Appendix 6 Algebraic properties of Hopf *G*-coalgebras by Alexis Virelizier

Let *G* be a group. The notion of a (ribbon) Hopf *G*-coalgebra was first introduced by Turaev [Tu4], as the prototype algebraic structure whose category of representations is a (ribbon) *G*-category (see Section VIII.1). Recall from Chapter VII that ribbon *G*-categories give rise to invariants of 3-dimensional *G*-manifolds and to 3-dimensional HQFTs with target K(G, 1). Moreover, Hopf *G*-coalgebras may be used directly (without involving their representations) to construct further topological invariants of 3-dimensional *G*-manifolds, see Appendix 7.

Here we review the algebraic properties of Hopf G-coalgebras and provide examples. Most of the results are given without proof, see [Vir1]–[Vir4] for details.

In Section 1, we study the algebraic properties of Hopf *G*-coalgebras, in particular the existence of integrals, the order of the antipode (a generalization of the Radford S^4 -formula), and the (co)semisimplicity (a generalization of the Maschke theorem).

In Section 2, we focus on quasitriangular and ribbon Hopf G-coalgebras. In particular we construct G-traces for ribbon Hopf G-coalgebras, which are used to construct invariants of 3-dimensional G-manifolds in Appendix 7.

In Section 3, we give a method for constructing a quasitriangular Hopf *G*-coalgebra starting from a Hopf algebra endowed with an action of *G* by Hopf automorphisms. This leads to non-trivial examples of quasitriangular Hopf *G*-coalgebras for all finite *G* and for some infinite *G* such as $GL_n(K)$. In particular, we define graded quantum groups.

Throughout this appendix, *G* is a group (with neutral element 1) and *K* is a field. All algebras are supposed to be over *K*, associative, and unital. The tensor product $\otimes = \bigotimes_K$ of *K*-vector spaces is always taken over *K*. If *U* and *V* are *K*-vector spaces, then $\sigma_{U,V} : U \otimes V \to V \otimes U$ denotes the flip defined by $\sigma_{U,V}(u \otimes v) = v \otimes u$ for all $u \in U$ and $v \in V$.

6.1 Hopf G-coalgebras

1.1 Hopf *G***-coalgebras.** We recall, for completeness, the definition of a Hopf *G*-coalgebra from Section VIII.1, but with a minor change: we do not suppose the antipode to be bijective.

A Hopf G-coalgebra (over K) is a family $H = \{H_{\alpha}\}_{\alpha \in G}$ of K-algebras endowed with a family $\Delta = \{\Delta_{\alpha,\beta} : H_{\alpha\beta} \to H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in G}$ of algebra homomorphisms (the *comultiplication*), an algebra homomorphism $\varepsilon \colon H_1 \to K$ (the *counit*), and a family $S = \{S_{\alpha} \colon H_{\alpha} \to H_{\alpha^{-1}}\}_{\alpha \in G}$ of *K*-linear maps (the *antipode*) such that, for all $\alpha, \beta, \gamma \in G$,

$$(\Delta_{\alpha,\beta} \otimes \mathrm{id}_{H_{\gamma}})\Delta_{\alpha\beta,\gamma} = (\mathrm{id}_{H_{\alpha}} \otimes \Delta_{\beta,\gamma})\Delta_{\alpha,\beta\gamma},$$
$$(\mathrm{id}_{H_{\alpha}} \otimes \varepsilon)\Delta_{\alpha,1} = \mathrm{id}_{H_{\alpha}} = (\varepsilon \otimes \mathrm{id}_{H_{\alpha}})\Delta_{1,\alpha},$$
$$m_{\alpha}(S_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}})\Delta_{\alpha^{-1},\alpha} = \varepsilon \ \mathbf{1}_{\alpha} = m_{\alpha}(\mathrm{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}})\Delta_{\alpha,\alpha^{-1}},$$

where m_{α} : $H_{\alpha} \otimes H_{\alpha} \to H_{\alpha}$ and $1_{\alpha} \in H_{\alpha}$ denote multiplication in H_{α} and the unit element of H_{α} .

When G = 1, one recovers the usual notion of a Hopf algebra. In particular, H_1 is a Hopf algebra.

Remark that the notion of a Hopf G-coalgebra is not self-dual (the dual notion obtained by reversing the arrows in the definition may be called a Hopf G-algebra).

If $H = \{H_{\alpha}\}_{\alpha \in G}$ is a Hopf *G*-coalgebra, then the set $\{\alpha \in G \mid H_{\alpha} \neq 0\}$ is a subgroup of *G*. Also, if *G'* is a subgroup of *G*, then $H = \{H_{\alpha}\}_{\alpha \in G'}$ is a Hopf *G'*-coalgebra.

The antipode *S* of a Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is anti-multiplicative (in the sense that each $S_{\alpha} : H_{\alpha} \to H_{\alpha^{-1}}$ is an anti-homomorphism of algebras) and anticomultiplicative in the sense that $\Delta_{\beta^{-1},\alpha^{-1}}S_{\alpha\beta} = \sigma_{H_{\alpha^{-1}},H_{\beta^{-1}}}(S_{\alpha} \otimes S_{\beta})\Delta_{\alpha,\beta}$ for all $\alpha, \beta \in G$ and $\varepsilon S_1 = \varepsilon$; see [Vir2], Lemma 1.1.

A Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is said to be of *finite type* if, for all $\alpha \in G$, H_{α} is finite-dimensional (over *K*). Note that the direct sum $\bigoplus_{\alpha \in G} H_{\alpha}$ is finite-dimensional if and only if *H* is of finite type and $H_{\alpha} = 0$ for all but a finite number of $\alpha \in G$.

The antipode $S = \{S_{\alpha}\}_{\alpha \in G}$ of $H = \{H_{\alpha}\}_{\alpha \in G}$ is said to be *bijective* if each S_{α} is bijective. Unlike in Section VIII.1, we do not suppose that the antipode of a Hopf *G*-coalgebra is bijective. As for Hopf algebras, the antipode of a Hopf *G*-coalgebra *H* is necessarily bijective if *H* is of finite type (see Section 1.5) or *H* is quasitriangular (see Section 2.4).

1.2 The case of finite *G*. Suppose that *G* is a finite group. Recall that the Hopf algebra K^G of functions on *G* has a basis $(e_{\alpha} : G \to K)_{\alpha \in G}$ defined by $e_{\alpha}(\beta) = \delta_{\alpha,\beta}$ where $\delta_{\alpha,\alpha} = 1$ and $\delta_{\alpha,\beta} = 0$ if $\alpha \neq \beta$. The structure maps of K^G are given by

$$e_{\alpha}e_{\beta} = \delta_{\alpha,\beta} e_{\alpha}, \quad 1_{K^G} = \sum_{\alpha \in G} e_{\alpha}, \quad \Delta(e_{\alpha}) = \sum_{\beta \gamma = \alpha} e_{\beta} \otimes e_{\gamma}, \quad \varepsilon(e_{\alpha}) = \delta_{\alpha,1},$$

and $S(e_{\alpha}) = e_{\alpha^{-1}}$. A *central prolongation* of K^G is a Hopf algebra A endowed with a morphism of Hopf algebras $K^G \to A$, called the *central map*, which carries K^G into the center of A.

Since G is finite, any Hopf G-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ gives rise to a Hopf algebra $\tilde{H} = \bigoplus_{\alpha \in G} H_{\alpha}$ with structure maps given by

$$\widetilde{\Delta}|_{H_{\alpha}} = \sum_{\beta\gamma = \alpha} \Delta_{\beta,\gamma}, \quad \widetilde{\varepsilon}|_{H_{\alpha}} = \delta_{\alpha,1} \,\varepsilon, \quad \widetilde{m}|_{H_{\alpha} \otimes H_{\beta}} = \delta_{\alpha,\beta} \, m_{\alpha}, \quad \widetilde{1} = \sum_{\alpha \in G} 1_{\alpha},$$

and $\tilde{S} = \sum_{\alpha \in G} S_{\alpha}$. The *K*-linear map $K^G \to \tilde{H}$ defined by $e_{\alpha} \mapsto 1_{\alpha}$ gives rise to a morphism of Hopf algebras which carries K^G into the center of \tilde{H} . Hence \tilde{H} is a central prolongation of K^G .

The correspondence assigning to every Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ the central prolongation $K^G \to \tilde{H}$ is bijective. Given a Hopf algebra $(A, m, 1, \Delta, \varepsilon, S)$ which is a central prolongation of K^G , set $H_{\alpha} = A1_{\alpha}$, where $1_{\alpha} \in A$ is the image of $e_{\alpha} \in K^G$ under the central map $K^G \to A$. Then the family $\{H_{\alpha}\}_{\alpha \in G}$ is a Hopf *G*-coalgebra with structure maps given by

$$m_{\alpha} = 1_{\alpha} \cdot m|_{H_{\alpha} \otimes H_{\alpha}}, \quad \Delta_{\alpha,\beta} = (1_{\alpha} \otimes 1_{\beta}) \cdot \Delta|_{H_{\alpha\beta}}, \quad \varepsilon = \varepsilon|_{H_1}, \quad S_{\alpha} = 1_{\alpha^{-1}} \cdot S|_{H_{\alpha}}$$

1.3 Integrals. Recall that a left (resp. right) integral for a Hopf algebra $(A, \Delta, \varepsilon, S)$ is an element $\Lambda \in A$ such that $x\Lambda = \varepsilon(x)\Lambda$ (resp. $\Lambda x = \varepsilon(x)\Lambda$) for all $x \in A$. A left (resp. right) integral for the dual Hopf algebra A^* is a *K*-linear form $\lambda \in A^* = \text{Hom}_K(A, K)$ such that $(\text{id}_A \otimes \lambda)\Delta(x) = \lambda(x)\mathbf{1}_A$ (resp. $(\lambda \otimes \text{id}_A)\Delta(x) = \lambda(x)\mathbf{1}_A$) for all $x \in A$.

A *left* (resp. *right*) *G*-integral for a Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is a family of *K*-linear forms $\lambda = (\lambda_{\alpha})_{\alpha \in G} \in \prod_{\alpha \in G} H_{\alpha}^*$ such that

$$(\mathrm{id}_{H_{\alpha}} \otimes \lambda_{\beta}) \Delta_{\alpha,\beta}(x) = \lambda_{\alpha\beta}(x) \mathbf{1}_{\alpha} \text{ (resp. } (\lambda_{\alpha} \otimes \mathrm{id}_{H_{\beta}}) \Delta_{\alpha,\beta}(x) = \lambda_{\alpha\beta}(x) \mathbf{1}_{\beta})$$

for all $\alpha, \beta \in G$ and $x \in H_{\alpha\beta}$. Note that λ_1 is a usual left (resp. right) integral for the Hopf algebra H_1^* .

A *G*-integral $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ is said to be *non-zero* if $\lambda_{\beta} \neq 0$ for some $\beta \in G$. Given a non-zero *G*-integral $\lambda = (\lambda_{\alpha})_{\alpha \in G}$, we have $\lambda_{\alpha} \neq 0$ for all $\alpha \in G$ such that $H_{\alpha} \neq 0$. In particular $\lambda_1 \neq 0$.

It is known that the K-vector space of left (resp. right) integrals for a finite-dimensional Hopf algebra is one-dimensional. This extends to Hopf G-coalgebras as follows.

Theorem A ([Vir2], Theorem 3.6). Let H be a Hopf G-coalgebra of finite type. Then the vector space of left (resp. right) G-integrals for H is one-dimensional.

The proof of this theorem is based on the fact that a Hopf G-comodule has a canonical decomposition generalizing the fundamental decomposition theorem in the theory of Hopf modules.

1.4 Grouplike elements. A family $g = (g_{\alpha})_{\alpha \in G} \in \prod_{\alpha \in G} H_{\alpha}$ such that $\Delta_{\alpha,\beta}(g_{\alpha\beta}) = g_{\alpha} \otimes g_{\beta}$ for all $\alpha, \beta \in G$ and $\varepsilon(g_1) = 1_K$ is called a *G*-grouplike element of a Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$. Note that g_1 is then a grouplike element of the Hopf algebra H_1 in the usual sense of the word.

One easily checks that the set Gr(H) of *G*-grouplike elements of *H* is a group with respect to coordinate-wise multiplication in the product monoid $\prod_{\alpha \in G} H_{\alpha}$. If $g = (g_{\alpha})_{\alpha \in G} \in Gr(H)$, then $g^{-1} = (S_{\alpha^{-1}}(g_{\alpha^{-1}}))_{\alpha \in G}$. The group $Hom(G, K^*)$ of homomorphisms $G \to K^*$ acts on Gr(H) by $\phi g = (\phi(\alpha)g_{\alpha})_{\alpha \in G}$ for arbitrary $\phi \in Hom(G, K^*)$ and $g = (g_{\alpha})_{\alpha \in G} \in Gr(H)$.

1.5 The distinguished *G*-grouplike element. Throughout this subsection, $H = \{H_{\alpha}\}_{\alpha \in G}$ is a Hopf *G*-coalgebra of finite type with antipode $S = \{S_{\alpha}\}_{\alpha \in G}$. Using Theorem A, one verifies that there is a unique *G*-grouplike element $g = (g_{\alpha})_{\alpha \in G}$ of *H*, called the *distinguished G*-grouplike element of *H*, such that $(\operatorname{id}_{H_{\alpha}} \otimes \lambda_{\beta}) \Delta_{\alpha,\beta} = \lambda_{\alpha\beta} g_{\alpha}$ for any right *G*-integral $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ and all $\alpha, \beta \in G$. Note that g_1 is the distinguished grouplike element of H_1 .

Since H_1 is a finite-dimensional Hopf algebra, there exists a unique algebra morphism $v: H_1 \to K$ such that if Λ is a left integral for H_1 , then $\Lambda x = v(x)\Lambda$ for all $x \in H_1$. This morphism is a grouplike element of the Hopf algebra H_1^* , called the *distinguished grouplike element of* H_1^* . It is invertible in H_1^* and its inverse v^{-1} is also an algebra morphism. Moreover, if Λ is a right integral for H_1 , then $x\Lambda = v^{-1}(x)\Lambda$ for all $x \in H_1$.

For all $\alpha \in G$, we define a left and a right H_1^* -action on H_α by setting, for all $f \in H_1^*$ and $a \in H_\alpha$,

$$f \rightharpoonup a = (\mathrm{id}_{H_{\alpha}} \otimes f) \Delta_{\alpha,1}(a)$$
 and $a \leftarrow f = (f \otimes \mathrm{id}_{H_{\alpha}}) \Delta_{1,\alpha}(a).$

The next assertion generalizes Theorem 3 of [Rad4]. This is a key result in the theory of Hopf *G*-coalgebras. It is used in particular to prove the existence of traces (see Section 2.8).

Theorem B ([Vir2], Theorem 4.2). Let $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ be a right *G*-integral for *H*. Then, for all $\alpha \in G$ and $x, y \in H_{\alpha}$,

(a) $\lambda_{\alpha}(xy) = \lambda_{\alpha}(S_{\alpha^{-1}}S_{\alpha}(y \leftarrow v)x);$ (b) $\lambda_{\alpha}(xy) = \lambda_{\alpha}(y S_{\alpha^{-1}}S_{\alpha}(v^{-1} \rightharpoonup g_{\alpha}^{-1}xg_{\alpha}));$ (c) $\lambda_{\alpha^{-1}}(S_{\alpha}(x)) = \lambda_{\alpha}(g_{\alpha}x).$

As a corollary we obtain a generalization of the celebrated Radford S^4 -formula to Hopf *G*-coalgebras:

Corollary C ([Vir2], Lemma 4.6). Let $H = \{H_{\alpha}\}_{\alpha \in G}$ be a Hopf *G*-coalgebra of finite type. Then for all $\alpha \in G$ and $x \in H_{\alpha}$,

$$(S_{\alpha^{-1}}S_{\alpha})^2(x) = g_{\alpha}(\nu \rightharpoonup x \leftarrow \nu^{-1})g_{\alpha}^{-1}.$$

This formula implies in particular that the antipode *S* of *H* is bijective (i.e., each S_{α} is bijective).

1.6 The order of the antipode. It is known that the order of the antipode of a finitedimensional Hopf algebra is finite ([Rad1], Theorem 1) and divides four times the dimension of the algebra ([NZ], Proposition 3.1). We apply this result to study a Hopf *G*-coalgebra of finite type $H = \{H_{\alpha}\}_{\alpha \in G}$ with antipode $S = \{S_{\alpha}\}_{\alpha \in G}$. Let α be an element of *G* of finite order *d*. Denote by $\langle \alpha \rangle$ the subgroup of *G* generated by α . By considering the finite-dimensional Hopf algebra $\bigoplus_{\beta \in \langle \alpha \rangle} H_{\beta}$ (determined by the Hopf $\langle \alpha \rangle$ -coalgebra $\{H_{\beta}\}_{\beta \in \langle \alpha \rangle}$, see Section 1.2), we obtain that the order of $S_{\alpha^{-1}}S_{\alpha} \in \operatorname{Aut}_{Alg}(H_{\alpha})$ is finite and divides $2\sum_{\beta \in \langle \alpha \rangle} \dim H_{\beta}$. From Corollary C, we obtain another upper bound on the order of $S_{\alpha^{-1}}S_{\alpha}$: if $\alpha \in G$ has a finite order *d*, then the order of $S_{\alpha^{-1}}S_{\alpha}$ divides $2d \dim H_1$; see [Vir2], Corollary 4.5.

1.7 Semisimplicity. A Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is said to be *semisimple* if each algebra H_{α} is semisimple. For *H* to be semisimple it is necessary that H_1 be finite-dimensional (since an infinite-dimensional Hopf algebra over a field is not semisimple, see [Sw], Corollary 2.7). When *H* is of finite type, *H* is semisimple if and only if H_1 is semisimple, see [Vir2], Lemma 5.1.

1.8 Cosemisimplicity. The notion of a comodule over a coalgebra may be extended to the setting of Hopf *G*-coalgebras. A *right G*-comodule over a Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is a family $M = \{M_{\alpha}\}_{\alpha \in G}$ of *K*-vector spaces endowed with a family of *K*-linear maps

$$\rho = \{\rho_{\alpha,\beta} \colon M_{\alpha\beta} \to M_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in G}$$

such that

$$(\rho_{\alpha,\beta} \otimes \mathrm{id}_{H_{\gamma}})\rho_{\alpha\beta,\gamma} = (\mathrm{id}_{M_{\alpha}} \otimes \Delta_{\beta,\gamma})\rho_{\alpha,\beta\gamma} \text{ and } (\mathrm{id}_{M_{\alpha}} \otimes \varepsilon)\rho_{\alpha,1} = \mathrm{id}_{M_{\alpha}}$$

for all $\alpha, \beta, \gamma \in G$. A *G*-subcomodule of *M* is a family $N = \{N_{\alpha}\}_{\alpha \in G}$, where N_{α} is a *K*-subspace of M_{α} , such that $\rho_{\alpha,\beta}(N_{\alpha\beta}) \subset N_{\alpha} \otimes H_{\beta}$ for all $\alpha, \beta \in G$. The sums and direct sums for families of *G*-subcomodules of a right *G*-comodule are defined in the obvious way.

A right G-comodule $M = \{M_{\alpha}\}_{\alpha \in G}$ is said to be *simple* if it is *non-zero* (i.e., $M_{\alpha} \neq 0$ for some $\alpha \in G$) and if it has no G-subcomodules other than itself and the trivial one $0 = \{0\}_{\alpha \in G}$. A right G-comodule which is a direct sum of a family of simple G-subcomodules is said to be *cosemisimple*. Note that all G-subcomodules and all quotients of a cosemisimple right G-comodule are cosemisimple.

A Hopf G-coalgebra is cosemisimple if it is cosemisimple as a right G-comodule over itself (with comultiplication as comodule map). By [Vir2], a Hopf G-coalgebra

 $H = \{H_{\alpha}\}_{\alpha \in G}$ is cosemisimple if and only if every reduced¹ right *G*-comodule over *H* is cosemisimple.

We state a Hopf G-coalgebra version of the dual Maschke theorem.

Theorem D ([Vir2], Theorem 5.4). A Hopf G-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is cosemisimple if and only if there exists a right G-integral $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ for H such that $\lambda_{\alpha}(1_{\alpha}) = 1_K$ for some $\alpha \in G$ (and then $\lambda_{\alpha}(1_{\alpha}) = 1_K$ for all $\alpha \in G$ with $H_{\alpha} \neq 0$).

As corollaries, we obtain that a Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ of finite type is cosemisimple if and only if the Hopf algebra H_1 is cosemisimple, and that the distinguished *G*-grouplike element of a cosemisimple Hopf *G*-coalgebra of finite type is trivial.

1.9 Involutory Hopf *G***-coalgebras.** A Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is *involutory* if its antipode $S = \{S_{\alpha}\}_{\alpha \in \pi}$ satisfies the identity $S_{\alpha^{-1}}S_{\alpha} = id_{H_{\alpha}}$ for all $\alpha \in \pi$.

Involutory Hopf *G*-coalgebras of finite type have special properties. For example, each of their *G*-integrals $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ is two sided, *S*-invariant $(\lambda_{\alpha^{-1}}S_{\alpha} = \lambda_{\alpha}$ for all $\alpha \in G$), and symmetric $(\lambda_{\alpha}(xy) = \lambda_{\alpha}(yx)$ for all $\alpha \in G$ and $x, y \in H_{\alpha}$). Also if the ground field *K* of *H* is of characteristic 0, then dim $H_{\alpha} = \dim H_1$ whenever $H_{\alpha} \neq 0$.

Finally, if $H = \{H_{\alpha}\}_{\alpha \in G}$ is an involutory Hopf *G*-coalgebra of finite type over a field whose characteristic does not divide dim H_1 , then *H* is semisimple and cosemisimple; see [Vir4], Lemma 3.

6.2 Quasitriangular Hopf G-coalgebras

2.1 Crossed Hopf *G***-coalgebras.** A Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is *crossed* if it is endowed with a *crossing*, that is, a family of algebra isomorphisms $\varphi = \{\varphi_{\beta} : H_{\alpha} \rightarrow H_{\beta\alpha\beta^{-1}}\}_{\alpha,\beta\in G}$ such that

$$(\varphi_{\beta} \otimes \varphi_{\beta}) \Delta_{\alpha,\gamma} = \Delta_{\beta\alpha\beta^{-1},\beta\gamma\beta^{-1}} \varphi_{\beta}, \quad \varepsilon \varphi_{\beta} = \varepsilon, \text{ and } \varphi_{\alpha\beta} = \varphi_{\alpha} \varphi_{\beta}$$

for all $\alpha, \beta, \gamma \in G$. One easily verifies that a crossing preserves the antipode, that is, $\varphi_{\beta}S_{\alpha} = S_{\beta\alpha\beta^{-1}}\varphi_{\beta}$ for all $\alpha, \beta \in G$. Therefore this definition of a crossed Hopf *G*-coalgebra is equivalent to the one in Chapter VIII.

A crossing φ in H yields a group homomorphism $\varphi: G \to \operatorname{Aut}_{\operatorname{Hopf}}(H_1)$ and determines thus an action of G on H_1 by Hopf algebra automorphisms. Here for a Hopf algebra A, we denote $\operatorname{Aut}_{\operatorname{Hopf}}(A)$ the group of Hopf automorphisms of A.

If G is an abelian group, then any Hopf G-coalgebra admits a *trivial crossing* $\varphi_{\beta} = \text{id for all } \beta \in G$.

When G is a finite group, the notion of a crossing can be described in terms of central prolongations of K^G (see Section 1.2): a *crossing* of a central prolongation A

¹A right *G*-comodule $M = \{M_{\alpha}\}_{\alpha \in G}$ over *H* is *reduced* if $M_{\alpha} = 0$ whenever $H_{\alpha} = 0$.

of K^G is a group homomorphism $\varphi \colon G \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ such that $\varphi_\beta(1_\alpha) = 1_{\beta\alpha\beta^{-1}}$ for all $\alpha, \beta \in G$, where 1_α is the image of $e_\alpha \in K^G$ under the central map $K^G \to A$.

2.2 The distinguished character. Let $H = \{H_{\alpha}\}_{\alpha \in G}$ be a crossed Hopf *G*-coalgebra of finite type with crossing φ . Using the uniqueness of *G*-integrals (see Theorem A), one can show the existence of a unique group homomorphism $\hat{\varphi} \colon G \to K^*$, called the *distinguished character of* H, such that $\lambda_{\beta\alpha\beta^{-1}}\varphi_{\beta} = \hat{\varphi}(\beta) \lambda_{\alpha}$ for any left or right *G*-integral $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ for H and all $\alpha, \beta \in G$.

Lemma E ([Vir2], Lemma 6.3). For any $\beta \in G$,

- (a) If Λ is a left or right integral for H_1 , then $\varphi_\beta(\Lambda) = \hat{\varphi}(\beta)\Lambda$.
- (b) If v is the distinguished grouplike element of H_1^* , then $v\varphi_{\beta} = v$.
- (c) If $g = (g_{\alpha})_{\alpha \in G}$ is the distinguished *G*-grouplike element of *H*, then $\varphi_{\beta}(g_{\alpha}) = g_{\beta\alpha\beta^{-1}}$ for all $\alpha \in G$.

2.3 Quasitriangular Hopf *G***-coalgebras.** Following Chapter VIII, we call a crossed Hopf *G*-coalgebra ($H = \{H_{\alpha}\}_{\alpha \in G}, \varphi$) quasitriangular if it is endowed with an *R*-matrix, that is, a family $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in G}$ of invertible elements such that, for all $\alpha, \beta, \gamma \in G$ and $x \in H_{\alpha\beta}$,

$$R_{\alpha,\beta} \cdot \Delta_{\alpha,\beta}(x) = \sigma_{\beta,\alpha}(\varphi_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}})\Delta_{\alpha\beta\alpha^{-1},\alpha}(x) \cdot R_{\alpha,\beta},$$

(id<sub>H_{\alpha}\overline \Delta_{\beta,\gamma}})(R_{\alpha,\beta\geq}) = (R_{\alpha,\gamma})_{1\beta_3} \cdot (R_{\alpha,\beta})_{12\gamma},
(\Delta_{\alpha,\beta} \otimes \mathrm{id}_{H_\gamma})(R_{\alpha\beta,\gamma}) = [(\mathrm{id}_{H_\alpha} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta_3} \cdot (R_{\beta,\gamma\beta})_{\alpha^{-2}3},
(\varphi_\beta \otimes \varphi_\beta)(R_{\alpha,\gamma\beta}) = R_{\beta\beta^{-1},\beta\gamma\beta^{-1}}.</sub>

Here $\sigma_{\beta,\alpha}$ denotes the flip $H_{\beta} \otimes H_{\alpha} \to H_{\alpha} \otimes H_{\beta}$ and, for *K*-vector spaces *P*, *Q* and $r = \sum_{j} p_{j} \otimes q_{j} \in P \otimes Q$, we set

$$r_{12\gamma} = r \otimes 1_{\gamma} \in P \otimes Q \otimes H_{\gamma}, \quad r_{\alpha 23} = 1_{\alpha} \otimes r \in H_{\alpha} \otimes P \otimes Q,$$

and $r_{1\beta_3} = \sum_j p_j \otimes 1_\beta \otimes q_j \in P \otimes H_\beta \otimes Q$. Note that $R_{1,1}$ is an *R*-matrix for the Hopf algebra H_1 is the usual sense of the word.

When G is abelian and φ is the trivial crossing, we recover the definition of a quasitriangular G-colored Hopf algebra due to Ohtsuki [Oh1].

An R-matrix for a crossed Hopf G-coalgebra provides a solution of the G-colored Yang–Baxter equation

$$(R_{\beta,\gamma})_{\alpha 23} \cdot (R_{\alpha,\gamma})_{1\beta 3} \cdot (R_{\alpha,\beta})_{12\gamma} = (R_{\alpha,\beta})_{12\gamma} \cdot [(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta 3} \cdot (R_{\beta,\gamma})_{\alpha 23}$$

and satisfies the following identities (see [Vir2], Lemma 6.4): for all $\alpha, \beta, \gamma \in G$,

$$(\varepsilon \otimes \mathrm{id}_{H_{\alpha}})(R_{1,\alpha}) = 1_{\alpha} = (\mathrm{id}_{H_{\alpha}} \otimes \varepsilon)(R_{\alpha,1}),$$

$$(S_{\alpha^{-1}}\varphi_{\alpha} \otimes \mathrm{id}_{H_{\beta}})(R_{\alpha^{-1},\beta}) = R_{\alpha,\beta}^{-1} \quad \text{and} \quad (\mathrm{id}_{H_{\alpha}} \otimes S_{\beta})(R_{\alpha,\beta}^{-1}) = R_{\alpha,\beta^{-1}},$$

$$(S_{\alpha} \otimes S_{\beta})(R_{\alpha,\beta}) = (\varphi_{\alpha} \otimes \mathrm{id}_{H_{\beta^{-1}}})(R_{\alpha^{-1},\beta^{-1}}).$$

2.4 The Drinfeld element. The *Drinfeld element* of a quasitriangular Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is the family $u = (u_{\alpha})_{\alpha \in G} \in \prod_{\alpha \in G} H_{\alpha}$, where

$$u_{\alpha} = m_{\alpha}(S_{\alpha^{-1}}\varphi_{\alpha} \otimes \mathrm{id}_{H_{\alpha}}) \,\sigma_{\alpha,\alpha^{-1}}(R_{\alpha,\alpha^{-1}}).$$

Observe that u_1 is the Drinfeld element of the quasitriangular Hopf algebra H_1 (see [Drin2]). By [Vir2], Lemma 6.5, each u_{α} is invertible in H_{α} and

$$u_{\alpha}^{-1} = m_{\alpha}(\mathrm{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}}S_{\alpha}) \, \sigma_{\alpha,\alpha}(R_{\alpha,\alpha}).$$

Moreover, for any $\alpha \in G$ and $x \in H$,

$$S_{\alpha^{-1}}S_{\alpha}(x) = u_{\alpha}\varphi_{\alpha^{-1}}(x)u_{\alpha}^{-1},$$

where φ is the crossing in H. This implies that the antipode of H is bijective.

Note also the identities $\varepsilon(u_1) = 1$, $\varphi_\beta(u_\alpha) = u_{\beta\alpha\beta^{-1}}$, and

$$\Delta_{\alpha,\beta}(u_{\alpha\beta}) = [\sigma_{\beta,\alpha}(\mathrm{id}_{H_{\beta}} \otimes \varphi_{\alpha})(R_{\beta,\alpha}) \cdot R_{\alpha,\beta}]^{-1} \cdot (u_{\alpha} \otimes u_{\beta}).$$

2.5 Ribbon Hopf *G***-coalgebras.** Following Chapter VIII, we call a quasitriangular Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ ribbon if it is endowed with a *twist*, that is, a family of invertible elements $\theta = \{\theta_{\alpha} \in H_{\alpha}\}_{\alpha \in G}$ such that for all $\alpha, \beta \in G$ and $x \in H_{\alpha}$,

$$\varphi_{\alpha}(x) = \theta_{\alpha}^{-1} x \theta_{\alpha}, \quad S_{\alpha}(\theta_{\alpha}) = \theta_{\alpha}^{-1}, \quad \varphi_{\beta}(\theta_{\alpha}) = \theta_{\beta\alpha\beta}^{-1},$$
$$\Delta_{\alpha,\beta}(\theta_{\alpha\beta}) = (\theta_{\alpha} \otimes \theta_{\beta}) \cdot \sigma_{\beta,\alpha}(\mathrm{id}_{H_{\beta}} \otimes \varphi_{\alpha})(R_{\beta,\alpha}) \cdot R_{\alpha,\beta}.$$

Note that θ_1 is a twist of the quasitriangular Hopf algebra H_1 , and so $\varepsilon(\theta_1) = 1$. If $\alpha \in G$ has a finite order d, then θ_{α}^d is a central element of H_{α} . In particular, θ_1 is central in H_1 .

Example. Let *G* be a group and $c: G \times G \to K^*$ be a bicharacter of *G*, that is, $c(\alpha, \beta\gamma) = c(\alpha, \beta) c(\alpha, \gamma)$ and $c(\alpha\beta, \gamma) = c(\alpha, \gamma) c(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in G$. Consider the following crossed Hopf algebra K^c : for all $\alpha, \beta \in G$, we have $K^c_{\alpha} = K$ as an algebra and

$$\Delta_{\alpha,\beta}(1_K) = 1_K \otimes 1_K, \quad \varepsilon(1_K) = 1_K, \quad S_\alpha(1_K) = 1_K, \quad \varphi_\beta(1_K) = 1_K.$$

Then K^c is a ribbon Hopf *G*-coalgebra of finite type with *R*-matrix and twist given by $R_{\alpha,\beta} = c(\alpha,\beta) \mathbf{1}_K \otimes \mathbf{1}_K$ and $\theta_{\alpha} = c(\alpha,\alpha)$. The Drinfeld elements of K^c are computed by $u_{\alpha} = c(\alpha,\alpha)^{-1}$.

2.6 The spherical *G***-grouplike element.** Let $H = \{H_{\alpha}\}_{\alpha \in G}$ be a ribbon Hopf *G*-coalgebra with Drinfeld element $u = (u_{\alpha})_{\alpha \in G}$. For any $\alpha \in G$, set

$$w_{\alpha} = \theta_{\alpha} u_{\alpha} = u_{\alpha} \theta_{\alpha} \in H_{\alpha}.$$

Then $w = (w_{\alpha})_{\alpha \in G}$ is a *G*-grouplike element, called the *spherical G*-grouplike element of *H*. It satisfies the identities

$$\varphi_{\beta}(w_{\alpha}) = w_{\beta\alpha\beta^{-1}}, \quad S_{\alpha}(u_{\alpha}) = w_{\alpha^{-1}}^{-1}u_{\alpha^{-1}}w_{\alpha^{-1}}^{-1}, \text{ and } S_{\alpha^{-1}}S_{\alpha}(x) = w_{\alpha}xw_{\alpha}^{-1}$$

for all $\alpha, \beta \in G$ and $x \in H_{\alpha}$. Conversely, any *G*-grouplike element $w = (w_{\alpha})_{\alpha \in G}$ of a quasitriangular Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ which satisfies these identities gives rise to a twist $\theta = (\theta_{\alpha})_{\alpha \in G}$ in *H* by $\theta_{\alpha} = w_{\alpha}u_{\alpha}^{-1} = u_{\alpha}^{-1}w_{\alpha}$.

2.7 Further *G***-grouplike elements.** Let $H = \{H_{\alpha}\}_{\alpha \in G}$ be a quasitriangular Hopf *G*-coalgebra of finite type. Set

$$\ell_{\alpha} = S_{\alpha^{-1}}(u_{\alpha^{-1}})^{-1}u_{\alpha} = u_{\alpha} S_{\alpha^{-1}}(u_{\alpha^{-1}})^{-1} \in H_{\alpha},$$

where $u = (u_{\alpha})_{\alpha \in G}$ is the Drinfeld element of H. The properties of u ensure that $\ell = (\ell_{\alpha})_{\alpha \in G}$ is a *G*-grouplike element of H. Let v be the distinguished grouplike element of H_1^* and $\hat{\varphi}$ be the distinguished character of H (see Sections 1.5 and 2.2). Denoting $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in G}$ the *R*-matrix of H, set

$$h_{\alpha} = (\mathrm{id}_{H_{\alpha}} \otimes \nu)(R_{\alpha,1}) \in H_{\alpha}.$$

Theorem F ([Vir2], Theorem 6.9). The family $h = (h_{\alpha})_{\alpha \in G}$ is a *G*-grouplike element of *H*. The distinguished *G*-grouplike element $(g_{\alpha})_{\alpha \in G}$ of *H* is computed by $g_{\alpha} = \hat{\varphi}(\alpha)^{-1} \ell_{\alpha} h_{\alpha}$ for all $\alpha \in G$.

For ribbon *H*, we obtain as a corollary that $g_{\alpha} = \hat{\varphi}(\alpha)^{-1} w_{\alpha}^2 h_{\alpha}$ for all $\alpha \in G$, where $w = (w_{\alpha})_{\alpha \in G}$ is the spherical *G*-grouplike element of *H*.

2.8 Traces. Let $H = \{H_{\alpha}\}_{\alpha \in G}$ be a crossed Hopf *G*-coalgebra. A *G*-trace for *H* is a family of *K*-linear forms tr = $(tr_{\alpha})_{\alpha \in G} \in \prod_{\alpha \in G} H_{\alpha}^*$ such that

$$\operatorname{tr}_{\alpha}(xy) = \operatorname{tr}_{\alpha}(yx), \quad \operatorname{tr}_{\alpha^{-1}}(S_{\alpha}(x)) = \operatorname{tr}_{\alpha}(x), \quad \text{and} \quad \operatorname{tr}_{\beta\alpha\beta^{-1}}(\varphi_{\beta}(x)) = \operatorname{tr}_{\alpha}(x)$$

for all $\alpha, \beta \in G$ and $x, y \in H_{\alpha}$. Note that tr₁ is a usual trace for the Hopf algebra H_1 , which is invariant under the action φ of G.

A Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ is *unimodular* if the Hopf algebra H_1 is unimodular (that is the spaces of left and right integrals for H_1 coincide). If H_1 is finite-dimensional, then *H* is unimodular if and only if $\nu = \varepsilon$, where ν is the distinguished grouplike element of H_1^* . For example, any finite type semisimple Hopf *G*-coalgebra is unimodular. Consider in more detail a unimodular ribbon Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$ of finite type. Let $\lambda = (\lambda_{\alpha})_{\alpha \in G}$ be a non-zero right *G*-integral for $H, w = (w_{\alpha})_{\alpha \in G}$ be the spherical *G*-grouplike element of *H*, and $\hat{\varphi}$ be the distinguished character of *H*.

Using Theorems B and F, we obtain that the *G*-traces for *H* are parameterized by families $z = (z_{\alpha})_{\alpha \in G}$ such that $z_{\alpha} \in H_{\alpha}$ is central, $S_{\alpha}(z_{\alpha}) = \hat{\varphi}(\alpha)^{-1} z_{\alpha^{-1}}$, and $\varphi_{\beta}(z_{\alpha}) = \hat{\varphi}(\beta) z_{\beta\alpha\beta^{-1}}$ for all $\alpha, \beta \in G$. The *G*-trace corresponding to such a family *z* is given by tr_{α}(*x*) = $\lambda_{\alpha}(w_{\alpha}z_{\alpha}x)$. We point out two such families.

Let Λ be a left integral for H_1 such that $\lambda_1(\Lambda) = 1$. Set $z_1 = \Lambda$ and $z_{\alpha} = 0$ if $\alpha \neq 1$. The resulting family $(z_{\alpha})_{\alpha \in G}$ satisfies all the conditions above since H is unimodular (and so Λ is central and $S_1(\Lambda) = \Lambda$) and by Lemma E (a). The corresponding G-trace is given by tr₁ = ε and tr_{α} = 0 for all $\alpha \neq 1$.

If $\hat{\varphi}(\alpha) = 1$ for all $\alpha \in G$, then another possible choice of a family z is $z_{\alpha} = 1_{\alpha}$ for all α . Note that $\hat{\varphi} = 1$ if H is semisimple or cosemisimple or if $\lambda_1(\theta_1) \neq 0$, where $\theta = \{\theta_{\alpha}\}_{\alpha \in G}$ is the twist of H. We obtain the following assertion.

Theorem G ([Vir2], Theorem 7.4). Suppose under the assumptions above that at least one of the following four conditions is satisfied: H is semisimple, or H is cosemisimple, or $\lambda_1(\theta_1) \neq 0$, or $\varphi_\beta|_{H_1} = \operatorname{id}_{H_1}$ for all $\beta \in G$. Then the family of K-linear maps tr = $(\operatorname{tr}_{\alpha})_{\alpha \in G}$, defined by $\operatorname{tr}_{\alpha}(x) = \lambda_{\alpha}(w_{\alpha}x)$ for all $x \in H_{\alpha}$, is a G-trace for H.

6.3 The twisted double construction

Starting from a crossed Hopf *G*-coalgebra $H = \{H_{\alpha}\}_{\alpha \in G}$, Zunino [Zu1] constructed a double $Z(H) = \{Z(H)_{\alpha}\}_{\alpha \in G}$ of *H* which is a quasitriangular Hopf *G*-coalgebra containing *H* as a Hopf *G*-subcoalgebra. As a vector space, $Z(H)_{\alpha} = H_{\alpha} \otimes (\bigoplus_{\beta \in G} H_{\beta}^*)$. Generally speaking, Z(H) is not of finite type: the components $Z(H)_{\alpha}$ may be infinite-dimensional.

In this section we provide a method, called the twisted double construction, for deriving quasitriangular Hopf *G*-coalgebras of finite type from finite-dimensional Hopf algebras endowed with action of *G* by Hopf automorphisms (cf. Section 2.1). We also give an *h*-adic version of this construction. This will lead us to non-trivial examples of quasitriangular Hopf *G*-coalgebras for any finite group *G* and for infinite groups *G* such as $GL_n(K)$. In particular, we define the (*h*-adic) graded quantum groups.

3.1 Hopf pairings. Recall that a *Hopf pairing* between two Hopf algebras A and B (over K) is a bilinear pairing $\sigma : A \times B \to K$ such that, for all $a, a' \in A$ and $b, b' \in B$,

$$\begin{aligned} \sigma(a, bb') &= \sigma(a_{(1)}, b) \, \sigma(a_{(2)}, b'), \quad \sigma(a, 1) = \varepsilon(a), \\ \sigma(aa', b) &= \sigma(a, b_{(2)}) \, \sigma(a', b_{(1)}), \quad \sigma(1, b) = \varepsilon(b). \end{aligned}$$

Such a pairing always preserves the antipode: $\sigma(S(a), S(b)) = \sigma(a, b)$ for all $a \in A$ and $b \in B$.

A Hopf pairing $\sigma: A \times B \to K$ determines two annihilator ideals $I_A = \{a \in A \mid \sigma(a, b) = 0 \text{ for all } b \in B\}$ and $I_B = \{b \in B \mid \sigma(a, b) = 0 \text{ for all } a \in A\}$. It is easy to check that I_A and I_B are Hopf ideals of A and B, respectively. The pairing σ is *non-degenerate* iff $I_A = I_B = 0$. Any Hopf pairing $\sigma: A \times B \to K$ induces a non-degenerate Hopf pairing $\bar{\sigma}: A/I_A \times B/I_B \to K$.

3.2 The twisted double. Let $\sigma : A \times B \to K$ be a Hopf pairing between two Hopf algebras *A* and *B*, and let $\phi : A \to A$ be a Hopf algebra endomorphism of *A*. Set

$$D(A, B; \sigma, \phi) = A \otimes B$$

as a *K*-vector space. We provide $D(A, B; \sigma, \phi)$ with a structure of an algebra with unit $1_A \otimes 1_B$ and multiplication

$$(a \otimes b) \cdot (a' \otimes b') = \sigma(\phi(a'_{(1)}), S(b_{(1)})) \sigma(a'_{(3)}, b_{(3)}) aa'_{(2)} \otimes b_{(2)}b'$$

for any $a, a' \in A$ and $b, b' \in B$.

Note that if ϕ and ϕ' are different Hopf algebra endomorphisms of A, then the algebras $D(A, B; \sigma, \phi)$ and $D(A, B; \sigma, \phi')$ are in general not isomorphic (see Remark in Section 3.4 below).

Theorem H ([Vir3], Theorem 2.6). Let $\sigma : A \times B \to K$ be a Hopf pairing between Hopf algebras A and B, and let ϕ be an action of G on A by Hopf algebra automorphisms, that is, ϕ is a group homomorphism $G \to \text{Aut}_{\text{Hopf}}(A)$. Then the family of algebras

 $D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha \in G}$

has a structure of a Hopf G-coalgebra given by

$$\begin{aligned} \Delta_{\alpha,\beta}(a \otimes b) &= (\phi_{\beta}(a_{(1)}) \otimes b_{(1)}) \otimes (a_{(2)} \otimes b_{(2)}), \\ \varepsilon(a \otimes b) &= \varepsilon_A(a) \varepsilon_B(b), \\ S_{\alpha}(a \otimes b) &= \sigma(\phi_{\alpha}(a_{(1)}), b_{(1)}) \sigma(a_{(3)}, S(b_{(3)})) \phi_{\alpha} S(a_{(2)}) \otimes S(b_{(2)}) \end{aligned}$$

for all $a \in A$, $b \in B$ and α , $\beta \in G$. Furthermore, if σ is non-degenerate and A, B are finite dimensional, then the Hopf G-coalgebra $D(A, B; \sigma, \phi)$ is quasitriangular with crossing φ and R-matrix $R = \{R_{\alpha,\beta}\}_{\alpha,\beta \in G}$ given by

$$\varphi_{\beta}(a \otimes b) = \phi_{\beta}(a) \otimes \phi_{\beta}^{*}(b) \quad and \quad R_{\alpha,\beta} = \sum_{i} (e_{i} \otimes 1_{B}) \otimes (1_{A} \otimes f_{i}),$$

where $\phi^* \colon G \to \operatorname{Aut}_{\operatorname{Hopf}}(B)$ is the unique action such that $\sigma(\phi_\beta, \phi_\beta^*) = \sigma$ for all $\beta \in G$, and $(e_i)_i$ and $(f_i)_i$ are dual bases of A and B with respect to σ .

Corollary I. Let A be a finite-dimensional Hopf algebra and ϕ be an action of G on A by Hopf algebra automorphisms. Then the duality bracket $\langle , \rangle_{A\otimes A^*}$ is a non-degenerate Hopf pairing between A and A^{*cop} and $D(A, A^{*cop}; \langle , \rangle_{A\otimes A^*}, \phi)$ is a quasitriangular Hopf G-coalgebra.

Note that the group of Hopf automorphisms of a finite-dimensional semisimple Hopf algebra A over a field of characteristic 0 is finite (see [Rad2]). To obtain quasitriangular Hopf G-coalgebras with infinite G using the twisted double method, one has to start from non-semisimple Hopf algebras or from Hopf algebras over fields of non-zero characteristic.

In the next three sections, we use Theorem H to give examples of quasitriangular Hopf G-coalgebras.

3.3 Example: finite *G*. Let *G* be a finite group. In this section, we describe the ribbon Hopf *G*-coalgebras obtained by the twisted double construction from the group algebra K[G]. The standard Hopf algebra structure on K[G] is given by $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$, and $S(g) = g^{-1}$ for all $g \in G$. The dual of K[G] is the Hopf algebra $F(G) = K^G$ of functions $G \to K$ with structure maps and basis $(e_g : G \to K)_{g \in G}$ described in Section 2.1. Let $\phi : G \to \operatorname{Aut}_{\operatorname{Hopf}}(K[G])$ be the homomorphism defined by $\phi_{\alpha}(h) = \alpha h \alpha^{-1}$ for $\alpha \in G, h \in K[G]$. Corollary I yields a quasitriangular Hopf *G*-coalgebra

$$D_G(G) = D(K[G], F(G)^{\operatorname{cop}}; \langle , \rangle_{K[G] \times F(G)}, \phi).$$

Let us describe $D_G(G) = \{D_\alpha(G)\}_{\alpha \in G}$ more precisely. For $\alpha \in G$, the algebra $D_\alpha(G)$ is equal to $K[G] \otimes F(G)$ as a *K*-vector space, has unit $1_{D_\alpha(G)} = \sum_{g \in G} 1 \otimes e_g$ and multiplication

$$(g \otimes e_h) \cdot (g' \otimes e_{h'}) = \delta_{\alpha g' \alpha^{-1} \cdot h^{-1} g' h'} gg' \otimes e_{h'}$$

for all $g, g', h, h' \in G$. The structure maps of $D_G(G)$ are

$$\Delta_{\alpha,\beta}(g \otimes e_h) = \sum_{xy=h} \beta g \beta^{-1} \otimes e_y \otimes g \otimes e_x, \quad \varepsilon(g \otimes e_h) = \delta_{h,1},$$

$$S_{\alpha}(g \otimes e_h) = \alpha g^{-1} \alpha^{-1} \otimes e_{\alpha g \alpha^{-1} h^{-1} g^{-1}}, \quad \varphi_{\alpha}(g \otimes e_h) = \alpha g \alpha^{-1} \otimes e_{\alpha h \alpha^{-1}}$$

for all $\alpha, \beta, g, h \in G$. The crossed Hopf *G*-coalgebra $D_G(G)$ is quasitriangular and furthermore ribbon with *R*-matrix and twist

$$R_{\alpha,\beta} = \sum_{g,h\in G} g \otimes e_h \otimes 1 \otimes e_g$$
 and $\theta_{\alpha} = \sum_{g\in G} \alpha^{-1}g\alpha \otimes e_g$

for all $\alpha, \beta \in G$. The spherical *G*-grouplike element of $D_G(G)$ is $w = (1_{D_\alpha(G)})_{\alpha \in G}$. The family $\lambda = (\lambda_\alpha)_{\alpha \in G}$, defined by $\lambda_\alpha(g \otimes e_h) = \delta_{g,1}$, is a two-sided *G*-integral for $D_G(G)$.

3.4 An example of a quasitriangular Hopf $GL_n(K)$ -coalgebra. In this section, K is a field of characteristic $\neq 2$ and n is a positive integer. Let A be the K-algebra with generators g, x_1, \ldots, x_n subject to the relations

$$g^2 = 1$$
, $x_i^2 = 0$, $gx_i = -x_ig$, $x_ix_j = -x_jx_i$.

The algebra A is 2^{n+1} -dimensional and has a Hopf algebra structure given by

$$\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad \Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \quad \varepsilon(x_i) = 0, \quad S(g) = g,$$

and $S(x_i) = gx_i$ for all *i*. The group of Hopf automorphisms of *A* is isomorphic to the group $GL_n(K)$ of invertible $n \times n$ -matrices with coefficients in *K* (see [Rad2]). An explicit isomorphism $\phi \colon GL_n(K) \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ carries any $\alpha = (\alpha_{i,j}) \in GL_n(K)$ to the automorphism ϕ_{α} of *A* given by

$$\phi_{\alpha}(g) = g$$
 and $\phi_{\alpha}(x_i) = \sum_{k=1}^{n} \alpha_{k,i} x_k$.

We apply Corollary I to these A and ϕ . Observing that $A^* \cong A$ as Hopf algebras, we can quotient the resulting quasitriangular Hopf $\operatorname{GL}_n(K)$ -coalgebra to eliminate one copy of the generator g (which appears twice), see [Vir3], Proposition 4.1. This gives a quasitriangular Hopf $\operatorname{GL}_n(K)$ -coalgebra $\mathcal{H} = \{\mathcal{H}_\alpha\}_{\alpha \in \operatorname{GL}_n(K)}$. We give here a direct description of \mathcal{H} . For $\alpha = (\alpha_{i,j}) \in \operatorname{GL}_n(K)$, let \mathcal{H}_α be the K-algebra generated g, $x_1, \ldots, x_n, y_1, \ldots, y_n$, subject to the relations

$$g^{2} = 1, \quad x_{1}^{2} = \dots = x_{n}^{2} = 0, \quad gx_{i} = -x_{i}g, \quad x_{i}x_{j} = -x_{j}x_{i},$$
$$y_{1}^{2} = \dots = y_{n}^{2} = 0, \quad gy_{i} = -y_{i}g, \quad y_{i}y_{j} = -y_{j}y_{i},$$
$$x_{i}y_{j} - y_{j}x_{i} = (\alpha_{j,i} - \delta_{i,j})g,$$

where $1 \le i, j \le n$. The family $\mathcal{H} = \{\mathcal{H}_{\alpha}\}_{\alpha \in GL_n(K)}$ has the following structure of a crossed Hopf $GL_n(K)$ -coalgebra:

$$\Delta_{\alpha,\beta}(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad S_{\alpha}(g) = g,$$

$$\Delta_{\alpha,\beta}(x_i) = 1 \otimes x_i + \sum_{k=1}^n \beta_{k,i} x_k \otimes g, \quad \varepsilon(x_i) = 0, \quad S_{\alpha}(x_i) = \sum_{k=1}^n \alpha_{k,i} g x_k,$$

$$\Delta_{\alpha,\beta}(y_i) = y_i \otimes 1 + g \otimes y_i, \quad \varepsilon(y_i) = 0, \quad S_{\alpha}(y_i) = -g y_i,$$

$$\varphi_{\alpha}(g) = g, \quad \varphi_{\alpha}(x_i) = \sum_{k=1}^n \alpha_{k,i} x_k, \quad \varphi_{\alpha}(y_i) = \sum_{k=1}^n \tilde{\alpha}_{i,k} y_k,$$

where $\alpha = (\alpha_{i,j}), \beta = (\beta_{i,j})$ run over $\operatorname{GL}_n(K), (\tilde{\alpha}_{i,j}) = \alpha^{-1}$, and $1 \le i \le n$. The crossed Hopf $\operatorname{GL}_n(K)$ -coalgebra \mathcal{H} is quasitriangular with *R*-matrix

$$R_{\alpha,\beta} = \frac{1}{2} \sum_{S \subseteq \{1,\dots,n\}} x_S \otimes y_S + x_S \otimes gy_S + gx_S \otimes y_S - gx_S \otimes gy_S$$

for all $\alpha, \beta \in GL_n(K)$. Here $x_{\emptyset} = 1$, $y_{\emptyset} = 1$, and for a nonempty subset *S* of $\{1, \ldots n\}$, we set $x_S = x_{i_1} \ldots x_{i_s}$ and $y_S = y_{i_1} \ldots y_{i_s}$, where $i_1 < \cdots < i_s$ are the elements of *S*.

Remark. Generally speaking, for distinct $\alpha, \beta \in GL_n(K)$, the algebras \mathcal{H}_{α} and \mathcal{H}_{β} are not isomorphic. For example, $\mathcal{H}_{\alpha} \simeq \mathcal{H}_1$ for any $\alpha \in GL_n(K) - \{1\}$. It suffices to prove that

$$\mathcal{H}_{\alpha}/[\mathcal{H}_{\alpha},\mathcal{H}_{\alpha}]
ot\simeq \mathcal{H}_1/[\mathcal{H}_1,\mathcal{H}_1]$$

Indeed, $\mathcal{H}_{\alpha}/[\mathcal{H}_{\alpha}, \mathcal{H}_{\alpha}] = 0$ since $g = \frac{1}{\alpha_{j,i} - \delta_{i,j}} (x_i y_j - y_j x_i) \in [\mathcal{H}_{\alpha}, \mathcal{H}_{\alpha}]$ (for some $1 \leq i, j \leq n$ such that $\alpha_{j,i} \neq \delta_{i,j}$) and so $1 = g^2 \in [\mathcal{H}_{\alpha}, \mathcal{H}_{\alpha}]$. In $\mathcal{H}_1/[\mathcal{H}_1, \mathcal{H}_1]$, we have $x_k = x_k g^2 = 0$ (since $x_k g = g x_k = -x_k g$ and so $x_k g = 0$) and likewise $y_k = 0$. Hence $\mathcal{H}_1/[\mathcal{H}_1, \mathcal{H}_1] = K \langle g | g^2 = 1 \rangle \neq 0$.

3.5 Graded quantum groups. Let g be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $(a_{i,j})$. Let $\{d_i\}_{i=1}^l$ be coprime integers such that the matrix $(d_i a_{i,j})$ is symmetric. Let q be a fixed non-zero complex number and $q_i = q^{d_i}$ for i = 1, 2, ..., l. We suppose that $q_i^2 \neq 1$ for all i.

Recall that the (usual) quantum group $U_q(\mathfrak{g})$ can be obtained as a quotient of the quantum double of $U_q(\mathfrak{b}_+)$, where \mathfrak{b}_+ is the (positive) Borel subalgebra of \mathfrak{g} (the quotient is needed to eliminate the second copy of the Cartan subalgebra). Applying Theorem H to the Hopf algebra $U_q(\mathfrak{b}_+)$ endowed with an action of $(\mathbb{C}^*)^l$ by Hopf automorphisms, we obtain the "graded quantum group" introduced in [Vir3], Proposition 5.1. It can be directly described as follows.

Set $G = (\mathbb{C}^*)^l$. For $\alpha = (\alpha_1, \dots, \alpha_l) \in G$, let $U_q^{\alpha}(\mathfrak{g})$ be the \mathbb{C} -algebra generated by $K_i^{\pm 1}$, E_i , F_i , $1 \le i \le l$, subject to the following defining relations:

$$K_{i}K_{j} = K_{j}K_{i}, \quad K_{i}K_{i}^{-1} = K_{i}^{-1}K_{i} = 1,$$

$$K_{i}E_{j} = q_{i}^{a_{i,j}}E_{j}K_{i},$$

$$K_{i}F_{j} = q_{i}^{-a_{i,j}}F_{j}K_{i},$$

$$E_{i}F_{j} - F_{j}E_{i} = \delta_{i,j}\frac{\alpha_{i}K_{i} - K_{i}^{-1}}{q_{i} - q_{i}^{-1}},$$

$$\sum_{r=0}^{1-a_{i,j}} (-1)^{r} [1^{-a_{i,j}}]_{q_{i}}E_{i}^{1-a_{i,j}-r}E_{j}E_{i}^{r} = 0 \quad \text{if } i \neq j.$$

$$\sum_{r=0}^{1-a_{i,j}} (-1)^{r} [1^{-a_{i,j}}]_{q_{i}}F_{i}^{1-a_{i,j}-r}F_{j}F_{i}^{r} = 0 \quad \text{if } i \neq j.$$

The family $U_q^G(\mathfrak{g}) = \{U_q^{\alpha}(\mathfrak{g})\}_{\alpha \in G}$ has a structure of a crossed Hopf *G*-coalgebra given, for $\alpha = (\alpha_1, \ldots, \alpha_l) \in G$, $\beta = (\beta_1, \ldots, \beta_l) \in G$ and $1 \le i \le l$, by:

$$\Delta_{\alpha,\beta}(K_i) = K_i \otimes K_i,$$

$$\Delta_{\alpha,\beta}(E_i) = \beta_i E_i \otimes K_i + 1 \otimes E_i,$$

$$\Delta_{\alpha,\beta}(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i,$$

$$\varepsilon(K_i) = 1, \quad \varepsilon(E_i) = \varepsilon(F_i) = 0,$$

$$S_{\alpha}(K_i) = K_i^{-1}, \quad S_{\alpha}(E_i) = -\alpha_i E_i K_i^{-1}, \quad S_{\alpha}(F_i) = -K_i F_i,$$

$$\varphi_{\alpha}(K_i) = K_i, \quad \varphi_{\alpha}(E_i) = \alpha_i E_i, \quad \varphi_{\alpha}(F_i) = \alpha_i^{-1} F_i.$$

Note that $(U_q^1(\mathfrak{g}), \Delta_{1,1}, \varepsilon, S_1)$ is the usual quantum group $U_q(\mathfrak{g})$.

To give a rigorous treatment of R-matrices for the graded quantum groups, we need h-adic versions of Hopf G-coalgebras and of graded quantum groups. This is the content of the next two sections.

3.6 The *h***-adic case.** In this section, we develop an *h*-adic variant of Hopf *G*-coalgebras. Roughly speaking, *h*-adic Hopf *G*-coalgebras are obtained by taking the ring $\mathbb{C}[[h]]$ of formal power series as the ground ring and requiring that the algebras (resp. the tensor products) are complete (resp. completed) in the *h*-adic topology.

Recall that if V is a (left) module over $\mathbb{C}[[h]]$, then the topology on V for which the sets $\{h^n V + v \mid n \in \mathbb{N}\}$ form a base for neighborhoods of $v \in V$ is called the *h*-adic topology. For $\mathbb{C}[[h]]$ -modules V and W, denote by $V \otimes W$ the completion of $V \otimes_{\mathbb{C}[[h]]} W$ in the *h*-adic topology.

If V is a complex vector space, then the set V[[h]] of all formal power series $\sum_{n=0}^{\infty} v_n h^n$ with coefficients $v_n \in V$ is a $\mathbb{C}[[h]]$ -module called a *topologically free* module. Topologically free modules are exactly $\mathbb{C}[[h]]$ -modules which are complete, separated, and torsion-free. Furthermore, $V[[h]] \otimes W[[h]] = (V \otimes W)[[h]]$ for any complex vector spaces V and W.

An *h*-adic algebra A is a $\mathbb{C}[[h]]$ -module complete in the *h*-adic topology and endowed with a $\mathbb{C}[[h]]$ -linear map $m: A \otimes A \to A$ and an element $1 \in A$ such that $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ and $m(\mathrm{id}_A \otimes 1) = \mathrm{id}_A = m(1 \otimes \mathrm{id}_A)$.

By an *h*-adic Hopf *G*-coalgebra, we mean a family $H = \{H_{\alpha}\}_{\alpha \in G}$ of *h*-adic algebras endowed with *h*-adic algebra homomorphisms $\Delta_{\alpha,\beta} \colon H_{\alpha\beta} \to H_{\alpha} \otimes H_{\beta}$ $(\alpha, \beta \in G), \varepsilon \colon A \to \mathbb{C}[[h]]$, and with C[[h]]-linear maps $S_{\alpha} \colon H_{\alpha} \to H_{\alpha^{-1}}$ $(\alpha \in G)$ satisfying formulas of Section 1.1. It is understood that the algebraic tensor product \otimes is replaced everywhere by its *h*-adic completions $\hat{\otimes}$.

The notions of crossed, quasitriangular, and ribbon h-adic Hopf G-coalgebras can be defined similarly following Sections 2.1 and 2.3.

Theorem H carries over to the *h*-adic Hopf algebras. The key modifications are that $\sigma: A \otimes B \to \mathbb{C}[[h]]$ must be $\mathbb{C}[[h]]$ -linear and $D(A, B; \sigma, \phi) = A \otimes B$.

Theorem J. Let $\sigma : A \otimes B \to \mathbb{C}[[h]]$ be an h-adic Hopf pairing between two h-adic Hopf algebras A and B. Let $\phi : G \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be an action of G on A by h-adic Hopf automorphisms. Then the family $D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha \in G}$ is an h-adic Hopf G-coalgebra. Assume furthermore that A and B are topologically free, σ is non-degenerate, and $R_{\alpha,\beta} = \sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i)$ belongs to the h-adic completion $D(A, B; \sigma, \phi_{\alpha}) \otimes D(A, B; \sigma, \phi_{\beta})$, where $(e_i)_i$ and $(f_i)_i$ are bases of A and B dual with respect to σ . Then $D(A, B; \sigma, \phi)$ is quasitriangular with R-matrix $R = \{R_{\alpha,\beta}\}_{\alpha,\beta \in G}$. The condition on $R_{\alpha,\beta}$ in the second part of the theorem means the following. Since A and B are topologically free, A = V[[h]] and B = W[[h]] for some complex vector spaces V and W. Then

$$D(A, B; \sigma, \phi_{\alpha}) \widehat{\otimes} D(A, B; \sigma, \phi_{\beta}) = (V \otimes W \otimes V \otimes W)[[h]].$$

We require that $R_{\alpha,\beta} = \sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i)$ can be expanded as $\sum_{n=0}^{\infty} r_n h^n$ for some $r_n \in V \otimes W \otimes V \otimes W$.

In the next section, we use Theorem J to define h-adic graded quantum groups.

3.7 *h*-adic graded quantum groups. Let g be a finite-dimensional complex simple Lie algebra of rank *l* with Cartan matrix $(a_{i,j})$. Let $\{d_i\}_{i=1}^l$ be coprime integers such that the matrix $(d_i a_{i,j})$ is symmetric. Applying Theorem J to the *h*-adic Hopf algebras $U_h(b_+)$ and $\tilde{U}_h(b_-) = \mathbb{C}[[h]]1 + hU_h(b_-)$, we obtain (after appropriate quotienting) quasitriangular "*h*-adic graded quantum groups" (see [Vir3], Proposition 6.1). We give here a direct description of these quantum groups.

Let $G = \mathbb{C}[[h]]^l$ with group operation being addition. For $\alpha = (\alpha_1, \ldots, \alpha_l) \in G$, let $U_h^{\alpha}(\mathfrak{g})$ be the *h*-adic algebra generated by the elements H_i , E_i , F_i , $1 \le i \le l$, subject to the following defining relations:

$$[H_{i}, H_{j}] = 0,$$

$$[H_{i}, E_{j}] = a_{ij} E_{j},$$

$$[H_{i}, F_{j}] = -a_{ij} F_{j},$$

$$[E_{i}, F_{j}] = \delta_{i,j} \frac{e^{d_{i}h\alpha_{i}}e^{d_{i}hH_{i}} - e^{-d_{i}hH_{i}}}{e^{d_{i}h} - e^{-d_{i}h}},$$

$$\sum_{r=0}^{1-a_{i,j}} (-1)^{r} [\frac{1-a_{i,j}}{r}]_{e^{d_{i}h}} E_{i}^{1-a_{i,j}-r} E_{j} E_{i}^{r} = 0 \quad (i \neq j),$$

$$\sum_{r=0}^{1-a_{i,j}} (-1)^{r} [\frac{1-a_{i,j}}{r}]_{e^{d_{i}h}} F_{i}^{1-a_{i,j}-r} F_{j} F_{i}^{r} = 0 \quad (i \neq j).$$

The family $U_h^G(\mathfrak{g}) = \{U_h^{\alpha}(\mathfrak{g})\}_{\alpha \in G}$ has a structure of a crossed *h*-adic Hopf *G*-coalgebra given, for $\alpha = (\alpha_1, \ldots, \alpha_l), \beta = (\beta_1, \ldots, \beta_l) \in G$ and $1 \leq i \leq l$, by

$$\begin{aligned} \Delta_{\alpha,\beta}(H_i) &= H_i \otimes 1 + 1 \otimes H_i, \quad \varepsilon(H_i) = 0, \\ \Delta_{\alpha,\beta}(E_i) &= e^{d_i h \beta_i} E_i \otimes e^{d_i h H_i} + 1 \otimes E_i, \quad \varepsilon(E_i) = 0, \\ \Delta_{\alpha,\beta}(F_i) &= F_i \otimes 1 + e^{-d_i h H_i} \otimes F_i, \quad \varepsilon(F_i) = 0, \end{aligned}$$
$$\begin{aligned} S_{\alpha}(H_i) &= -H_i, \quad S_{\alpha}(E_i) = -e^{d_i h \alpha_i} E_i e^{-d_i h H_i}, \quad S_{\alpha}(F_i) = -e^{d_i h H_i} F_i, \\ \varphi_{\alpha}(H_i) &= H_i, \quad \varphi_{\alpha}(E_i) = e^{d_i h \alpha_i} E_i, \quad \varphi_{\alpha}(F_i) = e^{-d_i h \alpha_i} F_i. \end{aligned}$$

Furthermore, $U_h^G(\mathfrak{g})$ is quasitriangular by Theorem J (the conditions of this theorem are satisfied by $A = U_h(\mathfrak{b}_+)$ and $B = \tilde{U}_h(\mathfrak{b}_-)$). For example, for $\mathfrak{g} = \mathfrak{sl}_2$ and $G = \mathbb{C}[[h]]$, the *R*-matrix of $U_h^G(\mathfrak{sl}_2)$ is given by

$$R_{\alpha,\beta} = e^{h(H \otimes H)/2} \sum_{n=0}^{\infty} R_n(h) E^n \otimes F^n \in U_h^{\alpha}(sl_2) \widehat{\otimes} U_h^{\beta}(sl_2)$$

for all $\alpha, \beta \in \mathbb{C}[[h]]$, where $R_n(h) = q^{n(n+1)/2} \frac{(1-q^{-2})^n}{[n]_q!}$ and $q = e^h$.