Appendix 6
Algebraic properties of Hopf G -coalgebras

by Alexis Virelizier

Let G be a group. The notion of a (ribbon) Hopf G-coalgebra was first introduced by
Turaev [Tu4], as the prototype algebraic structure whose category of representations
is a (ribbon) G-category (see Section VIII.1). Recall from Chapter VII that ribbon
G-categories give rise to invariants of 3-dimensional G-manifolds and to 3-dimensio-
nal HQFTs with target K(G, 1). Moreover, Hopf G-coalgebras may be used directly
(without involving their representations) to construct further topological invariants of
3-dimensional G-manifolds, see Appendix 7.

Here we review the algebraic properties of Hopf G -coalgebras and provide exam-
ples. Most of the results are given without proof, see [Virl]-[Vir4] for details.

In Section 1, we study the algebraic properties of Hopf G-coalgebras, in particular
the existence of integrals, the order of the antipode (a generalization of the Radford
S*-formula), and the (co)semisimplicity (a generalization of the Maschke theorem).

In Section 2, we focus on quasitriangular and ribbon Hopf G-coalgebras. In partic-
ular we construct G-traces for ribbon Hopf G-coalgebras, which are used to construct
invariants of 3-dimensional G-manifolds in Appendix 7.

In Section 3, we give a method for constructing a quasitriangular Hopf G-coalgebra
starting from a Hopf algebra endowed with an action of G by Hopf automorphisms.
This leads to non-trivial examples of quasitriangular Hopf G-coalgebras for all finite
G and for some infinite G such as GL, (K). In particular, we define graded quantum
groups.

Throughout this appendix, G is a group (with neutral element 1) and K is a field.
All algebras are supposed to be over K, associative, and unital. The tensor product
® = ®x of K-vector spaces is always taken over K. If U and V are K-vector spaces,
thenoy,y: U@V — V ® U denotes the flip defined by oy, y (v ® v) = v ® u for all
ueUandvelV.

6.1 Hopf G -coalgebras

1.1 Hopf G-coalgebras. We recall, for completeness, the definition of a Hopf G-
coalgebra from Section VIII. I, but with a minor change: we do not suppose the antipode
to be bijective.

A Hopf G-coalgebra (over K) is a family H = {Hy }qec of K-algebras endowed
with a family A = {Ayg: Hyp — Hy ® Hg}y geg of algebra homomorphisms
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(the comultiplication), an algebra homomorphism ¢: Hy — K (the counit), and a
family S = {Sy: Hy — Hy—1}aec of K-linear maps (the antipode) such that, for all
a, B,y €G,

(A, ®idy, ) Agp,y = (ldH, @ Apy)Aqpy.
(idg, ® &)Ag,1 = idp, = (¢ ®idg,)A1q.
ma(Sa—l ® idHa)A(x_l,a =¢clyg = ma(idHa (%9 Sa—l)Aa,a—l s

where my: Hy ® Hy, — H, and 1, € Hy denote multiplication in H, and the unit
element of H,,.

When G = 1, one recovers the usual notion of a Hopf algebra. In particular, H; is
a Hopf algebra.

Remark that the notion of a Hopf G-coalgebra is not self-dual (the dual notion
obtained by reversing the arrows in the definition may be called a Hopf G-algebra).

It H = {Hy}qeg is a Hopf G-coalgebra, then the set {&¢ € G | Hy # 0} is
a subgroup of G. Also, if G’ is a subgroup of G, then H = {Hy}yeq is a Hopf
G’-coalgebra.

The antipode S of a Hopf G-coalgebra H = {Hy}qec is anti-multiplicative (in
the sense that each Sy : Hy — H,—1 is an anti-homomorphism of algebras) and anti-
comultiplicative in the sense that Ag—1 ,—1S0g = 0n,_; . H, | (Sa ® Sg)Aq,p forall
a,B € G and S = ¢; see [Vir2], Lemma 1.1.

A Hopf G-coalgebra H = {Hy}qec is said to be of finite type if, for all @ € G,
H, is finite-dimensional (over K). Note that the direct sum @, Hy is finite-di-
mensional if and only if H is of finite type and H, = O for all but a finite number of
ae€gG.

The antipode S = {Sg}acg of H = {Hy}aec is said to be bijective if each S,
is bijective. Unlike in Section VIII.1, we do not suppose that the antipode of a Hopf
G-coalgebra is bijective. As for Hopf algebras, the antipode of a Hopf G-coalgebra H
is necessarily bijective if H is of finite type (see Section 1.5) or H is quasitriangular
(see Section 2.4).

1.2 The case of finite G. Suppose that G is a finite group. Recall that the Hopf
algebra K of functions on G has a basis (eq: G — K)qeg defined by eq(8) = Sa.p
where 8y, = 1 and 64,8 = O if @ # B. The structure maps of K G are given by

eqep = (Sa,ﬂ €y, lKG = ZGea, A(eoe) = ﬂz eg R ey, 8(60,) = 8&,1,
oxe Y=o

and S(ey) = e,—1. A central prolongation of K€ is a Hopf algebra A endowed with a
morphism of Hopf algebras K¢ — A, called the central map, which carries K¢ into
the center of A.
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__ Since G is finite, any Hopf G-coalgebra H = {Hy }aeg givesrise to a Hopf algebra
H = @, Hy with structure maps given by

Ala, = Y Mgy Elm, =bu1 6 MlHe@Hs = SapMa. 1= lq,
By=a axeG

and § = > weG Se- The K-linear map K¢ — H defined by e, > 1, gives rise to
a morphism of Hopf algebras which carries K¢ into the center of H. Hence H is a
central prolongation of K€.

The correspondence assigning to every Hopf G-coalgebra H = {Hy}gec the
central prolongation K¢ — H is bijective. Given a Hopf algebra (4,m, 1, A, ¢, S)
which is a central prolongation of K¢, set H, = Al,, where 1, € A is the image
of e, € K under the central map K¢ — A. Then the family {Hy}oecG is a Hopf
G-coalgebra with structure maps given by

mg = lo Mmlg,@Hy» ADap=1a®lg)-Alg,,, &=c¢elg,, So=lg—1-Sl|u,.

1.3 Integrals. Recall that a left (resp. right) integral for a Hopf algebra (4, A, ¢, S)
is an element A € A such that xA = e(x)A (resp. Ax = e(x)A) forall x € A. A
left (resp. right) integral for the dual Hopf algebra A* is a K-linear form A € A* =
Homg (A4, K) such that (idg ® A)A(x) = A(x)14 (resp. (A ® idg)A(x) = A(x)1y)
for all x € A.

A left (resp. right) G-integral for a Hopf G-coalgebra H = {Hy}yeg is a family
of K-linear forms A = (Aq)oeg € Ilgeg Hj such that

(idh, ® Ag)Ag,p(X) = Aap(x)1a (resp. (Aa @ idhg)Ag,p(X) = Aap(X)1p)

forall o, B € G and x € H,g. Note that A; is a usual left (resp. right) integral for the
Hopf algebra H;.

A G-integral A = (Aq)aeg i said to be non-zeroif Ag # 0forsome € G. Given
anon-zero G-integral A = (Ay)qeq, we have Ay # 0 forall « € G such that H, # 0.
In particular A; # 0.

It is known that the K-vector space of left (resp. right) integrals for a finite-di-
mensional Hopf algebra is one-dimensional. This extends to Hopf G-coalgebras as
follows.

Theorem A ([Vir2], Theorem 3.6). Let H be a Hopf G-coalgebra of finite type. Then
the vector space of left (resp. right) G-integrals for H is one-dimensional.

The proof of this theorem is based on the fact that a Hopf G-comodule has a
canonical decomposition generalizing the fundamental decomposition theorem in the
theory of Hopf modules.
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1.4 Grouplike elements. A family g = (g¢)acc € Haec Hy suchthat Ay g(ge8) =
8o ® gg foralla, B € G and e(g1) = 1k is called a G-grouplike element of a Hopf
G-coalgebra H = {Hy}qeg. Note that g is then a grouplike element of the Hopf
algebra H; in the usual sense of the word.

One easily checks that the set Gr(H) of G-grouplike elements of H is a group
with respect to coordinate-wise multiplication in the product monoid [Myeg Hy. If
g = (8a)acc € Gr(H), then g7! = (S,-1(gq-1))xeG- The group Hom(G, K*)
of homomorphisms G — K™ acts on Gr(H) by ¢g = (¢(@)gs)aecc for arbitrary
¢ € Hom(G, K*) and g = (g4)aec € Gr(H).

1.5 The distinguished G -grouplike element. Throughout this subsection, H =
{Hy}qec is a Hopf G-coalgebra of finite type with antipode S = {Sy}qec. Using
Theorem A, one verifies that there is a unique G-grouplike element ¢ = (gq¢)yeg Of
H, called the distinguished G-grouplike element of H , such that (idg, ® Ag)Ay g =
Aap &« for any right G-integral A = (A4)qec and all @, B € G. Note that g is the
distinguished grouplike element of H;.

Since H; is a finite-dimensional Hopf algebra, there exists a unique algebra mor-
phism v: H; — K such that if A is a left integral for Hy, then Ax = v(x)A for all
Xx € Hy. This morphism is a grouplike element of the Hopf algebra H", called the
distinguished grouplike element of H{. Itisinvertible in H;" and its inverse v~ is also
an algebra morphism. Moreover, if A is a right integral for Hy, then xA = v~!(x)A
for all x € H;.

For all « € G, we define a left and a right H*-action on H, by setting, for all
feHanda € H,

f —a= (idHa ® f)Atx,l(a) and a ~ f = (f ® idHa)Al,a(a)'

The next assertion generalizes Theorem 3 of [Rad4]. This is a key result in the theory
of Hopf G-coalgebras. It is used in particular to prove the existence of traces (see
Section 2.8).

Theorem B ([Vir2], Theorem 4.2). Let A = (Ay)uec be a right G-integral for H.
Then, foralla € G and x,y € Hy,

(@) Ag(xy) = Aa(Sq—1Sa(y < v) x);

(b) A (xy) = Aa(y Sp-18a(v™" = g, 'xga));

(©) Xa—l (Sa(x)) = Aq(gax).

As a corollary we obtain a generalization of the celebrated Radford S*-formula to
Hopf G-coalgebras:

Corollary C ([Vir2], Lemma4.6). Let H = {Hy }oqeg be a Hopf G-coalgebra of finite
type. Then for all @ € G and x € Hy,

(Su-182)%(x) = ga(v = x — v g, .
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This formula implies in particular that the antipode S of H is bijective (i.e., each
Sy 1s bijective).

1.6 The order of the antipode. It is known that the order of the antipode of a finite-
dimensional Hopf algebra is finite ([Radl], Theorem 1) and divides four times the
dimension of the algebra ([NZ], Proposition 3.1). We apply this result to study a
Hopf G-coalgebra of finite type H = {Hy}qec With antipode S = {Sy}qeq. Let
« be an element of G of finite order d. Denote by () the subgroup of G generated
by a. By considering the finite-dimensional Hopf algebra QB/; e(o) Hp (determined
by the Hopf («)-coalgebra { Hg}ge(q), see Section 1.2), we obtain that the order of
Sy—18a € Autyy(Hy) is finite and divides 2 Zﬂe(a) dim Hg. From Corollary C, we
obtain another upper bound on the order of S,—1.S: if & € G has a finite order d, then
the order of S,—1 Sy divides 2d dim H; see [Vir2], Corollary 4.5.

1.7 Semisimplicity. A Hopf G-coalgebra H = {H,}qec is said to be semisimple
if each algebra H, is semisimple. For H to be semisimple it is necessary that H;
be finite-dimensional (since an infinite-dimensional Hopf algebra over a field is not
semisimple, see [Sw], Corollary 2.7). When H is of finite type, H is semisimple if
and only if H; is semisimple, see [Vir2], Lemma 5.1.

1.8 Cosemisimplicity. The notion of a comodule over a coalgebra may be extended
to the setting of Hopf G-coalgebras. A right G-comodule over a Hopf G-coalgebra
H = {Hy}qeg is afamily M = {My }qec of K-vector spaces endowed with a family
of K-linear maps

P =1{pap: Maup — My @ Hg}y geG

such that

(poz,ﬂ & idHy)potﬂ,y = (idMa & Aﬂ,y)pot,ﬂy and (idMa ® 5)P¢x,l = idpy,

foralla, B,y € G. A G-subcomodule of M is afamily N = {Ny}qeqg, Where N is a
K-subspace of My, such that py g(Nog) C Ny ® Hpg forall a, B € G. The sums and
direct sums for families of G-subcomodules of a right G-comodule are defined in the
obvious way.

A right G-comodule M = {My}qeq is said to be simple if it is non-zero (i.e.,
My # 0 for some o € G) and if it has no G-subcomodules other than itself and the
trivial one 0 = {0}yeg. A right G-comodule which is a direct sum of a family of
simple G-subcomodules is said to be cosemisimple. Note that all G-subcomodules
and all quotients of a cosemisimple right G-comodule are cosemisimple.

A Hopf G-coalgebra is cosemisimple if it is cosemisimple as a right G-comodule
over itself (with comultiplication as comodule map). By [Vir2], a Hopf G-coalgebra
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H = {Hy}qec is cosemisimple if and only if every reduced' right G-comodule over
H is cosemisimple.
We state a Hopf G-coalgebra version of the dual Maschke theorem.

Theorem D ([Vir2], Theorem 5.4). A Hopf G-coalgebra H = {Hy }yeq is cosemisim-
ple if and only if there exists a right G-integral A = (Ay)aec for H such that
Ao(lg) = g for some a € G (and then Ay(14) = 1k for all « € G with Hy # 0).

As corollaries, we obtain that a Hopf G-coalgebra H = {Hg}qeg of finite type
is cosemisimple if and only if the Hopf algebra H; is cosemisimple, and that the
distinguished G-grouplike element of a cosemisimple Hopf G-coalgebra of finite type
is trivial.

1.9 Involutory Hopf G -coalgebras. A Hopf G-coalgebra H = {Hy }qer 1S involu-
tory if its antipode S = {Sy}qer satisfies the identity S,—1Sy = idg, forall o € 7.

Involutory Hopf G-coalgebras of finite type have special properties. For example,
each of their G-integrals A = (Ay)aeq is two sided, S-invariant (A,—1 Sy = A4 for all
a € G), and symmetric (Ao (xy) = Aq(yx) foralle € G and x, y € Hy). Also if the
ground field K of H is of characteristic 0, then dim H, = dim H; whenever Hy # 0.

Finally, it H = {Hy}qec is an involutory Hopf G-coalgebra of finite type over a
field whose characteristic does notdivide dim H, then H is semisimple and cosemisim-
ple; see [Vir4], Lemma 3.

6.2 Quasitriangular Hopf G -coalgebras

2.1 Crossed Hopf G -coalgebras. A Hopf G-coalgebra H = {Hy }yecc is crossed if it
is endowed with a crossing, that is, a family of algebra isomorphisms ¢ = {¢g: Hy —
Hﬁaﬂ—l }a,ﬁeG such that

(08 @ wp)Aa,y = Apgop—1 gy8-198, P =6, and @ug = Pupp

for all @, B,y € G. One easily verifies that a crossing preserves the antipode, that
is, ppSe = Spup-19p forall a, B € G. Therefore this definition of a crossed Hopf
G-coalgebra is equivalent to the one in Chapter VIII.

A crossing ¢ in H yields a group homomorphism ¢: G — Autyeps(H1) and
determines thus an action of G on H; by Hopf algebra automorphisms. Here for a
Hopf algebra A, we denote Autyops(A) the group of Hopf automorphisms of A.

If G is an abelian group, then any Hopf G-coalgebra admits a trivial crossing
pp =idforall B € G.

When G is a finite group, the notion of a crossing can be described in terms of
central prolongations of K@ (see Section 1.2): a crossing of a central prolongation A

'A right G-comodule M = {My}ycc over H is reduced if M, = 0 whenever H, = 0.
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of K¢ is a group homomorphism ¢: G — Autgop (A) such that pg(ly) = lggp-1
for all o, B € G, where 1, is the image of e, € K¢ under the central map K¢ — A.

2.2 Thedistinguished character. Let H = {H, }qeg beacrossed Hopf G-coalgebra
of finite type with crossing ¢. Using the uniqueness of G-integrals (see Theorem A),
one can show the existence of a unique group homomorphism ¢: G — K*, called
the distinguished character of H, such that Ag,g—1¢0g = @(f) Ay for any left or right
G-integral A = (Ay)qeq for H and all o, B € G.

Lemma E ([Vir2], Lemma 6.3). Forany 8 € G,
(@) If A is a left or right integral for Hy, then pg(A) = @(B)A.
(b) If v is the distinguished grouplike element of H{", then vgpg = v.

(©) If g = (8a)acq is the distinguished G -grouplike element of H, then ¢g(ga) =
gpap—1 foralla € G.

2.3 Quasitriangular Hopf G -coalgebras. Following Chapter VIII, we call a crossed
Hopf G-coalgebra (H = {Hgy}ueg, @) quasitriangular if it is endowed with an R-
matrix, that is, a family R = {Ry g € Hy ® Hg}q geg of invertible elements such
that, forall o, B,y € G and x € Hgg,

Rop - Aa,p(x) = 08,4(0a—1 ®idp,)Agga—1.4(x) - Rep.
(ida, ® Agy)(Rapy) = (Ray)1p3 - (Rag)12y,
(Ag,p ®idp, )(Rep,y) = [(idh, ® ¢g-1)(Ry gyp-1)]183 - (Rp.y)a23,
(9 ® ) (Ra,y) = Rgap—1 pyp—1-

Here 0 o denotes the flip Hg @ Hy — Hy ® Hg and, for K-vector spaces P, Q and
r=>%;p®q € P®Q, weset

ri2y =7r®1, e POO®Hy, re3=14Q0reH, ® P®Q,

and rig3 = Z]- pi®lg®q; € P ® Hg ® Q. Note that Ry ; is an R-matrix for the
Hopf algebra H is the usual sense of the word.

When G is abelian and ¢ is the trivial crossing, we recover the definition of a
quasitriangular G-colored Hopf algebra due to Ohtsuki [Oh1].

An R-matrix for a crossed Hopf G-coalgebra provides a solution of the G-colored
Yang—Baxter equation

(Rg,y)a23 * (Ray)1p3 - (Ra,g)12y
= (Ra.p)12y - [(1dH, ® 9p-1)(Ry gy p-1)]183 - (Rp.y)a23
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and satisfies the following identities (see [Vir2], Lemma 6.4): forall o, 8,y € G,
(¢ ® idp,)(R1.0) = lo = (idm, ® &)(Ra1),
(Sq-1¢0 ® idmg)(Ry—15) = Ry and  (idm, ® Sp)(Ry ) = Ry p-1,
(Sa ® Sp)(Rap) = (9o ®idm,_)(Ry—1 p-1).

2.4 The Drinfeld element. The Drinfeld element of a quasitriangular Hopf G-coal-
gebra H = {Hy}geg is the family u = (uy)peg € [ueg Hy, Where

Uy = ma(Saflfpa ® idHa) Og,q—1 (Ra,orl)-

Observe that u is the Drinfeld element of the quasitriangular Hopf algebra H; (see
[Drin2]). By [Vir2], Lemma 6.5, each u,, is invertible in Hy and

uo_tl = My (idHa &® Sa—l o) Oa,a (Ra,a)-
Moreover, for any « € G and x € H,
Su—180(X) = Ugpy—1 (x)u;l,

where ¢ is the crossing in H. This implies that the antipode of H is bijective.
Note also the identities e(u1) = 1, pg(ua) = ugyp-1, and

Nap(uap) = [08,a(dH; ® 0ou)(Rpa) - Rapl™" - (e ® up).

2.5 Ribbon Hopf G -coalgebras. Following Chapter VIII, we call a quasitriangular
Hopf G-coalgebra H = {Hy }qec ribbon if it is endowed with a rwist, that is, a family
of invertible elements 6 = {6, € Hy}yeq such that forall @, 8 € G and x € Hy,

0a(¥) = 6" %00, SalBa) = 01, 9p(0a) = Opape.
Aa,ﬂ (Gaﬁ) = (9(1 ® Qﬁ) : Uﬁ,a(idHB &® (ﬂa)(RB,ot) . Ra,B~

Note that 0, is a twist of the quasitriangular Hopf algebra H, and so (6;) = 1.
If « € G has a finite order d, then 95 is a central element of H,. In particular, 0; is
central in Hy.

Example. Let G be a group and ¢: G x G — K™ be a bicharacter of G, that is,

cla,By) =c(o,B)c(a,y) and c(af, y) = c(a,y) c(B,y) forall o, B,y € G. Con-
sider the following crossed Hopf algebra K¢: for all o, B € G, we have K = K as
an algebra and

Aa,g(ll() =1x®1g, e(lg) =1k, Su(lg) = g, 905(1[() = lg.

Then K€ is a ribbon Hopf G-coalgebra of finite type with R-matrix and twist given
by Ryp = c(a, B) 1k ® 1k and 6, = c(o,«). The Drinfeld elements of K¢ are
computed by ug = c(a, a)”!.
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2.6 The spherical G-grouplike element. Let H = {H,}ycc be a ribbon Hopf G-
coalgebra with Drinfeld element u = (uy)qec. For any @ € G, set

Wy = Oquy = uyby € Hy.

Thenw = (wy)aec is a G-grouplike element, called the spherical G -grouplike element
of H. It satisfies the identities

pp(Wa) = wgap—1, Sa(Ue) = w;_llua—lw;_ll, and  Sg-1Sy(x) = wexw,

for all @, 8 € G and x € Hy. Conversely, any G-grouplike element w = (Wg)geq
of a quasitriangular Hopf G-coalgebra H = {Hy}qeg Which satisfies these identities

gives rise to a twist 6 = (0y)geg in H by 0y = wauy' = uy w,.

2.7 Further G-grouplike elements. Let H = {H}yec be a quasitriangular Hopf
G-coalgebra of finite type. Set

ly = Sa—l(ua—l)_lua = Uqy Sa—l(ua—l)_l € Hy,

where 4 = (Ugy)aec is the Drinfeld element of H. The properties of u ensure that
{ = (y)aec is a G-grouplike element of H. Let v be the distinguished grouplike
element of H* and ¢ be the distinguished character of H (see Sections 1.5 and 2.2).
Denoting R = {Ry g € Hy ® Hg}y geg the R-matrix of H, set

hy = (1dg, ® v)(Ry,1) € Hy.

Theorem F ([Vir2], Theorem 6.9). The family h = (hy)aec is a G-grouplike element
of H. The distinguished G-grouplike element (g4)aecc of H is computed by go =
O(a) YUghy foralla € G.

For ribbon H, we obtain as a corollary that g = @(a) 'w2hy for all @ € G,
where w = (wq)aec is the spherical G-grouplike element of H'.

2.8 Traces. Let H = {Hy}qec be a crossed Hopf G-coalgebra. A G-trace for H is
a family of K-linear forms tr = (tro)oeG € [geg Hy such that

trg (xy) = trg(yx), te-1(Se(x)) =tre(x), and trgp—1(@p(x)) = tra(x)

foralla, B € G and x, y € Hy. Note that try is a usual trace for the Hopf algebra H,
which is invariant under the action ¢ of G.

A Hopf G-coalgebra H = {Hgy}yeg is unimodular if the Hopf algebra H; is
unimodular (that is the spaces of left and right integrals for H; coincide). If H;
is finite-dimensional, then A is unimodular if and only if v = ¢, where v is the
distinguished grouplike element of H;". For example, any finite type semisimple Hopf
G-coalgebra is unimodular.
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Consider in more detail a unimodular ribbon Hopf G-coalgebra H = {Hy }4ec of
finite type. Let A = (Ay)qeq be a non-zero right G-integral for H, w = (wgy)gec be
the spherical G-grouplike element of H, and ¢ be the distinguished character of H.

Using Theorems B and F, we obtain that the G-traces for H are parameterized
by families z = (z4)qeG such that z, € H,, is central, Sg(zy) = @(a) 'z,—1, and
9p(za) = P(B)zgap—1 foralla, B € G. The G-trace corresponding to such a family
z is given by trg (x) = Ay (wezex). We point out two such families.

Let A be a left integral for Hy such that A1 (A) = 1. Setz; = A and z, = 0 if
a # 1. The resulting family (z4)qec satisfies all the conditions above since H is uni-
modular (and so A is central and S1(A) = A) and by Lemma E (a). The corresponding
G-trace is given by tr; = ¢ and trq, = O for all o # 1.

If (a) = 1 for all @ € G, then another possible choice of a family z is zy, = 14
for all . Note that § = 1if H is semisimple or cosemisimple orif A1 (61) # 0, where
0 = {6y }aec is the twist of H. We obtain the following assertion.

Theorem G ([Vir2], Theorem 7.4). Suppose under the assumptions above that at least
one of the following four conditions is satisfied: H is semisimple, or H is cosemisimple,
or A(01) # 0, or pg|g, = idy, forall B € G. Then the family of K-linear maps
tr = (trg)oeq, defined by trq(x) = Ay (wox) for all x € Hy, is a G-trace for H.

6.3 The twisted double construction

Starting from a crossed Hopf G-coalgebra H = {Hy }qeG, Zunino [Zul] constructed a
double Z(H) = {Z(H )y }aec of H which is a quasitriangular Hopf G -coalgebra con-
taining H as a Hopf G-subcoalgebra. Asa vector space, Z(H )y = Hy® (@ﬂeG HE).
Generally speaking, Z (H ) is not of finite type: the components Z ( H ), may be infinite-
dimensional.

In this section we provide a method, called the twisted double construction, for
deriving quasitriangular Hopf G -coalgebras of finite type from finite-dimensional Hopf
algebras endowed with action of G by Hopf automorphisms (cf. Section 2.1). We also
give an h-adic version of this construction. This will lead us to non-trivial examples
of quasitriangular Hopf G-coalgebras for any finite group G and for infinite groups G
such as GL, (K). In particular, we define the (h-adic) graded quantum groups.

3.1 Hopf pairings. Recall that a Hopf pairing between two Hopf algebras A and B
(over K) is a bilinear pairing 6 : A x B — K such that, foralla,a’ € Aand b,b’ € B,

o(a,bb’) =o(any.b)o(aw).b), o(a.l)=¢e(a).
o(aa’,b) =o(a,bpy) o(@ . buy), o(l,b)=eb).

Such a pairing always preserves the antipode: o(S(a), S(b)) = o(a,b) foralla € A
and b € B.
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A Hopf pairing 6: A x B — K determines two annihilator ideals /4 = {a € A |
o(a,b) = Oforallb € B}and Ip = {b € B | o(a,b) = Oforalla € A}. Itis
easy to check that 4 and /p are Hopf ideals of A and B, respectively. The pairing
o is non-degenerate ift I4 = Ip = 0. Any Hopf pairing o: A x B — K induces a
non-degenerate Hopf pairing 6: A/I4 x B/Ip — K.

3.2 The twisted double. Leto: A x B — K be a Hopf pairing between two Hopf
algebras A and B, and let ¢: A — A be a Hopf algebra endomorphism of A. Set

D(A,B;0,¢) = AQ® B

as a K-vector space. We provide D(A, B; 0, ¢) with a structure of an algebra with unit
14 ® 1p and multiplication

(@a®b)-(d®b') = 6((1)(021)), S(bay)) o(ab), b)) aazz) ® b(z)b/

forany a,a’ € Aand b,b’ € B.

Note that if ¢ and ¢’ are different Hopf algebra endomorphisms of A, then the
algebras D(A, B;a,¢) and D(A, B; 0, ¢’) are in general not isomorphic (see Remark
in Section 3.4 below).

Theorem H ([Vir3], Theorem 2.6). Leto: AXB — K be a Hopfpairing between Hopf
algebras A and B, and let ¢ be an action of G on A by Hopf algebra automorphisms,
that is, ¢ is a group homomorphism G — Autyeps(A). Then the family of algebras

D(Av B;U’ ¢) = {D(A9 B;Uv ¢Ol)}OlEG

has a structure of a Hopf G-coalgebra given by

Aggla ®b) = (pglaa)) ® bay) ® (a@) ® b)),
e(a ® b) = e4(a) ep(b),
Sa(a ® b) = o(palaq)).bay) o(ag). S(b3))) PaS(a)) & S(bw))

foralla € A, b € Banda, B € G. Furthermore, if 0 is non-degenerate and A, B are
finite dimensional, then the Hopf G-coalgebra D(A, B; 0, ¢) is quasitriangular with
crossing ¢ and R-matrix R = {Rq g }q,pec given by

gaﬁ(a ®b) = ¢3(a) (29 d);(b) and Ry pg = Z(e,' RIp) (14 ® fi),

where ¢*: G — Autyep(B) is the unique action such that o (¢pg, gbz) = o for all
B € G, and (e;); and ( f;); are dual bases of A and B with respect to o.

Corollary I. Let A be a finite-dimensional Hopf algebra and ¢ be an action of G on A
by Hopf algebra automorphisms. Then the duality bracket , ) 4g 4* is a non-degenerate
Hopf pairing between A and A**°P and D(A, A**P; (, Yaga*, P) is a quasitriangular
Hopf G-coalgebra.
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Note that the group of Hopf automorphisms of a finite-dimensional semisimple
Hopf algebra A over a field of characteristic 0 is finite (see [Rad2]). To obtain qua-
sitriangular Hopf G-coalgebras with infinite G using the twisted double method, one
has to start from non-semisimple Hopf algebras or from Hopf algebras over fields of
non-zero characteristic.

In the next three sections, we use Theorem H to give examples of quasitriangular
Hopf G-coalgebras.

3.3 Example: finite G. Let G be a finite group. In this section, we describe the
ribbon Hopf G-coalgebras obtained by the twisted double construction from the group
algebra K[G]. The standard Hopf algebra structure on K[G]is givenby A(g) = gR g,
e(g) = 1, and S(g) = g~ ! forall g € G. The dual of K[G] is the Hopf algebra
F(G) = K9 of functions G — K with structure maps and basis (eg: G — K)geG
described in Section 2.1. Let ¢: G — Autyops(K[G]) be the homomorphism defined
by ¢o(h) = aha™! fora € G,h € K[G]. Corollary I yields a quasitriangular Hopf
G-coalgebra
Dg(G) = D(K[G], F(G)*?; (, )k[GIxF(G): P)-

Let us describe Dg(G) = {Dy(G)}yec more precisely. For « € G, the algebra
Dy (G)isequalto K[G]® F(G) as a K-vector space, has unit 1 p,(6) = ) _zeq | ®eg
and multiplication

(g®en) (& ®ew) =8ugra—1 h-1gm 88 ® en
forall g, g’,h,h’ € G. The structure maps of D (G) are
Aoplg®en)= 3 BgB™' ®ey®g®ex. elg®en) =dp1.
xy=h
Su(g ®ep) = O‘g_la_l ® eyga—1h—1g—1: Pu(g ®ep) = O‘ga_l ® Cyha—1

for all , B, g,h € G. The crossed Hopf G-coalgebra Dg(G) is quasitriangular and
furthermore ribbon with R-matrix and twist

Ryp= Y g®e®1®e; and 6, =) a'ga®e,
g.,heG geG

forall a, B € G. The spherical G-grouplike element of D (G) isw = (1p,(G))acG-
The family A = (A¢)aei. defined by A, (g ® €p,) = 8g,1, is a two-sided G-integral for
Dg(G).

3.4 An example of a quasitriangular Hopf GL, (K)-coalgebra. In this section, K
is a field of characteristic # 2 and n is a positive integer. Let A be the K-algebra with
generators g, X1, . . ., X, subject to the relations

2 2
g =1 xi=0, gxi=-xg XiX; =—XjXx;.
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The algebra A is 2" !-dimensional and has a Hopf algebra structure given by
Al)=g®g e@=1 Ax)=xi®g+1®x, &xi)=0 S =g,

and S(x;) = gx; for all i. The group of Hopf automorphisms of A is isomorphic to
the group GL,, (K) of invertible n x n-matrices with coefficients in K (see [Rad2]). An
explicit isomorphism ¢: GL, (K) — Autyeps(A) carries any o = (o;,;) € GL,(K)
to the automorphism ¢, of 4 given by

n

$a(g) =g and ¢u(x;) = 121 i Xk

We apply Corollary I to these A and ¢. Observing that A* =~ A as Hopf algebras,
we can quotient the resulting quasitriangular Hopf GL,, (K)-coalgebra to eliminate one
copy of the generator g (which appears twice), see [Vir3], Proposition 4.1. This gives
a quasitriangular Hopf GL,, (K)-coalgebra # = {#4 }yecL, (k). We give here a direct
description of #. For o = (a;,j) € GL,(K), let #, be the K-algebra generated g,

X1,---Xn, Y1, -, Yn, subject to the relations
g2=1, xI=--=x2=0, gxi=-xXig XiXj=—X;X,
Yi=r=yn =00 gy =—yig. Yiyi = —ViVi.

Xiy; —yixi = (i —8i5) &

where 1 <1, j < n. The family # = {#y}aecr, (k) has the following structure of a
crossed Hopf GL,, (K)-coalgebra:

Applg) =g®g, e(@=1Sa(g) =g

n n

Agp(Xi) =1®@x; + > Prixk ®g. &(x;)) =0, Se(xi)= > ax;gxk,
k=1 k=1
Aep(yi) =yi®1+g®yi, &(yi)=0, Su(yi)=—gyi,
n n
Pa(8) =8 Qu(xi)= D arixp, @a(yi)= D Gik Vi,
k=1 k=1

where « = (a;,;), B = (Bi,;) run over GL,(K), (&,;) = « ', and 1 <i < n. The
crossed Hopf GL, (K)-coalgebra J is quasitriangular with R-matrix

_ 1 _
P2
Rop > Xs R ys +xsRgys +8xs @ ys —8xs Q gys
Sc{1,...n}

for all @, 8 € GL,(K). Here x5 = 1, yg = 1, and for a nonempty subset S of
{1,...n}, weset xs = x;, ...x;, and ys = yi, ... Vi, Where i} < --- < i are the
elements of S.
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Remark. Generally speaking, for distinct o, B € GL, (K), the algebras #, and g
are not isomorphic. For example, #, 2 #; for any « € GL,(K) — {1}. It suffices to
prove that

Ho/[He, Hal £ FHr/[Fr, Hi].

Indeed, Hy/[Hy, Ho] = 0 since g = m(xiyj —yjx;) € [Hy, Hq] (for some
| <i.j <nsuchthata;; # & )andso 1 = g2 € [Hy, Hy]. In Hy/[H1, H1],
we have x; = xr g% = 0 (since xxg = gxx = —xrg and so xxg = 0) and likewise

y& = 0. Hence #, /[H#,. #1] = K(g|g*> = 1) # 0.

3.5 Graded quantum groups. Let g be a finite-dimensional complex simple Lie
algebra of rank / with Cartan matrix (a; ;). Let {a’,-}5=1 be coprime integers such
that the matrix (d;a;, ;) is symmetric. Let ¢ be a fixed non-zero complex number and
gi =q% fori =1,2,...,1. We suppose that g7 # 1 for all i.

Recall that the (usual) quantum group Uy, (g) can be obtained as a quotient of the
quantum double of U, (by), where by is the (positive) Borel subalgebra of g (the
quotient is needed to eliminate the second copy of the Cartan subalgebra). Applying
Theorem H to the Hopf algebra U, (by) endowed with an action of (C*)! by Hopf
automorphisms, we obtain the “graded quantum group” introduced in [Vir3], Proposi-
tion 5.1. It can be directly described as follows.

Set G = (C*)!. Fora = (a1, ...,07) € G, let U, (g) be the C-algebra generated

by Kiil, Ei, F;, 1 <i <, subject to the following defining relations:

KiK; = K;K;, KiK;7'=K'K; =1,

a

K,'Ej =qii’jEjK,',
KiF; = q; " FjKi,
a; K; — K1
EiFj— FjE; =8 j———1—,
qi — 4;
l_ai’j 1—a; ; 1—a; j—r
I B R R L
r=
1—a; ;

J —_ o —
3 Y[, BT R =0
r=

The family UqG (8) = {U7(8)}acc has a structure of a crossed Hopf G-coalgebra
given, fora = (a1,...,a7) € G, B = (B1,....B8)) € Gand 1 <i <[, by:

Agp(Ki) = Ki ® Ki,
Ao p(Ei) =BiEi @K +1® Ej,
Aep(Fi)=F,®1+ K '® F.
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e(Ki) =1, e(E;)=¢e(F;) =0,
Sa(Ki):Ki_lv Sa(Ei):_aiEiKi_l, Sa(Fi):_KiFiy
0o(Ki) = Ki,  @u(Ei) = i Ei,  ¢o(F;) = aj 'F;.

Note that (Uq1 (@), A1,1, &, 1) is the usual quantum group Uy (g).

To give a rigorous treatment of R-matrices for the graded quantum groups, we
need /i-adic versions of Hopf G-coalgebras and of graded quantum groups. This is the
content of the next two sections.

3.6 The h-adic case. In this section, we develop an h-adic variant of Hopf G-
coalgebras. Roughly speaking, #-adic Hopf G -coalgebras are obtained by taking the
ring C[[4]] of formal power series as the ground ring and requiring that the algebras
(resp. the tensor products) are complete (resp. completed) in the /-adic topology.

Recall that if V' is a (left) module over C[[A]], then the topology on V for which
the sets {A"V + v | n € N} form a base for neighborhoods of v € V is called the
h-adic topology. For C[[h]]-modules V and W, denote by V' ® W the completion of
V ®cyay W in the h-adic topology.

If V is a complex vector space, then the set V[[A]] of all formal power series
Yoo o vnh™ with coefficients v, € V is a C[[h]]-module called a topologically free
module. Topologically free modules are exactly C[[/]]-modules which are complete,
separated, and torsion-free. Furthermore, V[[1]] ® W([h]] = (V ® W)[[h]] for any
complex vector spaces V' and W'.

An h-adic algebra A is a C[[h]]-module complete in the A-adic topology and en-
dowed with a C[[A]]-linear map m: A ® A — A and an element 1 € A such that
m(idg ® m) = m(m ® idq) and m(idg ® 1) = idy = m(1 ® idy).

By an h-adic Hopf G-coalgebra, we mean a family H = {Hy}qeg of h-adic
algebras endowed with /-adic algebra homomorphisms Ay g: Heg — Hy ® H B
(a, B € G), e: A — C[[h]], and with C[[h]]-linear maps Sy : Hy — H,—1 (@ € G)
satisfying formulas of Section 1.1. It is understood that the algebraic tensor product @
is replaced everywhere by its /-adic completions ®.

The notions of crossed, quasitriangular, and ribbon /-adic Hopf G-coalgebras can
be defined similarly following Sections 2.1 and 2.3.

Theorem H carries over to the #-adic Hopf algebras. The key modifications are that
0: A® B — C[[h]] must be C[[A]]-linear and D(A, B;0,¢) = A ® B.

Theorem J. Let 0: A ® B — C[[h]] be an h-adic Hopf pairing between two h-adic
Hopf algebras A and B. Let ¢: G — Autyopr(A) be an action of G on A by h-adic
Hopf automorphisms. Then the family D(A, B;o,¢) = {D(A, B; 0, ¢y)}acc is an
h-adic Hopf G-coalgebra. Assume furthermore that A and B are topologically free,
o is non-degenerate, and Ryp = ) ;(e; ® 1) @ (14 ® f;) belongs to the h-adic
completion D(A, B;0,¢s) ® D(A, B0, ¢g), where (e;); and (f;); are bases of A
and B dual with respect to 0. Then D(A, B; o, ¢) is quasitriangular with R-matrix
R = {Ra,ﬂ}a,ﬂeG-
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The condition on R, g in the second part of the theorem means the following. Since

A and B are topologically free, A = V[[h]] and B = W [[h]] for some complex vector
spaces V and W. Then

D(A,B;0.¢a) ® D(A, Bio,¢p) = (VW &V ® W)[h]l.

We require that Ry g = > ;(e; ® 1) ® (14 ® f;) can be expanded as Y o, r,h" for
somer, e VRIWRVW.
In the next section, we use Theorem J to define s-adic graded quantum groups.

3.7 h-adic graded quantum groups. Let g be a finite-dimensional complex simple
Lie algebra of rank / with Cartan matrix (a;, ;). Let {d; }f —, be coprime integers such
that the matrix (d;a;,;) is symmetric. Applying Theorem J to the /-adic Hopf algebras
Uy (b)) and Uy (6_) = C[[h]]1 4+ hUy(b_), we obtain (after appropriate quotienting)
quasitriangular “/i-adic graded quantum groups” (see [Vir3], Proposition 6.1). We give
here a direct description of these quantum groups.

Let G = C[[h]) with group operation being addition. For & = (a1,..., ;) € G,
let U;l" (g) be the h-adic algebra generated by the elements H;, E;, Fi, 1 <i <,
subject to the following defining relations:

[Hi, H;] =0,
[Hi, Ej] = a;; Ej,
[Hi. Fj] = —aij Fj

EoFl—s ed,‘ha,‘ed,‘hH,‘ _e—d,‘hH,‘
[ is ]]_ i,j edih—e_dih )
1—a; ; o l—aq: i—

> D T TR EF =00 (0 # ),
r=0
1-ai; l—a: l—a; j—r . .
>, O[T e E T ERF =00 (0 # ).
r=0

The family UhG (g) = U7 (g)}aec has a structure of a crossed h-adic Hopf G-
coalgebra given, for ¢ = (a1,...,07),8 = (B1,....01) € Gand 1 < i < [,
by

Agp(Hi) =H; ® 1 +1® H;, &(H;) =0,

Agp(Ei) = %P E; @ it L 1 ® E;,  (E;) =0,

Nap(F)=F @1 +e %M@ F o(F) =0,

Sa(Hi) = —H;, So(E;) = —e“i" Eje=dimHi 5, (F;) = —e®i"Hi
0u(Hi) = Hi,  ¢o(Ei) = " E;,  o(F;) = e 9ih F;.
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Furthermore, U hG (g) is quasitriangular by Theorem J (the conditions of this theorem

are satisfied by A = Up(b4) and B = (7;,(5_)). For example, for ¢ = sl and
G = C[[h]], the R-matrix of UF (sl) is given by

o0
Rop = " HOM/2 SN R (1) E" @ F" € Ul(sly) & UP (sly)
n=0

forall o, B € C[[h]], where Ry, (h) = q”(”‘H)/z% and ¢ = e”.

n



