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ON THE CENTER OF FUSION CATEGORIES

ALAIN BRUGUIÈRES AND ALEXIS VIRELIZIER

Müger proved in 2003 that the center of a spherical fusion category C of
nonzero dimension over an algebraically closed field is a modular fusion
category whose dimension is the square of that of C. We generalize this the-
orem to a pivotal fusion category C over an arbitrary commutative ring k,
without any condition on the dimension of the category. (In this gener-
alized setting, modularity is understood as 2-modularity in the sense of
Lyubashenko.) Our proof is based on an explicit description of the Hopf
algebra structure of the coend of the center of C. Moreover we show that
the dimension of C is invertible in k if and only if any object of the center
of C is a retract of a “free” half-braiding. As a consequence, if k is a field,
then the center of C is semisimple (as an abelian category) if and only if
the dimension of C is nonzero. If in addition k is algebraically closed, then
this condition implies that the center is a fusion category, so that we recover
Müger’s result.
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Introduction

Given a monoidal category C, Joyal and Street [1991], Drinfeld (unpublished),
and Majid [1991] defined a braided category Z(C), called the center of C, whose
objects are half-braidings of C. Müger [2003] showed that the center Z(C) of a
spherical fusion category C of nonzero dimension over an algebraically closed
field k is a modular fusion category, and that the dimension of Z(C) is the square of
that of C. Müger’s proof of this remarkable result relies on algebraic constructions
due to Ocneanu (such as the “tube” algebra) and involves the construction of a
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weak monoidal Morita equivalence between Z(C) and C⊗Cop. The modularity
of the center is of special interest in three-dimensional quantum topology, since
spherical fusion categories and modular categories are respectively the algebraic
input for the construction of the Turaev–Viro/Barrett–Westbury invariant and of the
Reshetikhin–Turaev invariant. Indeed it has been shown recently in [Turaev and
Virelizier 2010] (see also [Balsam 2010]) that, under the hypotheses of Müger’s
theorem, the Barrett–Westbury generalization of the Turaev–Viro invariant for C is
equal to the Reshetikhin–Turaev invariant for Z(C).

In this paper, we generalize Müger’s theorem to pivotal fusion categories over
an arbitrary commutative ring. More precisely, given a pivotal fusion category C

over a commutative ring k, we prove the following:

(i) the center Z(C) of C is always modular (but not necessarily semisimple) and
has dimension dim(C)2;

(ii) the scalar dim(C) is invertible in k if and only if every half braiding is a retract
of a so-called free half braiding;

(iii) if k is a field, then Z(C) is abelian semisimple if and only if dim(C) 6= 0;

(iv) if k is an algebraically closed field, then Z(C) is fusion if and only if dim(C) 6=0.

Our proof is different from that of Müger. It relies on the principle that if a braided
category B has a coend, then all the relevant information about B is encoded in its
coend, which is a universal Hopf algebra sitting in B and endowed with a canonical
Hopf algebra pairing. For instance, modularity means that the canonical pairing is
nondegenerate, and the dimension of B is that of its coend. In particular we do not
need to introduce an auxiliary category.

The center Z(C) of a pivotal fusion category C always has a coend. We provide
a complete and explicit description of the Hopf algebra structure of this coend,
which enables us to exhibit an integral for the coend and an “inverse” to the pairing.
Our proofs are based on a “handleslide” property for pivotal fusion categories.

A general description of the coend of the center of a rigid category C, together
with its structural morphisms, was given in [Bruguières and Virelizier 2012]. It is an
application of the theory of Hopf monads, and in particular, of the notion of double
of a Hopf monad, which generalizes the Drinfeld double of a Hopf algebra. It is
based on the fact that Z(C) is the category of modules over a certain quasitriangular
Hopf monad Z on C (generalizing the braided equivalence Z(modH )'modD(H)

between the center of the category of modules over a finite-dimensional Hopf
algebra H and the category of modules over the Drinfeld double D(H) of H ).
It turns out that, when C is a fusion category, we can make this description very
explicit and in particular, we can depict the structural morphisms of the coend by
means of a graphical formalism for fusion categories.
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Part of the results of this paper were announced (without proofs) in [Bruguières
and Virelizier 2008], where they were used to define and compute a 3-manifolds
invariant of Reshetikhin–Turaev type associated with the center of C, even when
the dimension of C is not invertible.

Organization of the text. In Section 1, we recall definitions, notations and basic
results concerning pivotal and fusion categories over a commutative ring. A graph-
ical formalism for representing morphisms in fusion categories is provided. In
Section 2, we state the main results of this paper, that is, the description of the
coend of the center of a pivotal fusion category and its structural morphisms, the
modularity of the center of such a category, its dimension, and a semisimplicity
criterion. Section 3 is devoted to coends, Hopf algebras in braided categories, and
modular categories. Section 4 contains the proofs of the main results.

1. Pivotal and fusion categories

Monoidal categories are assumed to be strict. This does not lead to any loss of
generality, since, in view of Mac Lane’s coherence theorem for monoidal categories
(see [Mac Lane 1998]), all definitions and statements remain valid for nonstrict
monoidal categories after insertion of the suitable canonical isomorphisms.

1A. Rigid categories. Let C = (C,⊗,1) be a monoidal category. A left dual of
an object X of C is an object ∨X of C together with morphisms evX :

∨X ⊗ X→ 1
and coevX : 1→ X ⊗ ∨X such that

(idX ⊗ evX )(coevX ⊗ idX )= idX and (evX ⊗ id∨X )(id∨X ⊗ coevX )= id∨X .

Similarly a right dual of X is an object X∨ with morphisms ẽvX : X⊗ X∨→ 1 and
c̃oevX : 1→ X∨⊗ X such that

(ẽvX ⊗ idX )(idX ⊗ c̃oevX )= idX and (idX∨ ⊗ ẽvX )(c̃oevX ⊗ idX∨)= idX∨ .

The left and right duals of an object, if they exist, are unique up to an isomorphism
(preserving the (co)evaluation morphisms).

A monoidal category C is rigid (or autonomous) if every object of C admits a
left and a right dual. The choice of left and right duals for each object of a rigid C

defines a left dual functor ∨? : Cop
→ C and a right dual functor ?∨ : Cop

→ C,
where Cop is the opposite category to C with opposite monoidal structure. The
left and right dual functors are strong monoidal. Note that the actual choice of left
and right duals is innocuous in the sense that different choices of left (respectively,
right) duals define canonically monoidally isomorphic left (respectively, right) dual
functors.

There are canonical natural monoidal isomorphisms ∨(X∨)' X ' (∨X)∨, but
in general the left and right dual functors are not monoidally isomorphic.
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1B. Pivotal categories. A rigid category C is pivotal (or sovereign) if it is endowed
with a monoidal isomorphism between the left and the right dual functors. We may
assume that this isomorphism is the identity without loss of generality. In other
words, for each object X of C, we have a dual object X∗ and four morphisms

evX : X∗⊗ X→ 1, coevX : 1→ X ⊗ X∗,

ẽvX : X ⊗ X∗→ 1, c̃oevX : 1→ X∗⊗ X,

such that (X∗, evX , coevX ) is a left dual for X , (X∗, ẽvX , c̃oevX ) is a right dual
for X , and the induced left and right dual functors coincide as monoidal functors.
In particular, the dual f ∗ : Y ∗→ X∗ of any morphism f : X→ Y in C is

f ∗ = (evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗ ⊗ coevX )

= (idX∗ ⊗ ẽvY )(idX∗ ⊗ f ⊗ idY ∗)(c̃oevX ⊗ idY ∗).

In what follows, for a pivotal category C, we will suppress the duality constraints
1∗ ∼= 1 and X∗⊗ Y ∗ ∼= (Y ⊗ X)∗. For example, we will write ( f ⊗ g)∗ = g∗⊗ f ∗

for morphisms f , g in C.

1C. Traces and dimensions. For an endomorphism f of an object X of a pivotal
category C, one defines the left and right traces trl( f ), trr ( f ) ∈ EndC(1) by

trl( f )= evX (idX∗ ⊗ f )c̃oevX and trr ( f )= ẽvX ( f ⊗ idX∗)coevX .

They satisfy trl(gh)= trl(hg) and trr (gh)= trr (hg) for any morphisms g : X→ Y
and h : Y → X in C. Also we have trl( f ) = trr ( f ∗) = trl( f ∗∗) for any endomor-
phism f in C. If

(1) α⊗ idX = idX ⊗α for all α ∈ EndC(1) and X in C,

then trl , trr are ⊗-multiplicative; that is, trl( f ⊗ g)= trl( f ) trl(g) and trr ( f ⊗ g)=
trr ( f ) trr (g) for all endomorphisms f , g in C.

The left and the right dimensions of an object X of C are defined by diml(X)=
trl(idX ) and dimr (X) = trr (idX ). Isomorphic objects have the same dimensions,
diml(X)= dimr (X∗)= diml(X∗∗), and diml(1)= dimr (1)= id1. If C satisfies (1),
then left and right dimensions are⊗-multiplicative: diml(X⊗Y )=diml(X) diml(Y )
and dimr (X ⊗ Y )= dimr (X) dimr (Y ) for any X , Y in C.

1D. Penrose graphical calculus. We represent morphisms in a category C by
plane diagrams to be read from the bottom to the top. In a pivotal category C, the
diagrams are made of oriented arcs colored by objects of C and of boxes colored
by morphisms of C. The arcs connect the boxes and have no mutual intersections
or self-intersections. The identity idX of an object X of C, a morphism f : X→ Y ,
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and the composition of two morphisms f : X→ Y and g : Y → Z are represented
respectively as

idX =

X

, f =
Y

f

X

, g f =

Z
g

Y
f

X

.

The monoidal product of two morphisms f : X→ Y and g :U→ V is represented
by juxtaposition:

f ⊗ g =
Y

f

X

V
g

U

.

If an arc colored by X is oriented upwards, then the corresponding object in the
source/target of morphisms is X∗. For example, idX∗ and a morphism f : X∗⊗Y→
U ⊗ V ∗⊗W may be depicted as

idX∗ =
X
=

X∗
and f =

U V W
f

X Y

.

The duality morphisms are depicted as follows:

evX = X , coevX = X , ẽvX = X , c̃oevX = X .

The dual of a morphism f : X→ Y and the traces of a morphism g : X→ X can
be depicted as follows:

f ∗ =
X

f

Y

=

X
f

Y

and trl(g)= X g , trr (g)= g X .

In a pivotal category, the morphisms represented by the diagrams are invariant under
isotopies of the diagrams in the plane keeping fixed the bottom and top endpoints.

1E. Spherical categories. A spherical category is a pivotal category whose left
and right traces are equal; i.e., trl(g) = trr (g) for every endomorphism g of an
object. Then trl(g) and trr (g) are denoted tr(g) and called the trace of g. Similarly,
the left and right dimensions of an object X are denoted dim(X) and called the
dimension of X .

Note that sphericity can be interpreted in graphical terms: it means that the
morphisms represented by closed diagrams are invariant under isotopies of diagrams
in the 2-sphere S2

= R2
∪ {∞}, i.e., are preserved under isotopies pushing arcs of

the diagrams across∞.
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1F. Additive categories. Let k be a commutative ring. A k-additive category is a
category where Hom-sets are k-modules, the composition of morphisms is k-bilinear,
and any finite family of objects has a direct sum. In particular, such a category has
a zero object.

An object X of a k-additive category C is scalar if the map k→ EndC(X),
α 7→ α idX is bijective.

A k-additive monoidal category is a monoidal category which is k-additive in
such a way that the monoidal product is k-bilinear. Note that a k-additive monoidal
category whose unit object 1 is scalar satisfies (1) and so its traces trl , trr are k-linear
and ⊗-multiplicative.

1G. Fusion categories. A fusion category over a commutative ring k is a k-addi-
tive rigid category C such that

(a) each object of C is a finite direct sum of scalar objects;

(b) for any nonisomorphic scalar objects i , j of C, we have HomC(i, j)= 0;

(c) the set of isomorphism classes of scalar objects of C is finite;

(d) the unit object 1 is scalar.

Let C be a fusion category. The Hom spaces in C are free k-modules of finite
rank. We identify EndC(1) with k via the canonical isomorphism. Given a scalar
object i of C, the i -isotypical component X (i) of an object X is the largest direct
factor of X isomorphic to a direct sum of copies of i . The actual number of copies
of i is

νi (X)= rankk HomC(i, X)= rankk HomC(X, i).

An i -decomposition of X is an explicit direct sum decomposition of X (i) into copies
of i , that is, a family (pα : X→ i, qα : i→ X)α∈A of pairs of morphisms in C such
that

(a) pα qβ = δα,β idi for all α, β ∈ A,

(b) the set A has νi (X) elements,

where δα,β is the Kronecker symbol.
A representative set of scalar objects of C is a set I of scalar objects such that

1 ∈ I and every scalar object of C is isomorphic to exactly one element of I .
Note that if k is a field, a fusion category over k is abelian and semisimple.

Recall that an abelian category is semisimple if its objects are direct sums of simple1

objects.
A pivotal fusion category is spherical (see Section 1E) if and only if the left and

right dimension of any of its scalar objects coincide.

1An object of an abelian category is simple if it is nonzero and has no other subobject than the
zero object and itself.
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1H. Graphical calculus in pivotal fusion categories. Let C be a pivotal fusion
category. Let X be an object of C and i be a scalar object of C. Then the tensor∑

α∈A

pα ⊗k qα ∈ HomC(X, i)⊗k HomC(i, X),

where (pα, qα)α∈A is an i-decomposition of X , does not depend on the choice of
the i-decomposition (pα, qα)α∈A of X . Consequently, a sum of the type

∑
α∈A

i

pα

X

X

qα

i

,

where (pα, qα)α∈A is an i-decomposition of an object X and the gray area does not
involve α, represents a morphism in C which is independent of the choice of the
i-decomposition. We depict it as

(2)

i

X

X

i

,

where the two curvilinear boxes should be shaded with the same color. If several
such pairs of boxes appear in a picture, they must have different colors. We will
also depict

X

i

i

X

as

X

i

i

X

.

As usual, the edges labeled with i = 1 may be erased and then (2) becomes

X

X

.
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Note also that tensor products of objects may be depicted as bunches of strands.
For example,

i

X∗⊗Y⊗Z∗
=

i

X Y Z

and
X∗⊗Y⊗Z∗

i

=

X Y Z

i

where the equality sign means that the pictures represent the same morphism of C.

1I. Braided and ribbon categories. A braiding in a monoidal category B is a
natural isomorphism τ = {τX,Y : X ⊗ Y → Y ⊗ X}X,Y∈B such that

τX,Y⊗Z = (idY ⊗ τX,Z )(τX,Y ⊗ idZ ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z )

for all X , Y , Z objects of C. These conditions imply that τX,1 = τ1,X = idX .
A monoidal category endowed with a braiding is said to be braided. The braiding

and its inverse are depicted as

τX,Y = X Y
and τ−1

Y,X = X Y
.

Note that any braided category satisfies the condition (1) of Section 1C.
For any object X of a braided pivotal category B, the morphism

θX = X
= (idX ⊗ ẽvX )(τX,X ⊗ idX∗)(idX ⊗ coevX ) : X→ X

is called the twist. The twist is natural in X and invertible, with inverse

θ−1
X = X

= (evX ⊗ idX )(idX∗ ⊗ τ
−1
X,X )(c̃oevX ⊗ idX ) : X→ X.

It satisfies θX⊗Y = (θX ⊗ θY )τY,XτX,Y for all objects X , Y of B and θ1 = id1.
A ribbon category is a braided pivotal category B whose twist θ is self-dual; i.e.,

(θX )
∗
= θX∗ for any object X of B. This is equivalent to the equality

X
=

X
.

A ribbon category is spherical.

1J. The center of a monoidal category. Let C be a monoidal category. A half
braiding of C is a pair (A, σ ), where A is an object of C and

σ = {σX : A⊗ X→ X ⊗ A}X∈C

is a natural isomorphism such that

(3) σX⊗Y = (idX ⊗ σY )(σX ⊗ idY )
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for all X , Y objects of C. This implies that σ1 = idA.
The center of C is the braided category Z(C) defined as follows. The objects

of Z(C) are half braidings of C. A morphism (A, σ ) → (A′, σ ′) in Z(C) is a
morphism f : A→ A′ in C such that (idX ⊗ f )σX = σ

′

X ( f ⊗ idX ) for any object X
of C. The unit object of Z(C) is 1Z(C) = (1, {idX }X∈C) and the monoidal product is

(A, σ )⊗ (B, ρ)=
(

A⊗ B, (σ ⊗ idB)(idA⊗ ρ)
)
.

The braiding τ in Z(C) is defined by

τ(A,σ ),(B,ρ) = σB : (A, σ )⊗ (B, ρ)→ (B, ρ)⊗ (A, σ ).

There is a forgetful functor U :Z(C)→C assigning to every half braiding (A, σ )
the underlying object A and acting in the obvious way on the morphisms. This is a
strict monoidal functor.

If C satisfies (1), then EndZ(C)(1Z(C))= EndC(1).
If C is rigid, then so is Z(C). If C is pivotal, then so is Z(C) with (A, σ )∗ =

(A∗, σ \), where

σ
\
X =

X A

σX∗

A X

: A∗⊗ X→ X ⊗ A∗,

and ev(A,σ ) = evA, coev(A,σ ) = coevA, ẽv(A,σ ) = ẽvA, c̃oev(A,σ ) = c̃oevA. In that
case the forgetful functor U preserves (left and right) traces of morphisms and
dimensions of objects.

If C is a k-additive monoidal category, then so is Z(C) and the forgetful functor
is k-linear. If C is an abelian rigid category, then so is Z(C), and the forgetful
functor is exact.

If C is a fusion category over the ring k, then Z(C) is braided k-additive rigid
category whose monoidal unit is scalar. If in addition k is field, then C is abelian,
and so is Z(C).

2. Main results

In this section, we state our main results concerning the center of a pivotal fusion
category. They are proved in Section 4. Let C be a pivotal fusion category over
a commutative ring k and I be a representative set of scalar objects of C. Recall
from Section 1J that the center Z(C) of C is a braided k-additive pivotal category
whose monoidal unit is scalar.

The coend of a rigid braided category is, if it exists, a Hopf algebra in the category
which coacts universally on the objects (see Section 3C for details). The center
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Z(C) of C has a coend (C, σ ), where

C =
⊕
i, j∈I

i∗⊗ j∗⊗ i ⊗ j

and the half braiding σ = {σY }Y∈C is given by

(4) σY =
∑

i, j,k,`,n∈I

Y k l k l

n n n n n

i j i j Y

: C ⊗ Y → Y ⊗C.

The universal coaction δ = {δM,γ }(M,γ )∈Z(C) of the coend (C, σ ) is

(5) δ(M,γ ) =
∑
i, j∈I

M i j i j

γi

M

M

: (M, γ )→ (M, γ )⊗ (C, σ ).

The structural morphisms and the canonical pairing of the Hopf algebra (C, σ )
can be depicted as follows:

(a) The coproduct 1 : C→ C ⊗C :

1=
∑

i, j,k,`,n∈I

l n l n k j k j

k k

i j i j

(b) The product m : C ⊗C→ C :

m =
∑

i, j,k,`,n,a∈I

k n k n

l
a

a a
a

a k

i j i j k l k l

(c) The counit ε : C→ 1: ε =
∑
j∈I

j

(d) The unit u : 1→ C : u =
∑
i∈I

i
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(e) The antipode S : C→ C :

S =
∑

i, j,k,`,n∈I

k l k l

j j j

i i

j i j i j

(f) The canonical pairing ω : C ⊗C→ 1:

ω =
∑

i, j,k,`∈I

k

k i
i

i j i j k l k l

In the pictures, the dotted lines represent id1 and serve to indicate which direct
factor of C is concerned. Moreover,

(6) 3=
∑
j∈I

dimr ( j)
j
: (1, id)→ (C, σ )

is an integral of the Hopf algebra (C, σ ), which is invariant under the antipode.
By a modular category we mean a braided pivotal category admitting a coend,

and whose canonical pairing is nondegenerate (see Section 3E for details). The
dimension of such a category is the dimension of its coend (see Section 3D).

Theorem 2.1. The center Z(C) of C is modular and has dimension dim(C)2.

The forgetful functor U : Z(C)→ C has a left adjoint F : C→ Z(C). For an
object X of C,

F(X)=
(
Z(X), ςX = {ςX,Y }Y∈C

)
where Z(X)=

⊕
i∈I

i∗⊗ X ⊗ i and

ςX,Y =
∑
i, j∈I

Y j

i

X

j

i Y

: Z(X)⊗ Y → Y ⊗ Z(X).

For a morphism f in C,

F( f )=
∑
i∈I

idi∗ ⊗ f ⊗ idi .

By a free half braiding we mean a half braiding of the form F(X) for some object X
of C.

Theorem 2.2. The dimension of C is invertible in k if and only if every half braiding
is a retract of a free half braiding.
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From Section 1J, if k is a field, then Z(C) is abelian.

Corollary 2.3. Assume k is a field.

(a) The center Z(C) is semisimple (as an abelian category) if and only if dim(C) 6=0.

(b) Assume k is algebraically closed. Then Z(C) is a fusion category if and only if
dim(C) 6= 0.

Since the center of a spherical fusion category is ribbon (see, for example, [Turaev
and Virelizier 2010, Lemma 10.1]), we recover Müger’s theorem:

Corollary 2.4 [Müger 2003, Theorem 1.2]. If C is a spherical fusion category over
an algebraically closed field and dim(C) 6= 0, then Z(C) is a modular ribbon fusion
category (i.e., Z(C) is modular in the sense of [Turaev 1994]).

Note that by [Etingof et al. 2005], the hypothesis dim(C) 6= 0 of the previous
corollary is automatically fulfilled on a field of characteristic zero.

Example 2.5. Let G be a finite group and k be a commutative ring. The cate-
gory CG,k of G-graded free k-modules of finite rank is a spherical fusion category.
The dimension of CG,k is dim(CG,k) = |G|1k, where |G| is the order of G. By
Theorem 2.1, the center Z(CG,k) of CG,k is modular of dimension |G|21k. When
|G| is not invertible in k, by Theorem 2.2, there exist half braidings of CG,k which
are not retracts of any free half braiding. If particular, if k is a field of characteristic p
which divides |G|, then Z(CG,k) is not semisimple.

3. Modular categories

In this section, we clarify some notions used in the previous section. More precisely,
in Section 3A, we recall the definition of a Hopf algebra in a braided category and
provide a criterion for the nondegeneracy of a Hopf algebra pairing. In Section 3B,
we recall the definition of a coend. In Section 3C, we describe the Hopf algebra
structure of the coend of a braided rigid category. Sections 3D and 3E are devoted
to the definition of respectively the dimension and the modularity of a braided
category admitting a coend.

3A. Hopf algebras, pairings, and integrals. Let B be a braided category, with
braiding τ . Recall that a bialgebra in B is an object A of B endowed with four
morphisms m : A⊗ A→ A (the product), u : 1→ A (the unit), 1 : A→ A⊗ A
(the coproduct), and ε : A→ 1 (the counit) such that

m(m⊗ idA)= m(idA⊗m), m(idA⊗ u)= idA = m(u⊗ idA),

(1⊗ idA)1= (idA⊗1)1, (idA⊗ ε)1= idA = (ε⊗ idA)1,

1m = (m⊗m)(idA⊗ τA,A⊗ idA)(1⊗1),

1u = u⊗ u, εm = ε⊗ ε, εu = id1.
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An antipode for a bialgebra A in B is a morphism S : A→ A in B such that

m(S⊗ idA)1= uε = m(idA⊗ S)1.

If it exists, an antipode is unique. A Hopf algebra in B is a bialgebra in B which
admits an invertible antipode.

Let A be a Hopf algebra in B. A Hopf pairing for A is a morphism ω : A⊗A→1
such that

ω(m⊗ idA)= ω(idA⊗ω⊗ idA)(idA⊗2 ⊗1), ω(u⊗ idA)= ε,

ω(idA⊗m)= ω(idA⊗ω⊗ idA)(1⊗ idA⊗2), ω(idA⊗ u)= ε.

These axioms imply that ω(S⊗ idA)= ω(idA⊗ S).
A Hopf pairing ω for A is nondegenerate if there exists a morphism� :1→ A⊗A

in B such that

(ω⊗ idA)(idA⊗�)= idA = (idA⊗ω)(�⊗ idA).

If such is the case, the morphism � is unique and called the inverse of ω.
A left (respectively, right) integral for A is a morphism 3 : 1→ A such that

m(idA⊗3)=3ε (respectively, m(3⊗ idA)=3ε).

A left (respectively, right) cointegral for A is a morphism λ : A→ 1 such that

(idA⊗ λ)1= u λ (respectively, (λ⊗ idA)1= u λ).

A (co)integral is two-sided if it is both a left and a right (co)integral.
If 3 is a left (respectively, right) integral for A, then S3 is a right (respectively,

left) integral for A. If λ is a left (respectively, right) cointegral for A, then λS is a
right (respectively, left) cointegral for A.

Let ω be a Hopf pairing for A and 3 : 1→ A be a morphism in B. Assume ω is
nondegenerate. Then 3 is a left integral for A if and only if λ= ω(idA⊗3) is a
right cointegral for A, and 3 is a right integral for A if and only if λ= ω(3⊗ idA)

is a left cointegral for A.

Lemma 3.1. Let ω be a Hopf pairing for a Hopf algebra A in a braided category B.
Assume there exist morphisms 3, 3′ : 1→ A in B such that

(a) ω(3⊗ idA) and ω(idA⊗3
′) are left cointegrals for A;

(b) ω(3⊗3′) is invertible in EndB(1).

Then ω is nondegenerate, with inverse

�= ω(3⊗3′)−1 (S⊗ idA⊗ω)(idA⊗13⊗ idA)13
′,

and 3 and 3′ are right integrals for A.
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Proof. Set e= (S⊗ idA⊗ω)(idA⊗13⊗ idA)13
′
: 1→ A⊗ A. Let us depict the

product m, coproduct 1, antipode S of A, and the morphisms ω, 3, 3′ as follows:

m = , 1= , S = , ω = , 3= , 3′ = .

Then (idA⊗ω)(e⊗ idA)= ω(3⊗3
′) idA since

= = = = = .

We use the product/coproduct axioms of a Hopf pairing in the first and fourth
equalities, the unit axiom and the fact that ω(3⊗ idA) is a left cointegral in the
second equality, the compatibility of m and 1 and the axiom of the antipode in
the third equality, and finally the fact that ω(idA⊗3

′) is a left cointegral and the
unit/counit axiom of a Hopf pairing in the last equality. Similarly one shows that
(ω⊗ idA)(idA⊗ e)= ω(3⊗3′) idA. Thus �= ω(3⊗3′)−1 e is an inverse of ω.

Finally, sinceω is nondegenerate andω(3⊗A) andω(A⊗3′) are left cointegrals,
we conclude that 3 and 3′ are right integrals. �

3B. Coends. Let C and D be categories. A dinatural transformation from a functor
F : Dop

×D→ C to an object A of C is a family of morphisms in C

d = {dY : F(Y, Y )→ A}Y∈D

such that for every morphism f : X→ Y in D, we have

dX F( f, idX )= dY F(idY , f ) : F(Y, X)→ A.

The composition of such a d with a morphism φ : A→ B in C is the dinatural
transformation φ ◦ d = {φ ◦ dX : F(Y, Y )→ B}Y∈D from F to B. A coend of F
is a pair (C, ρ) consisting in an object C of C and a dinatural transformation ρ
from F to C satisfying the following universality condition: every dinatural trans-
formation d from F to an object of C is the composition of ρ with a morphism in C

uniquely determined by d . If F has a coend (C, ρ), then it is unique (up to unique
isomorphism). One writes C =

∫ Y∈D F(Y, Y ). For more on coends, see [Mac Lane
1998].

Remark 3.2. Let F :Dop
×D→C be a k-linear functor, where C is a k-additive cat-

egory and D is a fusion category (over k). Then F has a coend. More precisely, pick
a (finite) representative set I of simple objects of D and set C =

⊕
i∈I F(i, i). Let

ρ={ρY : F(Y, Y )→C}Y∈D be defined by ρY =
∑

α F(qαY , pαY ), where (pαY , qαY )α is
any I -partition of Y . Then (C, ρ) is a coend of F and each dinatural transformation
d from F to any object A of C is the composition of ρ with

⊕
i∈I di : C→ A.
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3C. The coend of a braided rigid category. Let B be braided rigid category. The
coend

C =
∫ Y∈B

∨Y ⊗ Y,

if it exists, is called the coend of B.
Assume B has a coend C and denote by iY :

∨Y ⊗ Y → C the corresponding
universal dinatural transformation. The universal coaction of C on the objects of B

is the natural transformation δ defined by

(7) δY = (idY ⊗ iY )(coevY ⊗ idY ) : Y → Y ⊗C, depicted as δY =

Y C

Y

.

According to [Majid 1995], C is a Hopf algebra in B. Its coproduct 1, product m,
counit ε, unit u, and antipode S with inverse S−1 are characterized by the following
equalities, where X , Y ∈B:

Y C C

1

Y

=

Y C C

Y

,

Y

ε

Y

=

Y

Y

,

X Y C

m

X Y

=

X ⊗ Y C

X ⊗ Y

,

u = δ1,

Y C

S

Y

=

Y C
evY

coevY

Y

,

Y C

Y

S−1
=

Y C

ẽvY

c̃oevY
Y

.

Furthermore, the morphism ω : C ⊗C→ 1 defined by

X Y

ω

X Y

=

X Y

X Y

is a Hopf pairing for C , called the canonical pairing. Moreover this pairing satisfies
the following self-duality condition: ωτC,C(S⊗ S)= ω.

3D. The dimension of a braided pivotal category. Let B be a braided pivotal
category admitting a coend C .

Lemma 3.3. The left and right dimensions of C coincide.
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Proof. Let υ = {υX }X∈B be the natural transformation defined by

υX = X : X→ X.

Then υ is natural monoidal isomorphism; that is, υX⊗Y = υX ⊗ υY and υ1 =

id1, which implies that υX
∗
= υ−1

X∗ . The full subcategory B0 of B made of the
objects X of B satisfying τX = idX is a ribbon category. Let us prove that the
coend C of B belongs to B0. Denote by i = {iX : X∗⊗ X→ C}X∈B the universal
dinatural transformation associated with C . For any object X of C, by naturality
and monoidality of υ and dinaturality of i , the following holds:

υC iX = iXυ(X∗⊗X) = iX (υX∗ ⊗ υX )= iX (υ
∗

XυX∗ ⊗ idX )= iX .

So υC = idC ; that is, C belongs to B0. Hence the left and right dimensions of C
coincide, since B0 is a ribbon category. �

We define the dimension of B as dim(B)= diml(C)= dimr (C).
This definition agrees with the standard definition of the dimension of a pivotal

fusion category. Indeed, any pivotal fusion category C (over the ring k) admits a
coend C =

⊕
i∈I i∗⊗ i , where I is a (finite) representative set of scalar objects of

C, and so

diml(C)= dimr (C)=
∑
i∈I

diml(i∗) diml(i)=
∑
i∈I

dimr (i) diml(i).

3E. Modular categories. By a modular category, we mean a braided rigid category
which admits a coend whose canonical pairing is nondegenerate. Note that when B

is ribbon, this definition coincides with that of a 2-modular category given in
[Lyubashenko 1995].

Remark 3.4. Let B be a braided pivotal fusion category over k. Let I be a
representative set of the scalar objects of B. Recall that C =

⊕
i∈I i∗ ⊗ i is the

coend of B. For i , j ∈ I , set

Si, j = (evi ⊗ ẽv j )(idi∗ ⊗ τ j,iτi, j ⊗ id j∗)(c̃oevi ⊗ coev j ) ∈ k.

The matrix S = [Si, j ]i, j∈I , called the S-matrix of B, is invertible if and only if the
canonical pairing of C is nondegenerate. In particular a modular category in the
sense of [Turaev 1994] is a ribbon fusion category which is modular in the above
sense.

4. Proofs

The statements of Section 2 derive directly from the theory of Hopf monads,
introduced in [Bruguières and Virelizier 2007] and developed in [Bruguières and
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Virelizier 2012; Bruguières et al. 2011]. Hopf monads generalize Hopf algebras
in the setting of general monoidal categories. In Section 4A, we recall some basic
definitions concerning Hopf monads. In Section 4B, we give a Hopf monadic
description of the center Z(C) of a fusion category C, from which is derived the
explicit description of the coend of Z(C). In Section 4C, we prove a “handleslide”
property for pivotal fusion categories. In Section 4D, we use the explicit description
of the coend of Z(C) to prove Theorem 2.1 and prove that the morphism 3 of (6)
is an integral invariant under the antipode. Sections 4E and 4F are devoted to the
proofs of Theorem 2.2 and Corollary 2.3, respectively.

4A. Hopf monads and their modules. Let C be a category. A monad on C is a
monoid in the category of endofunctors of C, that is, a triple (T, µ, η) consisting
of a functor T : C→ C and two natural transformations

µ= {µX : T 2(X)→ T (X)}X∈C and η = {ηX : X→ T (X)}X∈C,

called the product and the unit of T , such that, for any object X of C,

µX T (µX )= µXµT (X) and µXηT (X) = idT (X) = µX T (ηX ).

Given a monad T = (T, µ, η) on C, a T -module in C is a pair (M, r) where M
is an object of C and r : T (M)→ M is a morphism in C such that rT (r)= rµM

and rηM = idM . A morphism from a T -module (M, r) to a T -module (N , s) is a
morphism f : M→ N in C such that f r = sT ( f ). This defines the category CT

of T -modules in C with composition induced by that in C. We define a forgetful
functor UT :C

T
→C by UT (M, r)= M and UT ( f )= f . The forgetful functor UT

has a left adjoint FT :C→CT , called the free module functor, defined by FT (X)=
(T (X), µX ) and FT ( f )= T ( f ). Note that if C is k-additive and T is k-linear (that
is, T induces k-linear maps on Hom spaces), then the category CT is k-additive
and the functors UT and FT are k-linear.

Let C be a monoidal category. A bimonad on C is a monoid in the category
of comonoidal endofunctors of C. In other words, a bimonad on C is a monad
(T, µ, η) on C such that the functor T : C→ C and the natural transformations µ
and η are comonoidal; that is, T comes equipped with a natural transformation
T2 = {T2(X, Y ) : T (X⊗Y )→ T (X)⊗T (Y )}X,Y∈C and a morphism T0 : T (1)→ 1
such that(

idT (X)⊗ T2(Y, Z)
)
T2(X, Y ⊗ Z)=

(
T2(X, Y )⊗ idT (Z)

)
T2(X ⊗ Y, Z);

(idT (X)⊗ T0)T2(X,1)= idT (X) = (T0⊗ idT (X))T2(1, X);

T2(X, Y )µX⊗Y = (µX ⊗µY )T2(T (X), T (Y ))T (T2(X, Y ));

T2(X, Y )ηX⊗Y = ηX ⊗ ηY .
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For any bimonad T on C, the category of T -modules CT has a monoidal structure
with unit object (1, T0) and with tensor product

(M, r)⊗ (N , s)=
(
M ⊗ N , (r ⊗ s) T2(M, N )

)
.

Note that the forgetful functor UT : C
T
→ C is strict monoidal.

Given a bimonad (T, µ, η) on C and objects X, Y ∈C, one defines the left fusion
operator

H l
X,Y = (T (X)⊗µY )T2(X, T (Y )) : T (X ⊗ T (Y ))→ T (X)⊗ T (Y )

and the right fusion operator

H r
X,Y = (µX ⊗ T (Y ))T2(T (X), Y ) : T (T (X)⊗ Y )→ T (X)⊗ T (Y ).

A Hopf monad on C is a bimonad on C whose left and right fusion operators are
isomorphisms for all objects X , Y of C. When C is a rigid category, a bimonad T
on C is a Hopf monad if and only if the category CT is rigid. The structure of a
rigid category in CT can then be encoded in terms of natural transformations

sl
= {sl

X : T (
∨T (X))→∨X}X∈C and sr

= {sr
X : T (T (X)

∨)→ X∨}X∈C,

called the left and right antipodes. They are computed from the fusion operators:

sl
X =

(
T0T (evT (X))(H l

∨T (X),X )
−1
⊗
∨ηX

)(
idT (∨T (X))⊗ coevT (X)

)
;

sr
X =

(
η∨X ⊗ T0T (ẽvT (X))(H r

X,T (X)∨)
−1)(c̃oevT (X)⊗ idT (T (X)∨)

)
.

The left and right duals of any T -module (M, r) are then defined by

∨(M, r)=
(
∨M, sl

M T (∨r)
)

and
(
M, r)∨ = (M∨, sr

M T (r∨)
)
.

A quasitriangular Hopf monad on C is a Hopf monad T on C equipped with an
R-matrix, that is, a natural transformation

R = {RX,Y : X ⊗ Y → T (Y )⊗ T (X)}X,Y∈C

satisfying appropriate axioms which ensure that the natural transformation τ =
{τ(M,r),(N ,s)}(M,r),(N ,s)∈CT defined by

τ(M,r),(N ,s) = (s⊗ r)RM,N : (M, r)⊗ (N , s)→ (N , s)⊗ (M, r)

form a braiding in the category CT of T -modules.
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4B. The coend of the center of a fusion category. Let C be a pivotal fusion cat-
egory (over the ring k), with a representative set of scalar objects I . For each
object X of C, by Remark 3.2, the k-linear functor Cop

× C → C, defined by
(U, V ) 7→U∗⊗ X ⊗ V , has a coend

Z(X)=
⊕
i∈I

i∗⊗ X ⊗ i,

with dinatural transformation ρX = {ρX,Y }Y∈C given by

ρX,Y =
∑
i∈I

i

Y

i

X Y

: Y ∗⊗ X ⊗ Y → Z(X).

The correspondence X 7→ Z(X) extends to a functor Z : C→ C. By Theorem 6.4
and Section 9.2 of [Bruguières and Virelizier 2012], Z is a quasitriangular Hopf
monad on C, with structural morphisms as follows (the dotted lines represent id1):

Z2(X, Y )=
∑
i∈I

i
i X Y i

: Z(X ⊗ Y )→ Z(X)⊗ Z(Y ),

Z0 =
∑
i∈I

i : Z(1)→ 1,

µX =
∑

i, j,k∈I

k

j i

k

X

i j

: Z2(X)→ Z(X),

ηX =
X
: X→ X = 1∗⊗ X ⊗ 1 ↪→ Z(X),

sl
X = sr

X =
∑
i, j∈I

j i

X

i∗ j
: Z(Z(X)∗)→ X∗,

RX,Y =
∑
i∈I

Y i i

X Y

: X ⊗ Y → Z(Y )⊗ Z(X).

In particular, the category CZ of Z -modules is a braided pivotal category. By
[Bruguières and Virelizier 2012, Theorem 6.5], the functor

(8) 8 :


CZ

→ Z(C)

(M, r) 7→ (M, σ )
f 7→ f

where σY =
∑
i∈I

Y M

r

i i

M Y
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is an isomorphism of braided pivotal categories. Note that this isomorphism is a
“fusion” version of the braided isomorphism Z(modH ) ' modD(H) between the
center of the category of modules over a finite-dimensional Hopf algebra H and the
category of modules over the Drinfeld double D(H) of H . Now by [Bruguières
and Virelizier 2012, Section 6.3], the coend of CZ is (C, α), where

C =
⊕
i, j∈I

i∗⊗ j∗⊗ i ⊗ j and α =
∑

i, j,k,l,n∈I

k l k l

n n n

n i j i j n

,

with universal dinatural transformation ι= {ι(M,r)}(M,r)∈CZ given by

ι(M,r) =
∑
i, j∈I

i j i j

M

r∗

M M

: (M, r)∗⊗ (M, r)→ (C, α).

Thus (C, σ )=8(C, α) is the coend of Z(C), with universal dinatural transformation
{8(ι8−1(M,γ ))}(M,γ )∈Z(C). Using the description of 8 and the definition of the
universal coaction given in (7), we obtain that the half braiding σ is given by (4) and
that the universal coaction of (C, σ ) is given by (5). Finally, recall from Section 3C
that (C, α) is a Hopf algebra in CZ endowed with a canonical Hopf algebra pairing.
By [Bruguières and Virelizier 2012, Section 9.3], the structural morphisms of (C, α)
are those given on pages 10 and 11, items (a)–(f). These structural morphisms are
also those of (C, σ ), since 8 is the identity on morphisms.

4C. Slope and handleslide in pivotal fusion categories. Let C be a pivotal fusion
category. Recall that the left and right dimensions of a scalar object of C are
invertible. The slope of a scalar object i is the invertible scalar sl(i) defined by

sl(i)=
diml(i)
dimr (i)

.

The slope of an object X of C is the morphism SLX : X→ X defined as

SLX =
∑
α∈A

sl(iα) qα pα,

where (pα : X→ iα, qα : iα→ X)α∈A is a decomposition of X as a sum of scalar
objects, that is, a family of pairs of morphisms such that iα is scalar for every α ∈ A,
pα qβ = δα,β idiα for all α, β ∈ A, and idX =

∑
α∈A qα pα . The morphism SLX does

not depend on the choice of the decomposition of X into scalar objects. Note that
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SLX is invertible with inverse

SL−1
X =

∑
α∈A

sl(iα)−1 qα pα.

The family SL= {SLX : X→ X}X∈C is a monoidal natural automorphism of the
identity functor 1C of C, called the slope operator of C. In particular

SLY f = f SLX and SLX⊗Y = SLX ⊗SLY

for all objects X , Y of C and all morphism f : X→ Y . The slope operator relates
the left and right traces: for any endomorphism f of an object of C,

(9) trl( f )= trr ( f SLX ).

Note that C is spherical if and only its slope operator is the identity.

Lemma 4.1. Let I be a representative set of scalar objects of C.

(a) For any object X of C,
∑
j∈I

X

j

X

= X .

(b) For i , j ∈ I and X , Y objects of C,

j

X i Y

X i Y

j
=

dimr (i)
dimr ( j)

j

SL−1
X i Y

X i Y

j
.

(c) For i ∈ I and X , Y objects of C,

i

X Y

X Y

i

=

∑
j∈I

i

j

X Y

X Y

j

i

=

∑
j∈I

i

j

X Y

X Y

j

i

provided there are no j-colored strands in the gray area.
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(d) For all i , j ∈ I ,

i j

i j
=

δi, j

diml(i)

i

i
,

i j

i j
=

δi, j

dimr (i)

i

i
.

Proof. Part (a) follows directly from the definitions. We prove (b). Let (pα, qα)α∈A

be an i-decomposition of X∗⊗ j ⊗ Y ∗. For α, β ∈ A, set

Pα =
dimr ( j)
dimr (i)

j

SLX qα

X i Y

, Qα =

X i Y

pα

j

, fα,β =

X

qα

i Y j

pβ

X

.

We need to prove that (Pα, Qα)α∈A is a j -decomposition of X⊗i⊗Y . Let α, β ∈ A.
Since (SLX )

∗
= SL−1

X∗ and using (9), we obtain

PαQβ =
trr (PαQβ)

dimr ( j)
id j =

trl( fα,βSL−1
X∗ )

dimr (i)
id j =

trr ( fα,β)
dimr (i)

id j

=
trr (qα pβ)
dimr (i)

id j =
trr (pβqα)
dimr (i)

id j =
trr (δα,β idi )

dimr (i)
id j = δα,β id j .

We conclude using that card(A)= νi (X∗⊗ j ⊗ Y ∗)= ν j (X ⊗ i ⊗ Y ).
Part (c) reflects the canonical isomorphisms

HomC(X ⊗ Y, i)∼=
⊕
j∈I

HomC(X, j)⊗k HomC( j ⊗ Y, i)

∼=

⊕
j∈I

HomC(X ⊗ j, i)⊗k HomC(Y, j),

and part (d) is a direct consequence of the duality axioms. �

4D. Proof of Theorem 2.1 and of the integrality of 3. Recall that Z(C) is a
braided pivotal category which has a coend (C, σ ) with C =

⊕
i, j∈I i∗⊗ j∗⊗ i⊗ j .

Therefore its dimension is well-defined and
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dim Z(C)= diml(C, σ )= diml(C)= diml

(∑
i, j∈I

i∗⊗ j∗⊗ i ⊗ j
)

=

∑
i, j∈I

diml(i∗) diml( j∗) diml(i) diml( j)

=

(∑
i∈I

dimr (i) diml(i)
)(∑

j∈I

dimr ( j) diml( j)
)
= dim(C)2.

Let us prove that the canonical pairing of the coend (C, σ ) is nondegenerate.
Define the morphism λ :C→ 1 as follows and recall the definition of the morphism
3 : 1→ C of (6):

λ=
∑
i∈I

dimr (i)
i

and 3=
∑
j∈I

dimr ( j)
j
.

Firstly, 3 is a morphism in Z(C) from 1Z(C) = (1, id) to (C, σ ). Indeed, using the
description of the half braiding σ given in (4), we obtain that for any object Y of C,

σY (3⊗ idY )=
∑

j,k,`,n∈I

dimr ( j)

Y k l k l

n n n n n

j Y

=

∑
j,k,`,n∈I

dimr (`)

sl(n)

Y k n l n k n l

nn

j Y

by Lemma 4.1(b)

=

∑
k,`,n∈I

dimr (`)

sl(n)

Y k l k l

n n

n Y

by Lemma 4.1(a)

=

∑
`,n∈I

dimr (`)

sl(n)

Y l l

n n

n Y

=

∑
`,n∈I

dimr (`)

Y

ln

Y

by Lemma 4.1(d)

= idY ⊗3 by Lemma 4.1(a).
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Secondly, λ and 3 satisfy ω(idC ⊗ 3) = λ = ω(3 ⊗ idC). Indeed, using the
description of the canonical pairing ω given in item (f) on page 11, we obtain

ω(idC ⊗3)=
∑

i, j,`∈I

dimr (`) li
i

i j i j

=

∑
i,`∈I

dimr (`) li
i

i i

=

∑
i,`∈I

dimr (`)

diml(i)

i

l i by Lemma 4.1(d)

=

∑
i,`∈I

dimr (`)

diml(i)
δ`,i∗

i

i =
∑
i∈I

dimr (i)
i

= λ,

and similarly

ω(3⊗ idC)=
∑

j,k,`∈I

dimr ( j)

k

k

j
k l k l

=

∑
j,k∈I

dimr ( j) δ j,k∗

k
k k

=

∑
k∈I

k

k by Lemma 4.1(d)

=

∑
k∈I

dimr (k)
i

= λ.

This implies in particular that λ is a morphism in Z(C) from (C, σ ) to 1Z(C), since ω
and 3 are morphisms in Z(C).



ON THE CENTER OF FUSION CATEGORIES 25

Thirdly, λ is a left cointegral for the Hopf algebra (C, σ ) in Z(C). Indeed, using
the description of the coproduct 1 and the unit u — items (a) and (d) on page 10 —
we obtain

(idC ⊗ λ)1=
∑

i,k,`,n∈I

dimr (k)

l n l n k

k k

i i

=

∑
i,k,`∈I

dimr (k)

l l
k

k k

i i

=

∑
i,k,`∈I

dimr (k)
l l

k

i i

by Lemma 4.1(d)

=

∑
i,k,`∈I

dimr (i)
l lk

i i

by Lemma 4.1(b)

=

∑
i,`∈I

dimr (i) l
i

by Lemma 4.1(a)

= u λ.

Since ω(3⊗3)= λ3= dimr (1)= 1 ∈ k is invertible, we conclude by Lemma 3.1
that ω is nondegenerate. Hence Z(C) is modular.

Finally, let us prove that 3 is a two-sided integral of (C, σ ) which is invariant
under the antipode. The last part of Lemma 3.1 gives that 3 is a right integral of
(C, σ ). Using the description of the antipode S of (C, σ ) in item (e) on page 11,
we obtain

S3=
∑

j,k,`∈I

dimr ( j)

k l k l

j j j
j

j

=

∑
j,k,`∈I

dimr ( j)

k l k l

j

j j

j

j

by Lemma 4.1(c)
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=

∑
`∈I

dimr (`
∗)

l l

l l

l

=

∑
`∈I

dimr (`)
j

by Lemma 4.1(d)

= 3.

Hence 3 is S-invariant. This implies in particular that 3, being a right integral, is
also a left integral. Hence 3 is an S-invariant (two-sided) integral.

4E. Proof of Theorem 2.2. Consider the Hopf monad Z of Section 4B. Recall
from [Bruguières and Virelizier 2007] that the monad Z is said to be semisimple if
any Z -module is a Z -linear retract of a free Z -module, that is, of (Z(X), µX ) for
some object X of C. Since the isomorphism 8 : CZ

→ Z(C) defined in (8) sends
the free Z -module (Z(X), µX ) to the free half braiding 8(Z(X), µX ) = F(X),
we need to prove that dim(C) is invertible if and only if Z is semisimple. Now
Theorem 6.5 of [Bruguières and Virelizier 2007] provides an analogue of Maschke’s
semisimplicity criterion for Hopf monads: the Hopf monad Z is semisimple if and
only if there exists a morphism α : 1→ Z(1) in C such that

(10) µ1α = αZ0 and Z0α = 1.

Let α : 1→ Z(1)=
⊕

i∈I i∗⊗ i be a morphism in C. Since C is a fusion category,
α decomposes uniquely as α =

∑
i∈I αi c̃oevi where αi ∈ k. From the structural

morphisms of the Hopf monad Z (page 19), we obtain

αZ0 =
∑
j,k∈I

αk
k

j

and

µ1 Z(α)=
∑

i, j,k∈I

αi
dimr (k)
dimr (i)

k k

j i j

.

Thus, by duality, αZ0 = µ1 Z(α) if and only if

∑
j,k∈I

αk k j =
∑

i, j,k∈I

αi

k j

k j i

in EndC

(⊕
k, j∈I

k⊗ j∗
)
.
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Now, for j , k ∈ I , by using Lemma 4.1(b),

∑
i∈I

αi

k j

k j i

=

∑
i∈I

αi
dimr (k)
dimr (i)

k j

i

k j

.

Therefore αZ0 = µ1 Z(α) if and only if

(11) αk idk⊗ j∗ =
∑
i∈I

αi

k j

i

k j

∈ EndC(k⊗ j∗) for all k, j ∈ I .

In particular, if αZ0 = µ1 Z(α), then for any i ∈ I , setting k = 1 and j = i∗ we
obtain αi = α1 dimr (i). Conversely, if αi = α1 dimr (i) for all i ∈ I , then (11) holds
by Lemma 4.1(a), and so αZ0 = µ1 Z(α). In conclusion, αZ0 = µ1 Z(α) if and
only if α = α1κ , where

κ =
∑
i∈I

dimr (i) c̃oevi : 1→ Z(1).

In that case,

Z0α = α1 Z0κ =
∑
i∈I

dimr (i)Z0c̃oevi = α1

∑
i∈I

dimr (i) diml(i)= α1 dim(C).

Hence there exists α satisfying (10) if and only if dim(C) is invertible in k. This
concludes the proof of Theorem 2.2. �

4F. Proof of Corollary 2.3. Let A be an abelian category. If A is semisimple (see
Section 2), then every object of A is projective2. The converse is true if in addition
we assume that all objects of A have finite length3.

Assume k is a field and let C be a pivotal fusion category over k. Then C is
abelian semisimple and its objects have finite length. The center Z(C) of C is then
an abelian category and the forgetful functor U : Z(C)→ C is k-linear, faithful,
and exact. This implies that all objects of Z(C) have finite length and the Hom
spaces in Z(C) are finite-dimensional. As a result, Z(C) is semisimple if and only
if all of its objects are projective.

2An object P of A is projective if the functor HomA(P,− ) :A→ Ab is exact, where Ab is the
category of abelian groups.

3An object A of A has finite length if there exists a finite sequence of subobjects A = X0 ) X1 )
· · ·) Xn = 0 such that each quotient Xi/Xi+1 is simple.
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We identify Z(C) with the category CZ of Z -modules via the isomorphism (8).
Recall from the proof of Theorem 2.2 (see the beginning of Section 4E) that the
monad Z is semisimple if and only if dim(C) is invertible in k. The following
lemma relates the notions of semisimplicity for monads and for categories.

Lemma 4.2. Let C be an abelian category and T be a right exact monad on C, so
that CT is abelian and the forgetful functor UT : C

T
→ C is exact.

(a) If all the T -modules are projective, then T is semisimple.
(b) If T is semisimple and all the objects of C are projective, then all the T -modules

are projective.
(c) If the objects of C have finite length, then the same holds in CT . If in addition

C has finitely many isomorphy classes of simple objects, then so does CT .

Proof. Let us prove assertion (a). Denote by FT : C→ CT the free module functor
(see Section 4A). Let (M, r) be a T -module. The action r defines an epimorphism
FT (M)→ (M, r) in CT . In particular, if (M, r) is projective, it is a retract of
FT (M). Therefore if all the T -modules are projective, the monad T is semisimple.

Let us prove assertion (b). Note that if X is a projective object of C, then FT (X)
is a projective T -module. Indeed,

HomCT (FT (X), ? )' HomC(X,UT )

by adjunction, and HomC(X,UT ) is an exact functor when X is projective. In
particular, if all objects are projective in C then all free T -modules are projective. If
in addition T is semisimple, then any T -module, being a retract of a free T -module,
is projective.

Finally, let us prove assertion (c). The first part results from the fact that UT is
faithful exact. Now if S is a simple object of CT and 6 is a simple subobject of
UT (S), then by adjunction the inclusion 6 ⊂UT (S) defines a nonzero morphism
FT (6)→ S, which is an epimorphism because S is simple. This proves the second
part of assertion (c), because under the assumptions made there are finitely many
possibilities for 6, and each FT (6) has finitely many simple quotients. �

Assertion (a) of Corollary 2.3 results immediately from the first two assertions
of Lemma 4.2.

Let us prove assertion (b). A fusion category over a field is semisimple. Now
assume k is algebraically closed. By assertion (a), we need to show that if Z(C) is
semisimple, then it is a fusion category. Assume Z(C) is semisimple. Since C is
fusion, by the third assertion of Lemma 4.2, the category Z(C) has finitely many
classes of simple objects and its objects have finite length. So each object of Z(C)

is a finite direct sum of simple objects. Since the unit object of Z(C) is scalar and
any simple object S of Z(C) is scalar (because End(S) is a finite extension of k),
we obtain that Z(C) is a fusion category. This proves Corollary 2.3. �
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