Appendix 6

Algebraic properties of Hopf G-coalgebras

by Alexis Virelizier

Let G be a group. The notion of a (ribbon) Hopf G-coalgebra was first introduced by Turaev [Tu4], as the prototype algebraic structure whose category of representations is a (ribbon) G-category (see Section VIII.1). Recall from Chapter VII that ribbon G-categories give rise to invariants of 3-dimensional G-manifolds and to 3-dimensional HQFTs with target $K(G, 1)$. Moreover, Hopf G-coalgebras may be used directly (without involving their representations) to construct further topological invariants of 3-dimensional G-manifolds, see Appendix 7.

Here we review the algebraic properties of Hopf G-coalgebras and provide examples. Most of the results are given without proof, see [Vir1]-[Vir4] for details.

In Section 1, we study the algebraic properties of Hopf G-coalgebras, in particular the existence of integrals, the order of the antipode (a generalization of the Radford S^{4}-formula), and the (co)semisimplicity (a generalization of the Maschke theorem).

In Section 2, we focus on quasitriangular and ribbon Hopf G-coalgebras. In particular we construct G-traces for ribbon Hopf G-coalgebras, which are used to construct invariants of 3-dimensional G-manifolds in Appendix 7.

In Section 3, we give a method for constructing a quasitriangular Hopf G-coalgebra starting from a Hopf algebra endowed with an action of G by Hopf automorphisms. This leads to non-trivial examples of quasitriangular Hopf G-coalgebras for all finite G and for some infinite G such as $\mathrm{GL}_{n}(K)$. In particular, we define graded quantum groups.

Throughout this appendix, G is a group (with neutral element 1) and K is a field. All algebras are supposed to be over K, associative, and unital. The tensor product $\otimes=\otimes_{K}$ of K-vector spaces is always taken over K. If U and V are K-vector spaces, then $\sigma_{U, V}: U \otimes V \rightarrow V \otimes U$ denotes the flip defined by $\sigma_{U, V}(u \otimes v)=v \otimes u$ for all $u \in U$ and $v \in V$.

6.1 Hopf \boldsymbol{G}-coalgebras

1.1 Hopf \boldsymbol{G}-coalgebras. We recall, for completeness, the definition of a Hopf G coalgebra from Section VIII.1, but with a minor change: we do not suppose the antipode to be bijective.

A Hopf G-coalgebra (over K) is a family $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ of K-algebras endowed with a family $\Delta=\left\{\Delta_{\alpha, \beta}: H_{\alpha \beta} \rightarrow H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in G}$ of algebra homomorphisms
(the comultiplication), an algebra homomorphism $\varepsilon: H_{1} \rightarrow K$ (the counit), and a family $S=\left\{S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}\right\}_{\alpha \in G}$ of K-linear maps (the antipode) such that, for all $\alpha, \beta, \gamma \in G$,

$$
\begin{gathered}
\left(\Delta_{\alpha, \beta} \otimes \operatorname{id}_{H_{\gamma}}\right) \Delta_{\alpha \beta, \gamma}=\left(\operatorname{id}_{H_{\alpha}} \otimes \Delta_{\beta, \gamma}\right) \Delta_{\alpha, \beta \gamma}, \\
\left(\operatorname{id}_{H_{\alpha}} \otimes \varepsilon\right) \Delta_{\alpha, 1}=\operatorname{id}_{H_{\alpha}}=\left(\varepsilon \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{1, \alpha}, \\
m_{\alpha}\left(S_{\alpha^{-1}} \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{\alpha^{-1}, \alpha}=\varepsilon 1_{\alpha}=m_{\alpha}\left(\operatorname{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}}\right) \Delta_{\alpha, \alpha^{-1}}
\end{gathered}
$$

where $m_{\alpha}: H_{\alpha} \otimes H_{\alpha} \rightarrow H_{\alpha}$ and $1_{\alpha} \in H_{\alpha}$ denote multiplication in H_{α} and the unit element of H_{α}.

When $G=1$, one recovers the usual notion of a Hopf algebra. In particular, H_{1} is a Hopf algebra.

Remark that the notion of a Hopf G-coalgebra is not self-dual (the dual notion obtained by reversing the arrows in the definition may be called a Hopf G-algebra).

If $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a Hopf G-coalgebra, then the set $\left\{\alpha \in G \mid H_{\alpha} \neq 0\right\}$ is a subgroup of G. Also, if G^{\prime} is a subgroup of G, then $H=\left\{H_{\alpha}\right\}_{\alpha \in G^{\prime}}$ is a Hopf G^{\prime}-coalgebra.

The antipode S of a Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is anti-multiplicative (in the sense that each $S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}$ is an anti-homomorphism of algebras) and anticomultiplicative in the sense that $\Delta_{\beta^{-1}, \alpha^{-1}} S_{\alpha \beta}=\sigma_{H_{\alpha-1}, H_{\beta-1}}\left(S_{\alpha} \otimes S_{\beta}\right) \Delta_{\alpha, \beta}$ for all $\alpha, \beta \in G$ and $\varepsilon S_{1}=\varepsilon$; see [Vir2], Lemma 1.1.

A Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is said to be of finite type if, for all $\alpha \in G$, H_{α} is finite-dimensional (over K). Note that the direct sum $\bigoplus_{\alpha \in G} H_{\alpha}$ is finite-dimensional if and only if H is of finite type and $H_{\alpha}=0$ for all but a finite number of $\alpha \in G$.

The antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in G}$ of $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is said to be bijective if each S_{α} is bijective. Unlike in Section VIII.1, we do not suppose that the antipode of a Hopf G-coalgebra is bijective. As for Hopf algebras, the antipode of a Hopf G-coalgebra H is necessarily bijective if H is of finite type (see Section 1.5) or H is quasitriangular (see Section 2.4).
1.2 The case of finite \boldsymbol{G}. Suppose that G is a finite group. Recall that the Hopf algebra K^{G} of functions on G has a basis $\left(e_{\alpha}: G \rightarrow K\right)_{\alpha \in G}$ defined by $e_{\alpha}(\beta)=\delta_{\alpha, \beta}$ where $\delta_{\alpha, \alpha}=1$ and $\delta_{\alpha, \beta}=0$ if $\alpha \neq \beta$. The structure maps of K^{G} are given by

$$
e_{\alpha} e_{\beta}=\delta_{\alpha, \beta} e_{\alpha}, \quad 1_{K^{G}}=\sum_{\alpha \in G} e_{\alpha}, \quad \Delta\left(e_{\alpha}\right)=\sum_{\beta \gamma=\alpha} e_{\beta} \otimes e_{\gamma}, \quad \varepsilon\left(e_{\alpha}\right)=\delta_{\alpha, 1},
$$

and $S\left(e_{\alpha}\right)=e_{\alpha^{-1}}$. A central prolongation of K^{G} is a Hopf algebra A endowed with a morphism of Hopf algebras $K^{G} \rightarrow A$, called the central map, which carries K^{G} into the center of A.

Since G is finite, any Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ gives rise to a Hopf algebra $\widetilde{H}=\bigoplus_{\alpha \in G} H_{\alpha}$ with structure maps given by

$$
\left.\tilde{\Delta}\right|_{H_{\alpha}}=\sum_{\beta \gamma=\alpha} \Delta_{\beta, \gamma},\left.\quad \tilde{\varepsilon}\right|_{H_{\alpha}}=\delta_{\alpha, 1} \varepsilon,\left.\quad \tilde{m}\right|_{H_{\alpha} \otimes H_{\beta}}=\delta_{\alpha, \beta} m_{\alpha}, \quad \tilde{1}=\sum_{\alpha \in G} 1_{\alpha},
$$

and $\widetilde{S}=\sum_{\alpha \in G} S_{\alpha}$. The K-linear map $K^{G} \rightarrow \widetilde{H}$ defined by $e_{\alpha} \mapsto 1_{\alpha}$ gives rise to a morphism of Hopf algebras which carries K^{G} into the center of \widetilde{H}. Hence \widetilde{H} is a central prolongation of K^{G}.

The correspondence assigning to every Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ the central prolongation $K^{G} \rightarrow \widetilde{H}$ is bijective. Given a Hopf algebra $(A, m, 1, \Delta, \varepsilon, S)$ which is a central prolongation of K^{G}, set $H_{\alpha}=A 1_{\alpha}$, where $1_{\alpha} \in A$ is the image of $e_{\alpha} \in K^{G}$ under the central map $K^{G} \rightarrow A$. Then the family $\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a Hopf G-coalgebra with structure maps given by
$m_{\alpha}=\left.1_{\alpha} \cdot m\right|_{H_{\alpha} \otimes H_{\alpha}}, \quad \Delta_{\alpha, \beta}=\left.\left(1_{\alpha} \otimes 1_{\beta}\right) \cdot \Delta\right|_{H_{\alpha \beta}}, \quad \varepsilon=\left.\varepsilon\right|_{H_{1}}, \quad S_{\alpha}=\left.1_{\alpha^{-1}} \cdot S\right|_{H_{\alpha}}$.
1.3 Integrals. Recall that a left (resp. right) integral for a Hopf algebra $(A, \Delta, \varepsilon, S)$ is an element $\Lambda \in A$ such that $x \Lambda=\varepsilon(x) \Lambda($ resp. $\Lambda x=\varepsilon(x) \Lambda)$ for all $x \in A$. A left (resp. right) integral for the dual Hopf algebra A^{*} is a K-linear form $\lambda \in A^{*}=$ $\operatorname{Hom}_{K}(A, K)$ such that $\left(\mathrm{id}_{A} \otimes \lambda\right) \Delta(x)=\lambda(x) 1_{A}\left(\right.$ resp. $\left.\left(\lambda \otimes \operatorname{id}_{A}\right) \Delta(x)=\lambda(x) 1_{A}\right)$ for all $x \in A$.

A left (resp. right) G-integral for a Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a family of K-linear forms $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G} \in \Pi_{\alpha \in G} H_{\alpha}^{*}$ such that

$$
\left(\operatorname{id}_{H_{\alpha}} \otimes \lambda_{\beta}\right) \Delta_{\alpha, \beta}(x)=\lambda_{\alpha \beta}(x) 1_{\alpha}\left(\text { resp. }\left(\lambda_{\alpha} \otimes \operatorname{id}_{H_{\beta}}\right) \Delta_{\alpha, \beta}(x)=\lambda_{\alpha \beta}(x) 1_{\beta}\right)
$$

for all $\alpha, \beta \in G$ and $x \in H_{\alpha \beta}$. Note that λ_{1} is a usual left (resp. right) integral for the Hopf algebra H_{1}^{*}.

A G-integral $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ is said to be non-zero if $\lambda_{\beta} \neq 0$ for some $\beta \in G$. Given a non-zero G-integral $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$, we have $\lambda_{\alpha} \neq 0$ for all $\alpha \in G$ such that $H_{\alpha} \neq 0$. In particular $\lambda_{1} \neq 0$.

It is known that the K-vector space of left (resp. right) integrals for a finite-dimensional Hopf algebra is one-dimensional. This extends to Hopf G-coalgebras as follows.

Theorem \mathbf{A} ([Vir2], Theorem 3.6). Let H be a Hopf G-coalgebra of finite type. Then the vector space of left (resp. right) G-integrals for H is one-dimensional.

The proof of this theorem is based on the fact that a Hopf G-comodule has a canonical decomposition generalizing the fundamental decomposition theorem in the theory of Hopf modules.
1.4 Grouplike elements. A family $g=\left(g_{\alpha}\right)_{\alpha \in G} \in \Pi_{\alpha \in G} H_{\alpha}$ such that $\Delta_{\alpha, \beta}\left(g_{\alpha \beta}\right)=$ $g_{\alpha} \otimes g_{\beta}$ for all $\alpha, \beta \in G$ and $\varepsilon\left(g_{1}\right)=1_{K}$ is called a G-grouplike element of a Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$. Note that g_{1} is then a grouplike element of the Hopf algebra H_{1} in the usual sense of the word.

One easily checks that the set $\operatorname{Gr}(H)$ of G-grouplike elements of H is a group with respect to coordinate-wise multiplication in the product monoid $\Pi_{\alpha \in G} H_{\alpha}$. If $g=\left(g_{\alpha}\right)_{\alpha \in G} \in \operatorname{Gr}(H)$, then $g^{-1}=\left(S_{\alpha^{-1}}\left(g_{\alpha^{-1}}\right)\right)_{\alpha \in G}$. The group $\operatorname{Hom}\left(G, K^{*}\right)$ of homomorphisms $G \rightarrow K^{*}$ acts on $\operatorname{Gr}(H)$ by $\phi g=\left(\phi(\alpha) g_{\alpha}\right)_{\alpha \in G}$ for arbitrary $\phi \in \operatorname{Hom}\left(G, K^{*}\right)$ and $g=\left(g_{\alpha}\right)_{\alpha \in G} \in \operatorname{Gr}(H)$.
1.5 The distinguished \boldsymbol{G}-grouplike element. Throughout this subsection, $H=$ $\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a Hopf G-coalgebra of finite type with antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in G}$. Using Theorem A, one verifies that there is a unique G-grouplike element $g=\left(g_{\alpha}\right)_{\alpha \in G}$ of H, called the distinguished G-grouplike element of H, such that $\left(\mathrm{id}_{H_{\alpha}} \otimes \lambda_{\beta}\right) \Delta_{\alpha, \beta}=$ $\lambda_{\alpha \beta} g_{\alpha}$ for any right G-integral $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ and all $\alpha, \beta \in G$. Note that g_{1} is the distinguished grouplike element of H_{1}.

Since H_{1} is a finite-dimensional Hopf algebra, there exists a unique algebra morphism $v: H_{1} \rightarrow K$ such that if Λ is a left integral for H_{1}, then $\Lambda x=v(x) \Lambda$ for all $x \in H_{1}$. This morphism is a grouplike element of the Hopf algebra H_{1}^{*}, called the distinguished grouplike element of H_{1}^{*}. It is invertible in H_{1}^{*} and its inverse v^{-1} is also an algebra morphism. Moreover, if Λ is a right integral for H_{1}, then $x \Lambda=v^{-1}(x) \Lambda$ for all $x \in H_{1}$.

For all $\alpha \in G$, we define a left and a right H_{1}^{*}-action on H_{α} by setting, for all $f \in H_{1}^{*}$ and $a \in H_{\alpha}$,

$$
f \rightharpoonup a=\left(\operatorname{id}_{H_{\alpha}} \otimes f\right) \Delta_{\alpha, 1}(a) \quad \text { and } \quad a \leftharpoonup f=\left(f \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{1, \alpha}(a)
$$

The next assertion generalizes Theorem 3 of [Rad4]. This is a key result in the theory of Hopf G-coalgebras. It is used in particular to prove the existence of traces (see Section 2.8).

Theorem B ([Vir2], Theorem 4.2). Let $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ be a right G-integral for H. Then, for all $\alpha \in G$ and $x, y \in H_{\alpha}$,
(a) $\lambda_{\alpha}(x y)=\lambda_{\alpha}\left(S_{\alpha^{-1}} S_{\alpha}(y \leftharpoonup v) x\right)$;
(b) $\lambda_{\alpha}(x y)=\lambda_{\alpha}\left(y S_{\alpha^{-1}} S_{\alpha}\left(v^{-1} \rightharpoonup g_{\alpha}^{-1} x g_{\alpha}\right)\right)$;
(c) $\lambda_{\alpha^{-1}}\left(S_{\alpha}(x)\right)=\lambda_{\alpha}\left(g_{\alpha} x\right)$.

As a corollary we obtain a generalization of the celebrated Radford S^{4}-formula to Hopf G-coalgebras:

Corollary C ([Vir2], Lemma 4.6). Let $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ be a Hopf G-coalgebra of finite type. Then for all $\alpha \in G$ and $x \in H_{\alpha}$,

$$
\left(S_{\alpha^{-1}} S_{\alpha}\right)^{2}(x)=g_{\alpha}\left(v \rightharpoonup x \leftharpoonup v^{-1}\right) g_{\alpha}^{-1}
$$

This formula implies in particular that the antipode S of H is bijective (i.e., each S_{α} is bijective).
1.6 The order of the antipode. It is known that the order of the antipode of a finitedimensional Hopf algebra is finite ([Rad1], Theorem 1) and divides four times the dimension of the algebra ([NZ], Proposition 3.1). We apply this result to study a Hopf G-coalgebra of finite type $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ with antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in G}$. Let α be an element of G of finite order d. Denote by $\langle\alpha\rangle$ the subgroup of G generated by α. By considering the finite-dimensional Hopf algebra $\bigoplus_{\beta \in\langle\alpha\rangle} H_{\beta}$ (determined by the Hopf $\langle\alpha\rangle$-coalgebra $\left\{H_{\beta}\right\}_{\beta \in\langle\alpha\rangle}$, see Section 1.2), we obtain that the order of $S_{\alpha^{-1}} S_{\alpha} \in \operatorname{Aut}_{\mathrm{Alg}}\left(H_{\alpha}\right)$ is finite and divides $2 \sum_{\beta \in\langle\alpha\rangle} \operatorname{dim} H_{\beta}$. From Corollary C, we obtain another upper bound on the order of $S_{\alpha^{-1}} S_{\alpha}$: if $\alpha \in G$ has a finite order d, then the order of $S_{\alpha^{-1}} S_{\alpha}$ divides $2 d \operatorname{dim} H_{1}$; see [Vir2], Corollary 4.5.
1.7 Semisimplicity. A Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is said to be semisimple if each algebra H_{α} is semisimple. For H to be semisimple it is necessary that H_{1} be finite-dimensional (since an infinite-dimensional Hopf algebra over a field is not semisimple, see [Sw], Corollary 2.7). When H is of finite type, H is semisimple if and only if H_{1} is semisimple, see [Vir2], Lemma 5.1.
1.8 Cosemisimplicity. The notion of a comodule over a coalgebra may be extended to the setting of Hopf G-coalgebras. A right G-comodule over a Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a family $M=\left\{M_{\alpha}\right\}_{\alpha \in G}$ of K-vector spaces endowed with a family of K-linear maps

$$
\rho=\left\{\rho_{\alpha, \beta}: M_{\alpha \beta} \rightarrow M_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in G}
$$

such that

$$
\left(\rho_{\alpha, \beta} \otimes \operatorname{id}_{H_{\gamma}}\right) \rho_{\alpha \beta, \gamma}=\left(\operatorname{id}_{M_{\alpha}} \otimes \Delta_{\beta, \gamma}\right) \rho_{\alpha, \beta \gamma} \quad \text { and } \quad\left(\operatorname{id}_{M_{\alpha}} \otimes \varepsilon\right) \rho_{\alpha, 1}=\operatorname{id}_{M_{\alpha}}
$$

for all $\alpha, \beta, \gamma \in G$. A G-subcomodule of M is a family $N=\left\{N_{\alpha}\right\}_{\alpha \in G}$, where N_{α} is a K-subspace of M_{α}, such that $\rho_{\alpha, \beta}\left(N_{\alpha \beta}\right) \subset N_{\alpha} \otimes H_{\beta}$ for all $\alpha, \beta \in G$. The sums and direct sums for families of G-subcomodules of a right G-comodule are defined in the obvious way.

A right G-comodule $M=\left\{M_{\alpha}\right\}_{\alpha \in G}$ is said to be simple if it is non-zero (i.e., $M_{\alpha} \neq 0$ for some $\left.\alpha \in G\right)$ and if it has no G-subcomodules other than itself and the trivial one $0=\{0\}_{\alpha \in G}$. A right G-comodule which is a direct sum of a family of simple G-subcomodules is said to be cosemisimple. Note that all G-subcomodules and all quotients of a cosemisimple right G-comodule are cosemisimple.

A Hopf G-coalgebra is cosemisimple if it is cosemisimple as a right G-comodule over itself (with comultiplication as comodule map). By [Vir2], a Hopf G-coalgebra
$H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is cosemisimple if and only if every reduced ${ }^{1}$ right G-comodule over H is cosemisimple.

We state a Hopf G-coalgebra version of the dual Maschke theorem.
Theorem D ([Vir2], Theorem 5.4). A Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is cosemisimple if and only if there exists a right G-integral $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ for H such that $\lambda_{\alpha}\left(1_{\alpha}\right)=1_{K}$ for some $\alpha \in G$ (and then $\lambda_{\alpha}\left(1_{\alpha}\right)=1_{K}$ for all $\alpha \in G$ with $H_{\alpha} \neq 0$).

As corollaries, we obtain that a Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ of finite type is cosemisimple if and only if the Hopf algebra H_{1} is cosemisimple, and that the distinguished G-grouplike element of a cosemisimple Hopf G-coalgebra of finite type is trivial.
1.9 Involutory Hopf \boldsymbol{G}-coalgebras. A Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is involutory if its antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in \pi}$ satisfies the identity $S_{\alpha^{-1}} S_{\alpha}=\operatorname{id}_{H_{\alpha}}$ for all $\alpha \in \pi$.

Involutory Hopf G-coalgebras of finite type have special properties. For example, each of their G-integrals $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ is two sided, S-invariant $\left(\lambda_{\alpha^{-1}} S_{\alpha}=\lambda_{\alpha}\right.$ for all $\alpha \in G)$, and symmetric $\left(\lambda_{\alpha}(x y)=\lambda_{\alpha}(y x)\right.$ for all $\alpha \in G$ and $\left.x, y \in H_{\alpha}\right)$. Also if the ground field K of H is of characteristic 0 , then $\operatorname{dim} H_{\alpha}=\operatorname{dim} H_{1}$ whenever $H_{\alpha} \neq 0$.

Finally, if $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is an involutory Hopf G-coalgebra of finite type over a field whose characteristic does not divide $\operatorname{dim} H_{1}$, then H is semisimple and cosemisimple; see [Vir4], Lemma 3.

6.2 Quasitriangular Hopf G-coalgebras

2.1 Crossed Hopf G-coalgebras. A Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is crossed if it is endowed with a crossing, that is, a family of algebra isomorphisms $\varphi=\left\{\varphi_{\beta}: H_{\alpha} \rightarrow\right.$ $\left.H_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in G}$ such that

$$
\left(\varphi_{\beta} \otimes \varphi_{\beta}\right) \Delta_{\alpha, \gamma}=\Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \varphi_{\beta}, \quad \varepsilon \varphi_{\beta}=\varepsilon, \quad \text { and } \quad \varphi_{\alpha \beta}=\varphi_{\alpha} \varphi_{\beta}
$$

for all $\alpha, \beta, \gamma \in G$. One easily verifies that a crossing preserves the antipode, that is, $\varphi_{\beta} S_{\alpha}=S_{\beta \alpha \beta^{-1}} \varphi_{\beta}$ for all $\alpha, \beta \in G$. Therefore this definition of a crossed Hopf G-coalgebra is equivalent to the one in Chapter VIII.

A crossing φ in H yields a group homomorphism $\varphi: G \rightarrow \operatorname{Aut}_{\text {Hopf }}\left(H_{1}\right)$ and determines thus an action of G on H_{1} by Hopf algebra automorphisms. Here for a Hopf algebra A, we denote $\operatorname{Aut}_{\text {Hopf }}(A)$ the group of Hopf automorphisms of A.

If G is an abelian group, then any Hopf G-coalgebra admits a trivial crossing $\varphi_{\beta}=\mathrm{id}$ for all $\beta \in G$.

When G is a finite group, the notion of a crossing can be described in terms of central prolongations of K^{G} (see Section 1.2): a crossing of a central prolongation A

[^0]of K^{G} is a group homomorphism $\varphi: G \rightarrow \operatorname{Aut}_{\text {Hopf }}(A)$ such that $\varphi_{\beta}\left(1_{\alpha}\right)=1_{\beta \alpha \beta^{-1}}$ for all $\alpha, \beta \in G$, where 1_{α} is the image of $e_{\alpha} \in K^{G}$ under the central map $K^{G} \rightarrow A$.
2.2 The distinguished character. Let $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ be a crossed Hopf G-coalgebra of finite type with crossing φ. Using the uniqueness of G-integrals (see Theorem A), one can show the existence of a unique group homomorphism $\hat{\varphi}: G \rightarrow K^{*}$, called the distinguished character of H, such that $\lambda_{\beta \alpha \beta^{-1}} \varphi_{\beta}=\hat{\varphi}(\beta) \lambda_{\alpha}$ for any left or right G-integral $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ for H and all $\alpha, \beta \in G$.

Lemma E ([Vir2], Lemma 6.3). For any $\beta \in G$,
(a) If Λ is a left or right integral for H_{1}, then $\varphi_{\beta}(\Lambda)=\hat{\varphi}(\beta) \Lambda$.
(b) If ν is the distinguished grouplike element of H_{1}^{*}, then $\nu \varphi_{\beta}=\nu$.
(c) If $g=\left(g_{\alpha}\right)_{\alpha \in G}$ is the distinguished G-grouplike element of H, then $\varphi_{\beta}\left(g_{\alpha}\right)=$ $g_{\beta \alpha \beta^{-1}}$ for all $\alpha \in G$.
2.3 Quasitriangular Hopf G-coalgebras. Following Chapter VIII, we call a crossed Hopf G-coalgebra ($H=\left\{H_{\alpha}\right\}_{\alpha \in G}, \varphi$) quasitriangular if it is endowed with an R matrix, that is, a family $R=\left\{R_{\alpha, \beta} \in H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in G}$ of invertible elements such that, for all $\alpha, \beta, \gamma \in G$ and $x \in H_{\alpha \beta}$,

$$
\begin{aligned}
R_{\alpha, \beta} \cdot \Delta_{\alpha, \beta}(x) & =\sigma_{\beta, \alpha}\left(\varphi_{\alpha^{-1}} \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{\alpha \beta \alpha^{-1}, \alpha}(x) \cdot R_{\alpha, \beta}, \\
\left(\operatorname{id}_{H_{\alpha}} \otimes \Delta_{\beta, \gamma}\right)\left(R_{\alpha, \beta \gamma}\right) & =\left(R_{\alpha, \gamma}\right)_{1 \beta 3} \cdot\left(R_{\alpha, \beta}\right)_{12 \gamma}, \\
\left(\Delta_{\alpha, \beta} \otimes \mathrm{id}_{H_{\gamma}}\right)\left(R_{\alpha \beta, \gamma}\right) & =\left[\left(\operatorname{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}}\right)\left(R_{\alpha, \beta \gamma \beta^{-1}}\right)\right]_{1 \beta 3} \cdot\left(R_{\beta, \gamma}\right)_{\alpha 23}, \\
\left(\varphi_{\beta} \otimes \varphi_{\beta}\right)\left(R_{\alpha, \gamma}\right) & =R_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} .
\end{aligned}
$$

Here $\sigma_{\beta, \alpha}$ denotes the flip $H_{\beta} \otimes H_{\alpha} \rightarrow H_{\alpha} \otimes H_{\beta}$ and, for K-vector spaces P, Q and $r=\sum_{j} p_{j} \otimes q_{j} \in P \otimes Q$, we set

$$
r_{12 \gamma}=r \otimes 1_{\gamma} \in P \otimes Q \otimes H_{\gamma}, \quad r_{\alpha 23}=1_{\alpha} \otimes r \in H_{\alpha} \otimes P \otimes Q
$$

and $r_{1 \beta 3}=\sum_{j} p_{j} \otimes 1_{\beta} \otimes q_{j} \in P \otimes H_{\beta} \otimes Q$. Note that $R_{1,1}$ is an R-matrix for the Hopf algebra H_{1} is the usual sense of the word.

When G is abelian and φ is the trivial crossing, we recover the definition of a quasitriangular G-colored Hopf algebra due to Ohtsuki [Oh1].

An R-matrix for a crossed Hopf G-coalgebra provides a solution of the G-colored Yang-Baxter equation

$$
\begin{aligned}
& \left(R_{\beta, \gamma}\right)_{\alpha 23} \cdot\left(R_{\alpha, \gamma}\right)_{1 \beta 3} \cdot\left(R_{\alpha, \beta}\right)_{12 \gamma} \\
& \quad=\left(R_{\alpha, \beta}\right)_{12 \gamma} \cdot\left[\left(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}}\right)\left(R_{\alpha, \beta \gamma \beta}\right)\right]_{1 \beta 3} \cdot\left(R_{\beta, \gamma}\right)_{\alpha 23}
\end{aligned}
$$

and satisfies the following identities (see [Vir2], Lemma 6.4): for all $\alpha, \beta, \gamma \in G$,

$$
\begin{aligned}
\left(\varepsilon \otimes \operatorname{id}_{H_{\alpha}}\right)\left(R_{1, \alpha}\right) & =1_{\alpha}=\left(\operatorname{id}_{H_{\alpha}} \otimes \varepsilon\right)\left(R_{\alpha, 1}\right) \\
\left(S_{\alpha^{-1}} \varphi_{\alpha} \otimes \operatorname{id}_{H_{\beta}}\right)\left(R_{\alpha^{-1}, \beta}\right) & =R_{\alpha, \beta}^{-1} \quad \text { and } \quad\left(\operatorname{id}_{H_{\alpha}} \otimes S_{\beta}\right)\left(R_{\alpha, \beta}^{-1}\right)=R_{\alpha, \beta^{-1}} \\
\left(S_{\alpha} \otimes S_{\beta}\right)\left(R_{\alpha, \beta}\right) & =\left(\varphi_{\alpha} \otimes \operatorname{id}_{H_{\beta^{-1}}}\right)\left(R_{\alpha^{-1}, \beta^{-1}}\right)
\end{aligned}
$$

2.4 The Drinfeld element. The Drinfeld element of a quasitriangular Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is the family $u=\left(u_{\alpha}\right)_{\alpha \in G} \in \Pi_{\alpha \in G} H_{\alpha}$, where

$$
u_{\alpha}=m_{\alpha}\left(S_{\alpha^{-1}} \varphi_{\alpha} \otimes \operatorname{id}_{H_{\alpha}}\right) \sigma_{\alpha, \alpha^{-1}}\left(R_{\alpha, \alpha^{-1}}\right)
$$

Observe that u_{1} is the Drinfeld element of the quasitriangular Hopf algebra H_{1} (see [Drin2]). By [Vir2], Lemma 6.5, each u_{α} is invertible in H_{α} and

$$
u_{\alpha}^{-1}=m_{\alpha}\left(\operatorname{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}} S_{\alpha}\right) \sigma_{\alpha, \alpha}\left(R_{\alpha, \alpha}\right)
$$

Moreover, for any $\alpha \in G$ and $x \in H$,

$$
S_{\alpha^{-1}} S_{\alpha}(x)=u_{\alpha} \varphi_{\alpha^{-1}}(x) u_{\alpha}^{-1}
$$

where φ is the crossing in H. This implies that the antipode of H is bijective.
Note also the identities $\varepsilon\left(u_{1}\right)=1, \varphi_{\beta}\left(u_{\alpha}\right)=u_{\beta \alpha \beta^{-1}}$, and

$$
\Delta_{\alpha, \beta}\left(u_{\alpha \beta}\right)=\left[\sigma_{\beta, \alpha}\left(\mathrm{id}_{H_{\beta}} \otimes \varphi_{\alpha}\right)\left(R_{\beta, \alpha}\right) \cdot R_{\alpha, \beta}\right]^{-1} \cdot\left(u_{\alpha} \otimes u_{\beta}\right)
$$

2.5 Ribbon Hopf \boldsymbol{G}-coalgebras. Following Chapter VIII, we call a quasitriangular Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ ribbon if it is endowed with a twist, that is, a family of invertible elements $\theta=\left\{\theta_{\alpha} \in H_{\alpha}\right\}_{\alpha \in G}$ such that for all $\alpha, \beta \in G$ and $x \in H_{\alpha}$,

$$
\begin{gathered}
\varphi_{\alpha}(x)=\theta_{\alpha}^{-1} x \theta_{\alpha}, \quad S_{\alpha}\left(\theta_{\alpha}\right)=\theta_{\alpha^{-1}}, \quad \varphi_{\beta}\left(\theta_{\alpha}\right)=\theta_{\beta \alpha \beta^{-1}} \\
\Delta_{\alpha, \beta}\left(\theta_{\alpha \beta}\right)=\left(\theta_{\alpha} \otimes \theta_{\beta}\right) \cdot \sigma_{\beta, \alpha}\left(\operatorname{id}_{H_{\beta}} \otimes \varphi_{\alpha}\right)\left(R_{\beta, \alpha}\right) \cdot R_{\alpha, \beta}
\end{gathered}
$$

Note that θ_{1} is a twist of the quasitriangular Hopf algebra H_{1}, and so $\varepsilon\left(\theta_{1}\right)=1$. If $\alpha \in G$ has a finite order d, then θ_{α}^{d} is a central element of H_{α}. In particular, θ_{1} is central in H_{1}.

Example. Let G be a group and $c: G \times G \rightarrow K^{*}$ be a bicharacter of G, that is, $c(\alpha, \beta \gamma)=c(\alpha, \beta) c(\alpha, \gamma)$ and $c(\alpha \beta, \gamma)=c(\alpha, \gamma) c(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in G$. Consider the following crossed Hopf algebra K^{c} : for all $\alpha, \beta \in G$, we have $K_{\alpha}^{c}=K$ as an algebra and

$$
\Delta_{\alpha, \beta}\left(1_{K}\right)=1_{K} \otimes 1_{K}, \quad \varepsilon\left(1_{K}\right)=1_{K}, \quad S_{\alpha}\left(1_{K}\right)=1_{K}, \quad \varphi_{\beta}\left(1_{K}\right)=1_{K}
$$

Then K^{c} is a ribbon Hopf G-coalgebra of finite type with R-matrix and twist given by $R_{\alpha, \beta}=c(\alpha, \beta) 1_{K} \otimes 1_{K}$ and $\theta_{\alpha}=c(\alpha, \alpha)$. The Drinfeld elements of K^{c} are computed by $u_{\alpha}=c(\alpha, \alpha)^{-1}$.
2.6 The spherical \boldsymbol{G}-grouplike element. Let $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ be a ribbon Hopf G coalgebra with Drinfeld element $u=\left(u_{\alpha}\right)_{\alpha \in G}$. For any $\alpha \in G$, set

$$
w_{\alpha}=\theta_{\alpha} u_{\alpha}=u_{\alpha} \theta_{\alpha} \in H_{\alpha}
$$

Then $w=\left(w_{\alpha}\right)_{\alpha \in G}$ is a G-grouplike element, called the spherical G-grouplike element of H. It satisfies the identities

$$
\varphi_{\beta}\left(w_{\alpha}\right)=w_{\beta \alpha \beta^{-1}}, \quad S_{\alpha}\left(u_{\alpha}\right)=w_{\alpha^{-1}}^{-1} u_{\alpha^{-1}} w_{\alpha^{-1}}^{-1}, \quad \text { and } \quad S_{\alpha^{-1}} S_{\alpha}(x)=w_{\alpha} x w_{\alpha}^{-1}
$$

for all $\alpha, \beta \in G$ and $x \in H_{\alpha}$. Conversely, any G-grouplike element $w=\left(w_{\alpha}\right)_{\alpha \in G}$ of a quasitriangular Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ which satisfies these identities gives rise to a twist $\theta=\left(\theta_{\alpha}\right)_{\alpha \in G}$ in H by $\theta_{\alpha}=w_{\alpha} u_{\alpha}^{-1}=u_{\alpha}^{-1} w_{\alpha}$.
2.7 Further \boldsymbol{G}-grouplike elements. Let $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ be a quasitriangular Hopf G-coalgebra of finite type. Set

$$
\ell_{\alpha}=S_{\alpha^{-1}}\left(u_{\alpha^{-1}}\right)^{-1} u_{\alpha}=u_{\alpha} S_{\alpha^{-1}}\left(u_{\alpha^{-1}}\right)^{-1} \in H_{\alpha}
$$

where $u=\left(u_{\alpha}\right)_{\alpha \in G}$ is the Drinfeld element of H. The properties of u ensure that $\ell=\left(\ell_{\alpha}\right)_{\alpha \in G}$ is a G-grouplike element of H. Let v be the distinguished grouplike element of H_{1}^{*} and $\hat{\varphi}$ be the distinguished character of H (see Sections 1.5 and 2.2). Denoting $R=\left\{R_{\alpha, \beta} \in H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in G}$ the R-matrix of H, set

$$
h_{\alpha}=\left(\operatorname{id}_{H_{\alpha}} \otimes v\right)\left(R_{\alpha, 1}\right) \in H_{\alpha}
$$

Theorem F ([Vir2], Theorem 6.9). The family $h=\left(h_{\alpha}\right)_{\alpha \in G}$ is a G-grouplike element of H. The distinguished G-grouplike element $\left(g_{\alpha}\right)_{\alpha \in G}$ of H is computed by $g_{\alpha}=$ $\widehat{\varphi}(\alpha)^{-1} \ell_{\alpha} h_{\alpha}$ for all $\alpha \in G$.

For ribbon H, we obtain as a corollary that $g_{\alpha}=\widehat{\varphi}(\alpha)^{-1} w_{\alpha}^{2} h_{\alpha}$ for all $\alpha \in G$, where $w=\left(w_{\alpha}\right)_{\alpha \in G}$ is the spherical G-grouplike element of H.
2.8 Traces. Let $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ be a crossed Hopf G-coalgebra. A G-trace for H is a family of K-linear forms $\operatorname{tr}=\left(\operatorname{tr}_{\alpha}\right)_{\alpha \in G} \in \Pi_{\alpha \in G} H_{\alpha}^{*}$ such that

$$
\operatorname{tr}_{\alpha}(x y)=\operatorname{tr}_{\alpha}(y x), \quad \operatorname{tr}_{\alpha^{-1}}\left(S_{\alpha}(x)\right)=\operatorname{tr}_{\alpha}(x), \quad \text { and } \quad \operatorname{tr}_{\beta \alpha \beta} \beta^{-1}\left(\varphi_{\beta}(x)\right)=\operatorname{tr}_{\alpha}(x)
$$

for all $\alpha, \beta \in G$ and $x, y \in H_{\alpha}$. Note that tr_{1} is a usual trace for the Hopf algebra H_{1}, which is invariant under the action φ of G.

A Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is unimodular if the Hopf algebra H_{1} is unimodular (that is the spaces of left and right integrals for H_{1} coincide). If H_{1} is finite-dimensional, then H is unimodular if and only if $v=\varepsilon$, where v is the distinguished grouplike element of H_{1}^{*}. For example, any finite type semisimple Hopf G-coalgebra is unimodular.

Consider in more detail a unimodular ribbon Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ of finite type. Let $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$ be a non-zero right G-integral for $H, w=\left(w_{\alpha}\right)_{\alpha \in G}$ be the spherical G-grouplike element of H, and $\hat{\varphi}$ be the distinguished character of H.

Using Theorems B and F, we obtain that the G-traces for H are parameterized by families $z=\left(z_{\alpha}\right)_{\alpha \in G}$ such that $z_{\alpha} \in H_{\alpha}$ is central, $S_{\alpha}\left(z_{\alpha}\right)=\widehat{\varphi}(\alpha)^{-1} z_{\alpha^{-1}}$, and $\varphi_{\beta}\left(z_{\alpha}\right)=\hat{\varphi}(\beta) z_{\beta \alpha \beta^{-1}}$ for all $\alpha, \beta \in G$. The G-trace corresponding to such a family z is given by $\operatorname{tr}_{\alpha}(x)=\lambda_{\alpha}\left(w_{\alpha} z_{\alpha} x\right)$. We point out two such families.

Let Λ be a left integral for H_{1} such that $\lambda_{1}(\Lambda)=1$. Set $z_{1}=\Lambda$ and $z_{\alpha}=0$ if $\alpha \neq 1$. The resulting family $\left(z_{\alpha}\right)_{\alpha \in G}$ satisfies all the conditions above since H is unimodular (and so Λ is central and $S_{1}(\Lambda)=\Lambda$) and by Lemma E (a). The corresponding G-trace is given by $\operatorname{tr}_{1}=\varepsilon$ and $\operatorname{tr}_{\alpha}=0$ for all $\alpha \neq 1$.

If $\hat{\varphi}(\alpha)=1$ for all $\alpha \in G$, then another possible choice of a family z is $z_{\alpha}=1_{\alpha}$ for all α. Note that $\hat{\varphi}=1$ if H is semisimple or cosemisimple or if $\lambda_{1}\left(\theta_{1}\right) \neq 0$, where $\theta=\left\{\theta_{\alpha}\right\}_{\alpha \in G}$ is the twist of H. We obtain the following assertion.

Theorem G ([Vir2], Theorem 7.4). Suppose under the assumptions above that at least one of the following four conditions is satisfied: H is semisimple, or H is cosemisimple, or $\lambda_{1}\left(\theta_{1}\right) \neq 0$, or $\left.\varphi_{\beta}\right|_{H_{1}}=\operatorname{id}_{H_{1}}$ for all $\beta \in G$. Then the family of K-linear maps $\operatorname{tr}=\left(\operatorname{tr}_{\alpha}\right)_{\alpha \in G}$, defined by $\operatorname{tr}_{\alpha}(x)=\lambda_{\alpha}\left(w_{\alpha} x\right)$ for all $x \in H_{\alpha}$, is a G-trace for H.

6.3 The twisted double construction

Starting from a crossed Hopf G-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$, Zunino [Zu1] constructed a double $Z(H)=\left\{Z(H)_{\alpha}\right\}_{\alpha \in G}$ of H which is a quasitriangular Hopf G-coalgebra containing H as a Hopf G-subcoalgebra. As a vector space, $Z(H)_{\alpha}=H_{\alpha} \otimes\left(\bigoplus_{\beta \in G} H_{\beta}^{*}\right)$. Generally speaking, $Z(H)$ is not of finite type: the components $Z(H)_{\alpha}$ may be infinitedimensional.

In this section we provide a method, called the twisted double construction, for deriving quasitriangular Hopf G-coalgebras of finite type from finite-dimensional Hopf algebras endowed with action of G by Hopf automorphisms (cf. Section 2.1). We also give an h-adic version of this construction. This will lead us to non-trivial examples of quasitriangular Hopf G-coalgebras for any finite group G and for infinite groups G such as $\mathrm{GL}_{n}(K)$. In particular, we define the (h-adic) graded quantum groups.
3.1 Hopf pairings. Recall that a Hopf pairing between two Hopf algebras A and B (over K) is a bilinear pairing $\sigma: A \times B \rightarrow K$ such that, for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{array}{ll}
\sigma\left(a, b b^{\prime}\right)=\sigma\left(a_{(1)}, b\right) \sigma\left(a_{(2)}, b^{\prime}\right), & \sigma(a, 1)=\varepsilon(a) \\
\sigma\left(a a^{\prime}, b\right)=\sigma\left(a, b_{(2)}\right) \sigma\left(a^{\prime}, b_{(1)}\right), & \sigma(1, b)=\varepsilon(b)
\end{array}
$$

Such a pairing always preserves the antipode: $\sigma(S(a), S(b))=\sigma(a, b)$ for all $a \in A$ and $b \in B$.

A Hopf pairing $\sigma: A \times B \rightarrow K$ determines two annihilator ideals $I_{A}=\{a \in A \mid$ $\sigma(a, b)=0$ for all $b \in B\}$ and $I_{B}=\{b \in B \mid \sigma(a, b)=0$ for all $a \in A\}$. It is easy to check that I_{A} and I_{B} are Hopf ideals of A and B, respectively. The pairing σ is non-degenerate iff $I_{A}=I_{B}=0$. Any Hopf pairing $\sigma: A \times B \rightarrow K$ induces a non-degenerate Hopf pairing $\bar{\sigma}: A / I_{A} \times B / I_{B} \rightarrow K$.
3.2 The twisted double. Let $\sigma: A \times B \rightarrow K$ be a Hopf pairing between two Hopf algebras A and B, and let $\phi: A \rightarrow A$ be a Hopf algebra endomorphism of A. Set

$$
D(A, B ; \sigma, \phi)=A \otimes B
$$

as a K-vector space. We provide $D(A, B ; \sigma, \phi)$ with a structure of an algebra with unit $1_{A} \otimes 1_{B}$ and multiplication

$$
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=\sigma\left(\phi\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(3)}^{\prime}, b_{(3)}\right) a a_{(2)}^{\prime} \otimes b_{(2)} b^{\prime}
$$

for any $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$.
Note that if ϕ and ϕ^{\prime} are different Hopf algebra endomorphisms of A, then the algebras $D(A, B ; \sigma, \phi)$ and $D\left(A, B ; \sigma, \phi^{\prime}\right)$ are in general not isomorphic (see Remark in Section 3.4 below).

Theorem H ([Vir3], Theorem 2.6). Let $\sigma: A \times B \rightarrow K$ be a Hopfpairing between Hopf algebras A and B, and let ϕ be an action of G on A by Hopf algebra automorphisms, that is, ϕ is a group homomorphism $G \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(A)$. Then the family of algebras

$$
D(A, B ; \sigma, \phi)=\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in G}
$$

has a structure of a Hopf G-coalgebra given by

$$
\begin{aligned}
\Delta_{\alpha, \beta}(a \otimes b) & =\left(\phi_{\beta}\left(a_{(1)}\right) \otimes b_{(1)}\right) \otimes\left(a_{(2)} \otimes b_{(2)}\right), \\
\varepsilon(a \otimes b) & =\varepsilon_{A}(a) \varepsilon_{B}(b), \\
S_{\alpha}(a \otimes b) & =\sigma\left(\phi_{\alpha}\left(a_{(1)}\right), b_{(1)}\right) \sigma\left(a_{(3)}, S\left(b_{(3)}\right)\right) \phi_{\alpha} S\left(a_{(2)}\right) \otimes S\left(b_{(2)}\right)
\end{aligned}
$$

for all $a \in A, b \in B$ and $\alpha, \beta \in G$. Furthermore, if σ is non-degenerate and A, B are finite dimensional, then the Hopf G-coalgebra $D(A, B ; \sigma, \phi)$ is quasitriangular with crossing φ and R-matrix $R=\left\{R_{\alpha, \beta}\right\}_{\alpha, \beta \in G}$ given by

$$
\varphi_{\beta}(a \otimes b)=\phi_{\beta}(a) \otimes \phi_{\beta}^{*}(b) \quad \text { and } \quad R_{\alpha, \beta}=\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right)
$$

where $\phi^{*}: G \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(B)$ is the unique action such that $\sigma\left(\phi_{\beta}, \phi_{\beta}^{*}\right)=\sigma$ for all $\beta \in G$, and $\left(e_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ are dual bases of A and B with respect to σ.

Corollary I. Let A be a finite-dimensional Hopf algebra and ϕ be an action of G on A by Hopf algebra automorphisms. Then the duality bracket $\langle,\rangle_{A \otimes A^{*}}$ is a non-degenerate Hopf pairing between A and $A^{* \mathrm{cop}}$ and $D\left(A, A^{* \mathrm{cop}} ;\langle,\rangle_{A \otimes A^{*}}, \phi\right)$ is a quasitriangular Hopf G-coalgebra.

Note that the group of Hopf automorphisms of a finite-dimensional semisimple Hopf algebra A over a field of characteristic 0 is finite (see [Rad2]). To obtain quasitriangular Hopf G-coalgebras with infinite G using the twisted double method, one has to start from non-semisimple Hopf algebras or from Hopf algebras over fields of non-zero characteristic.

In the next three sections, we use Theorem H to give examples of quasitriangular Hopf G-coalgebras.
3.3 Example: finite \boldsymbol{G}. Let G be a finite group. In this section, we describe the ribbon Hopf G-coalgebras obtained by the twisted double construction from the group algebra $K[G]$. The standard Hopf algebra structure on $K[G]$ is given by $\Delta(g)=g \otimes g$, $\varepsilon(g)=1$, and $S(g)=g^{-1}$ for all $g \in G$. The dual of $K[G]$ is the Hopf algebra $F(G)=K^{G}$ of functions $G \rightarrow K$ with structure maps and basis $\left(e_{g}: G \rightarrow K\right)_{g \in G}$ described in Section 2.1. Let $\phi: G \rightarrow$ Aut $_{\mathrm{Hopf}}(K[G])$ be the homomorphism defined by $\phi_{\alpha}(h)=\alpha h \alpha^{-1}$ for $\alpha \in G, h \in K[G]$. Corollary I yields a quasitriangular Hopf G-coalgebra

$$
D_{G}(G)=D\left(K[G], F(G)^{\mathrm{cop}} ;\langle,\rangle_{K[G] \times F(G)}, \phi\right)
$$

Let us describe $D_{G}(G)=\left\{D_{\alpha}(G)\right\}_{\alpha \in G}$ more precisely. For $\alpha \in G$, the algebra $D_{\alpha}(G)$ is equal to $K[G] \otimes F(G)$ as a K-vector space, has unit $1_{D_{\alpha}(G)}=\sum_{g \in G} 1 \otimes e_{g}$ and multiplication

$$
\left(g \otimes e_{h}\right) \cdot\left(g^{\prime} \otimes e_{h^{\prime}}\right)=\delta_{\alpha g^{\prime} \alpha^{-1}, h^{-1} g^{\prime} h^{\prime}} g g^{\prime} \otimes e_{h^{\prime}}
$$

for all $g, g^{\prime}, h, h^{\prime} \in G$. The structure maps of $D_{G}(G)$ are

$$
\begin{gathered}
\Delta_{\alpha, \beta}\left(g \otimes e_{h}\right)=\sum_{x y=h} \beta g \beta^{-1} \otimes e_{y} \otimes g \otimes e_{x}, \quad \varepsilon\left(g \otimes e_{h}\right)=\delta_{h, 1}, \\
S_{\alpha}\left(g \otimes e_{h}\right)=\alpha g^{-1} \alpha^{-1} \otimes e_{\alpha g \alpha^{-1} h^{-1} g^{-1},} \quad \varphi_{\alpha}\left(g \otimes e_{h}\right)=\alpha g \alpha^{-1} \otimes e_{\alpha h \alpha^{-1}}
\end{gathered}
$$

for all $\alpha, \beta, g, h \in G$. The crossed Hopf G-coalgebra $D_{G}(G)$ is quasitriangular and furthermore ribbon with R-matrix and twist

$$
R_{\alpha, \beta}=\sum_{g, h \in G} g \otimes e_{h} \otimes 1 \otimes e_{g} \quad \text { and } \quad \theta_{\alpha}=\sum_{g \in G} \alpha^{-1} g \alpha \otimes e_{g}
$$

for all $\alpha, \beta \in G$. The spherical G-grouplike element of $D_{G}(G)$ is $w=\left(1_{D_{\alpha}(G)}\right)_{\alpha \in G}$. The family $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in G}$, defined by $\lambda_{\alpha}\left(g \otimes e_{h}\right)=\delta_{g, 1}$, is a two-sided G-integral for $D_{G}(G)$.
3.4 An example of a quasitriangular Hopf $\operatorname{GL}_{\boldsymbol{n}}(\boldsymbol{K})$-coalgebra. In this section, K is a field of characteristic $\neq 2$ and n is a positive integer. Let A be the K-algebra with generators g, x_{1}, \ldots, x_{n} subject to the relations

$$
g^{2}=1, \quad x_{i}^{2}=0, \quad g x_{i}=-x_{i} g, \quad x_{i} x_{j}=-x_{j} x_{i}
$$

The algebra A is 2^{n+1}-dimensional and has a Hopf algebra structure given by
$\Delta(g)=g \otimes g, \quad \varepsilon(g)=1, \quad \Delta\left(x_{i}\right)=x_{i} \otimes g+1 \otimes x_{i}, \quad \varepsilon\left(x_{i}\right)=0, \quad S(g)=g$,
and $S\left(x_{i}\right)=g x_{i}$ for all i. The group of Hopf automorphisms of A is isomorphic to the group $\mathrm{GL}_{n}(K)$ of invertible $n \times n$-matrices with coefficients in K (see [Rad2]). An explicit isomorphism $\phi: \operatorname{GL}_{n}(K) \rightarrow \operatorname{Aut}_{\text {Hopf }}(A)$ carries any $\alpha=\left(\alpha_{i, j}\right) \in \operatorname{GL}_{n}(K)$ to the automorphism ϕ_{α} of A given by

$$
\phi_{\alpha}(g)=g \quad \text { and } \quad \phi_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} x_{k}
$$

We apply Corollary I to these A and ϕ. Observing that $A^{*} \cong A$ as Hopf algebras, we can quotient the resulting quasitriangular $\operatorname{Hopf}_{\mathrm{GL}_{n}}(K)$-coalgebra to eliminate one copy of the generator g (which appears twice), see [Vir3], Proposition 4.1. This gives a quasitriangular Hopf $\mathrm{GL}_{n}(K)$-coalgebra $\mathscr{H}=\left\{\mathscr{H}_{\alpha}\right\}_{\alpha \in \mathrm{GL}_{n}(K)}$. We give here a direct description of \mathscr{H}. For $\alpha=\left(\alpha_{i, j}\right) \in \mathrm{GL}_{n}(K)$, let \mathscr{H}_{α} be the K-algebra generated g, $x_{1}, \ldots x_{n}, y_{1}, \ldots, y_{n}$, subject to the relations

$$
\begin{gathered}
g^{2}=1, \quad x_{1}^{2}=\cdots=x_{n}^{2}=0, \quad g x_{i}=-x_{i} g, \quad x_{i} x_{j}=-x_{j} x_{i} \\
y_{1}^{2}=\cdots=y_{n}^{2}=0, \quad g y_{i}=-y_{i} g, \quad y_{i} y_{j}=-y_{j} y_{i} \\
\\
x_{i} y_{j}-y_{j} x_{i}=\left(\alpha_{j, i}-\delta_{i, j}\right) g,
\end{gathered}
$$

where $1 \leq i, j \leq n$. The family $\mathscr{H}=\left\{\mathscr{H}_{\alpha}\right\}_{\alpha \in \mathrm{GL}_{n}(K)}$ has the following structure of a crossed Hopf GL ${ }_{n}(K)$-coalgebra:

$$
\begin{gathered}
\Delta_{\alpha, \beta}(g)=g \otimes g, \quad \varepsilon(g)=1, \quad S_{\alpha}(g)=g \\
\Delta_{\alpha, \beta}\left(x_{i}\right)=1 \otimes x_{i}+\sum_{k=1}^{n} \beta_{k, i} x_{k} \otimes g, \quad \varepsilon\left(x_{i}\right)=0, \quad S_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} g x_{k} \\
\Delta_{\alpha, \beta}\left(y_{i}\right)=y_{i} \otimes 1+g \otimes y_{i}, \quad \varepsilon\left(y_{i}\right)=0, \quad S_{\alpha}\left(y_{i}\right)=-g y_{i} \\
\varphi_{\alpha}(g)=g, \quad \varphi_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} x_{k}, \quad \varphi_{\alpha}\left(y_{i}\right)=\sum_{k=1}^{n} \tilde{\alpha}_{i, k} y_{k}
\end{gathered}
$$

where $\alpha=\left(\alpha_{i, j}\right), \beta=\left(\beta_{i, j}\right)$ run over $\mathrm{GL}_{n}(K),\left(\tilde{\alpha}_{i, j}\right)=\alpha^{-1}$, and $1 \leq i \leq n$. The crossed Hopf $\mathrm{GL}_{n}(K)$-coalgebra \mathscr{H} is quasitriangular with R-matrix

$$
R_{\alpha, \beta}=\frac{1}{2} \sum_{S \subseteq\{1, \ldots n\}} x_{S} \otimes y_{S}+x_{S} \otimes g y_{S}+g x_{S} \otimes y_{S}-g x_{S} \otimes g y_{S}
$$

for all $\alpha, \beta \in \mathrm{GL}_{n}(K)$. Here $x_{\emptyset}=1, y_{\emptyset}=1$, and for a nonempty subset S of $\{1, \ldots n\}$, we set $x_{S}=x_{i_{1}} \ldots x_{i_{s}}$ and $y_{S}=y_{i_{1}} \ldots y_{i_{s}}$, where $i_{1}<\cdots<i_{s}$ are the elements of S.

Remark. Generally speaking, for distinct $\alpha, \beta \in \mathrm{GL}_{n}(K)$, the algebras \mathscr{H}_{α} and \mathscr{H}_{β} are not isomorphic. For example, $\mathscr{H}_{\alpha} \not \not \mathscr{H}_{1}$ for any $\alpha \in \mathrm{GL}_{n}(K)-\{1\}$. It suffices to prove that

$$
\mathscr{H}_{\alpha} /\left[\mathscr{H}_{\alpha}, \mathscr{H}_{\alpha}\right] \not \not \mathscr{H}_{1} /\left[\mathscr{H}_{1}, \mathscr{H}_{1}\right] .
$$

Indeed, $\mathscr{H}_{\alpha} /\left[\mathscr{H}_{\alpha}, \mathscr{H}_{\alpha}\right]=0$ since $g=\frac{1}{\alpha_{j, i}-\delta_{i, j}}\left(x_{i} y_{j}-y_{j} x_{i}\right) \in\left[\mathscr{H}_{\alpha}, \mathscr{H}_{\alpha}\right]$ (for some $1 \leq i, j \leq n$ such that $\left.\alpha_{j, i} \neq \delta_{i, j}\right)$ and so $1=g^{2} \in\left[\mathcal{H}_{\alpha}, \mathscr{H}_{\alpha}\right]$. In $\mathscr{H}_{1} /\left[\mathcal{H}_{1}, \mathscr{H}_{1}\right]$, we have $x_{k}=x_{k} g^{2}=0$ (since $x_{k} g=g x_{k}=-x_{k} g$ and so $x_{k} g=0$) and likewise $y_{k}=0$. Hence $\mathscr{H}_{1} /\left[\mathscr{H}_{1}, \mathscr{H}_{1}\right]=K\left\langle g \mid g^{2}=1\right\rangle \neq 0$.
3.5 Graded quantum groups. Let g be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $\left(a_{i, j}\right)$. Let $\left\{d_{i}\right\}_{i=1}^{l}$ be coprime integers such that the matrix $\left(d_{i} a_{i, j}\right)$ is symmetric. Let q be a fixed non-zero complex number and $q_{i}=q^{d_{i}}$ for $i=1,2, \ldots, l$. We suppose that $q_{i}^{2} \neq 1$ for all i.

Recall that the (usual) quantum group $U_{q}(g)$ can be obtained as a quotient of the quantum double of $U_{q}\left(\mathfrak{b}_{+}\right)$, where \mathfrak{b}_{+}is the (positive) Borel subalgebra of g (the quotient is needed to eliminate the second copy of the Cartan subalgebra). Applying Theorem H to the Hopf algebra $U_{q}\left(\mathfrak{b}_{+}\right)$endowed with an action of $\left(\mathbb{C}^{*}\right)^{l}$ by Hopf automorphisms, we obtain the "graded quantum group" introduced in [Vir3], Proposition 5.1. It can be directly described as follows.

Set $G=\left(\mathbb{C}^{*}\right)^{l}$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in G$, let $U_{q}^{\alpha}(\mathfrak{g})$ be the \mathbb{C}-algebra generated by $K_{i}^{ \pm 1}, E_{i}, F_{i}, 1 \leq i \leq l$, subject to the following defining relations:

$$
\begin{gathered}
K_{i} K_{j}=K_{j} K_{i}, \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \\
K_{i} E_{j}=q_{i}^{a_{i, j}} E_{j} K_{i}, \\
K_{i} F_{j}=q_{i}^{-a_{i, j}} F_{j} K_{i} \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{\alpha_{i} K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \\
\sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i, j}-r} E_{j} E_{i}^{r}=0 \quad \text { if } i \neq j, \\
\sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{r}
1-a_{i, j} \\
r
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i, j}-r} F_{j} F_{i}^{r}=0 \quad \text { if } i \neq j
\end{gathered}
$$

The family $U_{q}^{G}(\mathrm{~g})=\left\{U_{q}^{\alpha}(\mathrm{g})\right\}_{\alpha \in G}$ has a structure of a crossed Hopf G-coalgebra given, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in G, \beta=\left(\beta_{1}, \ldots, \beta_{l}\right) \in G$ and $1 \leq i \leq l$, by:

$$
\begin{aligned}
\Delta_{\alpha, \beta}\left(K_{i}\right) & =K_{i} \otimes K_{i} \\
\Delta_{\alpha, \beta}\left(E_{i}\right) & =\beta_{i} E_{i} \otimes K_{i}+1 \otimes E_{i} \\
\Delta_{\alpha, \beta}\left(F_{i}\right) & =F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i}
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon\left(K_{i}\right)=1, \quad \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0 \\
S_{\alpha}\left(K_{i}\right)=K_{i}^{-1}, \quad S_{\alpha}\left(E_{i}\right)=-\alpha_{i} E_{i} K_{i}^{-1}, \quad S_{\alpha}\left(F_{i}\right)=-K_{i} F_{i} \\
\varphi_{\alpha}\left(K_{i}\right)=K_{i}, \quad \varphi_{\alpha}\left(E_{i}\right)=\alpha_{i} E_{i}, \quad \varphi_{\alpha}\left(F_{i}\right)=\alpha_{i}^{-1} F_{i}
\end{gathered}
$$

Note that $\left(U_{q}^{1}(\mathfrak{g}), \Delta_{1,1}, \varepsilon, S_{1}\right)$ is the usual quantum group $U_{q}(\mathfrak{g})$.
To give a rigorous treatment of R-matrices for the graded quantum groups, we need h-adic versions of Hopf G-coalgebras and of graded quantum groups. This is the content of the next two sections.
3.6 The \boldsymbol{h}-adic case. In this section, we develop an h-adic variant of Hopf G coalgebras. Roughly speaking, h-adic Hopf G-coalgebras are obtained by taking the ring $\mathbb{C}[[h]]$ of formal power series as the ground ring and requiring that the algebras (resp. the tensor products) are complete (resp. completed) in the h-adic topology.

Recall that if V is a (left) module over $\mathbb{C}[[h]]$, then the topology on V for which the sets $\left\{h^{n} V+v \mid n \in \mathbb{N}\right\}$ form a base for neighborhoods of $v \in V$ is called the h-adic topology. For $\mathbb{C}[[h]]$-modules V and W, denote by $V \widehat{\otimes} W$ the completion of $V \otimes_{\mathbb{C}[[h]]} W$ in the h-adic topology.

If V is a complex vector space, then the set $V[[h]]$ of all formal power series $\sum_{n=0}^{\infty} v_{n} h^{n}$ with coefficients $v_{n} \in V$ is a $\mathbb{C}[[h]]$-module called a topologically free module. Topologically free modules are exactly $\mathbb{C}[[h]]$-modules which are complete, separated, and torsion-free. Furthermore, $V[[h]] \widehat{\otimes} W[[h]]=(V \otimes W)[[h]]$ for any complex vector spaces V and W.

An h-adic algebra A is a $\mathbb{C}[[h]]$-module complete in the h-adic topology and endowed with a $\mathbb{C}[[h]]$-linear map $m: A \hat{\otimes} A \rightarrow A$ and an element $1 \in A$ such that $m\left(\mathrm{id}_{A} \hat{\otimes} m\right)=m\left(m \hat{\otimes}_{\mathrm{id}_{A}}\right)$ and $m\left(\mathrm{id}_{A} \hat{\otimes} 1\right)=\mathrm{id}_{A}=m\left(1 \hat{\otimes} \mathrm{id}_{A}\right)$.

By an h-adic Hopf G-coalgebra, we mean a family $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ of h-adic algebras endowed with h-adic algebra homomorphisms $\Delta_{\alpha, \beta}: H_{\alpha \beta} \rightarrow H_{\alpha} \hat{\otimes} H_{\beta}$ $(\alpha, \beta \in G), \varepsilon: A \rightarrow \mathbb{C}[[h]]$, and with $C[[h]]$-linear maps $S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}(\alpha \in G)$ satisfying formulas of Section 1.1. It is understood that the algebraic tensor product \otimes is replaced everywhere by its h-adic completions $\hat{\otimes}$.

The notions of crossed, quasitriangular, and ribbon h-adic Hopf G-coalgebras can be defined similarly following Sections 2.1 and 2.3.

Theorem H carries over to the h-adic Hopf algebras. The key modifications are that $\sigma: A \widehat{\otimes} B \rightarrow \mathbb{C}[[h]]$ must be $\mathbb{C}[[h]]$-linear and $D(A, B ; \sigma, \phi)=A \widehat{\otimes} B$.
Theorem J. Let $\sigma: A \hat{\otimes} B \rightarrow \mathbb{C}[[h]]$ be an h-adic Hopf pairing between two h-adic Hopf algebras A and B. Let $\phi: G \rightarrow \operatorname{Aut}_{H o p f}(A)$ be an action of G on A by h-adic Hopf automorphisms. Then the family $D(A, B ; \sigma, \phi)=\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in G}$ is an h-adic Hopf G-coalgebra. Assume furthermore that A and B are topologically free, σ is non-degenerate, and $R_{\alpha, \beta}=\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right)$ belongs to the h-adic completion $D\left(A, B ; \sigma, \phi_{\alpha}\right) \widehat{\otimes} D\left(A, B ; \sigma, \phi_{\beta}\right)$, where $\left(e_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ are bases of A and B dual with respect to σ. Then $D(A, B ; \sigma, \phi)$ is quasitriangular with R-matrix $R=\left\{R_{\alpha, \beta}\right\}_{\alpha, \beta \in G}$.

The condition on $R_{\alpha, \beta}$ in the second part of the theorem means the following. Since A and B are topologically free, $A=V[[h]]$ and $B=W[[h]]$ for some complex vector spaces V and W. Then

$$
D\left(A, B ; \sigma, \phi_{\alpha}\right) \hat{\otimes} D\left(A, B ; \sigma, \phi_{\beta}\right)=(V \otimes W \otimes V \otimes W)[[h]] .
$$

We require that $R_{\alpha, \beta}=\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right)$ can be expanded as $\sum_{n=0}^{\infty} r_{n} h^{n}$ for some $r_{n} \in V \otimes W \otimes V \otimes W$.

In the next section, we use Theorem J to define h-adic graded quantum groups.
3.7 \boldsymbol{h}-adic graded quantum groups. Let g be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $\left(a_{i, j}\right)$. Let $\left\{d_{i}\right\}_{i=1}^{l}$ be coprime integers such that the matrix $\left(d_{i} a_{i, j}\right)$ is symmetric. Applying Theorem J to the h-adic Hopf algebras $U_{h}\left(\mathfrak{b}_{+}\right)$and $\tilde{U}_{h}\left(\mathfrak{b}_{-}\right)=\mathbb{C}[[h]] 1+h U_{h}\left(\mathfrak{b}_{-}\right)$, we obtain (after appropriate quotienting) quasitriangular " h-adic graded quantum groups" (see [Vir3], Proposition 6.1). We give here a direct description of these quantum groups.

Let $G=\mathbb{C}[[h]]^{l}$ with group operation being addition. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in G$, let $U_{h}^{\alpha}(\mathrm{g})$ be the h-adic algebra generated by the elements $H_{i}, E_{i}, F_{i}, 1 \leq i \leq l$, subject to the following defining relations:

$$
\begin{aligned}
& {\left[H_{i}, H_{j}\right]=0,} \\
& {\left[H_{i}, E_{j}\right]=a_{i j} E_{j},} \\
& {\left[H_{i}, F_{j}\right]=-a_{i j} F_{j},} \\
& {\left[E_{i}, F_{j}\right]=\delta_{i, j} \frac{e^{d_{i} h \alpha_{i}} e^{d_{i} h H_{i}}-e^{-d_{i} h H_{i}}}{e^{d_{i} h}-e^{-d_{i} h}},} \\
& \sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{e^{d_{i} h}} E_{i}^{1-a_{i, j}-r} E_{j} E_{i}^{r}=0 \quad(i \neq j), \\
& \sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{e^{d_{i} h}} F_{i}^{1-a_{i, j}-r} F_{j} F_{i}^{r}=0 \quad(i \neq j) \text {. }
\end{aligned}
$$

The family $U_{h}^{G}(\mathrm{~g})=\left\{U_{h}^{\alpha}(\mathrm{g})\right\}_{\alpha \in G}$ has a structure of a crossed h-adic Hopf G coalgebra given, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right), \beta=\left(\beta_{1}, \ldots, \beta_{l}\right) \in G$ and $1 \leq i \leq l$, by

$$
\begin{gathered}
\Delta_{\alpha, \beta}\left(H_{i}\right)=H_{i} \otimes 1+1 \otimes H_{i}, \quad \varepsilon\left(H_{i}\right)=0 \\
\Delta_{\alpha, \beta}\left(E_{i}\right)=e^{d_{i} h \beta_{i}} E_{i} \otimes e^{d_{i} h H_{i}}+1 \otimes E_{i}, \quad \varepsilon\left(E_{i}\right)=0 \\
\Delta_{\alpha, \beta}\left(F_{i}\right)=F_{i} \otimes 1+e^{-d_{i} h H_{i}} \otimes F_{i}, \quad \varepsilon\left(F_{i}\right)=0, \\
S_{\alpha}\left(H_{i}\right)=-H_{i}, \quad S_{\alpha}\left(E_{i}\right)=-e^{d_{i} h \alpha_{i}} E_{i} e^{-d_{i} h H_{i}}, \quad S_{\alpha}\left(F_{i}\right)=-e^{d_{i} h H_{i}} F_{i} \\
\varphi_{\alpha}\left(H_{i}\right)=H_{i}, \quad \varphi_{\alpha}\left(E_{i}\right)=e^{d_{i} h \alpha_{i}} E_{i}, \quad \varphi_{\alpha}\left(F_{i}\right)=e^{-d_{i} h \alpha_{i}} F_{i}
\end{gathered}
$$

Furthermore, $U_{h}^{G}(\mathfrak{g})$ is quasitriangular by Theorem J (the conditions of this theorem are satisfied by $A=U_{h}\left(\mathfrak{b}_{+}\right)$and $B=\tilde{U}_{h}\left(\mathfrak{b}_{-}\right)$). For example, for $g=s l_{2}$ and $G=\mathbb{C}[[h]]$, the R-matrix of $U_{h}^{G}\left(s l_{2}\right)$ is given by

$$
R_{\alpha, \beta}=e^{h(H \otimes H) / 2} \sum_{n=0}^{\infty} R_{n}(h) E^{n} \otimes F^{n} \in U_{h}^{\alpha}\left(s l_{2}\right) \hat{\otimes} U_{h}^{\beta}\left(s l_{2}\right)
$$

for all $\alpha, \beta \in \mathbb{C}[[h]]$, where $R_{n}(h)=q^{n(n+1) / 2} \frac{\left(1-q^{-2}\right)^{n}}{[n] q!}$ and $q=e^{h}$.

[^0]: ${ }^{1}$ A right G-comodule $M=\left\{M_{\alpha}\right\}_{\alpha \in G}$ over H is reduced if $M_{\alpha}=0$ whenever $H_{\alpha}=0$.

