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Abstract. Chromatic maps for spherical tensor categories are instrumental
tools to construct (non semisimple) invariants of 3-manifolds and their exten-
sion to (non compact) (2+1)-TQFTs. In this paper, we introduce left and right
chromatic maps for finite tensor categories and prove that such maps always
exist. As a corollary, we obtain that any spherical finite tensor category has a
chromatic map.
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1. Introduction

During the last 30 years, deep relations have emerged between low-dimensional
topology and the theory of monoidal categories. In particular, monoidal categories
carrying appropriate additional structures (such as pivotality, linearity, finiteness,
braidings, etc...) have been used to construct topological invariants of 3-manifolds
and (2+1)-TQFTs, see for example [Tu, TVi] for the semisimple approach, [KL]
for a first non semisimple approach, and [CGPT, CGPV] for a new non semisimple
approach. In this latter non semisimple approach, the main algebraic tools used for
the topological constructions are the chromatic maps whose definition involves the
(non degenerate) modified trace on the ideal of projective objects of a spherical finite
tensor category. The chromatic maps are also a key ingredient for the definition of
the skein (3+1)-TQFTs of [CGHP]. (In both cases, the chromatic maps play the
role of so called “Kirby colors” in the surgery semisimple approach see Example 2.7
or of the integral for Hennings invariants, see Example 2.8.)

In this paper, given a finite tensor category C (in the sense of [EGNO]), we
introduce right and left chromatic maps for C. Their definition involves the distin-
guished invertible object of C (see Section 2.4). Our main result (Theorem 2.2) is
that left and right chromatic maps for C always exist. The proof of this result uses
the central Hopf monad (which describes the center of C, see [BV2]) and the exis-
tence and uniqueness of (co)integrals based at the distinguished invertible object
of C (see [Sh]).

As a corollary, we get (Corollary 2.2) that any spherical finite tensor category has
a chromatic map in the sense of [CGPT, CGPV]. In particular, this proves that the
construction of invariants of closed 3-manifolds given in [CGPT] and their extension
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to non-compact (2+1)-TQFTs given in [CGPV] can be performed starting with any
spherical finite tensor category.

The paper is organized as follows. In Section 2, after some algebraic preliminar-
ies, we introduce right and left chromatic maps for a finite tensor category C and
state their existence. Next, when C is spherical, we relate them to the chromatic
maps in the sense of [CGPT, CGPV]. Section 3 is dedicated to the proofs of the
above results. In particular, we recall the notion of a Hopf monad and its based
(co)integrals as well as the construction (in terms of coends) of the central Hopf
monad which are used in the proof of the main result.

2. Chromatic maps

Throughout the paper, we fix an algebraically closed field k.

2.1. Conventions on monoidal categories. For the basics on monoidal cate-
gories, we refer for example to [ML, EGNO, TVi]. We will suppress in our formulas
the associativity and unitality constraints of monoidal categories. This does not
lead to ambiguity because by Mac Lane’s coherence theorem, all legitimate ways
of inserting these constraints give the same result. For any objects X1, ..., Xn with
n ≥ 2, we set

X1 ⊗X2 ⊗ · · · ⊗Xn = (...((X1 ⊗X2)⊗X3)⊗ · · · ⊗Xn−1)⊗Xn

and similarly for morphisms.
Recall that a monoidal category is rigid if every object admits a left dual and

a right dual. Subsequently, when dealing with rigid categories, we shall always
assume tacitly that for each object X , a left dual ∨X and a right dual X∨ has been
chosen, together with their (co)evaluation morphisms

evX : ∨X ⊗X → 1, coevX : 1→ X ⊗ ∨X,

ẽvX : X ⊗X∨ → 1, c̃oevX : 1→ X∨ ⊗X.

A pivotal category is a rigid monoidal category with a choice of left and right duals
for objects so that the induced left and right dual functors coincide as monoidal
functors. Then we write X∗ = ∨X = X∨ for any X ∈ C, and

φ = {φX = (idX∗∗ ⊗ evX)(c̃oevX∗ ⊗ idX) : X → X∗∗}X∈C

is a monoidal natural isomorphism relating the (co)evaluation morphisms, called
the pivotal structure of C.

2.2. Projective objects and covers. An object P of an abelian category C is
projective if the functor Hom(P,−) : C → Set preserves epimorphisms. An abelian
category has enough projectives if every object has an epimorphism from a projec-
tive object onto it.

A projective cover of an object X of an abelian category C is a projective object
P (X) of C together with an epimorphism p : P (X) → X such that if g : P → X is
an epimorphism from a projective object P to X , then there exists an epimorphism
h : P → P (X) such that ph = g. Note that if it exists, a projective cover is
unique up to a non-unique isomorphism, and a projective cover of a simple object
is indecomposable.

2.3. Finite tensor categories. Recall that a monoidal category is k-linear if each
hom-set carries a structure of a k-vector space so that the composition and monoidal
product of morphisms are k-bilinear.

Following [EGNO], a finite tensor category (over k) is a k-linear rigid monoidal
abelian category C = (C,⊗, 1) such that:
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(i) the category C is locally finite: the hom-sets are finite dimensional and
every object of C has finite length,

(ii) the category C has enough projectives,
(iii) there are finitely many isomorphism classes of simple objects,
(iv) EndC(1) = k id1.

Let C be a finite tensor category. Then the unit object 1 of C is simple (see
[EGNO, Theorem 4.3.8]). Also, every simple object of C has a projective cover,
and any indecomposable projective object P of C has a unique simple subobject,
called the socle of P (see [EGNO, Remark 6.1.5]). In particular, the socle of the
projective cover of the unit object 1 is an invertible object called the distinguished

invertible object of C. Finally note that C has a projective generator, that is, a
projective object G such that the functor HomC(G,−) : C → Set is faithful or,
equivalently, such that any projective object is a retract of G⊕n for some n ∈ N.

2.4. Chromatic maps. Let C be a finite tensor category. Pick a projective cover
ε : P0 → 1 of the unit object and a monomorphism η : α → P0, where α is the
distinguished invertible object of C.

Lemma 2.1. There are unique natural transformations

Λr = {Λr
X : α⊗X → X}X∈C and Λl = {Λl

X : X ⊗ α → X}X∈C

such that for any indecomposable projective object P non isomorphic to P0,

Λr
P = 0, Λl

P = 0, and Λr
P0

= η ⊗ ε, Λl
P0

= ε⊗ η.

We prove Lemma 2.1 in Section 3.1.
Let P be a projective object and G be a projective generator of C. A right

chromatic map based at P for G is a morphism

c
r
P ∈ HomC(P ⊗G∨∨, P ⊗G⊗ α)

such that for all X ∈ C,

(idP ⊗ ẽvG ⊗ idX)(idP⊗G ⊗ Λr
G∨⊗X)(crP ⊗ idG∨⊗X)(idP ⊗ ẽvG∨ ⊗ idX) = idP⊗X .

Using graphical calculus for monoidal categories (with the convention of diagrams
to be read from bottom to top), the latter condition depicts as:

P

P

G

α

G∨∨

X

X

G∨

G∨

ẽvG

c̃oevG∨

c
r
P

Λr
G∨⊗X

=

XP

.

Similarly, a left chromatic map based at P for G is a morphism

c
l
P ∈ HomC(

∨∨G⊗ P, α⊗G⊗ P )

such that for all X ∈ C,

(idX ⊗ evG ⊗ idP )(Λ
l
X⊗∨G ⊗ idG⊗P )(idX⊗∨G ⊗ c

l
P )(idX ⊗ coev∨G ⊗ idP ) = idX⊗P .
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This condition depicts as:

P

P

G

α

∨∨G

X

X

∨G

∨G

evG

coev∨G

c
l
P

Λl
X⊗∨G

=

PX

.

The main result of the paper is the existence of right and left chromatic maps
for finite tensor categories:

Theorem 2.2. For any projective object P and any projective generator G of C,
there are a right chromatic map and a left chromatic map based at P for G.

We prove Theorem 2.2 in Section 3.4.

Example 2.3. Let H be a finite dimensional Hopf algebra over k. The category
H-mod of finite dimensional (left) H-modules and H-linear homomorphisms is a
finite tensor category. Recall that the left dual of an object M of H-mod is the
H-module ∨M = M∗ = Homk(M, k) where each h ∈ H acts as the transpose of
m ∈ M 7→ S(h) · m ∈ M , with S the antipode of H . The right dual of M is
M∨ = M∗ where each h ∈ H acts as the transpose of m ∈ M 7→ S−1(h) ·m ∈ M .
The associated left and right evaluation morphisms are computed for any m ∈ M

and ϕ ∈ M∗ by

ev(ϕ⊗m) = ϕ(m) = ẽv(m⊗ ϕ).

A projective generator of H-mod is H equipped with its left regular action. It
follows from [EGNO, Proposition 6.5.5.] that the distinguish object α of H-mod
is k with action H⊗ k ∼= H → k given by the inverse αH ∈ H∗ of the distinguished
grouplike element of H∗. (The form αH is characterized by ΛS(h) = αH(h)Λ for
all h ∈ H and all left cointegral Λ ∈ H .) Pick a projective cover ε : P0 → k of the
unit object and a monomorphism η : α → P0. Since the counit εH : H → k of H is
an epimorphism, there exists an epimorphism p : H → P0 such that εH = εp. Let
i : P0 → H be a section of p in H-mod and set Λ = S(iη(1k)) ∈ H . We prove in
Section 3.6 that Λ is a non zero left cointegral. By [Ra, Theorem 10.2.2], there is a
unique right integral λ ∈ H∗ such that λ(Λ) = 1. Then a left chromatic map based
at H for H is

c
l
H :

{
∨∨H ⊗H → α⊗H ⊗H

ex ⊗ y 7→ λ
(
S(y(1))x

)
αH(y(2))⊗ y(3) ⊗ y(4)

and a right chromatic map based at H for H is

c
r
H :

{
H ⊗H∨∨ → H ⊗H ⊗ α

y ⊗ ex 7→ y(1) ⊗ y(2) ⊗ αH(y(2))λ
(
S(x)y(1)

)

where x ∈ H 7→ ex ∈ H∗∗ is the canonical k-linear isomomorphism. We verify this
in Section 3.6. More generally, for any finite dimensional projective H-module P ,

c
l
P =

∑

i

(idα⊗H ⊗ gi)c
l
H(id∨∨H ⊗ fi) and c

r
P =

∑

i

(gi ⊗ idH⊗α)c
l
H(idfi⊗H∨∨)

are respectively a left chromatic map and right chromatic map based on P for H ,
where {fi : P → H, gi : H → P}i is any finite family of H-linear homomorphisms
such that idP =

∑
i gifi.
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2.5. The case of spherical finite tensor categories. Recall the notion of a
left or right modified trace from [GPV]. Following [SS], a finite tensor category is
spherical if it is pivotal, unimodular (meaning that 1 is the distinguished invertible
object), and the unique non degenerate right modified trace on the full subcategory
Proj of projective objects is also a left modified trace.

Let C be a spherical finite tensor category. Pick a projective cover ε : P0 → 1
of the monoidal unit and a monomorphism η : 1 → P0. Consider the unique non
degenerate two-sided modified trace

t = {tP : EndC(P ) → k}P∈Proj

such that tP0(ηε) = 1k (see [GKP, Corollary 5.6]). Recall that the non degeneracy
of t implies that the pairing u ⊗k v ∈ HomC(P, 1) ⊗k HomC(1, P ) → tP (vu) ∈ k is
non degenerate. Define

Λt = {Λt

P : P → P}P∈Proj

by setting Λt

P =
∑

i xi ◦ xi, where (xi)i and (xi)i are basis of HomC(P, 1) and
HomC(1, P ) which are dual with respect to above pairing. Note that the cyclicity
of t (meaning that tP (gf) = tQ(fg) for all morphisms f : P → Q and g : Q → P in
Proj) implies that the family Λt is natural in P ∈ Proj.

Let P be a projective object and G be a projective generator of C. A chromatic

map based on P for G in the sense of [CGPT, CGPV] is a morphism

cP ∈ EndC(G⊗ P )

such that for all X ∈ C,

(idX ⊗ evG ⊗ idP )(Λ
t

X⊗G∗ ⊗ cp)(idX ⊗ c̃oevG ⊗ idP ) = idX⊗P .

This condition depicts as:

P

PG

G

X

X

cPΛt

X⊗G∗ =

PX

.

Here we use the following graphical conventions for pivotal categories: strands are
oriented, a strand oriented upwards (respectively, downwards) and colored by an
object V ∈ C corresponds to idV (respectively, idV ∗), and the oriented caps and
cups correspond to the evaluation and coevaluation morphisms.

Consider the natural transformations Λr and Λl associated with ε and η as
in Lemma 2.1.

Lemma 2.4. For any projective object P of C, we have: Λt

P = Λr
P = Λl

P .

We prove Lemma 2.4 in Section 3.5. The next corollary is a direct consequence
of Theorem 2.2 and Lemma 2.4.

Corollary 2.5. Any spherical tensor category has chromatic maps.

Proof. Lemma 2.4 and the fact that c̃oevG = (idG∗ ⊗ φ−1
G )coevG∗ , where φ is the

pivotal structure of C (see Section 2.1) imply that a morphism cP : G⊗P → G⊗P is
a chromatic map if and only if the morphism c

l
P = cP (φ

−1
G ⊗idP ) : G

∗∗⊗P → G⊗P

is a left chromatic map. The existence of a chromatic map based on any projective
object P for any projective generator G follows then from Theorem 2.2. �

Remark 2.6. Let P be a projective object and G be a projective generator of C.
Then P ∗ is a projective object and G∗ is a projective generator of C. By Corol-
lary 2.5, there is a chromatic map cP∗ ∈ EndC(G

∗⊗P ∗) based on P ∗ for G∗. Then
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the morphism

c̃P =

P

P

G

G

cP∗ ∈ EndC(P ⊗G)

satisfies the following relation: for all X ∈ C,

P

P

G

G X

X

c̃P Λt

G∗⊗X =

XP

.

Example 2.7. Let C be a spherical fusion category. Then every object of C is
projective and a projective generator is G =

⊕
i∈I i, where I is a representative set

of simples object of C. For any projective object P , a chromatic map based on P is

cP =
⊕

i∈I

qdim(i) idi ⊗ idP .

Formally, cP = idΩ ⊗ idP , where Ω =
⊕

i∈I qdim(i) i is the “Kirby color” of C.

Example 2.8. Let H be a finite dimensional Hopf algebra over k. Then the
category H-mod (see Example 2.3) is spherical if and only if H is unimodular and
unibalanced in the sense of [BBG] (meaning that H is pivotal with pivot a square
root of the distinguish grouplike element of H). Assume this is the case. With
the notation of Example 2.3, this means that αH ∈ H∗ is the counit of H and
the pivot g of H satisfies S2(h) = ghg−1 and λ(h(2))h(1) = λ(h)g2 for all h ∈ H .
Then the canonical k-linear isomomorphism x ∈ H 7→ ex ∈ H∗∗ induces a H-linear
isomorphism H ∼= ∨∨H equal to the pivotal structure of H-mod evaluated at H .
Consequently, it follows from Example 2.3 (see also [CGPT, Section 6]) that a
chromatic map based at H for H is

cH :

{
H ⊗H → H ⊗H

x⊗ y 7→ λ(S(y(1))gx) y(2) ⊗ y(3).

More generally, for any finite dimensional projective H-module P ,

cP =
∑

i

(idH ⊗ gi)cH(idH ⊗ fi) : H ⊗ P → H ⊗ P

is a chromatic map based on P for H , where {fi : P → H, gi : H → P}i is any finite
family of H-linear homomorphisms such that idP =

∑
i gifi.

3. Proofs

We first prove Lemma 2.1 in Section 3.1. Next we recall the notions of a Hopf
monad and their based (co)integrals (Section 3.2) and the construction of the central
Hopf monad (Section 3.3). Then we use these notions to prove Theorem 2.2 in
Section 3.4. Finally, in Section 3.5, we prove Lemma 2.4.

3.1. Proof of Lemma 2.1. For any indecomposable projective object P non iso-
morphic to P0 and all morphisms f ∈ EndC(P0), g ∈ HomC(P, P0), h ∈ HomC(P0, P ),
it follows from [GKP, Lemma 4.3] that

η ⊗ εf = fη ⊗ ε, εg = 0, hη = 0.

This and the fact that any projective object is a (finite) direct sum of indecompos-
able projective objects imply that the prescriptions of Lemma 2.1 uniquely define
natural transformations {Λr

P : α ⊗ P → P}P∈Proj and {Λr
P : P ⊗ α → P}P∈Proj,
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where Proj is the full subcategory of C of projective objects. These natural trans-
formations further uniquely extend to C by applying the next Lemma 3.1 with the
functor F = α⊗− (which is exact since it is an equivalence because α is invertible)
and the identity functor G = 1C.

Lemma 3.1. Let F,G : A → B be additive functors between abelian categories.

Assume that A has enough projectives and that F is right exact. Denote by Proj
the full subcategory of A of projective objects. Then any natural transformation

{αP : F (P ) → G(P )}P∈Proj uniquely extends to A, that is, to a natural transfor-

mation {αX : F (X) → G(X)}X∈A.

Proof. Consider a natural transformation α = {αP : F (P ) → G(P )}P∈Proj. As-
sume first that ᾱ and α̃ are both extensions of α to A. Let X ∈ A. Pick an
epimorphism p : P → X with P projective. Using the naturality of ᾱ and α̃ to-
gether with the fact that both ᾱ and α̃ extend α, we have:

ᾱXF (p) = G(p)ᾱP = G(p)αP = G(p)α̃P = α̃XF (p).

Thus ᾱX = α̃X since F (p) is an epimorphism (because p is and F is right exact).
This proves the uniqueness of an extension of α to A.

We now prove the existence of an extension of α to A. Let X ∈ A. Pick an
epimorphism p : P → X with P projective. Then there is a unique morphism
ᾱX : F (X) → G(X) in A such that

(1) ᾱXF (p) = G(p)αP .

Indeed, sinceA is abelian, the epimorphism p is the cokernel of its kernel k : K → P .
Pick an epimorphism r : Q → K with Q projective. Then p is the cokernel of
q = kr : Q → P , and so F (p) is the cokernel of F (q) (because F is right exact).
Consequently, since

G(p)αPF (q) = G(p)G(q)αQ = G(pq)αQ = G(0)αQ = 0,

there is a unique morphism ᾱX : F (X) → G(X) in A satisfying (1). Note that
the morphism ᾱX does not depend on the choice of p. Indeed, let r : R → X be
another epimorphism with R projective and denote by α̃X : F (X) → G(X) the
unique morphism such that G(r)αR = α̃XF (r). Since P is projective and r is an
epimorphism, there is a morphism s : P → R such that p = rs. Then

ᾱXF (p) = G(p)αP = G(r)G(s)αP = G(r)αRF (s) = α̃XF (r)F (s) = α̃XF (p),

and so α̃X = ᾱX (since F (p) is an epimorphism). Note also that ᾱP = αP for all
P ∈ Proj. Indeed, since idP : P → P is an epimorphism with P projective and
using the defining relation (1), we have:

ᾱP = ᾱPF (idP ) = G(idP )αP = αP .

It remains to prove that the family ᾱ = {ᾱX : F (X) → G(X)}X∈A is natural in X .
Let f : X → Y be a morphism in A. Pick epimorphisms p : P → X and q : Q → Y

with P,Q projective. Since P is projective and q is an epimorphism, there is a
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morphism g : P → Q such that fp = qg. Consider the following diagram:

F (X) F (Y )

(i)

(ii)

F (Q)

F (P ) (v) G(Q) G(Y )

G(P )
(iii)

(iv)

F (X) G(X)

F (p)

F (f)

ᾱY

F (p)

ᾱX

G(f)

F (q)

αP

G(p)

F (g)

G(q)

αQ

G(g)

The inner squares (i) and (iii) commute by the functoriality of F and G applied
to the equality fp = qg. The inner squares (ii) and (iv) commute by the defining
relation (1). The inner square (v) commutes by the naturality of α. Consequently,
the outer diagram commutes: ᾱY F (f)F (p) = G(f)ᾱXF (p). Since F (p) is an
epimorphism (because p is and F is right exact), we obtain ᾱY F (f) = G(f)ᾱX . �

3.2. Hopf monads and their based (co)integrals. A monad on a category C is
a monoid in the category of endofunctors of C, that is, a triple (T,m, u) consisting
of a functor T : C → C and two natural transformations

m = {mX : T 2(X) → T (X)}X∈C and u = {uX : X → T (X)}X∈C

called the product and the unit of T , such that for any X ∈ C,

mXT (mX) = mXmT (X) and mXuT (X) = idT (X) = mXT (uX).

A bimonad on monoidal category C is a monoid in the category of comonoidal
endofunctors of C. In other words, a bimonad on C is a monad (T,m, u) on C such
that the functor T and the natural transformations m and u are comonoidal. The
comonoidality of T means that T comes equipped with a natural transformation
T2 = {T2(X,Y ) : T (X ⊗ Y ) → T (X)⊗ T (Y )}X,Y ∈C and a morphism T0 : T (1) → 1
such that for all X,Y, Z ∈ C,

(
idT (X) ⊗ T2(Y, Z)

)
T2(X,Y ⊗ Z) =

(
T2(X,Y )⊗ idT (Z)

)
T2(X ⊗ Y, Z),

(idT (X) ⊗ T0)T2(X, 1) = idT (X) = (T0 ⊗ idT (X))T2(1, X).

The comonoidality of m and u means that for all X,Y ∈ C,

T2(X,Y )mX⊗Y = (mX ⊗mY )T2(T (X), T (Y ))T (T2(X,Y )),

T2(X,Y )uX⊗Y = uX ⊗ uY .

Let T = (T,m, u) be a bimonad on a monoidal category C and A be an object
of C. A left A-integral for T is a morphism Λl : T (A) → 1 in C such that

(idT (1) ⊗ Λl)T2(1, A) = u1Λl.

Similarly, a right A-integral for T is a morphism Λr : T (A) → 1 in C such that

(Λr ⊗ idT (1))T2(A, 1) = u1Λr.

An A-cointegral for T is a morphism λ : 1→ T (A) in C which is T -linear:

mAT (λ) = λT0.
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A Hopf monad on monoidal category C is a bimonad on C whose left and right
fusion operators are isomorphisms (see [BLV]). When C is a rigid category, a
bimonad T on C is a Hopf monad if and only if it has a left antipode and a right
antipode (see [BV1]). (Here, we will not need the actual definition of a Hopf monad
and so just refer to [BLV, BV1].)

3.3. The central Hopf monad. Let C be a rigid monoidal category. Assume that
for any X ∈ C, the coend

(2) Z(X) =

∫ Y ∈C
∨Y ⊗X ⊗ Y

exists. Denote by iX,Y : ∨Y ⊗ X ⊗ Y → Z(X) the associated universal dinatural
transformation and set

∂X,Y = (idY ⊗ iX,Y )(coevY ⊗ idX⊗Y ) : X ⊗ Y → Y ⊗ Z(X).

We will depict the morphism ∂X,Y as

∂X,Y =
Z(X)Y

YX

and call ∂ = {∂X,Y }X,Y ∈C the centralizer of C. The universality of {iX,Y }Y ∈C

translates to a universal factorization property for ∂ as follows: for any X,M ∈ C
and any natural transformation {ξY : X ⊗ Y → Y ⊗M}Y ∈C, there exists a unique
morphism r : Z(X) → M in C such that ξY = (idY ⊗ r)∂X,Y for all Y ∈ C:

X

M

Y

Y

ξY =

X

M

Y

Y

r
.

Also, the parameter theorem for coends (see [ML]) implies that the family of coends
{Z(X)}X∈C uniquely extend to a functor Z : C → C so that ∂ = {∂X,Y }X,Y ∈C is
natural in X and Y .

By [BV2, Corollary 5.14 and Theorem 6.5], the functor Z has the structure
of a quasitriangular Hopf monad, called the central Hopf monad of C, which de-
scribes the center Z(C) of C (meaning that the Eilenberg-Moore category of Z is
isomorphic to Z(C) as braided monoidal categories). The product m, unit u, and
comonoidal structure (Z2, Z0) are characterized (using the universal factorization
property for ∂) by the following equalities with X,X1, X2, Y, Y1, Y2 ∈ C:

Y1

Y1

Y2

Y2

X

Z(X)

mX

=

X Y1 ⊗ Y2

Y1 ⊗ Y2 Z(X)

, uX =

X 1

1 Z(X)

,

1

Z(X1) Z(X2)

Y

Y

X1 ⊗X2

Z2(X1, X2)
=

1

Z(X1) Z(X2)

Y

Y

X1 X2

,

1

Y

Y

1

Z0
=

1

Y

Y

1

.

Note that the left and right antipodes and R-matrix of Z can similarly be described
(see [BV2]), but we do not recall these descriptions since we do not use them in the
sequel.
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3.4. Proof of Theorem 2.2. Note that a left chromatic map based at a projective
object P for a projective generator G is nothing but a right chromatic map based
at P for G in the finite tensor category C⊗op = (C,⊗op, 1). Thus we only need to
prove the existence of right chromatic maps.

Since the category C has a projective generator, the coend (2) exists for all X ∈ C
(by [KL, Lemma 5.1.8]). By Section 3.3, we can then consider the central Hopf
monad Z = (Z,m, u, Z2, Z0) of C and its associated centralizer ∂ = {∂X,Y : X⊗Y →
Y ⊗ Z(X)}X,Y∈C .

Recall the natural transformation Λr = {Λr
Y : α⊗Y → Y }Y ∈C from Lemma 2.1.

The universal factorization property for ∂ gives that there is a unique morphism
Λr : Z(α) → 1 in C such that Λr

Y = (idY ⊗ Λr)∂α,Y for all Y ∈ C:

Yα

Y

Λr
Y =

Yα

Y
Λr

.

Lemma 3.2. The morphism Λr : Z(α) → 1 is a nonzero right α-integral for Z.

Proof. Clearly Λr 6= 0 since Λr is nonzero (because Λr
P0

= η ⊗ ε 6= 0). We need
to prove that (Λr ⊗ idZ(1))Z2(α, 1) = u1Λr. It follows from the universal factor-
ization property for ∂ that this amounts to showing the equality of the natural
transformations l = {lY }Y ∈C and r = {rY }Y ∈C defined by

lY =
(
idY ⊗ (Λr ⊗ idZ(1))Z2(α, 1)

)
∂α,Y and rY = (idY ⊗ u1Λr)∂α,Y .

Note that the definitions of Λr and Z2(α, 1) imply that rY = (idY ⊗ u1)Λ
r
Y and

lY =
(
(idY ⊗ Λr)∂α,Y ⊗ idZ(1)

)
(idα ⊗ ∂1,Y ) = (Λr

Y ⊗ idZ(1))(idα ⊗ ∂1,Y ).

Then lP = 0 = rP for any indecomposable projective object P non isomorphic
to P0 (since Λr

P = 0). Also

lP0

(i)
= η ⊗

(
(ε⊗ idZ(1))∂1,P0

) (ii)
= η ⊗ ∂1,1ε

(iii)
= (idP0 ⊗ u1)(η ⊗ ε)

(iv)
= rP0 .

Here (i) and (iv) follow from the equality Λr
P0

= η ⊗ ε, (ii) from the naturality
of ∂, and (iii) from the definition of u1. Consequently, using that any projective
object is a (finite) direct sum of indecomposable projective objects, we obtain that
lP = rP for all P ∈ Proj. Finally we conclude that l = r by applying Lemma 3.1
with the functors F = α⊗− and G = −⊗ Z(1). �

Since the central Hopf monad Z is the central Hopf comonad for the finite tensor
category Cop opposite to C, it follows from Lemma 3.2 and [Sh, Theorem 4.8] that
there is a unique α-cointegral λ : 1→ Z(α) such that Λrλ = id1.

Lemma 3.3. For any X ∈ C, (idX ⊗ Λrmα)∂Z(α),X(λ⊗ idX) = idX .

Proof. We have:

(idX ⊗ Λrmα)∂Z(α),X(λ⊗ idX)
(i)
= (idX ⊗ ΛrmαZ(λ))∂1,X

(ii)
= (idX ⊗ ΛrλZ0)∂1,X

(iii)
= (idX ⊗ Z0)∂1,X

(iv)
= idX .

Here (i) follows from the naturality of ∂, (ii) from the fact that mαZ(λ) = λZ0

(because λ is an α-cointegral), (iii) from the equality λΛr = id1, and (iv) from the
definition of Z0. �

Let P be a projective object and G be a projective generator of C. Set

aP = (idP ⊗ ẽvG ⊗ idZ(α))(idP⊗G ⊗ ∂α,G∨) : P ⊗G⊗ α⊗G∨ → P ⊗ Z(α).
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Graphically,

aP =

P G α G∨

Z(α)

ẽvG

.

Lemma 3.4. aP is an epimorphism.

Proof. Since G∨ is a projective generator of C, the universal dinatural transforma-
tion iα,G∨ : ∨(G∨)⊗ α⊗G∨ → Z(α) is an epimorphism (by [KL, Corollary 5.1.8]).
Then bP = idP ⊗ iα,G∨ is an epimorphism (since ⊗ is exact because C is rigid).
Considering the isomorphism ϕG = (ẽvG⊗ id∨(G∨))(idG⊗ coevG∨) : G → ∨(G∨), we
conclude that aP = bP (idP ⊗ ϕG ⊗ idα⊗G∨) is an epimorphism. �

Since aP is an epimorphism (by Lemma 3.4) and P is a projective object, the
morphism idP ⊗ λ : P → P ⊗Z(α) factors through aP , that is, idP ⊗λ = aPdP for
some morphism dP : P → P ⊗G⊗ α⊗G∨. Set

c
r
P = (id ⊗ ẽvG∨)(dP ⊗ idG∨∨) : P ⊗G∨∨ → P ⊗G⊗ α.

Graphically,

c
r
P =

P

P

G α

G∨

G∨∨

ẽvG∨

dP
.

Then c
r
P is a right chromatic map based at P for G. Indeed, for any X ∈ C,

P

P

G

α

G∨∨

X

X

G∨

G∨

ẽvG

c̃oevG∨

c
r
P

Λr
G∨⊗X

(i)
=

ẽvG

dP

idG∨⊗X

idG∨⊗X

Λr

G∨

G∨

X

XP

P

G

α

(ii)
=

ẽvG

dP

Λrmα

G∨

X

XP

P

G

α

(iii)
=

aP

dP

Λrmα

G∨

XX

X

P

P

P

G α

(iv)
=

λ

Λrmα

XX

X

P

(v)
=

XP

.

Here (i) follows from the definitions of crP and Λr, (ii) from the definition of the
product m of Z, (iii) from the definition of aP , (iv) from the fact that aPdP =
idP ⊗ λ, and (v) from Lemma 3.3.
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3.5. Proof of Lemma 2.4. Since HomC(P0, 1) = k ε, HomC(1, P0) = k η, and
tP0(ηε) = 1k, the definition of Λt gives that Λt

P0
= ηε. Using that ηε = η⊗ε = ε⊗η,

we get that Λt

P0
= Λr

P0
= Λl

P0
.

Let P be an indecomposable projective object non isomorphic to P0. Since
HomC(P, 1) = 0 = HomC(1, P ), the definition of Λt gives that Λt

P = 0, and so we
get that Λt

P = Λr
P = Λl

P .
Since any projective object is a (finite) direct sum of indecomposable projective

objects, the above equalities together with the naturality Λt, Λr, Λl implies that
Λt

P = Λr
P = Λl

P for all P ∈ Proj.

3.6. Chromatic maps in H-mod. We first prove that Λ defined in Example 2.3
is a non zero left cointegral of H . It follows from [Ra, Proposition 10.6.2.] that the
set Lα = {x ∈ H |hx = αH(h)x} is a one dimensional left ideal of H which is equal
to the set of right cointegrals of H . Since S−1(Λ) = iη(1k) 6= 0 and iη is H-linear,
Lα is generated by S−1(Λ) which is then a nonzero right cointegral. Consequently,
Λ = SS−1(Λ) is a nonzero left cointegral.

Let us now prove that the k-linear homomorphism

c
l
H :

{
∨∨H ⊗H → α⊗H ⊗H

ex ⊗ y 7→ λ(S(y(1))x)αH(y(2))⊗ y(3) ⊗ y(4)

from Example 2.3 is a left chromatic map based at H for H . Notice first that clH
is H-linear. Indeed, for any x, y, h ∈ H ,

c
l
H

(
h · (ex ⊗ y)

) (i)
= c

l
H(eS2(h(1))x ⊗ h(2)y)

(ii)
= λ

(
S(h(2)y(1))S

2(h(1))x
)
αH(h(3)y(2))⊗ h(4)y(3) ⊗ h(5)y(4)

(iii)
= λ

(
S
(
S(h(1))h(2)y(1)

)
x
)
αH(h(3)y(2))⊗ h(4)y(3) ⊗ h(5)y(4)

(iv)
= λ

(
S(y(1))x

)
αH(h(1)y(2))⊗ h(2)y(3) ⊗ h(3)y(4)

(v)
= αH(h(1))λ

(
S(y(1))x

)
αH(y(2))⊗ h(2)y(3) ⊗ h(3)y(4)

(vi)
= h · clH(ex ⊗ y).

Here (i) follows from the definition of the monoidal product in H-mod, (ii) from
the definition of c

l
H and the multiplicativity of the coproduct of H , (iii) from

the anti-multiplicativity of S, (iv) from the axiom of the antipode, (v) from the
multiplicativity of αH , and (vi) from the definitions of clH and of the monoidal
product in H-mod.

We next compute the natural transformation Λl. For any finite dimensional
H-module M , consider the k-linear homomorphism

Λ̃l
M :

{
M ⊗ α → M

m⊗ 1k 7→ S−1(Λ) ·m.

Then Λ̃l
M is H-linear. Indeed, for any h ∈ H and m ∈ M ,

Λ̃l
M (h · (m⊗ 1k))

(i)
= αH(h(2))S

−1(Λ)h(1) ·m
(ii)
= εH(h(1))αH(h(2))S

−1(Λ) ·m

(iii)
= αH(h)S−1(Λ) ·m

(iv)
= S−1(ΛS(h)) ·m

(v)
= hS−1(Λ) ·m

(vi)
= h · Λ̃l

M (m⊗ 1k),

where εH is the counit of H . Here (i) follows from the definitions of Λ̃l
M and of

the action of M ⊗α, (ii) from the fact that S−1(Λ) is a right cointegral of H , (iii)
from the counitality of the coproduct, (iv) from the property characterizing αH (see
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Example 2.3), (v) from the anti-multiplicativity of S, and (vi) from the definition

of Λ̃l
M . Clearly, the family {Λ̃l

M}M is natural in M . Now for any h ∈ H ,

Λ̃l
H(h⊗ 1k)

(i)
= S−1(Λ)h

(ii)
= εH(h)iη(1k)

(iii)
= (εp⊗ iη)(h⊗ 1k).

Here (i) follows from the definition of Λ̃l
H , (ii) from the fact that S−1(Λ) is a right

cointegral and from the definition of Λ, and (iii) from the definition of p. Thus,

using that pi = idP0 and the naturality of Λ̃l, we obtain:

Λ̃l
P0

= Λ̃l
P0
(pi⊗ idα) = pΛ̃l

H(i⊗ idα) = εpi⊗ piη = ε⊗ η.

Also, for any indecomposable projective object P non isomorphic to P0, we have
Λ̃l
P = 0 since in the projective generator H , the image kS−1(Λ) = iη(k) ⊂ i(P0)

of Λ̃l
H is isomorphic to the simple H-module α, and i(P0) ∼= P0 is the only (up to

isomorphism) indecomposable projectiveH-module which has a submodule isomor-
phic to α (by uniqueness of the socle, see Section 2.3). Consequently, the uniqueness

in Lemma 2.1 implies that Λl = Λ̃l.
Pick a projective cover ε : P0 → k of the unit object and a monomorphism

η : α → P0. Since the counit εH : H → k of H is an epimorphism, there exists an
epimorphism p : H → P0 such that εH = εp. Let i : P0 → H be a section of p in
H-mod and set Λ = S(iη(1k)) ∈ H . We prove in Section 3.6 that Λ is a non zero
left cointegral. By [Ra, Theorem 10.2.2], there is a unique right integral λ ∈ H∗

such that λ(Λ) = 1.
We now prove that c

l
H is a left chromatic map. Let M be a finite dimensional

H-module. Pick any m ∈ M and x ∈ H . In M ⊗ ∨H ⊗ α⊗H ⊗H , we have:

(idM⊗∨H⊗c
l
H)(idM⊗coev∨H⊗idH)(m⊗x) = m⊗λ(S(x(1)) )⊗αH(x(2))⊗x(3)⊗x(4).

Evaluating this vector under (idM ⊗ evH ⊗ idH)(Λl
M⊗∨H ⊗ idH⊗H) gives

αH(x(2))λ
(
S(x(1)) Λ(1)x(3)

) (
S−1(Λ(2)) ·m

)
⊗ x(4)

(i)
= αH(x(2))αH

(
S(x(3))

)
λ
(
S2(x(4))S(x(1)) Λ(1)

) (
S−1(Λ(2)) ·m

)
⊗ x(5)

(ii)
= λ

(
S2(x(2))S(x(1)) Λ(1)

) (
S−1(Λ(2)) ·m

)
⊗ x(3)

(iii)
= εH(x(1))λ(Λ(1))

(
S−1(Λ(2)) ·m

)
⊗ x(2)

(iv)
=

(
S−1

(
λ(Λ(1))Λ(2)

)
·m

)
⊗ x

(v)
= m⊗ x.

Here (i) follows from the fact that λ(ab) = αH(S(b(1)))λ(S
2(b(2))a) for all a, b ∈ H

(see [Ra, Theorem 10.5.4]), (ii) from multiplicativity of αH and the axiom of the
antipode, (iii) from the axiom of the antipode, (iv) from the counitailty of the
coproduct, and (v) from the fact that λ(Λ(1))Λ(2) = λ(Λ)1H = 1H . Consequently,

(idM ⊗evH ⊗ idH)(Λl
M⊗∨H⊗ idH⊗H)(idM⊗∨H⊗c

l
H)(idM ⊗coev∨H⊗ idH) = idM⊗H ,

that is, clH is a left chromatic map based at H for H .
Finally, the expression for crH is derived from that of clH by noticing that for any

projective generator G and projective object P in H-mod, a right chromatic map
based at P for G in H-mod is a left chromatic map at P for G in (H-mod)⊗op, that
is, in (Hcop)-mod, where Hcop is H with opposite coproduct (for which Scop = S−1,
Λcop = Λ, λcop = λS, and αHcop = αH).
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Institut de Mathématiques de Toulouse, 118 route de Narbonne, Toulouse F-31062

Email address: francesco.costantino@math.univ-toulouse.fr

Mathematics & Statistics, Utah State University, Logan, Utah 84322, USA

Email address: nathan.geer@gmail.com

Univ Bretagne Sud, CNRS UMR 6205, LMBA, F-56000 Vannes, France

Email address: bertrand.patureau@univ-ubs.fr

Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
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