphism % : M — M’ which preserves
the action of 7 and induces an orientation-preserving homeomorphism i : M — M’.

A m-manifold (M, £) is said to be pointed when the total space M of ¢ is endowed with a base
point ¥ € M. Two pointed 7-manifolds (M, £, %) and (M’, &, ¥') are said to be equivalent if there
exists an equivalence h: M — M’ between them such that 4(%) = h(X).

Let (M, &, X) be a pointed m-manifold. Denote by x € M the image of ¥ € M under the covering
M — M. We can associate to the pointed 7-manifold (M, &, ¥) a morphism f : 7{(M, x) — m,
called monodromy of ¢ at X, by the following procedure: any loop vy in (M, x) uniquely lifts to a
path % in M beginning at . The path ¥ ends at a - ¥ for a unique a € . The monodromy is defined



4.2. Invariants of 7-manifolds 89

by f([y]) = a, where [y] denotes the homotopy class in 7;(M, x) of the loop y. This leads to the
triple (M, x, f).

Conversely, a triple (M, x, f) where M is a closed, connected, and oriented 3-manifold, x €
M, and f : m1;(M,x) — mis a group homomorphism leads to a pointed m-manifold uniquely
determined up to equivalence (see [11, ProprosiTion 14.1]). When convenient, we will adopt this
second point of view. In particular, under this point of view, two pointed -manifolds (M, x, f) and
(M’, x’, f’) are equivalent if there exists an orientation-preserving homeomorphism 4 : M — M’
such that i(x) = x" and f’ o h, = f, where h, : n7;(M,x) — m(M’,x’) is the induced group
isomorphism.

4.2.2. Surgery along r-links. For any framed link L in S, we will denote by S3 the 3-man-
ifold obtained from §3 by surgery along L (see [27]) and by iy : S*\ L — S z the (canon-
ical) embedding. A pointed m-manifold (M, x, f) is said to be obtained from S> by surgery
along a n-link (L, z, g) if there exists an orientation-preserving homeomorphism % : S z - M
such that iz(z) = h™'(x) and g = f o h, o (ir)., where h, : m(S3,h (x)) — m(M,x) and
(i) : m(S3\ L,2) = m1(S3,i1(2)) are the induced group homomorphisms.

LemMaA 4.10. Every pointed n-manifold can be obtained from S> by surgery along a n-link.

Proof. Let (M, x, f) be a pointed m-manifold. Since M is a closed, connected, and oriented
3-manifold, it can be obtained from S3 by (integer) surgery, i.e., there exist a framed link L c §°3
and an orientation-preserving homeomorphism 4 : Si — M. Moreover L can always be chosen
such that 7' (x) € iz(S3\ L). Letz € $3\ L such that iz(z) = A~ (x). Set g = f o h, o (ir).. Hence
(M, x, f) is obtained from S by surgery along (L, z, g). O

4.2.3. Invariants of r-manifolds. Let H = {H,},<, be a finite type unimodular ribbon Hopf
m-coalgebra and A = (d3)qer be a (non-zero) right m-integral for H such that 4;(8;) # 0 and
/11(91‘1) # 0, where 6 = {6,}qer denotes the twist of H. By Theorem 2.14, tr! = (x € H, —
trfy(x) = Ao(Gox) € K)per is a m-trace for H, where G = (Gy)qer 1S the spherical m-grouplike
element of H.

LemMa 4.11. If (M, x, f) is a pointed m-manifold obtained from S* by surgery along a n-link
(L,z,8), then (L, z, g) is H-compatible.

Proof. Let C be acomponent of L, y be a path in § 3\ L connecting z to C and v be an orientation
of C. By definition of the surgery, iL(E) bounds a disk in S z Therefore [iL(y)‘liL(E)iL(y)] =1
in 71(S3,i1(2)), that is, (i0)«(A¢y,) = 1, where A,y = [y‘lay] e 11(S3\ L, 2) (here the oriented
circle C is viewed as a loop based on the point y(1)). Since (M, x, f) is obtained from § 3 by
surgery along (L, z, g), there exists an orientation-preserving homeomorphism % : S 2 — M such
that iz (z) = h~'(x) and g = f o h, o (iz).. Then 8Ay0) = foho(ip)«(Ay,)) = foh.(l)=1and
hence g(Ay,,)) € Z(r) and @ Ayw) = P1 = id (by Lemma 2.1). O

Let (M, &) be a m-manifold. Choose a point ¥ in the total space M of £&. Denote by x the
projection of ¥ under the covering M — M and by f : m1(M, x) — « the monodromy of & at ¥. By
Lemma 4.10, we can present the pointed m-manifold (M, x, f) by a surgery along a n-link (L, z, g).
Set

(M, &) = 100D 2107 TInv gy (Lo 2, 8),
where b_(L) is the number of strictly negative eigenvalues of the linking matrix of the framed
link L (with framing numbers on the diagonal) and ny is the number of components of L. Note
that this scalar is well-defined since A;(0;) and A 1(91‘1) are supposed to be non-zero and (L, z, g) is
H-compatible (by Lemma 4.11).
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THEOREM 4.12. Let H = {Hy}oer be a finite type unimodular ribbon Hopf m-coalgebra and
A = (Ao)aer be a right n-integral for H such that 11(6y) # 0 and /11(01_1) # 0, where 0 = {0, }aex
denotes the twist of H. Then Ty is an invariant of m-manifolds.

The theorem is proven in Section 4.2.4.

Recall that the space of right m-integrals for H is one-dimensional (see Theorem 1.13) and
remark that the invariant 7y remains unchanged if we replace A by a scalar multiple kA, with
k € k*. Therefore 7 does not depend of the choice of the (non-zero) right z-integral for H used
to compute it.

When m = 1, for any closed, connected, and oriented 3-manifold M, ty(M, M) is equal to
1 1(91‘1)//11(91))% dim Hi(M) times the Hennings’ invariant of M (in the Kauffman-Radford formu-
lation of [17]) calculated from the ribbon Hopf algebra H fp (endowed with the R-matrix RLll and

the twist 01_1) and the right integral A;. Note that here a square root of /11(91_1)/ A1(0y) is assumed
to exist.

Recall that, given a topological group G, a principal G-bundle is called flar when its transition
functions are locally constant. Therefore equivalence class of flat principal G-bundle are in one-
to-one correspondence with equivalence class of principal G;-bundle, where G, denotes the group
G endowed with the discrete topology. Hence, when the group x is not discrete, the invariant 7y
may be viewed as an invariant of flat principal 7-bundles over 3-manifolds.

The next example shows that the invariant 7y is not trivial.

ExampLE 4.13. Consider the ribbon Hopf (%Z)/Z—coalgebra A= {Aa}ae(ﬁl)/l of Example 2.19,

where N > 1, which is studied in Appendix A. We restrict to the case r = 2. Let us denote by
(o 17yz the right (%Z) /Z-integral of Lemma A.1. Fix p > 1 and let £ be a principal 7-bundle

over the lens space L(p, 1). Denote by f : n;(L(p,1)) = Z/pZ — (%Z)/Z the monodromy of &
and seta = f(1) € (#Z)/ Z. Note that pa = 0. Since the lens space L(p, 1) is obtained by surgery
of §3 along the trivial knot with framing p, we have that

Ta(L(p, 1), 6) = 20(00)™" Aa(00)-
By Lemma A.4, 1p(6y) = —% and 1,(6%) = —%p if @ = 0 and 1,(6%) = 0 otherwise. Therefore

p if £is the trivial bundle,
0 otherwise.

TA(L(P, 1)’ ‘f) = {

To obtain more interesting examples (from the topological point of view), one may start
from ribbon Hopf m-coalgebras with non-trivial crossing. To produce examples of such Hopf
m-coalgebras (in particular for 7 non abelian), it would be useful to define and study crossed Lie
(co)algebras, their enveloping (co)algebras, and their quantum deformations in a similar way as
the machinery of quantum groups (see, e.g., [15, 42]).

4.2.4. Proof of Theorem 4.12. Let us first show that 75(M, &) does not depend on the choice
of the base point ¥ in the total space M of the m-manifold (M,£). Let ¥ be another point in
M. Denote by x (resp. x’) the projection of X (resp. ¥’) under the covering M — M and by f :
m (M, x) = 7 (resp. f' : m (M, x’) — ) the monodromy of & at X (resp. ¥'). Let (L, z, g) a m-link
along which the pointed 7-manifold (M, x, f) is obtained by a surgery. Recall that there exists an
orientation-preserving homeomorphism # : Si — M such that iz (z) = A~ (x) and g = foh, o(ir).,
where iy : S3\ L — § z is the (canonical) embedding and (ir). and A, are the homomorphisms
induced in homotopy by iy and & respectively. Without loss of generality, we can assume that
x €hoir(S3\L). Letz € §3\ L such that iz(z’) = h~'(x’). Since S>\ L is connected, there exists
apathy : [0,1] — S3\L connecting z = y(0) to z’ = y(1). Define by : m(S3\L,7) - m(S3\L,z)
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by setting ¢, ([£]) = [y~ ¢y] for any loop ¢ in (S3\L,7). Set g =god,: m(S3\L,7) — n. Note
that the z-links (L, z, g) and (L, 7', g’) are equivalent: they are ambiently isotopic via an isotopy of
the identity map idgs which pushes z along y and is constant in a neighborhood of L. The path
p=hoipoy:[0,1] = M connects the point p(0) = h(iz(z)) = x to the point p(1) = h(i (z')) = x'.
Define ¢, : m1(M, x') — m1(M, x) by setting ¢,([£]) = [p~1¢p] for any loop € in (M, x'). Note that,
by construction,

Bp 0 heo (i) = huo (ip)e 0 ¢y 1 m(S™\ L, ) = (M, x).

Then g = go¢, = foh,o(ip)o¢, = (f o) oh, o (i), and so the pointed m-manifold
(M, X, f o ¢,) is obtained by surgery along the n-link (L,z’,g’). Since r is a discrete group, the
path p : [0,1] — M uniquely lifts to a path p : [0, 1] — M such that 5(0) = %. Since ¥’ and 5(1)
belong to the same fiber (over x’), there exists @ € x such that 5(1) = @ - ¥'. Using the definition
of the monodromy, we obtain that f = a~!(f o ¢,) a. Therefore

alga= (@ (fopy)a)oh o(ip). =f oh.o(iL).

and so the pointed 7-manifold (M, x’, f’) is obtained by surgery along the 7-link (L,7’,a" g’ a).
Finally, recalling that (L, z, g) and (L, 7', g’) are equivalent (H-compatible) n-links, we have

IHV{H’UA}(L,Z,,CY_Ig,a) = Inviyey(L,2',¢") Lemmad.5
= Invigy(L,z,8) by Theorem 4.3.

Hence 75(M, &) does not depend on the choice of the base point ¥ in M.

It remains to show that 75 is an invariant of pointed m-manifolds. Let us describe the Kirby
moves (in the form of Fenn and Rourke) in terms of w-colored link diagrams. Two z-links are said
to be related by a Kirby 1-move (resp. a special Kirby (£1)-move) if they may be presented by
n-colored diagrams which can be obtained one from the other by interchanging the m-colored tan-
gle diagram K, _,, of Figure 4.17(a) with the m-colored tangle diagram I, _,, of Figure 4.17(b),
where n > 1 and ay,...,a, € & (resp. by adding or deleting a disjoint diagram of a circle with
framing +1 whose vertical segments are colored by the neutral element 1 of 7).

,,,,,

Levma 4.14. Let (M, x, f) and (M, X', f’) be two equivalent pointed n-manifolds. Suppose that
(L,z,8) and (L',7',g") are two n-links along which (M, x, f) and (M’, X', f’) are respectively ob-
tained from S* by surgery. Then there exists a finite sequence (Lo, 20, 80)s - - - » (L, Zn» &) Of 7t-links
such that (Lo, 20,80) = (L,2,8), (Lps2n.8n) = (L',7,¢") and, for any 1 < i < n, (Li-1,2i-1,8i-1)
and (L;,z;, g;) are equivalent nt-links or are related by a Kirby I-move or a special Kirby (£1)-
move.

Proof. Since (M, x, f) and (M’,x’, f') are obtained from S3 by surgery along (L,z,g) or
(L',7,g), there exist two orientation-preserving homeomorphisms 4 : S z - Mand W' : S z/ —
M’ such that i;(z) = i1 (x), ip () = W '(¥), g = foh,o(iL)., and g = f oK. o (ir)s. Since
(M, x, f) and (M’, x’, f) are equivalent, there exists an orientation-preserving homeomorphism
¢ M — M’ such that ¢(x) = x" and f" o ¢, = f. It is implicit in the proof given in [19] of
the Kirby theorem, refined in [10] and [40], that the (orientation-preserving) homeomorphism
W logoh:S z - S z, can be decomposed into isotopies, Kirby 1-moves, and special Kirby (+1)-
moves, i.e., that there exist a finite sequence Lo = L, Ly,...,L, = L’ of framed links in S 3and a
finite sequence A : Szo - SI34’ ceshy t S 2,171 - Szn of orientation-preserving homeomorphisms
such that /' o ¢ o h = hy, o --- o by and h; comes from an isotopy, a Kirby 1-move or a special
Kirby (+1)-move between L;_; and L,.

Without loss of generality, we can assume that h; o --- o hj o hli(x) € ir,(S 3\ L;) for any
1 <i<n Letz € §3\ L; such that iz (z;) = h; o --- o hy o h™!(x). Note that 7 = z,. Set
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(D) Lo,....an (©)
Ch—r O
(d) (e)

Ficure 4.17. n-colored Kirby moves

(Lo, 20, 80) = (L,z, ) and define g; = f o h, o (h{"). 0 -+ o (h71), o (i)s : m(S? \ Li,zi) — = for
any 1 <i < n. Since

gn=rfoh.o(hi)o-o(h)oliL).=fod. ohloliL).=f ohlolp)=g
we have that (L, z,, g,) = (L', 7, g).

Fix 1 < i < n. If h; comes from an isotopy of S 3 between L;_; and L;, then it is straightforward
that (L;—1,zi-1,gi—1) and (L;,z;, g;) are equivalent x-links. Suppose that i; comes from a Kirby
move between L;_; and L;. Then there exists a open 3-ball U in § 3 (inside which the Kirby move
is performed) such that S3\(L,uU) = S3\(L;_;UU) and irsi\uvy = hioir, 3\, ,uu)- Moreover
U can be chosen so that z; € 3\ (L; U U). Then z;_; = z since ir(z) =hjo---ohjo hl(x) =
hi(ir, ,(zi-1)) = i1,(zi=1). Therefore the following diagram is commutative:

(83 \ (Lisy U U), zi-1) m(S3\ (L; U U), z)
(S \ Lis1,zi1) 8-l bis i m(S3\ Li, z)

Hence (L;-1,z-1,gi-1) and (L;, z;, g;) can be presented by mr-colored link diagrams which are iden-
tical except for pieces shown in Figure 4.17(c), 4.17(d), or 4.17(e), wheren > 1 and a1, ..., @,,8 €
m, B €m or B’ €n Now, since g;—; and g; vanish on the (homotopy) longitudes (see the proof of
Lemma 4.11), we have that a; ---a@,8 = l and so 8 = (a1 ---@,)"', 8/ = 1, or 8" = 1. Therefore
(Li—1,zi-1, gi—1) and (L;, z;, g;) are related by a Kirby 1-move or a special Kirby (+1)-move. O

By Lemma 4.14, it remains to show that if (L, z, g) and (L', 7', g’) are two H-compatible r-links
which are equivalent, related by a special Kirby (+1)-move, or related by a Kirby 1-move, then we
have that

200" B7m 21077 v gy (L, 2, 8)
4.7 = 0D 2607 v ey (L, 7, 8).
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When (L, z,¢) and (L', 7/, g’) are equivalent H-compatible 7-links, (4.7) follows directly from
Theorem 4.3 and from the facts that b_(L) = b_(L’) and n; = ny (since L and L’ are in particular
isotopic framed links).

Suppose that a -colored diagram of (L', 7', g’) is obtained from one of (L, z, g) by adding an
unknotted circle C” with framing v = +1, unlinked with the other components of L, whose vertical
segments are colored by the neutral element 1 of n. Using the computations of Figure 4.18,
we obtain that Inviy . (L',2',g") = A1(0)) Invy (L, 2, 8). Since ny = npuer = np + 1 and
b_(Ly=b_(LUC")equals b_(L)if v=1o0r b_(L) + 1 if v = —1, we get the equality (4.7).

1
v =+l () — @
01
1
o G (3,
1

Ficure 4.18.

(G0 = 1(6)

(G = 67

Suppose that a m-colored diagram of (L, z, g) is obtained from one of (L', 7', g") by replacing
the mr-colored tangle diagram K, o, of Figure 4.17(a) with the n-colored tangle diagram I, . 4,
of Figure 4.17(b) for some n > 1 and a4, ..., @, € n. In this case b_(L') = b_(L) and npy = np + 1.
Therefore we have to show that Invyy (L', 2’,g") = 41(61) Inv,1(L, 2, g). Hence it suffices to
verify that:

(4.8) Kq,...0, = 1(01) *lm *lan

[43] ay
Let us show (4.8) by induction onn > 1. Forn = 1, let & € n. Write R, ,-1 = a, ® b,-1 and
Ry14 = ot ®d,. Since
tr! (G 0a(by1)00-1Co1) Qa1 (da)00r
= A1(60,-1b4-104-1) Oppa(ag)d, by (2.13) and Lemma 2.8(a)

(A1 ®1dy, )01 ®00) - (0 01 (Pa ®1dH )Ry 0-1)) - Rym1,) by (2.16)

(Ag-1 ®idp, )A4-1,,(61)

1(61) 1o by (1.12),

we have the equalities depicted in Figure 4.19. Hence (4.8) is true for n = 1.

Suppose that (4.8) is true for n > 1 and let @1,...,a,+; € 7. Denote by C the component
of the m-colored (n, n)-tangle diagram Ky, . o,0,,, colored by a,a,+1 and by C’ (resp. C”) the
component of the m-colored (n + 1,n + 1)-tangle diagram K, 4, .q,., colored by a, (resp. a,1).
Note that if @ and g are the colors of two parallel vertical segments of C’ and C”, then the color
of the corresponding vertical segment of C is either af or So depending if the segment of C” is
on the left or on the right of the segment of C”’. Using the hypothesis of induction and since

Aoy anii Lapansy) = la, ® la,,,» we have that (4.8) for n + 1 follows from the next lemma.
Lemma 4.15. The flat diagram obtained from Ky, 4, .., can be deduced from the one obtained
from Ky, a.a,., by the following splitting procedure:

(a) the algebraic decoration and the labelled discs of the components other than C remain
unchanged;

.....
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$a(bo-1)05-1C4-1

AaPo-1 (da)ga

1]
tr$7| (G(_Y—ll ‘pa(bof‘ )04-1Co-1) Qa1 (da)ba

Ficure 4.19.

(b) a segment of C containing some algebraic element is split as follows:

aB a |B Ba B |
a NS> A1) a(zﬁ) or a AN a(lﬁ) aQ,a)
C C/ C// C CI/ C/

(c) a segment of C containing a labelled disc is split as follows:

R DR RS 1

Moreover, these splitting rules are compatible with the rules of Figure 4.5.

Proof. Fix a crossing c of the -colored tangle diagram Ky, 4,0q,.,- We have to consider three
cases: any, one, or two strands of the crossing c is part of the component C. Firstly, if any of the
two strands of ¢ belongs to C, then ¢ remains unchanged in K,, 4, .0,,,- Suppose secondly that
only one strand of ¢ is part of C. There is height cases to consider (depending of the type of
the crossing, the position of C in ¢, and the relative position of C’ and C” in Ky, _q,.0,,,)- For
example, if the position of C in ¢ is from bottom-left to upper-right, the four cases are depicted in

Figure 4.20.
\C' c” \ C \C" c’
y a[)’//\ y BGK y - ,B//\ y
C'// c” Y Y c’
y a//[)’/\ y ,Ba// y ,84/ y

Ficure 4.20.

& X
;

The compatibility of the splitting rules with Step (B) of Section 4.1.4 follows from the quasi-
triangularity of Hopf m-coalgebra H. For example, for the first case of Figure 4.20, if we write
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I I

splitting

a c wp-1(bgs-1)d
b2 oS B B (Opyp1 )y

Ficure 4.21.

Ropy = rap ® Sy, Rypypt = o ® bﬁyﬁq, and Rg, = cg ®d,, then

ToB(1,e) ® ToB2.5) ® Sy = dg ® cp ® (pﬁ—l(bﬁyﬁ—l)dy by (26)
and so the diagram of Figure 4.21 is commutative. The others cases of Figure 4.20 can be done
similarly. Suppose thirdly that the two strands of ¢ are part of C. There is also height cases to
consider (depending of the type of the crossing and the relative positions of C” and C”’). Here the
compatibility with the splitting can be formally done by decomposing through the previous case.

For example:
C C C c, c .o
\/ - \// o~ \/\/
af B a \ ap a \a\\ B

Finally, the compatibility of the splitting rules with the ones of Figure 4.5 comes from the anti-
(co)multiplicativity of the antipode S and the (co)multiplicativity of the crossing ¢. For example,
let @,B,y € wand a,b € Hyg. Since Sqap(a)p1) ® Sap(@nety = Splagp) ® Salad.q) by
Lemma 1.1(c), (ab)(l’a) ® (ab)(zﬁ) = a(l’a)b(l,a) ® a(zﬂ)b(zﬁ) by (1.4), and <py(a(1’a)) ® <py(a(2ﬁ)) =
0y (a)(1,0) ® ¢y(a)p) by (2.2), the diagrams of Figure 4.22 are commutative. O

4.2.5. Basic properties of 7. Throughout this subsection H will denote a finite type uni-
modular ribbon Hopf m-coalgebra and A = (A, )qer a right m-integral for H such that 4;(6;) # 0
and /11(91_1) # 0, where 6 = {0, }4er denotes the twist of H.

Let (M1,£1) and (M>,&;) be two m-manifolds. Choosing base points of their total spaces
leads to two pointed m-manifolds (M, x1, fi) and (M, xp, f). Take closed 3-balls By ¢ M,
and B, C M, such that x; € 9B and x; € dB,. Glue M, \ IntB; and M, \ IntB; along a
homeomorphism & : dB; — 0B, chosen so that i(x;) = x, and that the orientations in M, \ IntB;
and M, \ IntB, induced by those in M, M, are compatible. This gluing yields a closed, connected,
and oriented 3-manifold M;#M, endowed with a base point x = h(x;) = x,. By the Van Kampen
theorem, since B, = h(dB)) is simply-connected, there exists an unique group homomorphism f :
m (M #M,, x) — x such that the diagram of Figure 4.23(a) is commutative, where the horizontal
arrows are induced by the embeddings (M1, x;) — (M #M>, x) and (M>, x) — (M, x). We denote
by (M 1#M,, £1#&;) the underlying m-manifold of the pointed -manifold (M #M, x, f).

LemMA 4.16. 1(M#M>, £1#8) = TH(M1,&1) TH(M2, &)

Proof. Let (L1,z21,g1) and (Lo, 22, g2) be two n-links along which (M1, x1, f1) and (M3, x3, f2)
are respectively obtained from S3 by surgery. Without loss of generality, we can suppose that
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splittin
(lm p g a(] @) m
Q

S sphttlng
ﬂ (@) @ S o)
ap
a a(1,a) aw.p)
ap a 'B “F

‘;07(“) ‘py(a)(l syay™h) ‘pV(a)Q YBy~1)
ab,
sphttmg sphttlng bt e
af al B

sphttlng e 9 P2
baawy  $bap)

Ficure 4.22.
(M, x1) — i (M#Ma, x) ~— 7t1(Ma, x2) m(S3\ Ly, 2) — mi(S*\ (L L Ly),2) — m1(S3\ Lo, 2)
A4S B $ e
T Vs
(a) (b)
Ficure 4.23.

L, and L, are disjoint (in S3)and that z; = zp. Setz = z; = zp and let w; : (S>3 \ Li,2) —
7 (S3\Li 1Ly, 7). As in Lemma 4.6, there exists an unique group homomorphism g : m1(S 3\L, I
Ly,7) — m such that the diagram of Figure 4.23(b) is commutative, where the horizontal arrows
are induced by the embeddings (S3\ Li Ly, 7) = (S3\Ly,z) and (S \ L U L,,2) < (S3\ L, 2).
Then (L I Ly, z, g) is a n-link along which (M #M,, x, f) is obtained from S3 by surgery. One
easily concludes using the facts that b_(L; LI L) = b_(Ly) + b_(L), np,ur, = nr, + nr,, and
Invig e (Ly U Lo, z, 8) = Invig (L1, 2, g1) Invig 4y (L2, 2, g2) (by Lemma 4.6). m|

Let (M, ¢) be a m-manifold. Let H°P be the ribbon Hopf m-coalgebra coopposite to H. It is
endowed with a right m-integral A°°? = (1,-1)qer Such that Aj"l’(ej"P) # 0 and AiOP(HTOP_l) # 0.
Denote by —M the manifold M with the opposite orientation.

Lemma 4.17. 75(-M, &) = (41(6;")/21(01)"' ™ e (M, €), where by(M) is the first Betti num-
ber of the 3-manifold M.

Proof. Choosing a base point of in total space of & leads to a pointed m-manifold (M, x, f).
Let (L, 7, g) be a n-link along which (M, x, f) and is obtained from S by surgery. There exists an
orientation-preserving homeomorphism % : S z — M such that iz(z) = h'(x) and g = foh, o
(ir)+. Let p be an orientation-reversing homeomorphism of 3. It induces an orientation-reversing
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Z(L) such that iy o pjg3\, = p o ir. Since h opl: SE(L) - -M
is an orientation-preserving homeomorphism such that i,)(0(z)) = (h o pH(x)and g o p;! =
fo(hop™), 0 (ip(1))+» the pointed m-manifold (=M, x, f) is obtained from § 3 by surgery along the
n-link (p(L), p(z), g o p;1). Since HTOP = 01‘1, b_(p(L)) = n — b_(L) — by(M), and n,) = nr, we
have that

A (Hl)b‘(p(L»_n"“)/h(91_1)_b‘(p(L» — (/11(01—1)//11 (91))171(M) /1‘1:01)(QTOP)b"(L)_nL/lTOP((HTOP)_1)_b'(L).

homeomorphism p : § z - S

We conclude by using Inviz i (0(L), p(2), g © ool = Inv{geop yreony (L, 2, g) (see Lemma 4.7). |

4.3. Comparison with the Turaev invariant

In this section, we compare the invariant of 7r-manifolds constructed in Section 4.2 with the
Turaev invariant of 7-manifolds defined in [48].

4.3.1. Modular n-categories. Let C = 1l,,C, be a premodular 7-category. In particular the
set J; of isomorphic classes of simple objects of C; is finite. For i, j € J;, choose simple objects
Vl.l, le. € C; representing i, j, respectively, and set

Sij= tr(CV]l_’Vl_l oCylytl Vl-1 ® le. - le. ® Vl-l) € Ende(1) = k.

It follows from the properties of the quantum trace that §; ; does not depend on the choice of Vl.1
and le.. Following [48], we say that the premodular r-category C is modular if
(4.9) the square matrix S = [S; ;]; jes, is invertible over k.

The neutral component C; of C is a modular category in the sense of [47] (remark that (4.9)
involves only C)).

Let C = UueC, be a modular 7-category and let {V}. }jes, be a representative set of the iso-
morphism classes of simple objects of C;. A rank of Cy is an element D € k such that

2 _ . 1,2
D* = ) dim(V})’ e k.
Jjeh
Since each V} € C) is a simple object, the twist 6y : V} — gol(le.) = V} equals v;idy: for some
J J
v;j € k. Since 6y, is invertible, v; € k*. Set
J

(4.10) Ay =) vildim(V}) ek,

Jjeh
It is known (see [47, §11.2.4]) that D and A, are invertible in k and that
(4.11) A,A_ =D

4.3.2. The Turaev invariant of m-manifolds. Fix a modular n-category C = I,¢,C, en-
dowed with a rank D and set A_ as in (4.10). Let (M, ¢) be a m-manifold. Choose a base point
% in the total space M. Denote by x be the projection of ¥ under the covering M — M and by
f 1 m (M, x) — mthe monodromy of & at X. Present the pointed m-manifold (M, x, f) by a surgery
of §3 along a -link (L = Ly U--- U L,,z g) (see Lemma 4.10). Choose an orientation for L. For
each 1 <i < n, choose apathy; : [0,1] — S3\ L such that ;(0) = z and y;(1) € L; and set

a; = g(ly; 'miyi) e,

where m; is a small loop encircling L; with linking number +1.
Consider a generic diagram D, of L such that the base point z corresponds to the eyes of the
reader (see §4.1.2). For any objects X; € Cq,,.... X, € Cq,, we denote by F(Dr; X,...,X,) €
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End(1) = k the morphism in C| obtained in the following way: for each 1 < i < n, label the
connected component of D; corresponding to y;(1) by the object X;. Since the longitudes of L are
sent to 1 € 7 by g (see the proof of Lemma 4.11), all the other connected components of D; can
be uniquely labelled by following the rules of the graphical calculus (see Section 3.1.7) in order
to obtain a diagram of a morphism in C (see [48, LEmMA 3.2.1]). This morphism only depends
on the isotopy class of L and is denoted by F(Dy; X1, -, X},).

The Turaev invariant of the m-manifold (M, &) is

n
Tie.o(M, &) = AZH p=r®=r=t 3° ([ [ dimg(VE)) F(DL; VS, -+, Vi) €k,

7160y vnjn€lay =1

where o(L) is the signature of the linking matrix of L and each {V;’ } jes, 18 a representative (finite)
set of the isomorphism classes of simple objects of C,,.

We now give another expression of this invariant, more suitable to our needs, by using the
factorization properties of the coends. Without loss of generality (by isotopying the segments of
Dy, corresponding to the y;(1), see Figure 4.24(a)), we can assume that the (directed) diagram Dy,

is of the form D, = DSLpllt o C,, where:

° DSLpllt is a tangle with 2n inputs, no outputs, and no circle component (see Figure 4.24(b));

e C, is the tangle with no inputs and 2n outputs which is formed by n cups directed from
right to left (see Figure 4.24(c)) and such that the i™ cup belongs to the connected com-
ponent of Dy corresponding to y;(1).

(@)

= iy

U U X

=

(b) D™ ©C, ) F(DP™; X,,..., X,)

Ficure 4.24.

Recall that, for each @ € &, by Lemma 3.11, the functor F|, : Cgp X C, — Cy, defined as in
(3.33), has a coend (B,,i" : F, — B,). For any objects X; € Cq,,..., X, € C,,, by labelling the
(2i — 1) and 2i™ input strings of Dst it with X; (for 1 < i < n) as in Figure 4.24(d), we obtain a
diagram which represents a morphism

FOP X, X,) X[ ®X1® - ®X:®X, — 1.
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By using the naturality of the duality, the braiding, and the twist (see Sect. 3.1), the function
Xi,...,. X)) > F (DSpht;X 1, ,X,) verifies the hypothesis of Corollary 3.3. Hence there exists a
L yp y

unique morphism
TDsplil By, ®---®B,, > 1
L

such that F(Dipht;Xl, o+, Xp) = Tpic © (i;ﬁ ® - - -1y ) for all objects X| € Cy, ..., X, € Cq,,.
L n

For any « € m, define %™ = (u3*™),c, by
(4.12) ™ =" dimg (V) iy © COBVyr 11— B,
j€la

where {Vj”.‘} jej. 18 a representative set of the (finite) set J,, of isomorphic classes of simple objects
of C,. Then the Turaev invariant of (M, &) (calculated from the n-category C) can be rewritten as

(4.13) Teo(M.£) = ATV DO Ty o (UM @ - @ ™).

4.3.3. Comparison of Trepz) With 7. Let H = {H, }4ex be a finite type ribbon Hopf -coal-
gebra. When the category of representations Rep(H) of H is modular, the Turaev invariant 7 Rep()
of m-manifolds is well-defined. Recall (see Theorem 4.12) that the invariant 7y of 7-manifolds
constructed in Section 4.2 is well-defined provided H is moreover unimodular and 4;(6;) # 0 and
/11(91‘1) # 0 for at least one (and thus all) non-zero right m-integral A = (dy)qer for H. In the next
theorem, we compare 7 (rep(#),p) With 7.

THEOREM 4.18. Let H be a finite-type unimodular ribbon Hopf n-coalgebra such that its category
of representations Rep(H) is modular. Let D be a rank of Rep(H) and set A_ as in (4.10). Then
the invariant Ty constructed in Section 4.2 is well-defined and is related to the Turaev invariant
T Rep(r),D) by

)b1(M)

(D
T eptty oy (M. &) = D! (A— t1(M, &)

for any m-manifold (M, €), where by (M) is the first Betti number of the 3-manifold M.

The theorem is proved in the next subsection.

Theorem 4.18 generalizes [18, THEOREM 1] where this result is shown for 7 = 1 and H is a
(usual) quantum double of a Hopf algebra (note that such a double is always unimodular).

In general, the -category Rep(H) of representations of a finite type ribbon Hopf m-coalgebra
H is not modular. Nevertheless, a modular m-category Cy may often be derived from Rep(H)
(see [5]). In that case, the invariant 7 ¢, py and Ty are not necessarily related one to the other (this
was shown in the case 7 = 1 in [17]).

4.3.4. Proof of Theorem 4.18. We use the notation of Section 4.3.2, except that we replace
the m-category C with Rep(H). Recall that (M, £) denotes a 7-manifold, that a base point in the total
space of ¢ is chosen, that the so-obtained pointed 7-manifold is presented by a surgery of S 3 along
an-link (L =L, U---UL,,zg), that L is arbitrarily oriented, and that a path y; : [0,1] — § 3\ L
such that y;(0) = z and y;(1) € L; is chosen for each 1 < i < n. This leads to a; = g([yi_lm,-y,-]) e,
where m; is a small loop encircling L; with linking number +1. Moreover we have a diagram Dy,
of L which is oriented, whose each connected component is provided with an object of Rep(H),

and which is of the form D; = DSLplit o C, where:

° Dst s a tangle with 2n inputs, no outputs, and no circle component (see Figure 4.24(b));

e (, is the tangle with no inputs and 2n outputs which is formed by n cups directed from
right to left (see Figure 4.24(c)) and such that the i™ cup belongs to the connected com-
ponent of Dy corresponding to y;(1).
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We first remark that, given any M, € Rep,, (H), ..., M, € Rep, (H), we can read the n-col-
oration (in the sense of §4.1.2) of D; from the (oriented) diagram D;(My,--- , M,) which repre-
sents the morphism F(Dy; My,--- , M,). Indeed let £ be a connected component of D;, that is, a
segment of D; delimited by under-crossings. The corresponding segment in Dy (My,--- , M,) is
oriented and is provided with an object M € Rep,(H) for some @ € mr. Cut £ at its extremal points
(with respect to the height function) to obtain vertical segments (in the sense of §4.1.2) which are
directed. Then the m-color of such a vertical segment is & (resp. @~ ') when its orientation is down-
wards (resp. upwards), since if u represents a loop that, starting from the base point z (the eyes
of the reader) above the diagram Dy, goes straight to the vertical segment, encircles it from left
to right, and returns immediately to the base point (see Figure 4.3), then the linking number of u
with the considered vertical segment is +1 (resp. —1) if the vertical segment is oriented downwards
(resp. upwards).

The m-coloration of the link diagram D; induces a m-coloration of the tangle diagram D
)th

spht

In particular the vertical segment corresponding to the (2{)™ input of D “is colored by «; and the

split .

vertical segment corresponding to the (2i — 1)™ input of D} is colored by ai‘l, see Figure 4.25.

MIM “‘ﬂwﬂM" o7 an (I] i

Sk e QS
AN\

ml Tm, ;,,] M, w

Ficure 4.25.

Since the diagram DSLplit does not have any circle component, by applying Step (B) of Sec-

tion 4.1.4 and then the rules of Figures 4.5, 4.6, and 4.7 to the n-colored tangle diagram Dst it (see
Figure 4.26), we obtain that there exists a unique

af"'=>aj® -®d € Hy @@ H,,
!

such that the flat diagram of DSLplit is equivalent to the one depicted in Figure 4.27.

ay Loyl

QUL = 4 P [

FiGure 4.26.

Lemma 4.19. For any M, € Rep,(H), ..., M, € Rep,(H), we have

FOP My, oo, My) = ) evyy, (idy; ® ) -idy,) @ -+ @ eviy, (idy; @ ] - idyy,).
1
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Lo n
Z 4 4
l (11_1 [o3] a;l ap

Ficure 4.27.

Proof. The flat diagram (DSLpht)ﬂat of the m-colored tangle DSLplit obtained just after apply-

ing Step (B) inherits an orientation and a Rep(H)-coloration from the diagram of the morphism

F (sz lit; My, -, M,)): M| ®---®M, — k. Indeed, each segment of (Dst lit)ﬂat delimited by discs
labelled with elements of 7 (which are in one-to-one correspondence with under-crossings) is di-
rected and endowed with an object of Rep(H). See, for example, Figure 4.28 where V € Rep,,(H),

We Repﬂ(H), and Ryp1 =00 ® bﬁ—l.

W= 0.\« Y

Ficure 4.28.

Let us associate to (Dst lit)ﬂat a k-linear morphism &y, ... p, : M1 ® --- ® M, — k defined in

the following way:

e to a diagram as in Figure 4.29(a), where « € n, M € Rep,,(H), and a € H,, we associate
the morphism ¢ = a -idy : M — M;

e to adiagram as in Figure 4.29(b), where @ € n, M € Rep,,(H), and b € H,-1, we associate
the morphism ¢£’I* =b-idy: M* - M*;

e to diagrams as in Figure 4.29(c), where a,8 € n, V € Rep,(H), and W € Repﬁ(H), we
associate the flip maps oyw, ovw+, ov- w, and oy« - respectively;

e to a diagram as in Figure 4.29(d), where «,8 € 7 and M € Rep,(H), we associate the
isomorphism <pg’[ : M — @g(M) which comes from the fact that M = ¢pg(M) as k-spaces
(see Section 3.1.8). Note that in fact gogl = idy, but this notation allows us to keep in
mind that a - <p2’1 (m) = gog/l (pp-1(a) - m) for any a € Hg,p-1 and m € M,

e to a diagram as in Figure 4.29(¢), where «,8 € m and M € Rep,(H), we associate the
isomorphism gog’l* P MF — pg(M*) = pg(M)*;

e to diagrams as in Figure 4.29(f), where @ € m and M € Rep,,(H), we associate the duality
morphisms ev y, €vyy, coevy,, and Coev , respectively.

Then we compose these associated morphisms in a similar way we compose the morphisms rep-
resented by tangles to obtain &y, ... um, -

Now remark that the rules of Figures 4.5, 4.6, and 4.7 used to concentrate the algebraic dec-
oration of a flat diagram are compatible with the above construction of &y, ... u,. For example,
given M € Rep,(H), the rule described in Figure 4.30(a), where a,b € H,, corresponds to the
relation ¢¥ o ¢’b"1 = qb% which is verified (by the definition of a left action). The rule described in

Figure 4.30(b), where a € H,-1, corresponds to the relation ev M(¢2’1 "®idy) = eva(idys ®¢§’1 i a))

which comes from the fact that a acts on M* as the transpose of x € M — S ,-1(a) - x € M. The
oM M _ MM
= ¥5 Pa

rule described in Figure 4.30(c), where a € H,, corresponds to the relation qb%(a) @p
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Mla Mla™! V. w V. w V. w V. w

(@) ¢ b) ¢y (¢) Flip maps

éﬂlﬁl é}a]ﬁl
! 03 3 ! M M
MY« M2ao! M/-\( Mm QU(KI a’IUa

@ ¢y Ora (f) Duality morphisms
FiGure 4.29.
Bap Bap! @
a e
$b = i“b a _ S, -1(a) C? = éﬁ
- a
Ml M« Ml o! a Ml ! @ MYa M a
(@) (b) (0)
Oy (@p(M) Y v~y BB | pyp(M)
“% T @ oo o
[e3 a M M [e3 M (03 M (04 M a
(d) (e)
Ficure 4.30.

which follows from the definition of the action of Hg,g-1 on @g(M). The rule described in Fig-
ure 4.30(d) corresponds to the relation gaiﬁ(M) o gogl = ¢% which comes from (2.4). Note also that
the morphisms corresponding the curls depicted in Figure 4.30(e) can be replaced by ¢é’la, Q%’I:,
q%/’; 1> and ¢g{; respectively (see Figure 4.6).

Therefore the morphism &y, ... m, can be expressed from the flat diagram depicted in Fig-

ure 4.27, that is,

é:Ml,"'an = Z eV, (ler ® ClllidMl) ®- - ® eVMn(idM;; ® Cl;lidMn).
I
To prove the lemma, it remains to verify that F (Dst lit; My, M,) = épy ... m,. This follows
from the fact that the above procedure to construct &y, oMy from the flat diagram (DSLpht)ﬂat agrees
with the graphical calculus used to determine F (Dst llt; My,--- ,M,). It is clear for cup-like or
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cap-like arcs. For crossings let @, € 7, V € Rep,(H), and W € Repﬂ(H). Write Ry = a, ® bg
and Rg-1 , = ¢g-1 ® dy. Then
Ropap = (Sp19p® idHﬁilaﬁ)(R,B—lﬁ—la,'B) by Lemma 2.4(b)
= (Sp1 ®@@g-1)(pp @ Pp)(Rp-15-143) by (2.4)
= (Sp1®¢5)Re1,) by 27)
= Sﬁ—l(CIB—l) ® (,DIB—I(da).

and so, using the definition of a braiding in a m-category of representation (§3.1.8), we have that

cyw = (g ®idy) o oy o (¢, ® ¢1‘,4;)

and
-1 _ w -1 Wy -1
CVV,W*V - (¢Sﬁ,1({,‘ﬁ,l) ® ¢<Pﬂ—l(da)) o O-‘/V,W*V o (¢ﬁ ® ldV)
— w 174 .
- (¢Sﬁ—1(6‘ —1) ® ¢¢ﬁ*l(dn)) ° O—W*V,W © (SDB—I ® ldV)

w : \%4
(¢Sﬁ71(cﬁ71) ® ¢<pﬂ_1(da)) o(idw ® 90,3—1) o ovw
: %4 w %4
(idw ® ‘pﬁ—l) o (¢S/3—1(C/3—1) ® ¢da) SEAATS

Hence the morphism associated to a crossing using above procedure agrees with the representation
of a braiding in graphical calculus, see Figure 4.31. This completes the proof of the lemma. O

Vi
YW = QQ(W)\/ 14 e
}—> PV . cvw
\\ ay bﬁ ’
w W

Ficure 4.31.

Let (Ag,i : Fo — A,) be the coend of the functor F, as in Section 3.4.1 (recall A, = H},
as k-space) and (B,,i’ : F, = B,) be the coend of the functor F, as in Section 3.4.2 (it exists
since Rep(H) is modular and so finitely semisimple). Recall that, by Theorem 3.5, A = {A,}qex
and B = {B,}qer are categorical Hopf m-algebras in Rep, (). For any @ € &, by the uniqueness of
the coend, there exists a unique isomorphism 1, : A, — B, such that i;u = I, o iy for all module
M € Rep,(H). Note that I = {I,}qer 1S an isomorphism of categorical Hopf n-algebras. Indeed,
for example, if M is a module in Rep,, (), then

AMoiy=A =LY = oY oABoil, = (I;' @) o AB o 1, 0 iy,
and so by the uniqueness of the factorization through a coend, AB o I, = (I, ® I,) o AA.
Let us fix a non-zero right w-integral A = (4,)qex for H. For any a € 7, define u, : k — A, by
Ho(1) = A,. By Theorem 3.8, u = (i4o)aer 1S a right m-integral for the categorical Hopf m-algebra

A = {Agy}eer- Since I = {I,}4er 1s an isomorphism of categorical Hopf m-algebra, (I, © tg)qer 1S @
right m-integral for the categorical Hopf m-algebra B = {B,}4er. Therefore, by Lemma 3.13, there
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semi

exists k € k such that [, oy, = k ,u;emi for all @ € nr, where u = ?fmi)we,r is as in (4.12). Note

that k is non-zero since p,(1) = A; is non-zero. Therefore, up to replacing A with k=! A, we can
(and we will) assume that k = 1. Hence, for any « € 7,

(4.14) HE™ =1, 0 .
As in Section 4.3.2, let Tywic : Bg ® -+ ® Bg, = 1 be the (unique) morphism such that
L

lit j ]
FODE™; My, My) = Ty 0 (i, ® - @ 1jy,)

for all modules My € Rep, (H),...,M, € Rep,, (H). By Lemma 3.6, the morphism /& : Ay ®
-+ ®A,, — k which factorizes the function (My,--- ,M,) — F (DSLpht; My, -+, M,) through the
coends (Ag,i: Fo = Ag)acr is given, forany fi € Ay, = H), ..., fn € Ao, = H;, , by

ap’”

Wfi® - ® fp) = (FDP" oy Hop)s fi @ 1oy ® -+ ® f,® 1y, ).

Therefore, using Lemma 4.19, we have

Wfie-of) = > evi, (fi®@ - la)evn, (i ® @ - 14,)

)
> fita)- - fulal)
)

= (fi®® fra.
Now h = T e © (Io, ® ---®1,,) by the uniqueness of the factorization described in Corollary 3.3.
L
Hence we obtain that, for any f; € H;l, e o€ H

ay?

(415) <TDsplit o (Ial R ® Ian)a fl ®---Q fn> = <fl Q- ® fn, aiplit>.
L

This last formula allows us to compute TDsplil from aSLpht.
L
Lemma 4.20. 2,65 = A..

Proof. Let us denote by 6, and ¢_ the (oriented) diagrams of Figures 4.32(a) and 4.32(b).

Co o SR 2 [}

(@) 6. (b)s- (©) F(&™; M) (d) F6™"; M) (&) a™

0

Ficure 4.32.

Replacing D; and DSLplit with 6. and 5ipht in the above setting leads to the oriented, Rep(H)-
colored (2, 0)-tangle diagram 5?_}’ m, see Figures 4.32(c) and 4.32(d) where M € Rep(H), to the
morphism ]:Siplil : Bi® B — Kk, and to the element af{’m € Hy, see Figure 4.32(e). Therefore, using
the above computations, we have

Ay = O vEldimg(V))
Jjeh
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.yl =
Z F(04; Vj) o coevvj@
Je
— . -/ A
= Z Tdi"“‘ o lvjl_ o CO@VVJI_
Je
semi

= ]—;Ssiplil o

= Tgwoliou by(4.14)
= <T5iplit oIy, u(1))

= <T6iplit o Ila /ll>
= A.a") by 4.15)

- 4 (a;}zlit).
Now, since ¢j|g, = idy, and by using the computations of Figure 4.18, we obtain that a?z = Glil.
Hence /ll(Hlil) =A,. O

Since A, and A_ are invertible (because Rep(H) is modular, see [47]) and /11(91il) = A; by
Lemma 4.20, we have that 2;(6;) # 0 and /11(91_1) # 0. Therefore the invariant 7y defined in
Section 4.2 is well-defined. Recall that

(M6 = L0 P 0O D A0, (@) g, (@)
1

0P 07D (4, @ ® /lan’aiplit>.
Finally, we have

T Rep(H),0)(M, &)

N D_O-(L)_n_lTDipm oM @ @uE™) by (4.13)

= AT DO 0 (o, © oy ®+ ® Lo, 0 fl,) by (4.14)
— At_T(L) D—U(L)—n—lTszlil 0 (I ®+®1y,) 0 (Uay @+ ® g,

= ATY DO T o Ty © - ® Iy, ) oy (1) @ -+ ® e, (1))
— At_T(L) D—cr(L)—n—1<TDSLplit ° (1a1 R - ® Ian)’/loq R ® /lan)

= AP p Dl @ ® 0" by (4.15)

= ATP DO Qo) P 407 ) Ta(M,€)

= AT pro@mn=t An=b-(L) 2 (A1 &) by Lemma 4.20

— A(i’(L)+b_(L) D—O’(L)—n—l (DZ/A_)n—b_(L) TH(M, é';) by (41 1)

— D—l AO’(L)+2b—(L)—n Dn—2b_(L)—O'(L) (DZ/A_)H TH(M f)
Recall that b.. (L) denotes the number of eigenvalues of sign =+ of the linking matrix of the framed
link L and that the first Betti number b; (M) of the 3-manifold M is equal to the number of null
eigenvalues of the linking matrix of L. We have that n = b (L) + by(M) + b_(L) and o(L) =
by(L) — b_(L). Therefore (L) + 2b_(L) —n = —b;(M) and n — 2b_(L) — (L) = b1(M). Hence

. ( D\b1(M)
T epttty oy (M. &) = D! (A—)

H(M, ).

This completes the proof of Theorem 4.18.
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4.4. Homotopy quantum field theory

The notion of a homotopy quantum field theory was introduced by Turaev [48]. Briefly recall
that a homotopy quantum field theory in dimension 2 + 1 with target a space X can be viewed as a
topological quantum field theory for surfaces and cobordisms endowed with a homotopy class of
maps to X. In this section, we show that the invariant 74 constructed in Section 4.2 extends to a
homotopy quantum field theory in dimension 2 + 1 (between connected surfaces) with target the
Eilenberg-Mac Lane space K(r, 1).

4.4.1. Special n-tangles. Following [48], a n-tangle with k > 0 inputs and / > O outputs is a
triple (7, z, g) where:

e T c R?2x[0,1] is a framed tangle with bottom endpoints (r,0,0), r = 1,...,k and top
endpoints (s,0,0), s = 1,...,[. Recall that the tangle T consists of a finite number of
pairwise disjoint embedded circles and arcs lying in the open strip R*x]0, 1[ except the
endpoints of the arcs. At the endpoints, 7 should be orthogonal to the planes R? x 0
or R? x 1. Framed means that each component ¢ of the tangle 7 is provided with a
longitude 7 ¢ R? x [0, 1] \ 7 which goes very closely along t. We always assume that
the longitudes of the arc components of 7 have endpoints (r,—06,0), r = 1,...,k and
(s,-6,0), s = 1,...,[ with small 6 > 0. We denote T = U,7 where ¢ runs over all the
components of T';

e the base point z belongs to R? x [0, 1]\ 7 and has a big negative second coordinate z, so
that T € R X [zp + 1, +00[X[O, 1];

e g: m(R2x[0,1]1\T,2) » wisa group homomorphism.

Two n-links (7', z, g) and (T”, 7/, g’) are said to be equivalent if there is a orientation-preserving
homeomorphism / : R?x[0, 1] — R>x[0, 1] such that /(T') = T’ (fixing the endpoints), /(T) = 7",
h(z) =7 ,and g = g’ o h,.

As for n-links, a r-tangle may be represented by a w-colored tangle diagram: regularly project
the framed tangle 7 onto the plane R X 0 X R so that the base point z corresponds to the eyes of
the reader. Recall regularly means that the framing is given by shifting the tangle along the vector
(0, =6, 0) with small 6 > 0. As in Section 4.1.2, we color each vertical segment of the diagram by
g([u]) € m, where u represents the loop that, starting from the base point z above the diagram, goes
straight to the segment, encircles it from left to right and returns immediately to the base point
(see Figure 4.3). Note that for crossings and extrema the colors are related as in Figure 4.1.

Reciprocally, using the Wirtinger presentation of tangle groups, one easily verifies that a r-col-
ored tangle diagram determines (up to equivalence) an unique rr-tangle.

The same arguments as in the proof of Lemma 4.1 shows that z-tangles are equivalent if and
only if all their m-colored diagrams can be obtained one from the other by a finite sequence of
isotopies (in the class of generic tangle diagrams) which preserve the inputs, the outputs, and the
colors of the vertical segments and of moves of Figure 4.2.

Let (T, z, g) be a n-tangle with k > O inputs and / > 0 outputs. For 1 < i <k, let ; be the color
of the vertical segment of a -colored diagram of T corresponding to the i/ input. The element
@; € r does not depend on the diagram representing 7. It is called the color of the i™ input of 7.
Similarly, we define the colors of outputs of T.

We say that a m-tangle (7', z, g) is special if:

e it has a even number 2k > 0 of inputs and, for 1 < i < k, an arc joins the (2i — 1) input
to the (2/)™ input;
e it has a even number 2/ > 0 of outputs and, for 1 < j <, an arc joins the (2j— 1) output

to the (2)™ output;
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e there exists ay,f1,. ..,k Bx € 7 such that Hi.‘zl[a,-,ﬁ,-] = land, forany 1 <i <k, a;is
the color of the (2i — 1) input and ,Biai‘lﬁi‘l is the color of the (2i) input;
e there exists a/’l,ﬁ’l, .. .,az,ﬁ; € m such that Hi.:l[a/},ﬁ;.] =1land, forany 1 < j </, a/;. is

the color of the (2j — 1)™ output and ﬁ}a}_lﬁ;_l is the color of the (2 /)™ output;
e for each circle component 7 of T, the longitude 7 is sent to 1 € 7 by g.

The k-uple (a1,B1,- - , o, Br) is called the system of bottom colors of the special n-tangle T and
the [-uple (a},B}, - ,a},B)) is called the system of top colors of the special n-tangle T

4.4.2. The spaces F. and T.. Fix a finite type crossed Hopf m-coalgebra H = {H,},ex With
crossing ¢. Let g > 1 and ¢ = (a1,B1, -+ , @, B,) € 7% with Hle[ai,ﬁ,-] = 1. We set

(4.16) FC:H;1®---®H;§g.

It is a left H;-module under the action > defined by

8

(ho (i ®- @ f), x1 ®---®xg) = l_[<fi,S;,-l(SDpi—l(h(zi,,giai—lpi—l)))xih(zi—l,a,-)>,
i=1

where (, ) denotes the usual pairing between a k-space and its dual. We also define the k-space
4.17) Te={X€Hy ® - ®H,, | X <h =¢e(h)X forall h € H;},

where < is the right action of H; on Hy, ® - - ® H,, given by

1
X ® - ® xg) <h= ® S;l_l (‘pﬂi_l(h(Zi,ﬂiai_l,Bl-'l)))xih@i—lﬂi)‘
i=1

Note that, for any f; EH;I,...,fg EH[’;g and x1 € Hyy, ..., Xg eHag,Wehave
(o (fi® @ fe) X1 ® - ®xg) =(f1® - ® fg,(x1 ® - ® x;) < h).

We set Fy = k, endowed with the usual left Hi-action given by h> k = e(h) k, and Ty = k.
For example, when a, 8 € m with @ = Sa, we have that

Twp =1x € Hy|lyx = xpp(y) forally e H,}.
Indeed, for any x € T(,.5) and y € H,,
yx = yowme(anx by (l.2)
= Yewelgs(a,n)x by (2.3)
= YowSa (@101 @pa-15)X01 1)1 since x € Tigp)
= YoaSa Oa ) @s0am) by (22)
= xpp(e(ye.n)yam) by (L1.5)
= xpg(y).
Conversely, if x € H,, is such that yx = x¢g(y) for all y € H,, then, for any h € Hj,

S3 @g1hapa1p- )30y = g8y (hoe1))xh1ey by Lemma 2.1(c)

xS 5 (h.a1)h1.0)
g(h)x by (1.5).

Furthermore, if @g|y, = idy,, then T(4 ) = Z(H,). In particular T ,,1) = Z(H,,) for all a € 7.
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Lemma 4.21. The map 6. : T, — Homy, (F, k), defined by
Oc(x1 ®-++® xg)(fl @ ®fg> = filxy) -~ 'fg(xg),
is an isomorphism of k-spaces.

Proof. Let us first prove that 6. is well-defined. Let X € T.. Forall f; € H;, ,..., f; € H;g,
and h € H;, we have

0c(X)(h> (f1®---® fp)

(h> (fi® B fg), X)

= (f/i® - ®fe, X<h)

= e){(fi® ®f,X) sinceXeT,
= eM)o:.(X)(f1® - ® fo).

Therefore the map 6.(X) is Hy-linear. Moreover it is clear that o, is k-linear. It remains to verify
that o, is bijective. Let f € Hompg, (F,, k). Let us show that f has a unique antecedent by J.. Via
the canonical k-isomorphism F¢ = (H, ®---® H, )" = Hy, © -+ ® H,, (it is an isomorphism
since H is of finite type), there exists a unique X € Hy, ® -+ ® H,, such that f = evy, where evy
denotes the standard evaluation on X. Since f : F. — k is Hj-linear, we have that X € T.. Hence
f =0.X). O

4.4.3. Maps associated to special 7r-tangles. Fix a finite unimodular ribbon Hopf 7-coalgebra
H = {H,}qer and a right m-integral A = (A, )qer for H. We assume that 4,(6;) # 0 and /11(01_1) #0,
where 0 = {0,}q.c, denotes the twist of H. Recall that, by Theorem 2.14, the family (x € H, +—
Ae(GoXx) € K)yer 1s a m-trace for H, where G = (G4 )qer 1S the spherical m-grouplike element of H.

Let (T, z, g) be a special -link with 2k inputs and 2/ outputs. Denote by ¢ = (a1,81, - , @k, Br)
its system of bottom colors and by ¢’ = (/, 8], , @}, 8)) its system of top colors. Note that ¢ = 0
(resp. ¢/ = 0) is T has no inputs (resp. no outputs). Let n be the number of circle components of
T.

Present the m-tangle (7', z, g) by a m-colored tangle diagram D. Each crossing of the 7-colored
tangle diagram D is decorated with the R-matrix as explained in Step (B) of Section 4.1.4. The
diagram obtained after this step is called the flat diagram of T. By applying the rules of Figures 4.5,
4.6, and 4.7, we transform the flat diagram of 7 so that it has the form depicted in Figure 4.33,

' J
where a;, € Hy,, by, € H /-1, and ¢y) € H,, .

Ficure 4.33.
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Finally, we define the k-linear map %H(T, z,8) : T, — T., where the k-spaces T.» and T, are
as in (4.17), by setting, for any X = >, x; ® --- ® x; € T,

(T, z,9)(X) = Z Ay ehy- () Ay-1(Sa; (x"l)bi)---/la;fl(Sa;(x;)b,l/) ae---®d.

u,v,w,i
LemMma 4.22. The map (T, z, g) is well-defined and only depends on the equivalence class of
the special n-tangle (T, z, g).

Proof. Let D be a n-colored diagram of the special n-tangle (7, z, g). We temporarily denote
vu(T,z,g) by w(D). We have to show that /(D) is well-defined and remains unchanged if a move
of Figure 4.2 is applied to D.

Let F. and F- be the left Hy-modules defined as in (4.16). Recall that F. = H;, ®---® H,,
and Fv = H, ® ---® H_, as k-spaces. Denote by Dy the flat diagram of 7T arising from D. We

define a ﬂ(—linéar map ¢(d r) : F. — Fo by setting
@Dp)(fi® @ fi), X1 ® - @ xp)
= D (e A () Ay 1Sy (B -+ Ay (S (i) filay) - fila).
u,v,w
for any f; eH;l,...,fk eH;k and x; EH(/],...,xl eHa;.
The map ¢(Dy) does not depend on the manner of transforming the flat diagram D so that it

looks like as in Figure 4.33. Indeed, the element a!, (resp. b7) is unique (since it is the result of the
concentration of the algebraic decoration and the cancellation of the curls of an arc) and the scalar
Ay, (ck) does not depend on the way of concentrating the algebraic decoration and cancelling the
curls (see the proof of Theorem 4.3). Therefore the map ¢(Dy) is well-defined.

Let us show that it is H-linear. Let 4 € H. Denote by A.(h) the flat diagram with 2k inputs
and 2k outputs of Figure 4.34. We define analogously the flat diagram A, (k) with 2/ inputs and 2/
outputs.

h(1,ar) h(z,ﬁla;‘ﬁ;‘) T har-1,00) h(zk,ﬁka;l BH
s Bray'By! ax Bray '8!

Ficure 4.34. The flat diagram A, (h)

Let us show that
(4.18) Dy¢Ac(h) = Av(h)Dy,

9

where “=" means that these flat diagrams are related by a finite sequence of moves of Figure 4.5.
Let us recall that the algebraic decoration of Dy comes from:

K K Xom o ®

where @, € m, Ry g = a, ® bg, and Rg1 4 =51 ® d,. Firstly, for any & € H,3, since
aoh(1,0) ® bghapy = RapAap(h)
= 0galPe1 ®1dy,)Auge1 o(h) - Rap by (2.5)
= h(zﬂ)aa ® Soa’l(h(l,aﬁa’l))bﬁ’
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we have that:

h(1apat h.a)
AN = hoo) o NaPa 1M apar) =
hta) hap) Qg bg g b
@ B @ 3 @ B
Secondly, for any i € H,z, since
hap)S g1(cg1) © pph ptap))do
= (idu, @ pp)Agg14p(h) - (S g1 @1y, )(Rg-1 4)
= (idHﬂ ® goﬁ)Aﬁﬁ_laﬁ(h) (g1 ® idHU)(R[;’L) by Lemma 2.4(b)
= (idu, ® ) Dgpiaph) - Ry, ) by 2.7)
= (i, ® PRyl 1 Tpr1ap (@51 @ idigy)Aap()) by (2.5)
= (idu, ® Gp(Ry 5 1,)  TapBap()
= (g1 ®idy, )R5L) - Taphaph) by 2.7)
= (Sp1 ®idy, )(Rg-14) - Taplapg(h) by Lemma 2.4(b)
= Spilcghap) © doh ),
we have that:
ha g hag-1ap)
= hapw geplhogiep) =
ada S ﬁl; (cg1) ada S ﬁl; (cg1)

Finally, for any 4 € Hj, by using (1.5), we have:

h(1,0) ﬂha,al) ﬂ S a(h.0)ho.a 1y
01 ! 03 !
o ! o !
h1.0) haety = hawS e (hoe-1) =

ﬂe(h)la =
(03 !

@ !
e(h)l(,U =

(03 !
a !

and

4. HENNINGS-LIKE INVARIANTS OF GROUP-LINKS AND GROUP-MANIFOLDS

By decomposing the flat diagram D into (algebraized) crossings, cup-likes, and cap-likes and by
using (1.1), (1.2), and the above four equalities, we obtain that D ¢A.(h) = A~ (h)Dy. Hence (4.18)
is proven.

Let us remark that, by using the rules of Figure 4.5, we have the equalities of Figures 4.35(a)
and 4.35(b). Then, by using these equalities and (4.18), we get that, for all f; € H, ,..., fk € H,,

and x; EHQ/I,...,XIEHQ;,

(DDp)h> (/1 QB fi), X1 @@ xp)

> [Tt

u,y,w m=1

(@(DrA(M)(f1 ®
(A (WDyf)(f1 ®

i k
H A1 (Sar (x b)) ]_1[ S 3 g1 a1 Vi1 )
Jj= i=

@ fi), X1 ® - ®xp)
e ® fi), X1 ® - ® X))
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_1 ;
Sa; (90,3;1 (h(2i,ﬁicxi’l,3;1))) ay h(2i_170/i) h(2i—l,a/,-) h(2i,,8ia."ﬁfl)

;

(@)

hej-1.0) QjBa '8

Jg-1
QDﬁ;ﬁl (h(zj,ﬁ}a;-lﬁ;-l)) by Sa;—l (h(2j—1,a}))

bl
®)
Ficure 4.35.
n k / )
= Ay, (cly (d! (S (X))@ 1y 11 IS L (ha o1 a)))-
ZJV nljl 7u(E) E[ﬁ( ) H o S (D61 Byt IS UL (oo )

Now, forany 1 < j </,
. Jg-1 -
/la}fl (Sa/} (Xj)¢ﬂ}—l (h(zj’ﬁ}a}flﬁ}fl))vaa;_l (h(zj—l,(lj)))

= /la/}—l(Sa} (h(gj_l,a}))Sa}(xjﬂpﬁ}fl(h(2j’ﬁ;a}_1ﬂ}_1))b£) by Theorem 1.16(a)

/la}—l(Sa,} (S;;1 ((,Dﬁ}—l(h(2j’ﬁ}a}—lﬁ}—l)))th(zj_l’a}))b\j;) by Lemma 1.1.
Therefore

(D)o (fi®: - ® fi), x1©: - ®xp)

n k l
. L .
2 [ [t gﬂ%-msa;(sa; (-1 (g0 1 X210, DY)

uy,w  m=1 i=1

(h> D) (i ® B fr), X1 @+ ® xp).

Hence ¢(Dy) : F. — F. is Hi-linear.

We denote by ‘¢(Dy) the map from Homy, (F, k) to Homg, (F., k) defined by ‘¢(D)(g) =
g o ¢(Dy). It is well-defined since ¢(D) is Hy-linear. Let 6. : T, — Homp, (F., k) and 6 : T —
Homy, (F+, k) be as in Section 4.4.2. Then, for all X = }; x{ R ® x{ € T, we have

5. o p(Dy) 0 6(X)

= 5. (6e(X) 0 ¢(Dy)
= D e A, (@) Ay Sa (D) - A (S (b)) @@ -~ @
u,y,w,j

(D p)(X).
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Therefore we can conclude that ¢/(D) = 6;1 o'p(D r)ody : T — Te. Hence y(D) is a well-defined
k-linear map.

By the same arguments as in the proof of Theorem 4.3 (using the n-trace (1,(Gy))aer), WE
obtain that the map (D) remains unchanged if a move of Figure 4.2 is applied to D. Hence the
map Yy (T, z,g) is well-defined and only depends on the equivalent class of the special z-tangle
(T,z,8). O

Two special n-tangles (77,7, g’) and (T, z, g) are said to be composable if the number of inputs
of T’ equals the number of outputs of 7" and the system of bottom colors of 7’ equals the system
of upper colors of 7.

Let (77,7, ¢’) and (T, z, g) be two composable special m-tangles and D’ and D be m-colored
diagrams for T’ and T respectively. Since the system of upper colors of T equals the system of
bottom colors of 7', we have that the tangle diagram D’D (obtained by placing D’ on the top
of D and by gluing the corresponding free ends) is m-colored and so represents a unique (up to
equivalence) special 7-tangle, denoted (77,7, g") o (T, z, g) and called composition of (T',7',g")
with (T, z, g), whose underlying tangle is 7’7

Lemwma 4.23. If(T’,7,¢") and (T, z, g) are two composable special n-tangles, then
yu((T',2,8") 0 (T,2,8) = ¥yu(T,2,8) o yu(T", 2, 8.
Proof. It follows directly from the equality depicted in Figure 4.36 obtained by using the rules

of Figures 4.5 and 4.7, where o, € 1,a € Hy,and b € H,-1. O
B _ S (a)b
a @ !
b
Ficure 4.36.

4.4.4. n-surfaces. Let g > 0. We define R, C R x 0x]0, 1[C R3 c §3 to be a rectangle with
g cap-like arcs attached on his to base, as depicted in Figure 4.37(a). We fix a point ¢, inside the

————————————— Rx0x1
A N
Ry *dy z,
————————————— Rx0x0 ——m— e — - - — -
(@) (b)
Ficure 4.37.

rectangle of R,. Let U, be a compact and connected regular neighborhood of R,. We assume that
U, € R x Rx]0, I[. Clearly, U, is a handelbody of genus g. We provide U, with the right-handed
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orientation. Set X, = dU,. It is a closed and connected surface of genus g which we oriented with
the orientation induced by that of U,. Define the point p, € X, to be the intersection of X, with
ge + R1(0,-1,0). Letay,...,aqby,...,b, be the loops on (Z,, p,) defined as in Figure 4.37(b).
Note that

8
(4.19) 71(Zg, Pg) = (lai Il_[ Abilla] ™ b ™).
=1

We also define Ry, Uy, and X to be the image of R,, Uy, and X, respectively under the symmetry
Sym : R? — R? with respect to the plane R? x %, see Figure 4.38.

Ficure 4.38.

We will assume that the arcs attached to the rectangles of R, and R}, are endowed with the
blackboard framing of Figures 4.37(a) and 4.38.

The pointed surface (Z,, p,) is called the standard pointed surface of genus g.

A pointed surface (Z, p) is said to be parameterized if it is endowed with an orientation-
preserving homeomorphism ¢ : (Z,, p,) — (X, p), where g is the genus of X.

By a m-surface, we shall mean a pointed, closed, connected, and oriented surface (Z, p) en-
dowed with a homomorphism g : (X, p) — n. A m-surface (Z, p, g) is said to be parameterized
if the pointed surface (X, p) is parameterized.

Two parameterized n-surfaces (%, p, g, ¢) and (X', p’, g’, ¢’) are said to be equivalent if there
exists an orientation-preserving homeomorphism 4 : £ — X’ such that & o ¢ = ¢ (note that this
implies hA(p) = p’) and g’ oh, = g, where h, : 7 (Z, p) = 71(¥’, p’) is the induced homomorphism.

Let (Z, p, g, ¢) be a parameterized n-surface of genus g. Forany 1 <i < g, set

(4.20) aj=g(poa])en and f;i=g(pobi]) em,
where the a;, b; are the loops on the standard surface X, which are defined as in Figure 4.37(b).
The sequence ¢ = (a1,B1, - , a4, By) is called the system of colors of the parameterized n-surface

(Z, p, g, ®). Note that ¢ = 0 if the genus of the surface X is zero.

Remark that the system of colors of (X, p, g, ¢) remains unchanged under equivalence of pa-
rameterized rr-surfaces. Moreover, a family ¢ = (a1,81, - - , @4, Bg), possibly void, of elements of
7 verifying H‘ig:1 [@;, Bi] = 1 leads to a unique morphism g. : 71(Z,, pg) — 7 (given by g.([a;]) = ;
and g.([b;]) = B; for any 1 < i < g) and so determines a parameterized m-surface (Z,, pg, &c, idzg).
Hence, the equivalence class of a parameterized m-surface is entirely determined by its system of
colors.

4.4.5. m-cobordisms. Until the end of this section, we fix an Eilenberg-Mac Lane space X =
K(m, 1) with base point x € X. We assume that X is a CW-space.

By a 3-cobordism, we shall mean a compact, connected, and oriented 3-manifold M whose
boundary has a decomposition OM = (—0-M) U 0, M, where d_M and 0., M are pointed, closed,
connected, oriented, and parameterized surfaces.
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A m-cobordism is a couple (M, f) consisting in a 3-cobordism M and a (continuous) map
f: M — X, sending the base points of M to x € X, considered up to homotopy relative to OM.

Remark that the surfaces 9, M, endowed with f; o (ig,m)« : m1(0:+M, xy) — m(X,x) = 7,
where x. is the base point of d. M, are parameterized z-surfaces.

A m-cobordism with empty boundary is a 7-manifold in the sense of Section 4.2. Indeed, for
any path connected CW-space Y, the set of free homotopy classes of maps from Y to X is in one-
to-one correspondence with the set of conjugacy classes of homomorphisms 71(Y) — 71(X, x) =«
(by [44, TueorEM 8.11]) and so with the set of isomorphic principal 7-bundle over Y (since 7 is
discrete).

Two m-cobordisms (M, f) and (M’, f”) are said to be equivalent if there exists an orientation-
preserving homeomorphism s : M — M’ such that h(0. M) = 0.M’, ¢po.m = h o ¢, (Where
¢, m 1s the parameterizations of the surface 0. M), and f’ o h is homotopic to f relative to IM.

Note that it implies that the parameterized n-surfaces 0. M’ and 0. M are equivalent.

4.4.6. Presentation of r-cobordisms by special 7-tangles. A special n-tangle may be associ-
ated to a m-cobordism (M, f) by the following procedure: let k (resp. /) be the genus of _M (resp.
0+M) and denote by ¢_ : (X, pr) — (0-M, x_) (resp. ¢ : (X}, p;) — (0+M, x,)) the parameteri-
zation of _M (resp. 0, M). Glue the handelbodies U and Ul’ to M along ¢_ : Xy = Uy — 0-M
and ¢, oSym : X — 0, M respectively (see Section 4.4.4). The result of these gluings is a closed,

connected, and oriented 3-manifold M. Present this manifold M by surgery on § 3 along a framed
link L: there exists an orientation-preserving homeomorphism 2 : M — Si. By applying some
isotopy to L so that the handelbodies #(Uy) and h(U 1’ ) lie into S3 \ L, we can assume that

e Llie in the strip R?x]0, 1[C S* and avoid the handelbodies /(Uy) and A(U));

o the top base of rectangle of A(Ry) lies in R x 0 x 0, the k cup-like arcs of h(Ry) lie in the
strip RZx]0, 1[ except their endpoints, and these endpoints are (r,0,0), r = 1...2k;

e the bottom base of rectangle of i(R)) lies in R x 0 X 1, the I cup-like arcs of h(Ry) lie in
the strip RZx]0, 1[ except their endpoints, and these endpoints are (s,0,1), s = 1...2L

Cutting out both rectangles of A(Ry) and A(R;), we get a tangle T with 2k inputs and 2/ outputs.
Choose a point z € R? x [0,1] \ T (with sufficiently big negative second coordinate). Up to
homotopy f relative to dM, we can assume that z is sent to x € X under the map

o

R2 x [0, 1 3\ (L ry I f
0. 11\ T < 3\ h(Up) U h(U}) 2= M L+ x.

Denote by g : m(R2x [0, 11\ T,z) — m1(X, x) = n the homomorphism induced by this map. Then
(T,z,g) is a m-tangle with 2k inputs and 2k outputs. By definition of the surgery along a framed
link, the longitude 7 of any circle component 7 of T is contractible and so are sent to 1 € 7 by g.
Seta; = g([ho¢_oa;])and B; = g([h o ¢p_ o b;]) for 1 <i < k. Then, using (4.19), we have

k k

[ JteiBi1 = £ Jlaibilad ™) = £y =1 en
i=1

i=1

Moreover, by construction, for any 1 < i < k, a; is the color of the (2i — 1) input of 7 and

,Bia/l._lﬁl._l is the color of the (2i)™ input of 7. Set a/;. = g([ho ¢4 0aj]) and ,8;. = g([h o ¢4 0 bj]) for
1 < j <l Likewise Hézl[a;,ﬁ;] =lemand, forany 1 < j </, a;. is the color of the (2j — 1)
output of 7" and B}a}‘.lﬁ;_l is the color of the (27)™ output of T. Therefore (T,z, g) is a special
n-tangle, called associated to the m-cobordism (M, f).

Note that the system of bottom (resp. upper) colors of 7T is equal to the system of colors of the

parameterized n-surface 0_M (resp. 0. M).
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LemMma 4.24. If two m-cobordisms are equivalent then the m-colored tangle diagrams of any of
their associated special n-tangles can be obtained one from the other by a finite sequence of

(a) isotopies (in the class of generic tangle diagrams) which preserve the colors of the verti-
cal segments;

(b) moves of Figure 4.2;

(c) Kirby 1-moves or special Kirby (+1)-moves described in Section 4.2.4;

(d) T-moves depicted in Figure 4.39;

(e) moves of Figure 4.40, where a coupon labelled with ¥/l means a full right/left handed
rotation.

=1

P R T AT el
‘ |1 y
b2 cee e y
~ —_— -
- -
pray'srt e ! pray'srt e !
(a) Near the inputs (b) Near the outputs
Ficure 4.39. -move
LA R T T
./ ./ ./ /)
~ ( /1 ) @ @ @ . f’f
al 73 Y al Y Pk b - ( ol )
prajlrl pray gy prajlrl pray sy
(a) Near the inputs (b) Near the outputs

Ficure 4.40. Full-handed rotation move

Proof. The proof is similar to that of Lemma 4.14. Suppose that (M, f) and (M’, f’) are
equivalent -cobordisms. Gluing (standard) handelbodies to M’ and M leads to closed 3-manifolds
M and M which may be presented by surgery along framed links L’ and L. The closed manifold
M (resp. M) is endowed with a ribbon graph G’ (resp. G) formed by a rectangle with cap-like
framed arcs attached on its top base and a rectangle with cup-like framed arcs attached on its
bottom base. These ribbon graphs come from the glued (standard) handelbodies. Up to applying
some isotopy to L’ (resp. L), we can suppose that G’ (resp. G) lies in S L (resp. S 3\ L).

Since (M’, f") and (M, f) are equivalent, there exists an orientation-preserving homeomor-
phism 4 : M — M’ such that f’ o h is homotopic to f relative to M. The homeomorphism £
extends to an orientation-preserving homeomorphism # : § z =M->M =S z,. As in the proof
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of Lemma 4.14, one has to decompose the homeomorphism # into isotopies, Kirby 1-moves (in
which the strings piercing the disc are not only (segments of) the framed link L but also of the
ribbon graph G), and special Kirby +1-moves, and then to color the diagrams representing these
moves by using the morphism T(S3\ (LUG)) » 1(S3\ G) = n(M) N .

Finally, using [47, LEMMA 3.4], in which a complete list of isotopy moves for ribbon graphs
is given, we get the additional moves (e) and (f). O

Two n-cobordisms (M’, f’) and (M, f) are said to be composable if the parameterized 7-sur-
faces 0_M’ and 0, M are equivalent.

Let (M’, f) and (M, f) be two composable n-cobordisms. Since d_M’ and 9, M are equivalent
parameterized m-surfaces, there exists an orientation-preserving homeomorphism A& : 0. M —
0_M’ such that h o ¢s, pr = ¢o_mr, Where ¢y p and ¢y, y are the parameterizations of the surfaces
0_M’ and 0. M, and f o iy_pp o h is homotopic to f o iy, p. Set M"" = M’ U, M. The maps f and
f’ lead to a map f”' : M"” — X well-defined up to homotopy relative to dM"”. The n-cobordism
(M”, f) is called composition of (M’, ) and (M, f) and is denoted by (M’, f") o (M, f).

LemMma 4.25. Let (M’, f') and (M, f) be two composable n-cobordisms presented by the special
n-tangles (T',¢',7') and (T, z, g) respectively. Then (T',g’,7') and (T, z, g) are composable and
the special n-tangle (T',g’,7") o (T, z, g) presents the m-cobordism (M’, ') o (M, f).

Proof. Since 0_M’ and 0, M are equivalent parameterized n-surfaces, their system of colors
agree and so (T’,¢’,7’) and (T, z, g) are composable. Denote (7", g”,7") = (T’,¢',7') o (T, z, g).
Let D" and D be n-colored tangle diagrams for (7, ¢’,7’) and (T, z, g). By [41, LEmMma 4.4], the
tangle 7'T (whose a diagram is D’ D) determines the manifold M’ M. By construction of g’ from
g and g’, the colors of the vertical segments of D’D obtained by using g’ agree with those of D’
(resp. D) obtained by using g’ (resp. g). We conclude by remarking that the homomorphism g’ is
in fact equals to that induced by f”. m]

4.4.7. 3-dimensional homotopy quantum field theory for 7. Fix a finite type unimodular
ribbon Hopf m-coalgebra H = {H,}.e, and a right m-integral A = (Ay)qer for H. We assume that
A1(01) # 0 and /11(91_1) # 0, where 6 = {6, }qer denotes the twist of H.

Let (M, f) be a (pointed) m-cobordism with boundary M = (—9_-M)L1d, M. Denote by k (resp.
[) the genus of d_M (resp. 9. M) and by c_ = (@1,B1," - , &, Br) (resp. ¢y = (a},B, .}, 5)
the system of colors of the parameterized n-surface d_M (resp. 0. M). Let (T,z, g) be a special
n-tangle with 2k inputs and 2/ outputs which represents the m-cobordism (M, f). Recall that c_
(resp. c4) is the system of bottom (resp. upper) colors of (7, z, g). Denote by n the number of circle
components of 7. We set

(M, f) = 40P 6, P yy(T, 2,8) : Fe, - Fe.,

where L is the framed link formed by the circle components of 7' and ¥ y(7T,z, g) is the map
constructed in §4.4.3.

Lemma 4.26. The map yy(M, f) is well-defined and only depends on the equivalence class of
the n-cobordism (M, f). Moreover, if (M’, ') and (M, f) are two composable n-cobordisms, then
there exists k € k* such that:

va((M', ') o (M, ) = kipg(M, f) o yg(M’, f).

Proof. Let (M, f) be a m-cobordism. Let us show that ¢y y(M, f) is well-defined and only
depends on the equivalence class of the m-cobordism (M, f). Present (M, f) by a special n-tangle
(T,z,g). Let D be a m-colored diagram for (7,z,g). By Lemma 4.22, it suffices to verify that
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J(D) = 2,(6))- D /11(91—1)**@) vu(T,z, g) remains unchanged when a move of type (c), (d),
or (e) described in Lemma 4.24 is applied to D.

The fact that J(D) is invariant when a Kirby 1-move or a special Kirby (+1)-move is applied
to D has been shown in the proof of Theorem 4.12 (these moves are local and their effects are
cancelled by normalization).

Let us show that J(D) remains unchanged by a 7-move near the top-line described in Fig-
ure 4.39(b). Since Hi.:l[a;., /3;.] = 1, the splitting rules described in Lemma 4.15 allows us to
write down the algebraization (near the top-line) by using Ry, and R, ;. Write Ry, = y; ® z, and
R,1 = ¢, ®d,. Since &(S1(y1))z, = 1, = &(dy)c, by Lemmas 1.1(d) and 2.4(a), since the 2/
outputs of D are the endpoints of / cup-like arcs, and by using the rules of Figures 4.5 and 4.7, the
same reasoning as for the proof of (4.18) (applied with A (S 1(y1)) and A~ (d)) gives the equalities
depicted in Figure 4.41. Hence J(D) remains unchanged by a 7-move near the top-line.

;—lg-l P |
1 By B N Bia; By S100a-10)) S10D g g -1-1)
(R

&(S101)) zy

—lpr-1 —1p—1
R R I

Ficure 4.41.

The fact that J(D) remains unchanged by a 7-move near the bottom-line (as described in
Figure 4.40(a)) follows from the invariance of J(D) by a T-move near the top-line, see Figure 4.42.
Note that it is crucial here that the coborded surfaces are connected.

FiGure 4.42.



118 4. HENNINGS-LIKE INVARIANTS OF GROUP-LINKS AND GROUP-MANIFOLDS

Let us verify that J(D) remains unchanged by a full left handed rotation near the top-line (see
F%gure 4.40). Recall that, by (4.8), the ﬂ-color'ed tangle diagrams Kai BB B of
Figure 4.17(a) and Ia/l,,B’la’l’lﬁ;’l,...,a;,ﬁ;a;"ﬁ;" of Figure 4.17(b) are related by

-1
Lot ooy~ MO T g1
Therefore, since an isolated trivial knot with framing 1 which is colored by 1 € & contributes to
A1(6y) (see Figure 4.18) and by using a 7-move near the top-line, we obtain the equalities depicted
in Figure 4.43. Hence J(D) remains unchange when a full left handed rotation is applied to D near
the top-line. The invariance of J(D) under a full right handed rotation near the top-line or a full
left/right handed rotation near the bottom-line can be done similarly.

v s =lor=1 v s =l or=1 v o =1 pr =1

Bia By ay Bie By aj Bia By
, v o1 , v g1 , vl
L I ol BB L I

Ficure 4.43.

Finally, the contravariance and projectivity of ¥y with respect to the composition of -cobor-
disms is a direct consequence of Lemma 4.23 and of the fact that 4;(6;) # 0 and /11(01_1) #0. O

Denote by Cob? the category whose objects are equivalence classes of parameterized 7-sur-
faces and morphisms are equivalence classes of r-cobordisms. Following [48], a homotopy quan-
tum field theory in dimension 2 + 1 with target space the Eilenberg-Mac Lane space K(r, 1) may
be viewed as a projective covariant functor from the category Cob7 to the category Vecty of finite-
dimensional k-spaces.

THEOREM 4.27. The invariant Ty of n-manifolds (constructed in Section 4.2) extends to a homo-
topy quantum field theory in dimension 2 + 1 (for connected surfaces and connected cobordisms)
with target space the Eilenberg-Mac Lane space K(m, 1).

Proof. For any parameterized m-surface X, we set Yg(2) = T, where c is the system of colors
of X. Recall that ¢ remains unchanged under equivalence of the parameterized m-surface X. For
any m-cobordism (M, f), we set

PuM, f) ="YuM, ) : Pu(0-M) = ¥u(0:M),

where ‘Y (M, f) denotes the dual map. By Lemma 4.26, ¥y (M, f) only depends on the equiva-
lence class of the -cobordism (M, f).

Let (%, p, g, ¢) be a parameterized m-surface. Consider the cylinder X X [0, 1] with the product
orientation, where [0, 1] is oriented from left to right. The map g : 71(X, p) — x is induced (in
homotopy) by a map & : ¥ — X such that g(p) = x. Denote the projection X x [0,1] — X by
prs. Then (X x [0, 1], § o pry) is a m-cobordism between (Z, p, g, ¢) and itself which represents the
identity ids of (Z, p, g, #) in the category Cobj. Using Lemma 4.26, there exists k € k™ such that

Py(ids)® = kWh(id2) = k Py(ids).

Up to multiplication by a scalar, Wy(idy) is a projector acting in the vector space ¥p(X). We
denote the image of this projector by Yy (2).
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By Lemma 4.26, for any n-cobordism (M, f), there exists k, k¥’ € k* such that
Yu(M, ) = k¥u(do, m) o Yu(M, f) = k' Yu(M, f) o Yu(ids_m).
Therefore lI’E(M, 18 maps Yy (0_M) into ¥y (0. M). We denote by ¥y(M, f) the restriction
Yu(M, )l : Yu(0-M) — ¥Yy(0+M).

Using Lemma 4.26, one easily verifies that ¥y : Cob% — Vecty define a projective covariant
functor from the category Cob7 to the category Vect.

Finally, since ¥5(0) = -k and by the definitions of the maps ¢ and of the invariant 74, we
have that ¥ (M, f) and so Yy(M, f) are multiplication (in k) by 75(M, f) when the manifold M
is closed. O






CHAPTER 5
Kuperberg-like invariants of group-manifolds

n [21], Kuperberg constructed an invariant of 3-manifolds by presenting them by Heegaard
diagrams. The aim of the present chapter is to generalize this construction to bundles over
3-manifolds.

Given a discrete group m, Kuperberg’s method is generalized by presenting the base space of a
principal m-bundle over a 3-manifold (called 7-manifold) by a Heegaard diagram which is colored
with 7 by using the monodromy of the bundle, and to which is associated some structure constants
of an involutory Hopf n-coalgebra. We show that the Reidemeister-Singer moves colored in some
sense by 7 report the equivalence of m-manifolds, and we verify the invariance under these moves
by using the properties of involutory Hopf m-coalgebras established in Chapter 1.

This obtained invariant is not trivial (we give examples of computation for some Z/2Z-bundles
over lens spaces by using the Hopf Z/2Z-coalgebra described in [49]) and coincide with that of
Kuperberg when 7 = 1.

This chapter is organized as follows. In Section 5.1, we construct an invariant of m-colored
Heegaard diagrams. In Section 5.2, we show that this invariant is in fact an invariant of pointed
m-manifolds. Finally, in Section 5.3, we give an example of an explicit computation of such
invariants.

5.1. Invariants of 7-colored Heegaard diagrams

Throughout this chapter, H = ({H,, 1, m.}, A, €, S) will denote a finite type involutory Hopf
m-coalgebra such that dim H; # 0 in the ground field k of H. Note that H is then semisimple and
cosemisimple (by Corollary 1.30).

5.1.1. Diagrammatic formalism of Hopf group-coalgebras. The structure maps of the Hopf
m-coalgebra H can be represented symbolically as in [21]. The products m, : H, ® H, — H,,
the units 1,, the comultiplication A,z : H,pg — H, ® Hp, the counit & : H; — Kk, and the
antipode S, : Hy, — H,-1 are represented as in Figure 5.1(a). The inputs (incoming arrows) for
the product symbols are read counterclockwise and the outputs arrows (outgoing arrows) for the
comultiplication symbols are read clockwise.

The combinatorics of the diagrams involving such symbolical representations of structure
maps may be thought of as (sum of) products of structure constants. For example, if (e;); is a

basis of H; and 6{’k € k are the structure constants of A; | defined by

ik
Ar(e) = 25,} ej® e,
Tk

then the element C € H represented in Figure 5.1(b) is given by C = 3, 6§’kek. Similarly, if (f});
is a basis of H, and ,ui.‘j € k are the structure constants of m, defined by

ma(fi® ;) = Y pl i
k

121
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N /

Ma lo— - A(r,ﬁ —_— & — S, —

(a) The structure maps

D

C— = Al,l —»Ta= mey

N /

(b) C € H, (©T,:H, =k

Ficure 5.1. Diagrammatic formalism

then the morphism 7, : H, — k represented in Figure 5.1(c) is given by T, (f;) = X ,uil.. Note
that 7, (x) = Tr(r(x)) for any x € H,, where r(x) € Endg(H,) denotes the right multiplication by x
and Tr is the usual trace of k-linear endomorphisms.

In light of the associativity and coassociativity axioms (see Section 1.1), we adopt the abbre-

viations of Figure 5.2.

ma—>_1&—> —>ma,—>:—>=1dH“
é\\"‘ma—>_ —_ My = —_ My —
‘/ / /
—>A1_—>8 —>Aa—>=—>:1dHn
z.
— Aopeay ] = = Dajeay iy — o — Doy, —
N \ \
\\"‘ma = ::\\"\ma,—>Ta,
A
Y Z.
Am ..... an{ = C—>A01 ..... an{ ifall...a/nzl
N N

Ficure 5.2. Diagrammatic abbreviations

LemMma 5.1. T = (Ty)eer is a non-zero two-sided n-integral for H and C is a non-zero two-sided
integral for H| which verify that T1(1,) = &(C) = T{(C) = dim H|. Moreover S(C) = C and
T,10S84=Tgyforalla €n.
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Proof. Recall that H is semisimple and cosemisimple (by Corollary 1.30). Therefore, by
Theorem 1.24 and Corollary 1.27, there exists a two-sided z-integral A = (A4 )qer for H such that
Ae(1y) = 1 for all @ € m with H, # 0. Let A be a left m-integral for H; such that 1;(A) = 1.
By Lemma 1.28(b), we have that T,(x) = Tr(r(x)) = &(A)A,(x) for any x € H,. Therefore
T = (Ty)qer 1s a multiple of A = (44)eer and so is a two-sided z-integral for H, which is non-zero
since H; is semisimple and so &(A) # 0 (by [45, THEoREM 5.1.8]). Likewise C = A;(11) A = A
(by Lemma 1.28(b) applied to the Hopf algebra H}) and so C is a non-zero left integral for H.
Moreover C is a right integral for H; (since H; is semisimple and so its integrals are two-sided).

Since A1(11) = A;(A) = 1 and by Lemma 1.28(b), we have that T,(C) = T1(1;) = ¢(C) =
&(A) = Tr(idy, ) = dim H;.

Since H is cosemisimple, the distinguished m-grouplike element of H is trivial (by Corol-
lary 1.27). Therefore Theorem 1.16(c) gives that 7,-1 o S, = T, for all @ € &. Finally, S1(C) is a
left integral for H; and so there exists k € k such that S {(C) = kC. Then k&(C) = &(S1(C)) = &(C)
by Lemma 1.1(d). Therefore k = 1 (since &(C) = dim H; # 0) and so S ;(C) = C. m|

LEmMA 5.2. The tensors represented by the two last diagrams of Figure 5.2 are cyclically sym-
metric.

Proof. Let a € n. Since (Tg)gex is a right n-integral for H (by Lemma 5.1) and the Hopf
algebra H; is semisimple and so unimodular, Theorem 1.16(a) gives that

To(xy) = To(S 418 oy — &) x) = To(yx)

for all x,y € H,. Therefore T,(x1x - x,) = To(x2 - - - x,x1) for all xy,...,x, € H,.

Since H is cosemisimple and so its distinguished m-grouplike element is trivial (by Corol-
lary 1.27) and C is a left integral for H; (by Lemma 5.1), Corollary 1.18 gives that C(; )®C 3 o-1y =
S¢18a(Ca)la ® C o1y = C.a) ® Cq o1 for all @ € m. Therefore, for all @y, ..., a, € 7 such
that ay - - -, = 1, we obtain

Caan®  ®Ch-1,0,.) ®Cinay = (Ciiozt)tan ® - ®(Cy oot in-1,0,-1) ® C2,0,)
= (Coa:ta) ® @ (Cppp-1)mn-1,0,1) ® Cllan)
Coan® - ®Cha, ) ® Ciiay)-

5.1.2. Colored Heegaard diagrams. By a Heegaard diagram, we shall mean a triple D =
(S,u,l) where S is a closed, connected, and oriented surface of genus g > 1 and u = {uy, ..., ug}
and [ = {ly,...,l,} are two systems of pairwise disjoint closed curves on § such that the comple-
ment to Uiy (resp. U;l;) is connected. Note that if a sphere with g handles is cut along g disjoint
circles that do not split it, then a sphere from which 2g disks have been deleted is obtained (since
the removal of one disk decreases the Euler characteristic by 1 and cutting along a circle does not
change the Euler characteristic).

The circles uy (resp. [;) are called the upper (resp. lower) circles of the diagram. By general
position we can (and we always do) assume that u and [ are transverse. Note that u N [ is then
a finite set. The Heegaard diagram D is said to be oriented if all its lower and upper circles are
oriented.

Let D = (S,u,l) be an oriented Heegaard diagram. Denote by g the genus of §. Fix an
alphabet X = {x1,...,x,} in g letters. For any 1 <i < g, travelling along the lower circle /; gives a
word w;(x1, ..., Xg) as follows:

e Start with the empty word w; = 0;
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e Make a round trip along /; following its orientation. Each time /; encounters an upper
circle uy at some crossing ¢ € [; N uy (for some 1 < k < g), replace w; by w;x; where:

+1 if (d.l;, d.uy) is an oriented basis for 7.5,
V=
—1 otherwise;

e After a complete turn along /;, one gets w ;.

Note that the word w; is well-defined up to conjugacy by some word in the letters xi, ..., xg (this
is due to the indeterminacy in the choice of the starting point on ;).

We say that the Heegaard diagram D is m-colored if each upper circle uy is provided with an
element a; € & such that wi(ay,...,a,) = 1 € rforall 1 <i < g. The system a = (a1, ...,ag) is
called the color of D.

Two m-colored Heegaard diagrams are said to be equivalent if one can be obtained from the
other by a finite sequence of the following moves (or their inverse):

TypE I: HOMEOMORPHISM OF THE SURFACE. By using an orientation-preserving homeomor-
phism of a (closed, connected, and oriented) surface S to a (closed, connected, and ori-
ented) surface S’, the upper (resp. lower) circles on S are carried to the upper (resp.
lower) circles on S’. The colors of the upper circles remain unchanged.

TyprE II: ORIENTATION REVERSAL. The orientation of an upper or lower circle is changed

to its opposite. For an upper circle u;, its color «; is changed to its inverse al._l.

TypE III: 1s0TOPY OF THE DIAGRAM. We isotop the lower circles of the diagram relative
to the upper circles. If this isotopy is in general position, it reduces to a sequence of
two-point moves shown in Figure 5.3. The colors of the upper circles remain unchanged.

U \—/ (097 Uf (073

<«

Y ;

Ficure 5.3. Two-point move

Typre IV: sTaBILIZATION. We remove a disk from S which is disjoint from all upper and
lower circles and replace it by a punctured torus with one upper and one lower (oriented)
circles. One of them corresponds to the standard meridian and the other to the standard
longitude of the added torus, see Figure 5.4. The added upper circle is colored with

1en.
— ()

Ficure 5.4. Stabilization
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TyPE V: SLIDING A CIRCLE PAST ANOTHER. Let C; and C, be two circles of a m-colored
Heegaard diagram, both upper or both lower and let b be a band on S which con-
nects C; to Cp (that is, b : I X I — § is an embedding of [0, 1] x [0, 1] for which
b(IxI)NnC; = b(ixI),i=1,2)but does not cross any other circle. The circle C; is
replaced by

C| = Ci#,Cy = CLUCLUb(I x 0l \ b(OI X I).

The circle C; is replaced by a copy C} of itself which is slightly isotoped such that it
has no point in common with C’. The new circle C| (resp. C}) inherits of the orientation
induced by C| (resp. C3), see Figure 5.5.

Cl C2 Ci
—
b
Ficure 5.5. Circle slide

If the two circles are both lower, then the colors of the upper circle remain un-
changed. Suppose that the two circles are both upper, say C; = u; and C; = u; with
colors a; and a; respectively. Up to first applying a move of type II to u; and/or u;, we can
assume that (d,b(-, %), dpu;) is a negatively-oriented basis for 7,S and (d,;b(-, %), dquj) is
a positively-oriented basis for T,S, where p = b(0, %) € u; and g = b(1, %) € u;. Then
the color of u; = C{ is a; and the color of u} =Cjis a/i_la/ - The colors of the other upper
circles remain unchanged.

One can remark that all these moves transform a m-colored Heegaard diagram into another
n-colored Heegaard diagram. Indeed, for a move of type I, each word w; is replaced by a conjugate
of itself. For a move of type II applied to an upper circle u, each word w;(xy, -+, xg, -+, X,) is
replaced by a conjugate of w;(xy, -, x;l, -++, Xg). For a move of type II applied to a lower circle
l;, the word w; is replaced by a conjugate of wi_l. For a move of type III between u; and /;, the word
Uor x,:lxk has been inserted. For a move
of type IV, the new word wg,1(x1, -, Xg11) 18 x;l |- For a move of type V applied to two lower
circles, say /; slides past /;, the word w; is replaced by a conjugate of itself from which a conjugate
of w*! has been inserted and the other words remain unchanged (up to conjugation). For a move
of type V applied to two upper circles, say u; slides past u;, each word wi(xy, -+, xj, -+, Xg) is
replaced by a conjugate of wy(xy, -+, x;xj,- -+, Xx,) (see the assumptions on the orientation of the
circles u; and u;). Therefore the conditions wi(ay,...,a,) = 1 are still verified when performing
one of these moves.

wi is replaced by a conjugate of itself from which x;x,

5.1.3. Invariants of m-colored Heegaard diagrams. Let D = (S, u, /) be a n-colored Hee-
gaard diagram with color & = (a1, ..., @,).

(A) To each upper circle u;, we associate the tensor of Figure 5.6(a), where cy, ..., ¢, are the
crossings between u; and [/ which appear in this order when making a round trip along uy
following its orientation. Since this tensor is cyclically symmetric (see Lemma 5.2), this
assignment does not depend on the choice of the starting point on uy.
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c C1
'~ As A

M, L B

cn N o
(a) Tensor associated to uy (b) Tensor associated to /;

FIGURE 5.6.

(B) To each lower circle /;, we associate the tensor of Figure 5.6(b), where cy, ..., ¢, are the
crossings between /; and u which appear in this order when making a round trip along
l; following its orientation, and the 3; € m are defined as follows: if /; intersects u; at
cj, then B; = af with v = +1 if (dcjl,-,dcjuk) is an oriented basis for TS andv = -1
otherwise. Note that 8y ---f,, = wi(a1,...,a,) = 1 and so the tensor associated to /; is
well defined. Since this tensor is cyclically symmetric (see Lemma 5.2), this assignment
does not depend on the choice of the starting point on /;.

(C) Let c be a crossing point between an upper and a lower circle, say between u; and /;. Let
v be as in Step (B). If v = +1, we contract the tensors assigned to /; and u; as follows:

A AN

Ao —= € ¢ Mey 7 A o -, M
N / N v
If v = —1, we contract the tensors assigned to /; and u; as follows:
A ™~ / N

A...’alzl’... —C I _> M, N> A-",a/]:l,"’ —_— S(I_l f—»mak

N 7/ N O

(D) After all contractions, one gets Z(D) € k.

We set
Ky (D) = (dim H,)8 Z(D).

THEOREM 5.3. Let H = {H,}oen be a finite type involutory Hopf m-coalgebra with dim Hy # 0 in
the ground field k of H. Then Ky is an invariant of n-colored Heegaard diagrams.

Proof. We have to verify that Ky is invariant under the moves of type I-V. Clearly, Kp is
invariant under a move of type L.

Consider a move of type II applied to an upper u; circle with color ay, that is, u is replaced by
u, = uy. with the opposite orientation and with color a;l. Let cy,...,c, are the crossings between
u and the lower circles which appear in this order following the orientation. Then the tensor
associated to uy (resp. uy) is:

C1 Cn

s'\mak (resp. \m - )
Cn"/' C1l / )
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Recall that the contraction rule applied to a crossing point ¢ € uy N [; is:

c
/ N
A""“Z"" —_ qj _> My,
\ cn?”
where v = +1 and ¢ = idH(yk if (d.l;,d.uy) is a positively-oriented basis of 7,§ and v = -1

and ¢ = § ! otherwise. Then the contraction rule applied to the corresponding crossing point
c eu Nliis:

Cn
---,(ZZ,--- —_ Qﬁ —;»ma—l
N o

where ¢ = idHMl if (d.;, dcu,;) is a positively-oriented basis of 7),S and ¢ = S, otherwise. Now

k
Y =¢oS,, since the antipode is involutory. Therefore the invariance follows from the equality:

Cn—>S(,k> ~ Cl:\k

L
el

Cl —> Sak

which comes from the anti-multiplicativity of the antipode (see Lemma 1.1(a)) and the fact that
T,10S8S,=T,forany @ € 7 (by Lemma 5.1).
For a move of type II applied to a lower circle, the invariance follows from the equality:

Cm Sl — (&)
A Ak
Aﬁl;"ﬁm = Aﬁ’fnl’...,ﬁlfl H l

C \Sﬁ;f —Cm

which comes from the anti-comultiplicativity of the antipode (see Lemma 1.1(c)) and the fact that
S$1(C) =C (by Lemma 5.1).

Consider now a two-point move between an upper circle with color @ and a lower circle. Up
to first applying a move of type II, we can consider that these two circles are oriented so that the
invariance is a consequence of the following equality:

.

A-~-,a,a‘],~-~ Sa_l\.:\sma = Al/(_’g la_:.:\:ma = A. . / {\\ma

which comes from (1.5).

A move of type IV contributes C — T = dim H; (see Lemma 5.1) to Z(D), which is cancelled
by normalization.

Consider a move of type V applied to two upper circles, say u; (with color ;) slides past u;
(with color @;). We assume, as a representative case, that both circles have three crossings with
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the lower circles:

8

Using the anti-multiplicativity of the antipode (which allows us to consider only the positively-
oriented case of the contraction rule), we have that the following factor of Z(D):

a e

N N
b — my, f— M,
c g/
is replaced by:
a
b
U

c— My

o — Aawa’la-/
@@

f— A

g— A 1

;,a: a;
i —_— -
m(l[. l(l_/'

~1
@7 aj

By using the multiplicativity of the comultiplication and the fact that (7)qe, is a left m-integral
for H (see Lemma 5.1), we obtain that these two factors are equal, see Figure 5.7.

a a
SN " U
¢ — Ma; ¢ — Mai— Ta[
/ .
e Aa[,a;la_/ = f \ A
— Mgy, —> Pl D
f_> Aai,a;la_,' J @i, @ \Ta"a-
g JE—— A o1 g i J
G — o m
(Zl. a/j
a
¢ b \ “~ ‘N
= = b —my, My .
f— Mgy, _'Taj c — My, —»Tai @; f a;
C
g 1o, g
Ficure 5.7.

Finally, suppose that a lower circle slides past another lower circle. We assume, as a represen-
tative case, that these two circles have both three crossings with the upper circles. Let ay, as, a3
(resp. B1,52,83) be the colors of the upper circles intersected (following the orientation) by the



5.1. Invariants of 7-colored Heegaard diagrams 129

/
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\_/m& — Ag, .85 mg, —

mp; —

/ / /

A —_— - —_
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P =
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Ficure 5.8.

first (resp. second) lower circle considered. Then the invariance follows from the equality of Fig-
ure 5.8 which comes from the multiplicativity of the comultiplication and the fact that C is a right
integral for H; (see Lemma 5.1). This completes the proof of the theorem. O

Recall that if 7 is abelian, then a Hopf n-coalgebra is always crossed (e.g., by setting ¢ = id).

LemMmA 5.4. Ifthe Hopf m-coalgebra H = {Hy}oer is crossed (for example when n is abelian), then
Ky(D) does not depend on the conjugacy class of the color of the n-colored Heegaard diagram D.

Proof. Suppose that H = {Hg}aer admits a crossing ¢ = {¢g : Ho — Hgyp-1}aper Let
D = (S, u,l) be a n-colored Heegaard diagram of genus g with color & = (ay,...,a,). Fix g € m.
Then Baf~! = Bayf',..., /Bagﬁ‘l) is another color of (S, u,/). We denote this new m-colored
Heegaard diagram by D?. We have to verify that Ky(D?) = Ky(D).

Let 1 < k,i < g and denote by cy,...,c, (resp. c’l, ...,Cy,) the crossings between u; and /
(resp. /; and u) which appear in this order when making a round trip along u; (resp. /;) following
its orientation. Recall that, for D (resp. D?), the tensor of Figure 5.9(a) (resp. Figure 5.9(b)) is
associated to the upper circle uy, and the tensor of Figure 5.9(c) (resp. Figure 5.9(d)) is associated
to the lower circle [; where, if [; intersects some u, at d;, §; = a,, with v = 1 if (ddjl,-, ddjun) is an
oriented basis for TyS and v = —1 otherwise.

By Lemma 2.12, since H is cosemisimple, the morphism ¢ : 7 — k* of Corollary 2.2 is
trivial and so ¢g(C) = C (by Lemma 2.3(a)) and Tgop-19p = Ta for all @ € & (by Corollary 2.2).
Therefore, using (2.1) and (2.2), we have the equalities of Figure 5.10.

Hence, since g = g1 = idp, and Sge-195 = ¢S, for all @ € 7 by (2.4) and Lemma 2.1,
contracting the tensors associated to D? and D by using rules of Step (C) leads to the same scalar
Z(DP) = Z(D). Finally Ky(D?) = (dim H,)$Z(D?) = (dim H,)$Z(D) = Ky(D). o
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5.2. Invariants of pointed 7-manifolds

In this section, we show that the invariant of 7-colored Heegaard diagrams constructed in Sec-
tion 5.1 allows us to define an invariant Ky of pointed m-manifolds. When the Hopf m-coalgebra
H = {H,}.ecx 1S crossed, Ky is an invariant of r-manifolds.

5.2.1. Heegaard diagram of pointed m-manifolds. We first recall that a Heegaard splitting
of genus g of a closed, connected, and oriented 3-manifold M is an ordered pair (M,, M;) of
submanifolds of M, both homeomorphic to a handelbody of genus g, such that M = M, U M,
and M, " M; = OM,, = OM,. The handelbody M,, (resp. M) is called upper (resp. lower) and the
surface M, = OM; is called a Heegaard surface (of genus g) for M.

It is well known that every closed, connected, and oriented 3-manifold M has a Heegaard
splitting (e.g., by taking a closed regular neighborhood of the one-dimensional skeleton of a trian-
gulation of M and the closure of its complement).

Let (M,, M;) be a Heegaard splitting of genus g of a closed, connected, and oriented 3-man-
ifold M. Since M, is homeomorphic to a handelbody of genus g, there exists a finite collection
{D1,---,Dg} of pairwise disjoint properly embedded 2-disks in M, which cut M, into a 3-ball.
Likewise, there exists a finite collection {D/,-- -, D} of pairwise disjoint properly embedded 2-
disks in M; which cut M; into a 3-ball. For 1 <i < g, set u; = dD; and [; = dD’. We can (and we
do) suppose that these circles meet transversely. Denote the Heegaard surface M, N M; by S. It
is oriented as follows: for any point p € S, a basis (eq, e) of T,,S is positive if, when completing
(e1, ep) with a vector e3 pointing from M, to M,,, we obtain a positively-oriented a basis (e, ez, €3)
of T,M. Then D = (S,u = {uy,--- ,ug},l = {l1,---,l;}) is a Heegaard diagram in the sense of
Section 5.1.2. Such a Heegaard diagram is called a Heegaard diagram (of genus g) of M.

5.2.2. Kuperberg-like invariants of pointed 7-manifolds. Let (M, x, f) be a pointed 7-man-
ifold. Let D = (S, u, [) be a Heegaard diagram of genus g of M. Recall that S = dM,, = M, where
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(M,,, M;) is a Heegaard splitting of M. We arbitrarily orient the upper and lower circles so that D
is oriented. We can (and we do) assume that x € S \ {u, [}.
Since S \ u is homeomorphic to a sphere from which 2g disks have been deleted, there exists
g pairwise disjoint (except in x) loops 1, ..., on (S, x) such that, forany 1 <i < g,
e v; intersects the upper circle u; in exactly one point p; in such a way that (d),y;, dp,u;) is
a positively-oriented basis of 7),,S;
e ; does not intersect any other upper circle.

Then the homotopy classes a; = [y;] € 71(M, x) do not depend on the choice of the loops y;
verifying the above conditions (since each y; is homotopic to a unique leaf of the x-based g-leafed
rose formed by the core of the handelbody M,). Moreover, by the Seifert-Van Kampen Theorem,
we have the presentation

mi(M, x) =(ay,...,ag|wilay, -+ ,ag),...,welay, -+ ,ag)),
where the words w;(x1, - - , x,) are defined as in Section 5.1.2.
Forany 1 <i < g, set@; = f(a;) € n. Then a = (a1, -+ ,a,) is a color of the oriented

Heegaard diagram D. We say that the (oriented) Heegaard diagram D of M is colored by f.
Finally, we set
Ku(M, x, ) = Ku(D),
where Kp is the invariant of 7-colored Heegaard diagrams of Theorem 5.3.

THEOREM 5.5. Let H = {Hy}oer be a finite type involutory Hopf m-coalgebra with dim Hy # 0 in
the ground field k of H. Then Ky is an invariant of pointed n-manifolds.

When 7 = 1, one recovers the Kuperberg invariant [21] of 3-manifolds.
We show in Section 5.3 that the invariant Ky is not trivial.

Proof. Let (M, x, f) and (M’, x’, f’) be two equivalent pointed 7-manifolds. Let D (resp. D’)
be an oriented Heegaard diagrams of M (resp. M) colored by f (resp. f’). By virtue of Theo-
rem 5.3, it suffices to prove that D and D’ are equivalent n-colored Heegaard diagrams, i.e., D
can be obtained from D’ by a finite sequence of moves of type I-V (or their inverses) described in
Section 5.1.2.

Since (M, x, f) and (M’, x’, f”) are equivalent pointed 7-manifolds, there exists an orientation-
preserving homeomorphism 4 : M — M’ with f(x) = x’ and f = f’ o h,, where h, : n1;(M, x) —
m(M’, x") is the homomorphism induced by 4. By the Reidemeister-Singer Theorem (see [43,
TueoreM 8] or [21, THEOREM 4.1]), there exist:

e a finite sequence My = M, My, ..., M,_1, M, = M’ of closed, connected, and oriented
3-manifolds;

e a Heegaard diagram Dy = Sk, uf = {u’l‘, ‘e ,u’gk},l" = {, ... ,lgk}) of genus g, of M
for each 0 < k < n, with Dy = D and D,, = D’;

e a finite sequence of orientation-preserving homeomorphisms iy : My — My, ..., h, :
M,y — My,

such that 4 = h, o --- o hy and, for any 1 < k < n, the diagrams D;_; and Dy are related by a move
(or its inverse) of the following type:

TYPE A: HOMEOMORPHISM. S = hi(Si1), uf = (¥, and ¥ = h (151,
TypE B: 1s0T0PY. S} = Mi(Si1), ub = hp(u¥™1), and I is isotopic to hi (51 relative to uf;
TyPE C: STABILIZATION. Sj = hy(S - )H#T2, uf = i ¥"1) U{Cy}, and IF = (1) U {Ca),

where 72 is a torus and {C, C»} is the set formed by the standard meridian and longitude
of T%;
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TyPE D: LOWER CIRCLE SLIDE. S; = hi(Si_1), u* = hp(u* 1), and ¥ is obtained from
I (51 by sliding one circle of hp(IF1 past another circle of Iy (151, avoiding the other
upper and lower circles of /(S j—1);

TyrE E: UPPER CIRCLE SLIDE. Si = Ii(Syi_1), I = he(IF1), and u¥ is obtained from A (X~ 1)
by sliding one circle of A (u*~") past another circle of /;(I*"!), avoiding the other upper
and lower circles of /(S _1).

Set xo = x € My and define x; = hy o ---hy(x) € My for any 1 < k < n. Note that
X, = x’ since h(x) = x’. Without loss of generality, we can assume that x; € Sy \ {u, IF}. Set
fo=f:m(Mo, xo) = mand define fi = fo(hgo---o0h)' : m(My, x¢) — 7 for any 1 <k <n.
Since f = h, o f’, we have that f,, = f’.

We arbitrarily orient the upper circles uf‘ and the lower circles lf.‘ (so that each Heegaard di-
agram Dy is oriented) and denote by o = (a'f, e ,algk) the coloration of the diagram Dj by the
homomorphism f;.

Up to applying some moves of type II or to well-choosing the orientation of the added circles
in a stabilization move (or its inverse), we can assume that the orientation of the upper and lower
circles are transported by the homeomorphisms /4;. Note that if we change the orientation of an
upper circle uf.‘ to its inverse, then the color af.‘ =f ([yf.‘]) is replaced by f ([(yi.‘)‘l]) = (af)‘l, where
yf.‘ is a loop on (S, xx) which crosses (in a positively-oriented way) the upper circle uf in exactly
one point and does not intersect any other upper circle.

We have to verify that, for any 1 < k < n, the colors of the diagrams Dy_; and Dy are related
as described in the moves of type I-V of Section 5.1.2. Fix 1 < k < n.

Suppose that Dy is obtained from Dj_; by a move of type A. Let 1 <i < gx = gx—1 and yi.‘_l be
a loop on (S4—1, xx—1) which crosses (in a positively-oriented way) the upper circle ui.‘_l in exactly
one point and does not intersect any other upper circle of Dy_;. Then yf.‘ = hk(yf.‘_l) is a loop on
(S, xx) which crosses (in a positively-oriented way) the upper circle hk(uf_l) = uf.‘ in exactly one
point and does not intersect any other upper circle of Dy. Therefore

@ = fillyi D) = il OD = fio )y D = ity ' D = a7

Hence the m-colored Heegaard diagrams Dy_; and Dy are related by a move of type L.

Suppose that Dy is obtained from D;_; by a move of type B. Then the colors of the upper
circles uf.‘ and uf.‘_l agree (by the same argument as above, since Sy = 7 (S;—;) and uk = ().
Therefore the m-colored Heegaard diagrams Dy, is obtained from the m-colored Heegaard diagram
Dy, by a finite sequence of move of type I and III (by decomposing the isotopy into two-point
moves, see §5.1.2).

Suppose that Dy is obtained from Dy_; by a move of type C. Since ut = N u{Cy),
the color of the upper circle uf.‘ = hk(uf‘l) agrees with those of the upper circle uf.“l for any
1 <i< g1 = gr— 1. Let £ be a path connecting the point x; to the circle C, which does not
intersect any upper circle of Dy. Then the loop £~!C, crosses C; in exactly one point and does
not intersect any other upper circle of Dy. Set v = +1 if £-1C, crosses C; in a positively-oriented
way and v = —1 otherwise. Therefore

ok = Rt ey = (e oy

Now the circle C, is contractible in M. Thus [y‘ICQy] =1 € m1(My, x;) and so agk =1e€en
Hence the n-colored Heegaard diagram Dy, is obtained from the m-colored Heegaard diagram Dy
by a move of type I and then a move of type IV.

Suppose that Dy is obtained from Dy_; by a move of type D. Since S = hi(S¢-1) and uk =

hi(uk=1), the colors of the upper circles of Dy and Dj_; agree. Then the m-colored Heegaard
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Ficure 5.11.

diagram Dy, is obtained from the m-colored Heegaard diagram D;_; by a move of type I and then a
move of type V.

Finally, suppose that Dy is obtained from D;_; by a move of type E, i.e., suppose that u* is
obtained from A (uF1) by sliding a circle hk(uf_l) past another circle hk(u’j‘._l). Letb : I X1 —
Sk be a band which connects /7 (u¥"") to hk(u’;—l) (that is, b(I X I) N he(ut™") = b(0 X I) and
b(IxI)n hk(u’j‘._l) = b(1 x I)) but does not intersect any other circle. We can also assume that
x; ¢ b(I X I). Then

uf = he(ud ™ ) = el U il U b X D) \ b(AT X 1)

and u’j‘. is a copy hk(u’j‘.‘l) which is slightly isotoped such that it has no point in common with uf .

Set p = b(0, %) € hk(ui.‘_l) and g = b(1, %) € hk(u’j‘._l). Up to first applying a move of type II

!, we can assume that (dpb(., %), dphk(ui.‘_l)) is a negatively-oriented basis for

to uﬁ.‘_l and/or u’j‘._
T,S and (d,b(-, %), dqhk(ulj‘.‘1 ) is a positively-oriented basis for 7S ;. Then the orientations of uf
induced by hk(u;‘_l) and hk(u’j‘._l) coincide and u;‘ is provided with this orientation. Let yi.‘_l (resp.
y’j‘.‘l) be a loop on (Sj-1, xx—1) which crosses (in a positively-oriented way) the upper circle uf.“l
(resp. u’j‘._l) in exactly one point and does not intersect any other upper circle of D;_; neither the
band b(I x I). Let £; : I — S be a path with £;(0) = x; and €;(1) = p which does not intersect
any upper circle of Dy and such that (d, (1, dphk(uf.“1 )) is a negatively-oriented basis for 7,5 . Let
{ : I — Sy be a path with £,(0) = g and £»(1) = x; which does not intersect any upper circle of
Dy, and such that (d, (5, dqhk(u’]‘.‘l)) is a positively-oriented basis for 7S, see Figure 5.11.

Set yf.‘ = hk(yi.‘_l) (resp. y’j‘. = 0Ob(, %)5 1). Itis aloop on (S, xx) which crosses (in a positively-
oriented way) the upper circle uf‘ (resp. u’}‘.) in exactly one point and does not intersect any other
upper circle of Dy. Therefore we have

o = fillyfD) = il D = fio )y D = fid (' D = a7

and, since y’j‘. is homotopic (in M) to the loop hk(y’j‘.‘l)hk(yf‘l 71,

oA = [l
= il D H™D)
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fio )y D™D
S @D
k=1y-1 k-1
= (o ) ;.
Hence the -colored Heegaard diagram Dy is obtained from the 7-colored Heegaard diagram Dy
by a move of type I and then a move of type V. This completes the proof of the theorem. O

In the next corollary, we verify that if the Hopf n-coalgebra H = {H,}.e, is crossed, then Ky
is an invariant of 7-manifolds. Let (M, &) be a 7-manifold. Choose a point ¥ in the total space M
of ¢. Denote by x the projection of ¥ under the covering M — M and by f : 71(M, x) — 7 the
monodromy of ¢ at X. This leads a pointed m-manifold (M, x, ). When H admits a crossing, we
set Ky(M, &) = Ky(M, x, f).

COROLLARY 5.6. Let H = {H,}qer be a finite type involutory Hopf n-coalgebra with dim H; # 0
in the ground field k of H. If H is crossed (for example when rt is abelian), then Ky is an invariant
of m-manifolds.

Proof. We have to verify that the scalar Ky (M, x, f) does not depend on the choice of the base
point % in the total space M of the r-manifold (M, &). Let &’ be another point in M. Denote by x’ the
projection of ¥ under the covering M — M and by f” : 7{(M, x') — n the monodromy of & at ¥’.
Since M is connected, there exists a pathy : [0, 1] — M connecting x = y(0) to x" = y(1). Pushing
x to x” along vy inside a tubular neighborhood of Im(y) in M yields an orientation-preserving self-
homeomorphism % of M such that the induced homomorphism 4, : 71(M, x) — n1(M, x') is given
by h.([€]) = [y£y™'] for any loop ¢ in (M, x). Since n is a discrete group, the path y : [0, 1] — M
uniquely lifts to a path ¥ : [0, 1] — M such that (0) = %. Since ¥ and ¥(1) belong to the same
fiber (over x’), there exists 8 € & such that (1) = 8- ¥’. Using the definition of the monodromy,
we obtain that f = 871 (f o h71)B.

Let D = (S, u,l) be a Heegaard diagram of genus g of M whose upper and lower circles are
arbitrarily oriented. Denote by @ = (ay,- - ,@,) the coloration of D by f. Then the colorations
of the (oriented) Heegaard diagram A(D) = (A(S), h(u), i(])) by f o h;! or f’ are respectively
a=(ay, - ,a) and 8o = (B layB, - - ,ﬁ_lag,B). Hence we have that

Ky(M, X', f") = Ku(h(D)g-14p)
= Ky(h(D),) byLemma5.4
= Kgy(D,) by Theorem 5.3
= Ku(M,x, f),
where Dy, (resp. i(D)q, I(D)g-1,5) denotes the r-colored Heegaard diagram D (resp. i(D), h(D))
with color @ (resp. a, 8~ 'ap). O

5.2.3. Basic properties of K. Let (M, x, f) be a pointed m-manifold. Recall that H°? and
H®°P denotes the opposite or coopposite Hopf m-coalgebra to H (see Section 1.1). Denote by —M
the manifold M with the opposite orientation. Then

(51) KH(—M, X, f) = KHcop(M, X, f) = KHop(M, X,f).

Indeed, starting from an oriented Heegaard diagram D = (S, u, [) for M, reversing the orientation
of M resumes to reversing the orientation of the Heegaard surface S, and so the first equality
of (5.1) may be easily obtained by reversing the orientation of the lower circles and the second one
by reversing the orientation of the upper circles.

Let (M1, x1, f1) and (M>, x2, f>) be two pointed m-manifolds. Take closed 3-balls By ¢ M;
and By C M; such that x; € 0By and x, € 0B;. Glue M| \ IntB; and M, \ IntB; along a



5.3. An example 135

homeomorphism & : dB; — 0B, chosen so that i(x;) = x, and that the orientations in M, \ IntB;
and M, \ IntB; induced by those in M|, M, are compatible. This gluing yields a closed, connected,
and oriented 3-manifold M #M,;. Fori = 1 or 2, consider the embeddings j; : M;\IntB; — M; and
ki : M; \ IntB; — M #M; and set x = k;(x]) = ky(x2). By the Van Kampen theorem, since 0B, =
h(0By) is simply-connected, there exists an unique group homomorphism f : 7;(M#M,,x) —» ©
such that f o (k;). = f; o (ji)« (i = 1,2). Consider the pointed m-manifold (M #M>, x, f). Then

(5.2) Ku(M#M>, x, f) = Ku(My, x1, fi) Ku(Ma, x2, f>).

Indeed we can choose a Heegaard diagram for M which is a connected sum of Heegaard diagrams
for M| and M, and such that the colorations of these diagrams by the homomorphisms f, fi, or f>
are compatible with this connected sum.

5.2.4. The invariants 75 and Ky. Let H = {H,},c, be a finite type involutory ribbon Hopf
n-coalgebra such that dim H; # 0 in the ground field k of H and that 4;(6;) # 0 # /11(01_1) for
at least one (and thus all) non-zero right z-integral for H. Note that H is unimodular since it is
semisimple (by Corollary 1.30). The invariants of m-manifolds 745 (see Theorem 4.12) and Ky
(see Corollary 5.6) are then well defined.

Considering [47, THEOREM 4.1.1] and [2, THEOREM 1] which relate the Turaev-Viro invariant
of 3-manifolds with respectively that of Reshetikhin-Turaev [40, 47] and that of Kuperberg [21]
and in view of Theorem 4.18, it seems reasonable to conjecture that, up to another choice of the
normalization for 7,

(5.3) KM, &) = ta(M, &) Ta(=M, &)

for any m-manifold (M, &), where —M denotes the manifold M with the opposite orientation. Note
that the ribbon structure is superfluous data for the computation of the left hand side of (5.3).

5.3. An example

Let H = {Hy, H,} be the finite type involutory Hopf Z/2Z-coalgebra over C of Example 2.18.
Let us consider the lens spaces L(2n, 1) for n > 1. Each of these spaces has two representations fV
and fn1 of their fundamental group n;(L(2n, 1)) = Z/2nZ to Z/2Z, given by f,?(l (mod 2n7)) =
0 (mod 27) and fnl(l (mod 2nZ)) = 1 (mod 27).

Let us recall (see, e.g., [36]) that a Heegaard diagram {u,/;} of genus 1 of the lens space
L(2n,1) is given, on the torus T = R?/Z? by uy = R(0,1) + Z*> and [; = R(1l, 3) + Z*. See
Figure 5.12 for the case n = 2.

O, 1) 1,1)

— - (&

Iy

0,0) (1,0) u

Ficure 5.12. Heegaard diagram for L(4, 1)

Fix k = 0or 1 and set @ = f,’f(l (mod 2nZ)) € Z/2Z. Denote by D, the m-colored Hee-
gaard diagram obtained from (T, {u;,/;}) by providing the circle u#; with the color @. Then
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Ky(L(2n,1), f,’f) = dim Hy Kyg(D,) = 4Ky(D,), where Kgy(D,) € C equals the tensor depicted
in Figure 5.13(a).

A T A T
CY, ’ a H B m(l - a’ ’ a H 5 m(l -
2n times 8 times
(@) Ku(Dy) (b) Fo : Hy > H,
Ficure 5.13.

Let F, : Hy — H; be the map defined in Figure 5.13(b). We verify in Appendix B that
Fo(x) = e(x) 1, for all x € H,. Then, using the (co)-associativity of a (co)-multiplication, we get
the equalities of Figure 5.14. Therefore Ky (L(2(n+4), 1), fr]f+4) = Ky(L(2n,1), f,f) forany n > 1.

Aa,...,a i Mgy
/\ 8 times
Aa,...,a fmy = M, ..« P T mg
2(n+4) times 2n times

/‘9 la\
= Aa,...,a Tome = Da,.a P i mg
2n times 2n times
Ficure 5.14.

Hence, by using the computations performed in Appendix B, we obtain the table of Fig-
ure 5.15. This example shows that the invariant Ky constructed in the previous section is not

trivial.

n=0mod4 |n=1mod4 | n=2mod4 | n=3mod4
Ky(L(2n, 1), f9) 64 64 64 64
Ky(L2n, 1), f1 64 32 0 32

Ficure 5.15.



Appendix A

In this appendix, we give some results concerning the Hopf (%Z) /Z-coalgebra A = {Aq},¢ 12z

of Example 2.19. They are used for topological purpose in Section 4.13.
Fix N > 1land r > 2and set ¢t = exp(%) and g = 2= exp(%). Recall (see Example 2.19) that,

. i . 1 .
forany a € (#Z)/ Z, A, is the associative algebra over C with generators a¥, e, and f, subject to
the following relations:

1 1
ave =gV ea

r

1 1 22
v fav  ef - fe==15

q—q
fr =0 a4r — t—4ra.

=
=l
Q
=l
~
I
S

3N

The family A = {A,}eer 1S @ Hopf m-coalgebra by setting:
Agplav) =av @av  Agple)=e®@a'+a®e Agp(f)=f®a' +aof
ela)=1 ele) =0 ef)=0
1 1
Solav) =a v See)=~q"e Se() =4 f.
When A = {Aa}ae( 12y/z is endowed with the trivial crossing (that is, @gls, = ida,), it is a ribbon
Hopf (%Z) /Z-coalgebra with R-matrix

r=1 -1
1 (g—q )" et =p)ira-n)-n n

[n]!

Rop =~ dP@e'a

r n=0 k,leZ/4rZ

and twist 6, = a2 _1)u;1, where the u, are the Drinfeld elements of A.
Note that {amekfl |0<k,l<r, me %Z, 0 < m < 4r} is a basis for A,.

LemMmA A.1. Forany a € (%Z)/Z, set 1, = a?r=Der=1 =1 \where the bar over the expression
denotes the characteristic function of this element of the algebra Aq. Then (Ag),¢ 12)/z is a right

(%Z)/Z—integral for A.

Proof. We first recall that, if x, y are elements of an associative C-algebra such that yx = w xy
for some w € C\ {1}, then, forany n > 1,

n n
~1
Al @y =) [Z] kK where [, = W? and
k=0 L w W

nl [n],,!
k|, [klw'ln =kl

FixO<k,I<randme€ %Z with 0 < m < 4r. For any «, 8 € 7, using (1.4) and (A.1), we have

k k
Aaﬁ(ek) =(e®a ' +a®e) = Z [lz]qz (e®@a Hiawe) = Z [ﬂqz M ld @ a ke
i=0 i=0

and
! !
Map(fh=@of+foa) =) [I] @en~(feay =} []| df el
=0 j=0
137
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Therefore

MN

Aa’ﬂ(amekfl) — [k] [ ] am k—iai+l—jfj ® am+i—keifl—ja—j

i

’ N
M~ LM~
~.
~ |l

o

AL —(k=i)(i+— )= j(—j)+ij mritl—j k=i pj o mri-k—j i fl-j
[]qz[j]zq a e 'f!®a e'f.

Il
(=]

i=0 j=0

Since0 < j<I<r—1and0 <k—-i<k<r-—1,anecessary condition for A,(a"+*=Iek= fi) =
(a2r=Der=1 fr=1)(gm*i*I=j k=i £1) to be non-zero isthat j = = r—1,k =r—1andi = 0, and som =
2(r—1). Thus (1 ®ida,)Aqp(a™ ek f!) equals g2~ D+0~r=D=(=1 0 f(’ D=0 = 15ifm = 2(r— 1),
k=r—1,and [ = r — 1 and equals 0 otherwise. Hence (1, ® 1dAﬂ)Aaﬁ(amekfl) = aﬁ(amekfl)lﬁ

and so (/105)016(%2)/Z is a right (%Z)/Z—integral for A. O

We fix a € (#Z) /Z and denote by c the unique element of #Z N [0, 1] such that @ = ¢ mod 1.
Foranyi e Z/4rZ, we set
1 o
A= | Z (gl € A,.
JjeZ4rz2

Lemma A.2. In A,, we have that a" = Z t"“””A?for anyn € Z.
icZ 4z

Proof. Letn € Z. Write n = 4rq + p where ¢, p € Z and 0 < p < 4r. Then

et g i et (i+0)j 4
1
i€Z/4rZ ar i,jeZ|4rZ
4r-1 4r-1
= (4— Z {I=PIy Araei=p)e gl gince 4 = 1
j=0 =y
4r-1
— t—4qu Z 6]]7 t(j_p)caj
J=0

€ ql = " since a* = V¢,

O

By Lemma A.2 and the fact that A?A?‘ = 0;; A}, where 6; ; is the Kronecker symbol, we
obtain that the set {AY | i € Z/4rZ} forms a basis of orthogonal idempotents for the algebra
C{a) C A,,.

Lemma A.3. 0, = < T, -2 wzn M 1 where Ty =yt AL,
[I’l]' ) J
pary jeZj4rz

Proof. Recall that @ = ¢ mod 1. By Lemma 2.5(a), we have
u_l = ma(idHa ® S—aS a/)o-a/,a/(Ra,a)

@
1 r—1 —1\n
(q —q ) t—(l+a)n+(k—a)(l+a—n)—n ena—(lﬂl)s _aSa(fnak—a)

4r !
r n=0 k,leZ/4rZ [n]!

_ L Z Z (q q ) —(l+a')n+(k @)(l+a—n)+3n & —(l+a)fn k—a
[n]!

n=0 kleZ/4rZ
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r=1 -1
1 (C] —q )n t(l+a)n+(k—a)(l+a—n)+3n ak—l—Z(renfn

[1]!

rn=0 k,ileZ|ArZ
(j=l-n,i=k-1+2n)

S G=a")" piiin-arira) i
_ JoHn=+3n—a”+i(j+a) i-2n-2a n rn
B 4rZ Z [n]! ! a ef

n=0 i,jeZ[4rZ
r—1 -1
_ Z (q - ‘]‘ ) tn2+3n_62 Z tj2(4i Z t(j+c)iai) a—zn—zcenfn
n=0 [n]! JEZ|4ArZ r i€Z|4rZ
r—1 _ 1y
— (q q‘ ) tn2+3n—cz( Z tjzA;g) a—ln—Zcenfn
n=0 [n]! JjeZ]4rz

r—1 ~1
= t_cz T, a% Z _(q _[ ?‘ )" t”2+3" a_z”e”f”.
ni:
n=0

We conclude by using the fact that 6, = a>"Du;!. O

LemMA A.4. Suppose that r = 2. Let @ € (ﬁZ)/Z and p > 1 with pa = 0. Then

_ip g =
/la(gcpy):{ 2 lf(l 0,

0 otherwise.

Proof. Note that g = exp(%r) = i. Recall that @ = ¢ + Z. Since pa = 0, we have that pc € Z.
By Lemma A.3, we have

o =17 Topad® (1 + (i — i Ha2ef) = £ Ty a®2(1 - 2ia™*X),

where X = a’ef. Note that aX = Xa. Since

2_ -2
X? = azefazef = a4efef = a4e(ef— %)f = %(—aéef—i-azef) = %(1 - ahX,
i—1i - -

(1_a4)n—1

and so X" = oy X for any n > 1, we obtain that
@) = PP 2] — 2ig Tt X)P
)4
= PO+ ) (P) =20 a X"
n=1
2p 2p2 C (1 =aty!
— —pc p—<pc P _n5 n _—4n
= PO AP 4 Z:; (?)-20"a N ETERR
= U+ VX,
where
2 2 P
Uy =7 TP a?7%¢ ¢ Cla) and V, = —2i1 P¢ IL g?P2¢ Z (D)a(1 = a*y"™" € Ca).
n=1

Since {A?‘ | j € Z/8Z} is a set of orthogonal idempotents and by using Lemma A.2, we have

2 2
Mh=( ) AP = Y PFAY,

jez /87 jez /87
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a2P2e — Z ~@p=2po)(c+) A?‘,

jez/8z
—4n _ dn(c+j) A @
at= ), A,
jez/sz
and
a1 _ T A Aty pa
(1 -ah —(Z(lt )A?) _Z(lt A,
jez/8z jez/8z
Therefore
P
_  _n;pc? P\ (P JF—Qp=2pc)c+ j)+an(c+)) (1 _ ~AHeryn—1 A«
V, = -2it Z Z (7)e (1—1¢ )"t A
n=1 jeZ/8Z
P
_  _n;pct=2pc P\ PSP =@2p=2pc)j+an(c+)) (1 _ ~He+pyn—1 pa
(A2) = 2ir > () (1 — eyt A
n=1 jeZ/8Z

Remark that if we write Vo = 3 jez/87 V; A;’ with v; € C, then

(79 Aa(Uq) + (Vo X)
0+ Z vj/la(A;’X) since U, € C{a)
jez/8z
1 .
Z v da(s Z ALLYD')
jez/8z keZ /87

l Z vj t(j+c)k (a2€f)(ak+2€f)

jkeZ[8Z

%ZV]'.

jezZ/8Z

Hence, using (A.2),

Aa(05)

. P
_ L p?-2pc Z (P) tpjz—(Zp—ZpC)j+4n(C+j)(1 — eyl
4 1 n

n=

jez8z

P
l 2 2 . . .
P 2pe § Pi*=2p=2p0)j § (P) (t4(c+f>)”(1 _ t—4(6+j))n—1.
n
4 jez/8Z n=1

If @ = 0 (that is, ¢ = 0), then

Ao(6]) —ﬁ > ﬂ’f'z-zf’fi(g)m)/’"(l—(—DJ’)"‘l

jez/8z n=1

_i. ( Z tpj2_2pj i (5) o1+ Z tpj2_2pj i (27) (—1)"2"_1>

JEZ8Z,j even n=1 JEZ/8Z,j odd n=1
i 2 2 z
- __( § P20 p 4 § PP =2pj E (p) (—2)")
n
8 JEZ8Z,j even JjeZ/82Z,j odd n=1

i 2 s 2 s
S (p Z P20 4 (1) = 1) Z (P 2171)
JEZ/BZ,j even JjeZ/82Z,j odd
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= —é (P + 1+ 4 2) 4 (1P = D) (7 + 7 + 117 + 7))
= —é (4p +207(=D) = )1+ (=1)")

S

- -L

Suppose that @ # 0 (that is, ¢ # 0). For any j € Z/8Z, set x; = t 4¢*)) = (=1)/ exp(~inc) # 1.
Then
P ' ' P
Z (il?) (t4(c+]))n(1 _ t—4(c+]))n—l — Z (il?) xj—n(l _ xj)n—l
n=1 n=1
P
KA =) Y (B) e = )

n=1

Pl _ NP
(=)™ (AP = )
P
1 X;
l—xj'

Hence
2 2 1- X’
(P =2pe Z PP=Qp=2pe)j ___J

4 jeZ/8z 1-x;

Aa(65)

-p _
- — (= P
= Lopeape (IA S pPeeraoi 1= CEx)? r~Cr-200%)
1+ X0

1-x
0 jez/8Z, even j€Z/8Z,j odd

~.

1-x7
_ _tpc2—2pc( : 0 (1 +t4pc+t8p+8pc +t24p+12pc>

~.

1 —(=xp)? (t—p+2pc 4 3p+6pe | (15p+10pc t35p+l4pc)>
1+ X0
1 = (=x0)?
1+ xp
. 2 _72p
= L pi-2pe (IA + t—p+2pcli>
2 1- X0 1+ X0

= 0 since pc € Z and so x

1-x*
e (1 )+ (L + (—x0) )

R~

0
This completes the proof of the lemma. O

P = expQinpc) = 1.






Appendix B

In this appendix, we use the software Maple 6 (under a Dell Inspiron 8000 with Prentium III) to
give some computations used in Section 5.3. These computations concern the finite type involutory
Hopf Z/27-coalgebra H = {H, H,} over C of Example 2.18.

Recall that {e}, e2, e3, e} is the (standard) basis of Hy = C®C@®Ca® Cand {e; 1,e12,¢2.1,€22}
is the (standard) basis of H; = Mat,(C). To simplify the notations, we set f| = e.1, o = e,
fi=exy1,and fy = ey .

We first define two arrays m and d which memorize the structure constants of the products of
Hy and H; and of the comultiplication A = {A¢, Ao.1,A1,0,Ar,1} of H. They are defined, for any
1<i,j,k<4, by

m[Oal’]’k] :<€Z,€I€J> m[l’l’]’k] :<f]:’ﬁf‘j>
d[o’ O’ i’ j’ k] = <€j ® 6;:, AO,O(ei)> d[O’ 1’ i’ j’ k] = <€j ® fjj’ AO,I(ﬁ))
dl1,0,i, j, k] = {f; ® e, Aoy dll, 1,i, j k] = (f; © fi', Avi(ei)

where (, ) denotes the usual pairing between a k-space and its dual.

> delta := (x,y) -> if (x=y) then 1 else 0 fi;
0 := proc(x, y) option operator, arrow; if x = ythen 1 else O end if end proc

> m:= array(0..1,1..4,1..4,1..4);

m = array(0..1, 1.4, 1.4, 1.4, [])
for i to 4 do for j to 4 do for k to 4 do
m[0®,i,j,k]:=delta(i,j)*delta(j,k) od od od;

e:= (x,y) -> if (x=1) then if (y=1) then 1 else 3 fi else if (y=1)
then 4 else 2 fi fi;

vV V. V V

e := proc(x, y)
option operator, arrow;
if x = 1 thenif y = 1 then 1 else 3 end ifelseif y = 1 then4 else 2 end if end if
end proc
for i to 2 do for j to 2 do for k to 2 do
for 1 to 2 do for u to 2 do for v to 2 do

m[l,e(i,j),e(k,1),e(u,v)]:=delta(i,u) *delta(j,k)*delta(l,v)
od od od od od od;

d:=array(0..1,0..1,1..4,1..4,1..4);
d :=array(0..1, 0..1, 1.4, 1.4, 1.4, [

vV V. V V

\%

> for i from ® to 1 do for j from O to 1 do for k to 4 do

> for 1 to 4 do for x to 4 do d[i,j,k,1,x]:=0 od od od od od;
> d[0,0,1,1,1]:=1: d[e,0,1,2,2]:=1:

> d[0,0,1,3,3]:=1: d[e,0,1,4,4]:=1:

> d[0,0,2,1,2]:=1: d[e,0,2,2,1]:=1:

143
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vV V. V V V. V V V V V V V V V V V V V V V V V V V V V V V V

The procedure proc(a,n,inl,in2) allows to compute the following scalar

d[o,
d[o,
d[o,
d[o,
d[o,
d[1,
d[1,
d[1,
d[1,
d[1,
d[1,
d[1,
d[1,
d[1,
df1,
d[1,
d[1,
d[1,
d[1,
d[1,
d[1,
d[o,
d[o,
d[o,
d[o,
d[o,
d[o,
d[o,
d[o,

R R R RRPRRRRPODDR R R R R RPRERRERE R RO
ububwwNNt—lt—l.b.bwwNN'l—nl—n.b.bwwNNt—lt—lybybwwN
wt—lwt—lwt—lwt—lNN.b.bwuu'l—nl—nuul—nwl—nwl—nwt—lwt—lwt—lw
Nl\beybwwt—lt—lwle—nwl—n'lu_ull—nANwI—nANwt—lNybt—lwwb

=1: d[e,0,2,4,3
=1: d[e,9,3,2,4
=1: d[e,0,3,4,2
=1: d[e,0,4,2,3
=1: d[e,0,4,4,1
=1/2: d[i,1,1,2,2
=1/2: d[1,1,1,4,4
=1/2: dri,1,2,2,1
=I/2: d[1,1,2,4,3
=1/2: d[1,1,3,2,2
=-1/2: d[1,1,3,4,4
=1/2: dli,1,4,2,1
=-1/2: d[1,1,4,4,3
=1: d[1,0,1,2,2
=1: d[1,0,1,2,4
=1: d[1,0,2,4,2
=-1: d[1,0,2,4,4
=1: d[1,e,3,3,2
=-1: d[1,0,3,3,4
=1: d[1,0,4,1,2
=1: d[1,0,4,1,4
=1: d[e,1,1,2,2
=1: d[e,1,1,4,2
=1: d[e,1,2,2,4
=-1: d[e,1,2,4,4
=1: d[e,1,3,2,3
=-1: d[e,1,3,4,3
=1: d[e,1,4,2,1
=1: d[e,1,4,4,1

em— Da, ... a
———

2n times

where x = ¢;,p ifa=0and x = f;p ifa = 1.

vV V. V V

rec:=proc(a,n,inl,in2) local il,i2,i3,i4; else
if n=1 then sum(sum(d[a,a,inl,il,i2]*m[a,il,i2,in2],i1=1..4), i2=1.

=-1:
:=1:
:=1:

ma _>-x,

APPENDIX B

sum(sum(sum(sum(d[0,0,inl,il,i2]*rec(a,n-1,i2,i4)*rec(a,1,i1,i3)

*m[a,i3,i4,in2],i4=1..4),i3=1..4),i2=1..4),i1=1..4) fi end;

rec := proc(a, n, inl, in2)
localil, i2, i3, i4;
if n = 1 then sum(sum(da’a,,-n“]’,-g * Mgy, il,i2,in2» il = 14), 2 = 14)

else sum(sum(sum(sum(
do,0,in1,i1,i2 * rec(a, n — 1, i2, i4) = rec(a, 1, il, i3) * mq 3,4, in2
i4=1.4),i3=1.4),i2=1.4),il =1.4)

end if
end proc

.4)
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Forany 1 <1, j <4,letusset F(0,i, j) = (e;‘.,s(e,-)lo) and F(1,i, j) = (f;‘,s(e,-)ll).

> F:=proc(c,jnl,jn2) if (c=0) then delta(jnl,1) else
> delta(jnl,1)*(delta(jn2,1)+delta(jn2,2)) fi end;
F = proc(c, jnl, jn2)
ifc = Otheno(jnl, 1)else5(jnl, 1) = (6(jn2, 1) + 6(jn2, 2)) end if
end proc

The procedure F allows us to verify that F,(x) = &(x) 1, for any @ € Z/2Z and x € H,, where
F, is defined as in Section 5.3.

> difference:=0;

difference := 0
> for k from ® to 1 do for i to 4 do for j to 4 do
> difference:=difference+ abs(rec(k,4,i,j)-F(k,i,j)) od od od;

> difference;
0

Finally the function inv(n,a) gives the value of Ky (L(2n, 1), ).
> inv:=(n,a) -> 4% sum(sum(sum(sum(
> d[e,0,’j1’,’j1’,’j2" 1*rec(a,n,’j2’,’j3")*m[a, 337, j4’, j4’1,
> ’j1°=1..4), ’j2’=1..4), ’j3’=1..4), ’j4’=1..4);

inv:=(n,a) >4

4 4
[Z [Z [Z [Z X jj,)ma,’jf,’j4’,’j4,JJ]J
4 =1 \j3’=1 Uj2’=1 Ujr' =1
> inv(1,0); inv(1,1);

64

32
> inv(2,0); inv(2,1);

64

> inv(3,0); inv(3,1);
64
32
> inv(4,0); inv(4,1);
64
64
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