
Appendix 7

Invariants of 3-dimensional G -manifolds from Hopf

coalgebras

by Alexis Virelizier

In this appendix we construct invariants of closed oriented 3-dimensional G-manifolds

using Hopf G-coalgebras. In contrast to the methods of Chapters VII and VIII, we do

not involve representations of the Hopf G-coalgebras. Our invariants generalize the

Kuperberg invariant and the Hennings invariant of 3-manifolds corresponding to the

case G D f1g.

Throughout this appendix, G is a group and K is a field.

7.1 Kuperberg-type invariants

Kuperberg [Ku] derived an invariant of closed oriented 3-manifolds from any finite-di-

mensional involutory Hopf algebra. As the main geometric tool, he used Heegaard dia-

grams of 3-manifolds. Here we generalize Kuperberg’s method to construct invariants

of closed oriented 3-dimensional G-manifolds from involutory Hopf G-coalgebras.

1.1 Diagrammatic formalism for Hopf G -coalgebras. Let H D fH˛g˛2� be a

Hopf G-coalgebra of finite type. The multiplication m˛ W H˛ ˝ H˛ ! H˛ , the unit

element 1˛ 2 H˛ , the comultiplication �˛;ˇ W H˛ˇ ! H˛ ˝Hˇ , the counit " W H1 !

K, and the antipode S˛ W H˛ ! H˛ 1 are represented pictorially as follows:

m˛ , 1˛ , �˛;ˇ , " , S˛
.

The inputs (incoming arrows) for multiplication are always ordered counterclockwise

and the outputs (outgoing arrows) for comultiplication are always ordered clockwise.

Furthermore, we adopt the following abbreviations:

m˛

m˛m˛ m˛

m˛ , ,

,

1˛ DD

D

D idH˛

and
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, ,

�˛1;:::;˛n
�˛1:::˛n 1;˛n

�˛1;˛2

" D

D

DD�1 �˛ idH˛

.

The homomorphisms represented by such diagrams may be explicitly computed in

terms of the structure constants. In particular, set

ƒ D �1;1
2 H1 and �˛ D m˛

2 H�
˛ .

This means that if .ei /i is a basis of H1 and C
j;k
i 2 K are the structure constants

of �1;1 W H1 ! H1 ˝ H1 defined by �1;1.ei / D
P

j;k C
j;k
i ej ˝ ek , then ƒ D

P

i;k C
i;k
i ek . Likewise, if .fi /i is a basis of H˛ and �k

i;j 2 K are the structure

constants of m˛ defined by m˛.fi ˝ fj / D
P

k �k
i;j fk , then �˛.fj / D

P

k �k
k;j

.

Assume now that H is involutory as defined in Appendix 6, Section 1.9. By

Lemma 4 of [Vir4], � D .�˛/˛2G is a two-sided G-integral for H and ƒ is a two-sided

integral for H1 such that

�1.11/ D ".ƒ/ D �1.ƒ/ D dim H1; S1.ƒ/ D ƒ; and �˛ 1S˛ D �˛

for all ˛ 2 G. By Lemma 5 of [Vir4], ƒ and � are symmetric in the following sense:

for all ˛ 2 G and x; y 2 H˛ ,

�˛;˛ 1.ƒ/ D �H
˛ 1 ;H˛

�˛ 1;˛.ƒ/ and �˛.xy/ D �˛.yx/:

1.2 Construction of the invariant. Let H D fH˛g˛2� be an involutory Hopf G-

coalgebra of finite type such that the characteristic of the ground field K of H does not

divide dim H1. Note that H is then semisimple and cosemisimple (see Appendix 6,

Section 1.9).

Let .W; g/ be a closed connected oriented 3-dimensional G-manifold. Recall from

Section VII.2.1 that W is a closed connected oriented 3-dimensional manifold and

g is a free homotopy class of maps from W to X D K.G; 1/. We present W by a

Heegaard diagram .†; u; l/, where † is an oriented closed surface of genus g � 0

embedded in W (and cutting W into two genus g handle bodies), u D fu1; : : : ; ugg

and l D fl1; : : : ; lgg are two transverse g-tuples of pairwise disjoint circles embedded

in † such that † n
S

k uk and † n
S

i li are connected. We pick z 2 † n .u [ l/ and

orient all the circles uk and li in an arbitrary way.

Traveling along each lower circle li , we obtain a word wi .x1; : : : ; xg/ in the alpha-

bet fx˙1
1 ; : : : ; x˙1

g g as follows. Start at any point of li not belonging to u and make

a round trip along li following its orientation. Begin with the empty word and each
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time li intersects some uk , add on the right of the word the letter xk if li intersects uk

positively1 and the letter x 1
k

otherwise. After a complete turn along li , we obtain the

word wi . This word is defined up to conjugation due to the indeterminacy in the choice

of the starting point on li . Since † n u is a 2-sphere with 2g disks deleted, there exists

g loops 
1; : : : ; 
g on .†; z/ such that each 
i intersects once positively ui and does

not meet
S

j¤i uj . The homotopy classes ai D Œ
i � 2 �1.W; z/, i D 1; : : : ; g do not

depend on the choice of the loops 
i . By the Van Kampen theorem,

�1.W; z/ D ha1; : : : ; ag jwi .a1; : : : ; ag/ D 1 for 1 � i � gi:

For any 1 � k � g, we provide the circle uk with the label ˛k D g�.ak/ 2 G,

where g� W �1.W; z/ ! �1.X; x/ D G is the homomorphism induced by a map

W ! X in the given homotopy class g carrying z to the base point x of X D K.G; 1/.

To each uk , we associate the tensor

m˛k

c1

�˛k

cn

where c1; : : : ; cn are the crossings between uk and the circles li which appear in this

order when making a round trip along uk following its orientation. Since this tensor is

cyclically symmetric (see Section 1.1), this assignment does not depend on the choice

of the starting point on uk .

To each circle li , we associate the tensor

cm

c1

ƒ �ˇ1;:::;ˇm

where c1; : : : ; cm are the crossings between li and the circles uk which appear in this

order when making a round trip along li following its orientation; if li intersects uk at

cj , then ǰ D ˛k 2 G if the intersection is positive and ǰ D ˛ 1
k

otherwise. Note

that ˇ1 : : : ˇm D wi .˛1; : : : ; ˛g/ D 1 and so the tensor associated to li is well defined.

Since this tensor is cyclically symmetric, this assignment does not depend on the choice

of the starting point on li .

Let c be a crossing point between some uk and li . If li intersects uk positively at

c, then we contract the tensors

�:::;˛k ;::: cƒ and c m˛k
�˛k

associated to li and uk as follows:

1An oriented curve 
 on † intersects positively another oriented curve � on † at a point c 2 † if

.dc
; dc�/ is a positively-oriented basis for Tc†.
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�:::;˛k ;::: m˛k
ƒ �˛k

.

If li intersects uk negatively at c, then we contract the associated tensors

�:::;˛ 1
k

;::: cƒ and c �˛k
m˛k

as follows:

�:::;˛ 1
k

;:::�:::;˛ 1
k

;:::ƒ �˛k
.m˛k

S˛ 1
k

After having done such contractions at all the crossing points, we obtain an element

Z.†; u; l/ of K. Set

KuH .W; g/ D .dim H1/ g Z.†; u; l/ 2 K:

Theorem A ([Vir4], Theorem 9). KuH .W; g/ is a homeomorphism invariant of the

G-manifold .W; g/.

1.3 Examples. 1. If g is the trivial homotopy class of maps W ! X represented by

the map W ! fxg � X , then KuH .W; g/ is equal to the Kuperberg invariant of W

derived from the involutory Hopf algebra H1. In particular, for G D f1g, we recover

the Kuperberg invariant.

2. Let G, L be finite groups and C
G , C

L be the Hopf algebras of C-valued functions

on G and L, respectively. A group homomorphism � W L ! G induces a Hopf algebra

morphism C
G ! C

L; f 7! f � whose image is central. By Appendix 6, Section 1.2,

this data yields to a Hopf G-coalgebra H � D fH
�
˛ g˛2� , which is involutory and of

finite type. Note that H
�
˛ Š C

� 1.˛/ as an algebra. For every closed connected

oriented 3-dimensional G-manifold .W; g/,

KuH � .W; g/ D #ff W �1.W; z/ ! L j �f D g�g;

where z 2 W and g� W �1.W; z/ ! G is the homomorphism induced by a map W ! X

in the homotopy class of g carrying z to the base point x of X D K.G; 1/.

1.4 Proof of Theorem A (sketch). The proof is based on a “G-colored” version

of the Reidemeister-Singer theorem which relates any G-colored Heegaard diagrams

representing .W; g; z/. For example, suppose that a circle ui (with label ˛i ) slides

across another circle uj (with label j̨ ). Assume, as a representative case, that both

circles have three crossings with
S

k lk:
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aa

bb

cc
ee

ff

gg

ui uj

Using the anti-multiplicativity of the antipode (which allows us to consider only the

positively-oriented case of the contraction rule), we obtain that the factor

a

b

c

e

f

g

�˛i �
j̨

m
j̨

m˛i

of Z.†; u; l/ is replaced under this move by

a
b

c

e

f

g
�˛ 1

i j̨

�˛i

m˛ 1
i j̨

m˛i

�˛i ;˛ 1
i j̨

�˛i ;˛ 1
i j̨

�˛i ;˛ 1
i j̨

Since the comultiplication is multiplicative and � D .�˛/˛2G is a left G-integral for

H , these two factors are equal:

a
a

aa

b

b

bb

c

c

cc

e

e

e

e

f

f

f

f

g

g

g

g
m˛ 1

i j̨

m˛i
m˛i

m˛i m˛i
m

j̨ m
j̨

m
j̨

1˛i

�˛ 1
i j̨

�˛ 1
i j̨

�˛i
�˛i

�˛i
�˛i �

j̨
�

j̨

�˛i ;˛ 1
i j̨

�˛i ;˛ 1
i j̨

�˛i ;˛ 1
i j̨

�˛i ;˛ 1
i j̨

For a detailed proof of Theorem A, we refer to [Vir4] (cf. also the next remark).

1.5 Remark. Since H is of finite type, semisimple, and spherical (with spherical

elements w˛ D 1˛ 2 H˛), the category Rep.H/ of finite-dimensional representations
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of H is a finite semisimple spherical G-category. Hence we can consider the state sum

invariant jW; gjRep.H/ introduced in Appendix 2. Adapting the arguments of [BW1],

we obtain that

KuH .W; g/ D jW; gjRep.H/

for any closed connected oriented 3-dimensional G-manifold .W; g/.

7.2 Hennings–Kauffman–Radford-type invariants

Hennings [He] derived invariants of links and 3-manifolds from right integrals on

certain Hopf algebras. His construction was studied and clarified by Kauffman and

Radford [KaRa]. In this section, we generalize the Hennings–Kauffman–Radford

method to construct an invariant �H of 3-dimensional G-manifolds by using a ribbon

Hopf G-coalgebra H . When the ribbon G-category Rep.H/ of representations of H

is modular, we compare �H with the Turaev invariant �Rep.H/ from Section VII.2.

2.1 The invariant�H . Let H D fH˛g˛2G be a unimodular ribbon Hopf G-coalgebra

of finite type and let � D .�˛/˛2G be a (non-zero) right G-integral for H such that

�1.�˙1
1 / ¤ 0, where � D f�˛g˛2G is the twist of H .

Let .W; g/ be a closed connected oriented 3-dimensional G-manifold (see Sec-

tion VII.2.1). We define �H .W; g/ 2 K as follows. Present W as the result of surgery

on S3 along a framed link ` with m D #` components. Recall that W is obtained by

gluing m solid tori to the exterior E` of ` 2 S3. Take any point z 2 E` � W . Pick in

the homotopy class g a map W ! X carrying z to the base point x of X . The restriction

of this map to E` induces a homomorphism g� W �1.E`; z/ ! �1.X; x/ D G. Note

that the triple .`; z; g�/ is an unoriented special G-link in the sense of Section VI.5.4.

Regularly project ` onto a plane from the base point z, that is, consider a diagram

of ` such that the base point z corresponds to the eyes of the reader. Without loss

of generality, we can assume that the extremal points of the diagram with respect to

a chosen height function are isolated. Label the vertical segments of the diagram

(delimited by the extremal points of the height function and the under-crossings) by

elements of G in the following way: a vertical segment is labeled by ˛ D g�.Œ��/ 2 G

where � is a meridional loop of ` based at z which encircles the segment once so that

its linking number with this segment oriented downwards is +1:

�

z
˛ D g�.Œ��/ .
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At the crossings and the extremal points the labels are related as follows:

˛

˛ ˇ

˛ˇ˛ 1

,

˛

ˇ

ˇ

ˇ 1˛ˇ

,
˛ ˛ 1

,
˛ ˛ 1

.

Now, we decorate each crossing of the diagram of ` with the R-matrix R D

fR˛;ˇ g˛;ˇ2G of H and with small disks labeled by elements of G as follows:

˛

˛ ˇ

ai bi
and

Sˇ 1.cj / dj
ˇ

ˇ 1

˛

where

R˛;ˇ D ai ˝ bi and Rˇ 1;˛ D cj ˝ dj :

In this formalism it is understood that there is a summation over all the pairs ai , bi and

cj , dj . The diagram obtained at this step is composed by m D #` transverse closed

plane curves (possibly endowed with G-labeled disks), each of them arising from a

component of `.

We use the following rules to concentrate the algebraic decoration of each of these

plane curves in one point (distinct from the extremal points and the labeled disks):

a

˛

D S˛.a/

˛

˛

a D
˛

S˛.a/
a
b

D ab

a D
a

a D
a H

'ˇ .a/

ˇ
ˇ

a

This gives m elements v1 2 H˛1
; : : : ; vm 2 H˛m

:

v1

˛1

v2

˛2

vm

˛m� � �

If there is no algebraic decoration on the i -th curve then, by convention, vi D 1˛i
.

For 1 � i � m, let di be the Whitney degree of the i -th curve obtained by traversing

it upwards from the point where the algebraic decoration has been concentrated. The

Whitney degree is the algebraic number of turns of the tangent vector of the curve. For

example:
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d D 1, d D  1, di D  2.vi

Finally set

�H .W; g/ D �1.�1/b
 

.`/ m �1.� 1
1 / b

 
.`/ �˛1

.w1Cd1
˛1

v1/ : : : �˛m
.w1Cdm

˛m
vm/ 2 K;

where w D .w˛/˛2G is the spherical G-grouplike element of H (see Appendix 6,

Section 2.6) and b .`/ is the number of strictly negative eigenvalues of the linking

matrix of ` (with the framing numbers on the diagonal).

Theorem B ([Vir1], Theorem 4.12). �H .W; g/ is a homeomorphism invariant of the

G-manifold .W; g/.

The invariant �H is preserved under multiplication of the right G-integral � by any

element of K�. Since the space of right G-integrals for H is one-dimensional (see

Appendix 6, Section 1.1), �H does not depend on the choice of �.

2.2 Examples. 1. If g is the trivial homotopy class of maps W ! X represented by

the map W ! fxg � X , then �H .W; g/ is the Hennings invariant (in its Kauffman–

Radford reformulation) of W derived from the ribbon Hopf algebra H1. In particular,

when G D f1g, we recover the Hennings invariant.

2. Let P be the closed oriented 3-dimensional manifold obtained by surgery along

the trefoil T with framing C3:

T D

x

z

y

The Wirtinger presentation of the group of T is hx; y; z j xy D yz D zxi and �1.P / D

hx; y; z j xy D yz D zx; xzy D 1i. Let g be a free homotopy class of maps

P ! X D K.G; 1/ inducing a homomorphism g� W �1.T / ! G. Set ˛ D g�.x/,

ˇ D g�.y/, 
 D g�.z/. The labeling of the vertical segments of the diagram of T is:
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˛

ˇ

ˇ




˛ 1

ˇ 1

 1

Expand

Rˇ 1;˛ 1 D
P

i

ai ˝ bi ; R
;˛ D
P

j

cj ˝ dj ; and R˛;ˇ D
P

k

ek ˝ fk :

The algorithm above gives

˛ ˛

˛

ˇ 1 ˇ 1


 

S
 .cj /

dj

ek
fk

Sˇ 1.ai /

bi

'
 1S 1
ˇ

.aiS
 1
ˇ 1.fk//dj ekS˛ 1.bi /S˛ 1'ˇ S
 .cj /

Therefore

�H .W; g/D�1.�1/ 1
X

i;j;k

�˛

 

w3
˛'
 1S 1

ˇ .aiS
 1
ˇ 1.fk//dj ekS˛ 1.bi /S˛ 1'ˇ S
 .cj /

�

:

Exercise. Given a finite group G, compute �DG.G/.W; g/, where DG.G/ is the ribbon

Hopf G-coalgebra defined in Appendix 6, Section 3.3.

2.3 Proof of Theorem B (sketch). The proof uses a “G-colored” version of the

Kirby calculus relating G-colored link diagrams representing .W; g/. For example,

the invariance under the G-colored Fenn–Rourke move with one strand is proven as

follows.

˛

˛

˛

˛

˛ 1
˛ 1

˛ 1

˛ 1

˛ ˛

˛ 1

ai bi

S˛ 1.cj / dj �˛ 1

�˛

ai'˛ 1.dj /�˛

'˛.bi /�˛ 1cj

�1.�1/
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where

R˛;˛ 1 D
P

i

ai ˝ bi and R˛ 1;˛ D
P

j cj ˝ dj :

Indeed,

P

i;j

�˛ 1.'˛.bi /�˛ 1cj / ai'˛ 1.dj /�˛

D
P

i;j

�˛ 1.�˛ 1bicj / �˛'˛.ai /dj

D .�˛ 1 ˝ idH˛
/..�˛ 1 ˝ �˛/.�˛;˛ 1.'˛ ˝ idH

˛ 1
/.R˛;˛ 1//R˛ 1;˛/

D .�˛ 1 ˝ idH˛
/�˛ 1;˛.�1/ D �1.�1/ 1˛:

These equalities follows from the properties of the crossing ', the twist � , and the G-

integral � of H (see Appendix 6). We refer to [Vir1] for a detailed proof. A crucial role

in the proof is played by the fact that the family of homomorphisms .H˛ ! K; x 7!

�˛.w˛x//˛2G is a G-trace for H (Appendix 6, Theorem G).

2.4 Comparison with the Turaev invariant. Let H D fH˛g˛2G be a ribbon Hopf

G-coalgebra of finite type. Suppose that the ribbon G-category Rep.H/ of represen-

tations of H (see Section VIII.1.7) is modular. Then the Turaev invariant �Rep.H/ of

Section VII.2 is well defined. Moreover, under these assumptions, H is unimodular,

since H1 is then factorizable and so unimodular (see [Sw]). Furthermore, �1.�˙1
1 / ¤ 0

for every non-zero right G-integral � D .�˛/˛2G for H (since �1.�˙1
1 / D �

Rep.H/

˙ up

to a non-zero scalar multiple). Hence the invariant of the preceding section �H is also

defined. The next theorem shows that under these assumptions, the invariants �Rep.H/

and �H are essentially equivalent.

Theorem C ([Vir1], Theorem 4.18). Let H be a ribbon Hopf G-coalgebra of Þnite

type such that its ribbon G-category of representations Rep.H/ is modular. Then the

invariant �H is well deÞned and for every closed connected oriented 3-dimensional

G-manifold .W; g/,

�Rep.H/.W; g/ D D 1

�

D

� 

�b1.W /

�H .W; g/;

where b1.W / is the Þrst Betti number of W , and D; � are as in Section VII.1.7.

The proof is based on a description of the Turaev invariant in terms of the coend of

the G-category Rep.H/, see [Vir1].

Note that when the category Rep.H/ is not modular (typically, when H is not

semisimple, see Appendix 6, Section 1.7) the invariant �Rep.H/ is not defined while �H

may be defined.


