GRADED QUANTUM GROUPS AND QUASITRIANGULAR HOPF GROUP-COALGEBRAS\#

Alexis Virelizier
Max Planck Institute for Mathematics, Bonn, Germany

Starting from a Hopf algebra endowed with an action of a group π by Hopf automorphisms, we construct (by a "twisted" double method) a quasitriangular Hopf π-coalgebra. This method allows us to obtain non-trivial examples of quasitriangular Hopf π-coalgebras for any finite group π and for infinite groups π such as $G L_{n}(\mathbf{k})$. In particular, we define the graded quantum groups, which are Hopf π-coalgebras for $\pi=\mathbb{C}[[h]]^{l}$ and generalize the Drinfeld-Jimbo quantum enveloping algebras.

Key Words: Drinfeld double; Graded quantum groups; Hopf algebra automorphisms; Quasitriangular Hopf group-coalgebras.

2000 Mathematics Subject Classification: 81R50; 17B37; 16W30.

INTRODUCTION

Let π be a group. Turaev (2000) introduced the notion of a braided π category and showed that such a category gives rise to a 3-dimensional homotopy quantum field theory (the target being a $K(\pi, 1)$ space). Moreover braided π-categories, also called π-equivariant categories, provide a suitable mathematical formalism for the description of orbifold models that arise in the study of conformal field theories in which π is the group of automorphisms of the vertex operator algebra, see Kirillov (2004).

The algebraic structure whose category of representations is a braided π category is that of a quasitriangular Hopf π-coalgebra, see Turaev (2000), Virelizier (2002). The aim of the present article is to construct examples of quasitriangular Hopf π-coalgebras. Note that quasitriangular Hopf π-coalgebras are also used in Virelizier (2001) to construct HKR-type invariants of flat π-bundles over link complements and over 3-manifolds.

Following Turaev (2000), a Hopf π-coalgebra is a family $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ of algebras (over a field \mathbb{k}) endowed with a comultiplication $\Delta=\left\{\Delta_{\alpha, \beta}: H_{\alpha \beta} \rightarrow\right.$ $\left.H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in \pi}$, a counit $\varepsilon: H_{1} \rightarrow \mathbb{k}$, and an antipode $S=\left\{S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}\right\}_{\alpha \in \pi}$ which verify some compatibility conditions. A crossing for H is a family of algebra

Received March 15, 2004; Revised January 15, 2005; Accepted March 6, 2005
\#Communicated by H. J. Schneider.
Address correspondence to Alexis Virelizier, Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany; Fax: +49-228-402277; E-mail: virelizi@mpim-bonn.mpg.de
isomorphisms $\varphi=\left\{\varphi_{\beta}: H_{\alpha} \rightarrow H_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in \pi}$, which preserves the comultiplication and the counit, and which yields an action of π in the sense that $\varphi_{\beta} \varphi_{\beta^{\prime}}=\varphi_{\beta \beta^{\prime}}$. A crossed Hopf π-coalgebra H is quasitriangular when it is endowed with an R-matrix $R=\left\{R_{\alpha, \beta} \in H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in \pi}$ verifying some axioms (involving the crossing φ) which generalize the classical ones given in Drinfeld (1987). Note that the case $\pi=1$ is the standard setting of Hopf algebras.

Starting from a crossed Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$, Zunino (2004) constructed a double $Z(H)=\left\{Z(H)_{\alpha}\right\}_{\alpha \in \pi}$ of H, which is a quasitriangular Hopf π coalgebra in which H is embedded. One has that $Z(H)_{\alpha}=H_{\alpha} \otimes\left(\bigoplus_{\beta \in \pi} H_{\beta}^{*}\right)$ as a vector space. Unfortunately, each component $Z(H)_{\alpha}$ is infinite-dimensional (unless $H_{\beta}=0$ for all but a finite number of $\beta \in \pi$).

To obtain non-trivial examples of quasitriangular Hopf π-coalgebras with finite-dimensional components, we restrict ourselves to a less general situation: our initial datum is not any crossed Hopf π-coalgebra but a Hopf algebra endowed with an action of π by Hopf algebra automorphisms. Remark indeed that the component H_{1} of a Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is a Hopf algebra and that a crossing for H induces an action of π on H_{1} by Hopf automorphisms.

In this article, starting from a Hopf algebra A endowed with an action $\phi: \pi \rightarrow$ $\operatorname{Aut}_{\text {Hopf }}(A)$ of a group π by Hopf automorphisms, we construct a quasitriangular Hopf π-coalgebra $D(A, \phi)=\left\{D\left(A, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$. The algebra $D\left(A, \phi_{\alpha}\right)$ is constructed in a manner similar to the Drinfeld double (in particular $D\left(A, \phi_{\alpha}\right)=A \otimes A^{*}$ as a vector space) except that its product is "twisted" by the Hopf automorphism $\phi_{\alpha}: A \rightarrow A$. The algebra $D\left(A, \mathrm{id}_{A}\right)$ is the usual Drinfeld double. Note that the algebras $D\left(A, \phi_{\alpha}\right)$ and $D\left(A, \phi_{\beta}\right)$ are in general not isomorphic when $\alpha \neq \beta$.

This method allows us to define non-trivial examples of quasitriangular Hopf π-coalgebras for any finite group π and for infinite groups π such as $\mathrm{GL}_{n}(\mathbb{k})$. In particular, given a complex simple Lie algebra \mathfrak{g} of rank l, we define the graded quantum groups $\left\{U_{h}^{\alpha}(\mathrm{g})\right\}_{\alpha \in\left(\mathbb{C}^{*}\right)^{i}}$ and $\left\{U_{h}^{\alpha}(\mathrm{g})\right\}_{\alpha \in \mathbb{C}[h]]^{l}}$, which are crossed Hopf groupcoalgebras. They are obtained as quotients of $D\left(U_{q}\left(\mathfrak{b}_{+}\right), \phi\right)$ and $D\left(U_{h}\left(b_{+}\right), \phi^{\prime}\right)$, where \mathfrak{b}_{+}denotes the Borel subalgebra of \mathfrak{g}, ϕ is an action of $\left(\mathbb{C}^{*}\right)^{l}$ by Hopf automorphisms of $U_{q}\left(\mathfrak{b}_{+}\right)$, and ϕ^{\prime} is an action of $\mathbb{C}[[h]]^{l}$ by Hopf automorphisms of $U_{h}\left(\mathfrak{b}_{+}\right)$. Furthermore, the crossed Hopf $\mathbb{C}[[h]]^{l}$-coalgebra $\left\{U_{h}^{\alpha}(\mathfrak{g})\right\}_{\alpha \in \mathbb{C}[h]]^{l}}$ is quasitriangular.

The article is organized as follows. In Section 1, we review the basic definitions and properties of Hopf π-coalgebras. In Section 2, we define the twisted double of a Hopf algebra A endowed with an action of a group π by Hopf automorphisms. In Section 3, we explore the case $A=\mathbb{k}[G]$, where G is a finite group. In Section 4, we give an example of a quasitriangular Hopf $\mathrm{GL}_{n}(\mathbb{k})$-coalgebra. Finally, we define the graded quantum groups in Sections 5 and 6.

Throughout this article, π is a group (with neutral element 1) and \mathbb{k} is a field. Unless otherwise specified, the tensor product $\otimes=\bigotimes_{\mathbb{k}}$ is assumed to be over \mathbb{k}.

1. HOPF GROUP-COALGEBRAS

In this section, we review some definitions and properties concerning Hopf group-coalgebras. For a detailed treatment of the theory of Hopf group-coalgebras, we refer to Virelizier (2002).

1.1. Hopf $\boldsymbol{\pi}$-Coalgebras

A Hopf π-coalgebra (over \mathbb{k}) is a family $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ of \mathbb{k}-algebras endowed with a family $\Delta=\left\{\Delta_{\alpha, \beta}: H_{\alpha \beta} \rightarrow H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in \pi}$ of algebra homomorphisms (the comultiplication) and an algebra homomorphism $\varepsilon: H_{1} \rightarrow \mathbb{k}$ (the counit) such that, for all $\alpha, \beta, \gamma \in \pi$,

$$
\begin{align*}
& \left(\Delta_{\alpha, \beta} \otimes \operatorname{id}_{H_{\gamma}}\right) \Delta_{\alpha \beta, \gamma}=\left(\operatorname{id}_{H_{\alpha}} \otimes \Delta_{\beta, \gamma}\right) \Delta_{\alpha, \beta \gamma} \tag{1.1}\\
& \left(\operatorname{id}_{H_{\alpha}} \otimes \varepsilon\right) \Delta_{\alpha, 1}=\operatorname{id}_{H_{\alpha}}=\left(\varepsilon \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{1, \alpha} \tag{1.2}
\end{align*}
$$

and with a family $S=\left\{S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}\right\}_{\alpha \in \pi}$ of \mathbb{k}-linear maps (the antipode) which verifies that, for all $\alpha \in \pi$,

$$
\begin{equation*}
m_{\alpha}\left(S_{\alpha^{-1}} \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{\alpha \cdot-1, \alpha}=\varepsilon 1_{\alpha}=m_{\alpha}\left(\operatorname{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}}\right) \Delta_{\alpha, \alpha^{-1}} \tag{1.3}
\end{equation*}
$$

where $m_{\alpha}: H_{\alpha} \otimes H_{\alpha} \rightarrow H_{\alpha}$ and $1_{\alpha} \in H_{\alpha}$ denote, respectively, the multiplication and unit element of H_{α}.

When $\pi=1$, one recovers the usual notion of a Hopf algebra. In particular $\left(H_{1}, m_{1}, 1_{1}, \Delta_{1,1}, \varepsilon, S_{1}\right)$ is a Hopf algebra.

Remark that the notion of a Hopf π-coalgebra is not self-dual and that if $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is a Hopf π-coalgebra, then $\left\{\alpha \in \pi \mid H_{\alpha} \neq 0\right\}$ is a subgroup of π.

A Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is said to be of finite type if, for all $\alpha \in \pi$, H_{α} is finite-dimensional (over \mathbb{k}). Note that it does not mean that $\bigoplus_{\alpha \in \pi} H_{\alpha}$ is finitedimensional (unless $H_{\alpha}=0$ for all but a finite number of $\alpha \in \pi$).

The antipode of a Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is anti-multiplicative: each $S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}$ is an anti-homomorphism of algebras, and anti-comultiplicative: $\varepsilon S_{1}=\varepsilon$ and $\Delta_{\beta^{-1}, \alpha^{-1}} S_{\alpha \beta}=\tau_{H_{\alpha-1}, H_{\beta-1}}\left(S_{\alpha} \otimes S_{\beta}\right) \Delta_{\alpha, \beta}$ for any $\alpha, \beta \in \pi$, see Virelizier (2002, Lemma 1.1).

The antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in \pi}$ of $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is said to be bijective if each S_{α} is bijective. As for Hopf algebras, the antipode of a finite type Hopf π-coalgebra is always bijective, see Virelizier (2002, Corollary 3.7(a))).

1.2. Crossed Hopf $\boldsymbol{\pi}$-Coalgebras

A Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is said to be crossed if it is endowed with a family $\varphi=\left\{\varphi_{\beta}: H_{\alpha} \rightarrow H_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in \pi}$ of algebra isomorphisms (the crossing) such that, for all $\alpha, \beta, \gamma \in \pi$,

$$
\begin{gather*}
\left(\varphi_{\beta} \otimes \varphi_{\beta}\right) \Delta_{\alpha, \gamma}=\Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \varphi_{\beta}, \tag{1.4}\\
\varepsilon \varphi_{\beta}=\varepsilon, \tag{1.5}\\
\varphi_{\alpha} \varphi_{\beta}=\varphi_{\alpha \beta} . \tag{1.6}
\end{gather*}
$$

It is easy to check that $\left.\varphi_{1}\right|_{H_{\alpha}}=\operatorname{id}_{H_{\alpha}}$ and $\varphi_{\beta} S_{\alpha}=S_{\beta \alpha \beta^{-1}} \varphi_{\beta}$ for all $\alpha, \beta \in \pi$.

1.3. Quasitriangular Hopf $\boldsymbol{\pi}$-Coalgebras

A crossed Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is said to be quasitriangular if it is endowed with a family $R=\left\{R_{\alpha, \beta} \in H_{\alpha} \otimes H_{\beta}\right\}_{\alpha, \beta \in \pi}$ of invertible elements (the R-matrix) such that, for all $\alpha, \beta, \gamma \in \pi$ and $x \in H_{\alpha \beta}$,

$$
\begin{gather*}
R_{\alpha, \beta} \cdot \Delta_{\alpha, \beta}(x)=\tau_{\beta, \alpha}\left(\varphi_{\alpha^{-1}} \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{\alpha \beta \alpha^{-1}, \alpha}(x) \cdot R_{\alpha, \beta}, \tag{1.7}\\
\left(\operatorname{id}_{H_{\alpha}} \otimes \Delta_{\beta, \gamma}\right)\left(R_{\alpha, \beta \gamma}\right)=\left(R_{\alpha, \gamma}\right)_{1 \beta 3} \cdot\left(R_{\alpha, \beta}\right)_{12 \gamma}, \tag{1.8}\\
\left(\Delta_{\alpha, \beta} \otimes \operatorname{id}_{H_{\gamma}}\right)\left(R_{\alpha \beta, \gamma}\right)=\left[\left(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}}\right)\left(R_{\alpha, \beta \gamma \beta^{-1}}\right)\right]_{1 \beta 3} \cdot\left(R_{\beta, \gamma}\right)_{\alpha 23}, \tag{1.9}\\
\left(\varphi_{\beta} \otimes \varphi_{\beta}\right)\left(R_{\alpha, \gamma}\right)=R_{\beta \alpha, \beta^{-1}, \beta \gamma \beta^{-1}}, \tag{1.10}
\end{gather*}
$$

where $\tau_{\beta, \alpha}$ denotes the flip map $H_{\beta} \otimes H_{\alpha} \rightarrow H_{\alpha} \otimes H_{\beta}$ and, for \mathbb{k}-spaces P, Q and $r=$ $\sum_{j} p_{j} \otimes q_{j} \in P \otimes Q$, we set $r_{12 \gamma}=r \otimes 1_{\gamma} \in P \otimes Q \otimes H_{\gamma}, r_{\alpha 23}=1_{\alpha} \otimes r \in H_{\alpha} \otimes P \otimes Q$, and $r_{1 \beta 3}=\sum_{j} p_{j} \otimes 1_{\beta} \otimes q_{j} \in P \otimes H_{\beta} \otimes Q$.

Note that $R_{1,1}$ is a (classical) R-matrix for the Hopf algebra H_{1}.
When π is abelian and φ is trivial (that is, $\left.\varphi_{\beta}\right|_{H_{\alpha}}=\operatorname{id}_{H_{\alpha}}$ for all $\alpha, \beta \in \pi$), one recovers the definition of a quasitriangular π-colored Hopf algebra given in Ohtsuki (1993).

The R-matrix always verifies (see Virelizier, 2002, Lemma 6.4) that, for any $\alpha, \beta, \gamma \in \pi$,

$$
\begin{gather*}
\left(\varepsilon \otimes \operatorname{id}_{H_{\alpha}}\right)\left(R_{1, \alpha}\right)=1_{\alpha}=\left(\operatorname{id}_{H_{\alpha}} \otimes \varepsilon\right)\left(R_{\alpha, 1}\right), \tag{1.11}\\
\left(S_{\alpha-1} \varphi_{\alpha} \otimes \operatorname{id}_{H_{\beta}}\right)\left(R_{\alpha^{-1}, \beta}\right)=R_{\alpha, \beta}^{-1} \quad \text { and } \quad\left(\operatorname{id}_{H_{\alpha}} \otimes S_{\beta}\right)\left(R_{\alpha, \beta}^{-1}\right)=R_{\alpha, \beta-1}, \tag{1.12}\\
\left(S_{\alpha} \otimes S_{\beta}\right)\left(R_{\alpha, \beta}\right)=\left(\varphi_{\alpha} \otimes \operatorname{id}_{H_{\beta^{-1}}}\right)\left(R_{\alpha^{-1}, \beta^{-1}}\right), \tag{1.13}
\end{gather*}
$$

and provides a solution of the π-colored Yang-Baxter equation:

$$
\begin{equation*}
\left(R_{\beta, \gamma}\right)_{\alpha 23} \cdot\left(R_{\alpha, \gamma}\right)_{1 \beta 3} \cdot\left(R_{\alpha, \beta}\right)_{12 \gamma}=\left(R_{\alpha, \beta}\right)_{12 \gamma} \cdot\left[\left(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}}\right)\left(R_{\alpha, \beta \gamma \beta-1}\right)\right]_{1 \beta 3} \cdot\left(R_{\beta, \gamma}\right)_{\alpha 23} . \tag{1.14}
\end{equation*}
$$

1.4. Ribbon Hopf π-Coalgebras

A quasitriangular Hopf π-coalgebra $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ is said to be ribbon if it is endowed with a family $\theta=\left\{\theta_{\alpha} \in H_{\alpha}\right\}_{\alpha \in \pi}$ of invertible elements (the twist) such that, for any $\alpha, \beta \in \pi$,

$$
\begin{gather*}
\varphi_{\alpha}(x)=\theta_{\alpha}^{-1} x \theta_{\alpha} \quad \text { for all } x \in H_{\alpha}, \tag{1.15}\\
S_{\alpha}\left(\theta_{\alpha}\right)=\theta_{\alpha^{-1}}, \tag{1.16}\\
\varphi_{\beta}\left(\theta_{\alpha}\right)=\theta_{\beta \alpha \beta^{-1}}, \tag{1.17}\\
\Delta_{\alpha, \beta}\left(\theta_{\alpha \beta}\right)=\left(\theta_{\alpha} \otimes \theta_{\beta}\right) \cdot \tau_{\beta, \alpha}\left(\left(\varphi_{\alpha^{-1}} \otimes \operatorname{id}_{H_{\alpha}}\right)\left(R_{\alpha \beta \alpha^{-1}, \alpha}\right)\right) \cdot R_{\alpha, \beta} . \tag{1.18}
\end{gather*}
$$

Note that θ_{1} is a (classical) twist of the quasitriangular Hopf algebra H_{1}.

1.5. Hopf $\boldsymbol{\pi}$-Coideals

Let $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ be a Hopf π-coalgebra. A Hopf π-coideal of H is a family $I=\left\{I_{\alpha}\right\}_{\alpha \in \pi}$, where each I_{α} is an ideal of H_{α}, such that, for any $\alpha, \beta \in \pi$,

$$
\begin{gather*}
\Delta_{\alpha, \beta}\left(I_{\alpha \beta}\right) \subset I_{\alpha} \otimes H_{\beta}+H_{\alpha} \otimes I_{\beta}, \tag{1.19}\\
\varepsilon\left(I_{1}\right)=0, \tag{1.20}\\
S_{\alpha}\left(I_{\alpha}\right) \subset I_{\alpha^{-1}} . \tag{1.21}
\end{gather*}
$$

The quotient $\bar{H}=\left\{\bar{H}_{\alpha}=H_{\alpha} / I_{\alpha}\right\}_{\alpha \in \pi}$, endowed with the induced structure maps, is then a Hopf π-coalgebra. If H is furthermore crossed, with a crossing φ such that, for any $\alpha, \beta \in \pi$,

$$
\begin{equation*}
\varphi_{\beta}\left(I_{\alpha}\right) \subset I_{\beta \alpha \beta-1}, \tag{1.22}
\end{equation*}
$$

then so is \bar{H} (for the induced crossing).

2. TWISTED DOUBLE OF HOPF ALGEBRAS

In this section, we give a method (the twisted double) for defining a quasitriangular Hopf π-coalgebra from a Hopf algebra endowed with an action of a group π by Hopf automorphisms.

2.1. Hopf Pairings

Recall that a Hopf pairing between two Hopf algebras A and B (over \mathbb{k}) is a bilinear pairing $\sigma: A \times B \rightarrow \mathbb{k}$ such that, for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{gather*}
\sigma\left(a, b b^{\prime}\right)=\sigma\left(a_{(1)}, b\right) \sigma\left(a_{(2)}, b^{\prime}\right), \tag{2.1}\\
\sigma\left(a a^{\prime}, b\right)=\sigma\left(a, b_{(2)}\right) \sigma\left(a^{\prime}, b_{(1)}\right), \tag{2.2}\\
\sigma(a, 1)=\varepsilon(a) \quad \text { and } \quad \sigma(1, b)=\varepsilon(b) . \tag{2.3}
\end{gather*}
$$

Note that such a pairing always verifies that, for any $a \in A$ and $b \in B$,

$$
\begin{equation*}
\sigma(S(a), S(b))=\sigma(a, b) \tag{2.4}
\end{equation*}
$$

since both σ and $\sigma(S \times S)$ are the inverse of $\sigma(\mathrm{id} \times S)$ in the algebra $\operatorname{Hom}_{\mathfrak{k}}(A \times B, \mathbb{k})$ endowed with the convolution product.

Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing. Its annihilator ideals are $I_{A}=\{a \in A \mid$ $\sigma(a, b)=0$ for all $b \in B\}$ and $I_{B}=\{b \in B \mid \sigma(a, b)=0$ for all $a \in A\}$. It is easy to check that I_{A} and I_{B} are Hopf ideals of A and B, respectively. Recall that σ is said to be non-degenerate if I_{A} and I_{B} are both reduced to 0 . A degenerate Hopf pairing σ : $A \times B \rightarrow \mathbb{k}$ induces (by passing to the quotients) a Hopf pairing $\bar{\sigma}: A / I_{A} \times B / I_{B} \rightarrow$ \mathbb{k}, which is non-degenerate.

Most of Hopf algebras we shall consider in the sequel will be defined by generators and relations. The following provides us with a method of constructing Hopf pairings, see Van Daele (1993), Kassel et al. (1997).

Let \widetilde{A} (resp. \widetilde{B}) be a free algebra generated by elements a_{1}, \ldots, a_{p} (resp. b_{1}, \ldots, b_{q}) over \mathbb{k}. Suppose that \widetilde{A} and \widetilde{B} have Hopf algebra structures such that each $\Delta\left(a_{i}\right)$ for $1 \leq i \leq p\left(\right.$ resp. $\Delta\left(b_{j}\right)$ for $\left.1 \leq i \leq q\right)$ is a linear combination of tensors $a_{r} \otimes a_{s}\left(\right.$ resp. $b_{r} \otimes b_{s}$). Given $p q$ scalars $\lambda_{i, j} \in \mathbb{k}$ with $1 \leq i \leq p$ and $1 \leq j \leq q$, there is a unique Hopf pairing $\sigma: \widetilde{A} \times \widetilde{B} \rightarrow \mathbb{k}$ such that $\sigma\left(a_{i}, b_{j}\right)=\lambda_{i, j}$.

Suppose now that $A($ resp. B) is the algebra obtained as the quotient of \widetilde{A} (resp. \widetilde{B}) by the ideal generated by elements $r_{\sim}, \ldots, r_{m} \in \widetilde{A}$ (resp. $s_{1}, \ldots, s_{n} \in \widetilde{B}$). Suppose also that the Hopf algebra structure in \widetilde{A} (resp. \widetilde{B}) induces a Hopf algebra structure in $A($ resp. $B)$. Then a Hopf pairing $\sigma: \widetilde{A} \times \widetilde{B} \rightarrow \mathbb{k}$ induces a Hopf pairing $A \times B \rightarrow$ \mathbb{k} if and only if $\sigma\left(r_{i}, b_{j}\right)=0$ for all $1 \leq i \leq m$ and $1 \leq j \leq q$, and $\sigma\left(a_{i}, s_{j}\right)=0$ for all $1 \leq i \leq p$ and $1 \leq j \leq n$.

2.2. The Twisted Double Construction

Definition-Lemma 2.1. Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing between two Hopf algebras A and B. Let $\phi: A \rightarrow A$ be a Hopf algebra endomorphism of A. Set $D(A, B ; \sigma, \phi)=A \otimes B$ as a \mathbb{k}-space. Then $D(A, B ; \sigma, \phi)$ has a structure of an associative and unitary algebra given, for any $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, by

$$
\begin{align*}
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)= & \sigma\left(\phi\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(3)}^{\prime}, b_{(3)}\right) a a_{(2)}^{\prime} \otimes b_{(2)} b^{\prime}, \tag{2.5}\\
& 1_{D(A, B ; \sigma, \phi)}=1_{A} \otimes 1_{B} . \tag{2.6}
\end{align*}
$$

Moreover, the linear embeddings $A \hookrightarrow D(A, B ; \sigma, \phi)$ and $B \hookrightarrow D(A, B ; \sigma, \phi)$ defined by $a \mapsto a \otimes 1_{B}$ and $b \mapsto 1_{A} \otimes b$, respectively, are algebra morphisms.

Remark 2.2. (a) Note that $D\left(A, B ; \sigma, \mathrm{id}_{A}\right)$ is the underlying algebra of the usual quantum double of A and B (obtained by using the Hopf pairing σ).
(b) If ϕ and ϕ^{\prime} are different Hopf algebra endomorphisms of A, then the algebras $D(A, B ; \sigma, \phi)$ and $D\left(A, B ; \sigma, \phi^{\prime}\right)$ are not in general isomorphic, see Remark 4.2.

Proof. Let $a, a^{\prime}, a^{\prime \prime} \in A$ and $b, b^{\prime}, b^{\prime \prime} \in B$. Using the fact that σ is a Hopf pairing and ϕ is a Hopf algebra endomorphism, we have that

$$
\begin{aligned}
& \left((a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)\right) \cdot\left(a^{\prime \prime} \otimes b^{\prime \prime}\right) \\
& =\sigma\left(\phi\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(3)}^{\prime}, b_{(5)}\right) \sigma\left(\phi\left(a_{(1)}^{\prime \prime}\right), S\left(b_{(2)} b_{(1)}^{\prime}\right)\right) \\
& \quad \times \sigma\left(a_{(3)}^{\prime \prime}, b_{(4)} b_{(3)}^{\prime}\right) a a_{(2)}^{\prime} a_{(2)}^{\prime \prime} \otimes b_{(3)} b_{(2)}^{\prime} b^{\prime \prime} \\
& = \\
& \quad \sigma\left(\phi\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(3)}^{\prime}, b_{(5)}\right) \sigma\left(\phi\left(a_{(1)}^{\prime \prime}\right), S\left(b_{(1)}^{\prime}\right)\right) \sigma\left(\phi\left(a_{(2)}^{\prime \prime}\right), S\left(b_{(2)}\right)\right) \\
& \quad \times \sigma\left(a_{(4)}^{\prime \prime}, b_{(4)}\right) \sigma\left(a_{(5)}^{\prime \prime}, b_{(3)}^{\prime}\right) a a_{(2)}^{\prime} a_{(3)}^{\prime \prime} \otimes b_{(3)} b_{(2)}^{\prime} b^{\prime \prime},
\end{aligned}
$$

and

$$
\begin{aligned}
& (a \otimes b) \cdot\left(\left(a^{\prime} \otimes b^{\prime}\right) \cdot\left(a^{\prime \prime} \otimes b^{\prime \prime}\right)\right) \\
& =\sigma\left(\phi\left(a_{(1)}^{\prime \prime}\right), S\left(b_{(1)}^{\prime}\right)\right) \sigma\left(a_{(5)}^{\prime \prime}, b_{(3)}^{\prime}\right) \sigma\left(\phi\left(a_{(1)}^{\prime} a_{(2)}^{\prime \prime}\right), S\left(b_{(1)}\right)\right) \\
& \quad \times \sigma\left(a_{(3)}^{\prime} a_{(4)}^{\prime \prime}, b_{(3)}\right) a a_{(2)}^{\prime} a_{(3)}^{\prime \prime} \otimes b_{(2)} b_{(2)}^{\prime} b^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
= & \sigma\left(\phi\left(a_{(1)}^{\prime \prime}\right), S\left(b_{(1)}^{\prime}\right)\right) \sigma\left(a_{(5)}^{\prime \prime}, b_{(3)}^{\prime}\right) \sigma\left(\phi\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(\phi\left(a_{(2)}^{\prime \prime}\right), S\left(b_{(2)}\right)\right) \\
& \times \sigma\left(a_{(3)}^{\prime}, b_{(5)}\right) \sigma\left(a_{(4)}^{\prime \prime}, b_{(4)}\right) a a_{(2)}^{\prime} a_{(3)}^{\prime \prime} \otimes b_{(3)} b_{(2)}^{\prime} b^{\prime \prime} .
\end{aligned}
$$

Hence the product is associative. Moreover $1_{A} \otimes 1_{B}$ is the unit element since

$$
\begin{aligned}
(a \otimes b) \cdot(1 \otimes 1) & =\sigma\left(\phi(1), S\left(b_{(1)}\right)\right) \sigma\left(1, b_{(3)}\right) a \otimes b_{(2)} \\
& =\varepsilon\left(S\left(b_{(1)}\right)\right) \varepsilon\left(b_{(3)}\right) a \otimes b_{(2)}=a \otimes b,
\end{aligned}
$$

and

$$
\begin{aligned}
(1 \otimes 1) \cdot(a \otimes b) & =\sigma\left(\phi\left(a_{(1)}\right), S(1)\right) \sigma\left(a_{(3)}, 1\right) a_{(2)} \otimes b \\
& =\varepsilon\left(\phi\left(a_{(1)}\right)\right) \varepsilon\left(a_{(3)}\right) a_{(2)} \otimes b=a \otimes b .
\end{aligned}
$$

Finally, for any $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, we have that

$$
\begin{aligned}
(a \otimes 1) \cdot\left(a^{\prime} \otimes 1\right) & =\sigma\left(\phi\left(a_{(1)}^{\prime}\right), S(1)\right) \sigma\left(a_{(3)}^{\prime}, 1\right) a a_{(2)}^{\prime} \otimes 1 \\
& =\varepsilon\left(\phi\left(a_{(1)}^{\prime}\right)\right) \varepsilon\left(a_{(3)}^{\prime}\right) a a_{(2)}^{\prime} \otimes 1 \\
& =a a^{\prime} \otimes 1,
\end{aligned}
$$

and

$$
\begin{aligned}
(1 \otimes b) \cdot\left(1 \otimes b^{\prime}\right) & =\sigma\left(\phi(1), S\left(b_{(1)}\right)\right) \sigma\left(1, b_{(3)}\right) 1 \otimes b_{(2)} b^{\prime} \\
& =\varepsilon\left(S\left(b_{(1)}\right)\right) \varepsilon\left(b_{(3)}\right) 1 \otimes b_{(2)} b^{\prime} \\
& =1 \otimes b b^{\prime} .
\end{aligned}
$$

Therefore $A \hookrightarrow D(A, B ; \sigma, \phi)$ and $B \hookrightarrow D(A, B ; \sigma, \phi)$ are algebra morphisms.
In the sequel, the group of Hopf automorphisms of a Hopf algebra A will be denoted by $\mathrm{Aut}_{\mathrm{Hopf}}(A)$.

Theorem 2.3. Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing between two Hopf algebras A and B, and $\phi: \pi \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(A)$ be group homomorphism (that is, an action of π on A by Hopf automorphisms). Then the family of algebras $D(A, B ; \sigma, \phi)=$ $\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$ (see Definition 2.1) has a structure of a Hopf π-coalgebra given, for any $a \in A, b \in B$, and $\alpha, \beta \in \pi$, by:

$$
\begin{gather*}
\Delta_{\alpha, \beta}(a \otimes b)=\left(\phi_{\beta}\left(a_{(1)}\right) \otimes b_{(1)}\right) \otimes\left(a_{(2)} \otimes b_{(2)}\right), \tag{2.7}\\
\varepsilon(a \otimes b)=\varepsilon_{A}(a) \varepsilon_{B}(b), \tag{2.8}\\
S_{\alpha}(a \otimes b)=\sigma\left(\phi_{\alpha}\left(a_{(1)}\right), b_{(1)}\right) \sigma\left(a_{(3)}, S\left(b_{(3)}\right)\right) \phi_{\alpha} S\left(a_{(2)}\right) \otimes S\left(b_{(2)}\right) . \tag{2.9}
\end{gather*}
$$

Proof. The coassociativity (1.1) follows directly from the coassociativity of the coproducts of A and B and the fact that $\phi_{\beta \gamma}=\phi_{\beta} \phi_{\gamma}$. Axiom (1.2) is a direct consequence of $\varepsilon_{A} \phi_{\alpha}=\varepsilon_{A}$. Since $\phi_{1}=\mathrm{id}_{A}$ and $D\left(A, B ; \sigma, \mathrm{id}_{A}\right)$ is underlying algebra
of the usual quantum double of A and B, the counit ε is multiplicative. Let us verify that $\Delta_{\alpha, \beta}$ is multiplicative. Let $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. On one hand we have:

$$
\begin{aligned}
& \Delta_{\alpha, \beta}\left((a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)\right) \\
& \quad=\sigma\left(\phi_{\alpha \beta}\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(3)}^{\prime}, b_{(3)}\right) \Delta_{\alpha, \beta}\left(a a_{(2)}^{\prime} \otimes b_{(2)} b^{\prime}\right) \\
& \quad=\sigma\left(\phi_{\alpha \beta}\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(4)}^{\prime}, b_{(4)}\right) \phi_{\beta}\left(a_{(1)} a_{(2)}^{\prime}\right) \otimes b_{(2)} b_{(1)}^{\prime} \otimes a_{(2)} a_{(3)}^{\prime} \otimes b_{(3)} b_{(2)}^{\prime}
\end{aligned}
$$

One the other hand,

$$
\begin{aligned}
& \Delta_{\alpha, \beta}(a \otimes b) \cdot \Delta_{\alpha, \beta}\left(a^{\prime} \otimes b^{\prime}\right) \\
& \quad=\left(\phi_{\beta}\left(a_{(1)}\right) \otimes b_{(1)} \otimes a_{(2)} \otimes b_{(2)}\right) \cdot\left(\phi_{\beta}\left(a_{(1)}^{\prime}\right) \otimes b_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes b_{(2)}^{\prime}\right) \\
& = \\
& \quad \sigma\left(\phi_{\alpha} \phi_{\beta}\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(\phi_{\beta}\left(a_{(3)}^{\prime}\right), b_{(3)}\right) \sigma\left(\phi_{\beta}\left(a_{(4)}^{\prime}\right), S\left(b_{(4)}\right)\right) \sigma\left(a_{(6)}^{\prime}, b_{(6)}\right) \\
& \quad \times \phi_{\beta}\left(a_{(1)}\right) \phi_{\beta}\left(a_{(2)}^{\prime}\right) \otimes b_{(2)} b_{(1)}^{\prime} \otimes a_{(2)} a_{(5)}^{\prime} \otimes b_{(5)} b_{(2)}^{\prime} \\
& =\sigma\left(\phi_{\alpha \beta}\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(\phi_{\beta}\left(a_{(3)}^{\prime}\right), b_{(3)} S\left(b_{(4)}\right)\right) \sigma\left(a_{(5)}^{\prime}, b_{(6)}\right) \\
& \quad \times \phi_{\beta}\left(a_{(1)} a_{(2)}^{\prime}\right) \otimes b_{(2)} b_{(1)}^{\prime} \otimes a_{(2)} a_{(4)}^{\prime} \otimes b_{(5)} b_{(2)}^{\prime} \\
& = \\
& =\sigma\left(\phi_{\alpha \beta}\left(a_{(1)}^{\prime}\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(4)}^{\prime}, b_{(4)}\right) \phi_{\beta}\left(a_{(1)} a_{(2)}^{\prime}\right) \otimes b_{(2)} b_{(1)}^{\prime} \otimes a_{(2)} a_{(3)}^{\prime} \otimes b_{(3)} b_{(2)}^{\prime} .
\end{aligned}
$$

Let us verify the first equality of (1.3). Let $a \in A, b \in B$, and $\alpha \in \pi$. Denote the multiplication in $D\left(A, B ; \sigma, \phi_{\alpha}\right)$ by m_{α}. We have

$$
\begin{aligned}
& m_{\alpha}\left(S_{\alpha^{-1}} \otimes \mathrm{id}_{D\left(A, B ; \sigma, \phi_{\alpha}\right)}\right) \Delta_{\alpha^{-1}, \alpha}(a \otimes b) \\
& =\sigma\left(a_{(1)}, b_{(1)}\right) \sigma\left(\phi_{\alpha}\left(a_{(3)}\right), S\left(b_{(5)}\right)\right) \sigma\left(\phi_{\alpha}\left(a_{(4)}\right), S^{2}\left(b_{(4)}\right)\right) \\
& \quad \times \sigma\left(a_{(6)}, S\left(b_{(2)}\right)\right) S\left(a_{(2)}\right) a_{(5)} \otimes S\left(b_{(3)}\right) b_{(6)} \\
& =\sigma\left(a_{(1)}, b_{(1)}\right) \sigma\left(\phi_{\alpha}\left(a_{(3)}\right), S\left(b_{(5)}\right) S^{2}\left(b_{(4)}\right)\right) \\
& \quad \times \sigma\left(a_{(5)}, S\left(b_{(2)}\right)\right) S\left(a_{(2)}\right) a_{(4)} \otimes S\left(b_{(3)}\right) b_{(6)} \\
& =\sigma\left(a_{(1)}, b_{(1)}\right) \sigma\left(a_{(4)}, S\left(b_{(2)}\right)\right) S\left(a_{(2)}\right) a_{(3)} \otimes S\left(b_{(3)}\right) b_{(4)} \\
& =\sigma\left(a_{(1)}, b_{(1)}\right) \sigma\left(a_{(2)}, S\left(b_{(2)}\right)\right) 1 \otimes 1 \\
& = \\
& =\sigma\left(a, b_{(1)} S\left(b_{(2)}\right)\right) 1 \otimes 1=\varepsilon(a) \varepsilon(b) 1 \otimes 1 .
\end{aligned}
$$

The second equality of (1.3) can be verified similarly.
Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing between two Hopf algebras A and B, and $\phi: \pi \rightarrow \operatorname{Aut}_{\text {Hopf }}(A)$ be an action of π on A by Hopf automorphisms. An action $\psi: \pi \rightarrow \operatorname{Aut}_{\text {Hopf }}(B)$ of π on B by Hopf automorphisms is said to be (σ, ϕ) compatible if, for all $a \in A, b \in B$ and $\beta \in \pi$,

$$
\begin{equation*}
\sigma\left(\phi_{\beta}(a), \psi_{\beta}(b)\right)=\sigma(a, b) \tag{2.10}
\end{equation*}
$$

Lemma 2.4. Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing between two Hopf algebras A and B. Let $\phi: \pi \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(A)$ and $\psi: \pi \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(B)$ be two actions of π by

Hopf automorphisms. Suppose that ψ is (σ, ϕ)-compatible. Then the Hopf π-coalgebra $D(A, B ; \sigma, \phi)=\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$ (see Theorem 2.3) admits a crossing φ given, for any $a \in A, b \in B$ and $\beta \in \pi$, by

$$
\begin{equation*}
\varphi_{\beta}(a \otimes b)=\phi_{\beta}(a) \otimes \psi_{\beta}(b) . \tag{2.11}
\end{equation*}
$$

Proof. Let $\alpha, \beta \in \pi$. We have that $\varphi_{\beta}\left(1_{A} \otimes 1_{B}\right)=\phi_{\beta}\left(1_{A}\right) \otimes \psi_{\beta}\left(1_{B}\right)=1_{A} \otimes 1_{B}$ and, for any $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{aligned}
& \varphi_{\beta}(a \otimes b) \cdot \varphi_{\beta}\left(a^{\prime} \otimes b^{\prime}\right) \\
&= \sigma\left(\phi_{\beta \alpha \beta} \beta^{-1}\left(\phi_{\beta}\left(a^{\prime}\right)_{(1)}\right), S\left(\psi_{\beta}(b)_{(1)}\right)\right) \sigma\left(\phi_{\beta}\left(a^{\prime}\right)_{(3)}, \psi_{\beta}(b)_{(3)}\right) \\
& \quad \times \phi_{\beta}(a) \phi_{\beta}\left(a^{\prime}\right)_{(2)} \otimes \psi_{\beta}(b)_{(2)} \psi_{\beta}\left(b^{\prime}\right) \\
&=\left.\sigma\left(\phi_{\beta} \phi_{\alpha}\left(a_{(1)}^{\prime}\right)\right), \psi_{\beta} S\left(b_{(1)}\right)\right) \sigma\left(\phi_{\beta}\left(a_{(3)}^{\prime}\right), \psi_{\beta}\left(b_{(3)}\right)\right) \phi_{\beta}(a) \phi_{\beta}\left(a_{(2)}^{\prime}\right) \otimes \psi_{\beta}\left(b_{(2)}\right) \psi_{\beta}\left(b^{\prime}\right) \\
&=\left.\sigma\left(\phi_{\alpha}\left(a_{(1)}^{\prime}\right)\right), S\left(b_{(1)}\right)\right) \sigma\left(a_{(3)}^{\prime}, b_{(3)}\right) \phi_{\beta}\left(a a_{(2)}^{\prime}\right) \otimes \psi_{\beta}\left(b_{(2)} b^{\prime}\right) \\
&= \varphi_{\beta}\left((a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)\right) .
\end{aligned}
$$

Moreover ϕ_{β} and ψ_{β} are bijective and so is φ_{β}. Therefore $\varphi_{\beta}: D\left(A, B ; \sigma, \phi_{\alpha}\right) \rightarrow$ $D\left(A, B ; \sigma, \phi_{\beta \alpha \beta^{-1}}\right)$ is an algebra isomorphism.

Finally, for any $a \in A, b \in B$ and $\alpha, \beta, \gamma \in \pi$, we have that:

$$
\begin{aligned}
\Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}}\left(\varphi_{\beta}(a \otimes b)\right) & =\phi_{\beta \gamma \beta^{-1}}\left(\phi_{\beta}(a)_{(1)}\right) \otimes \psi_{\beta}(b)_{(1)} \otimes \phi_{\beta}(a)_{(2)} \otimes \psi_{\beta}(b)_{(2)} \\
& =\phi_{\beta \gamma \beta^{-1}} \phi_{\beta}\left(a_{(1)}\right) \otimes \psi_{\beta}\left(b_{(1)}\right) \otimes \phi_{\beta}\left(a_{(2)}\right) \otimes \psi_{\beta}\left(b_{(2)}\right) \\
& =\phi_{\beta} \phi_{\gamma}\left(a_{(1)}\right) \otimes \psi_{\beta}\left(b_{(1)}\right) \otimes \phi_{\beta}\left(a_{(2)}\right) \otimes \psi_{\beta}\left(b_{(2)}\right) \\
& =\left(\varphi_{\beta} \otimes \varphi_{\beta}\right) \Delta_{\alpha, \gamma}(a \otimes b), \\
\varepsilon \varphi_{\beta}(a \otimes b) & =\varepsilon\left(\phi_{\beta}(a)\right) \varepsilon\left(\psi_{\beta}(b)\right)=\varepsilon(a) \varepsilon(b)=\varepsilon(a \otimes b),
\end{aligned}
$$

and

$$
\varphi_{\alpha} \varphi_{\beta}(a \otimes b)=\phi_{\alpha} \phi_{\beta}(a) \otimes \psi_{\alpha} \psi_{\beta}(b)=\phi_{\alpha \beta}(a) \otimes \psi_{\alpha \beta}(b)=\varphi_{\alpha \beta}(a \otimes b)
$$

Hence φ satisfies Axioms (1.4), (1.5) and (1.6).
Corollary 2.5. Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing and $\phi: \pi \rightarrow \operatorname{Aut}_{H o p f}(A)$ be an action of π on A by Hopf automorphisms. Suppose that σ is non-degenerate and that A (and so B) is finite dimensional. Then there exists a unique action $\phi^{*}: \pi \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(B)$ which is (σ, ϕ)-compatible. It is characterized, for any $a \in A, b \in B$ and $\beta \in \pi$, by

$$
\begin{equation*}
\sigma\left(a, \phi_{\beta}^{*}(b)\right)=\sigma\left(\phi_{\beta^{-1}}(a), b\right) \tag{2.12}
\end{equation*}
$$

Consequently the Hopf π-coalgebra $D(A, B ; \sigma, \phi)=\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi} \quad$ (see Theorem 2.3) is crossed with crossing defined by $\varphi_{\beta}=\phi_{\beta} \otimes \phi_{\beta}^{*}$ for any $\beta \in \pi$.

Proof. Let $\beta \in \pi$. Since σ is non-degenerate and A and B are finite dimensional, the map $b \in B \mapsto \sigma(\cdot, b) \in A^{*}$ is a linear isomorphism, and so (2.12) does uniquely
define a linear map $\phi_{\beta}^{*}: B \rightarrow B$. Since σ is a Hopf pairing and $\phi_{\beta^{-1}}$ is a Hopf algebra isomorphism of A, the map ϕ_{β}^{*} is a Hopf algebra isomorphism of B. Moreover ϕ^{*} is an action since $\phi_{1}^{*}=\operatorname{id}_{B}$ (because $\phi_{1}=\operatorname{id}_{A}$) and $\sigma\left(a, \phi_{\alpha \beta}^{*}(b)\right)=$ $\sigma\left(\phi_{\beta^{-1} \alpha^{-1}}(a), b\right)=\sigma\left(\phi_{\beta^{-1}} \phi_{\alpha^{-1}}(a), b\right)=\sigma\left(\phi_{\alpha^{-1}}(a), \phi_{\beta}^{*}(b)\right)=\sigma\left(a, \phi_{\alpha}^{*} \phi_{\beta}^{*}(b)\right)$ for any $a \in$ $A, b \in B$ and $\alpha, \beta \in \pi$. Finally (2.12) says exactly that ϕ^{*} is (σ, ϕ)-compatible.

Theorem 2.6. Let $\sigma: A \times B \rightarrow \mathbb{k}$ be a Hopf pairing between two Hopf algebras A and B, and $\phi: \pi \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}(A)$ be an action of π on A by Hopf automorphisms. Suppose that σ is non-degenerate and that A (and so B) is finite dimensional. Then the crossed Hopf π-coalgebra $D(A, B ; \sigma, \phi)=\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$ (see Corollary 2.5) is quasitriangular with R-matrix given, for all $\alpha, \beta \in \pi$, by

$$
\begin{equation*}
R_{\alpha, \beta}=\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right), \tag{2.13}
\end{equation*}
$$

where $\left(e_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ are basis of A and B, respectively, such that $\sigma\left(e_{i}, f_{j}\right)=\delta_{i, j}$.
Remark 2.7. (a) The element $\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right) \in A \otimes B \otimes A \otimes B$ is canonical, i.e., independent of the choices of the basis $\left(e_{i}\right)_{i}$ of A and $\left(f_{i}\right)_{i}$ of B such that $\sigma\left(e_{i}, f_{j}\right)=\delta_{i, j}$.
(b) Note that the hypothesis A is finite dimensional ensures that the sum $\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right)$ lies in $A \otimes B \otimes A \otimes B$. More generally, assume that A and B are graded Hopf algebras with finite dimensional homogeneous components and that σ is compatible with the gradings. Then the quotient Hopf algebras A / I_{A} and B / I_{B} are also graded and can be identified via σ with the duals of each other. Suppose also that the action ϕ respects the grading so does the quotient $\bar{\phi}: \pi \rightarrow$ Aut $_{\text {Hopf }}\left(A / I_{A}\right)$. In this case, there exists a unique action $\pi \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}\left(B / I_{B}\right)$ which is $(\bar{\sigma}, \bar{\phi})$-compatible, where $\bar{\sigma}: A / I_{A} \times B / I_{B} \rightarrow \mathbb{k}$ is the induced Hopf pairing. Then the Hopf π-coalgebra $D\left(A / I_{A}, B / I_{B}, \bar{\sigma}, \bar{\phi}\right)$ is quasitriangular by the same construction as in Theorem 2.6.

Proof. Fix basis $\left(e_{i}\right)$ of A and $\left(f_{i}\right)$ of B such that $\sigma\left(e_{i}, f_{j}\right)=\delta_{i, j}$ (such basis always exist since σ is non-degenerate). Note that $x=\sum_{i} \sigma\left(x, f_{i}\right) e_{i}$ and $y=\sum_{i} \sigma\left(e_{i}, y\right) f_{i}$ for any $x \in A$ and $y \in B$.

Recall that, since $\sum_{i} e_{i} \otimes 1_{B} \otimes 1_{A} \otimes f_{i}$ is the R-matrix of the usual quantum double $D\left(A, B, \sigma, \mathrm{id}_{A}\right)$, we have

$$
\begin{gather*}
\sum_{i, j} S\left(e_{i}\right) e_{j} \otimes f_{i} f_{j}=1_{A} \otimes 1_{B}, \tag{2.14}\\
\sum_{i} e_{i} \otimes f_{i(1)} \otimes f_{i(2)}=\sum_{i, j} e_{i} e_{j} \otimes f_{j} \otimes f_{i}, \tag{2.15}\\
\sum_{i} e_{i(1)} \otimes e_{i(2)} \otimes f_{i}=\sum_{i, j} e_{i} \otimes e_{j} \otimes f_{i} f_{j} . \tag{2.16}
\end{gather*}
$$

Let $\alpha, \beta \in \pi$. From (2.14) and since A (resp. B) can be viewed as a subalgebra of $D\left(A, B ; \sigma, \phi_{\alpha}\right)$ (resp. $D\left(A, B ; \sigma, \phi_{\beta}\right)$) via $a \mapsto a \otimes 1_{B}\left(\right.$ resp. $\left.b \mapsto 1_{A} \otimes b\right)$, we get
that $R_{\alpha, \beta}$ is invertible in $D\left(A, B ; \sigma, \phi_{\alpha}\right) \otimes D\left(A, B ; \sigma, \phi_{\beta}\right)$ with inverse

$$
R_{\alpha, \beta}^{-1}=\sum_{i} S\left(e_{i}\right) \otimes 1_{B} \otimes 1_{A} \otimes f_{i}
$$

Let $a \in A, b \in B$ and $\alpha, \beta \in \pi$. For all $x \in A$, we have that:

$$
\begin{aligned}
& \left(\mathrm{id}_{A \otimes B \otimes A} \otimes \sigma(x, \cdot)\right)\left(R_{\alpha, \beta} \cdot \Delta_{\alpha, \beta}(a \otimes b)\right) \\
& \quad=\sum_{i} \sigma\left(\phi_{\beta}\left(a_{(2)}\right), S\left(f_{i(1)}\right)\right) \sigma\left(a_{(4)}, f_{i(3)}\right) \sigma\left(x, f_{i(2)} b_{(2)}\right) e_{i} \phi_{\beta}\left(a_{(1)}\right) \otimes b_{(1)} \otimes a_{(3)} \\
& \quad=\sum_{i} \sigma\left(\phi_{\beta} S^{-1}\left(a_{(2)}\right), f_{i(1)}\right) \sigma\left(a_{(4)}, f_{i(3)}\right) \sigma\left(x_{(1)}, f_{i(2)}\right) \sigma\left(x_{(2)}, b_{(2)}\right) e_{i} \phi_{\beta}\left(a_{(1)}\right) \otimes b_{(1)} \otimes a_{(3)} \\
& \quad=\sum_{i} \sigma\left(a_{(4)} x_{(1)} \phi_{\beta} S^{-1}\left(a_{(2)}\right), f_{i}\right) \sigma\left(x_{(2)}, b_{(2)}\right) e_{i} \phi_{\beta}\left(a_{(1)}\right) \otimes b_{(1)} \otimes a_{(3)} \\
& =\sigma\left(x_{(2)}, b_{(2)}\right) a_{(4)} x_{(1)} \phi_{\beta}\left(S^{-1}\left(a_{(2)}\right) a_{(1)}\right) \otimes b_{(1)} \otimes a_{(3)} \\
& =\sigma\left(x_{(2)}, b_{(2)}\right) a_{(2)} x_{(1)} \otimes b_{(1)} \otimes a_{(1)},
\end{aligned}
$$

and, since $x_{(1)} \otimes x_{(2)} \otimes x_{(3)} \otimes x_{(4)}=\sum_{i} \sigma\left(x_{(2)}, f_{i}\right) x_{(1)} \otimes e_{i(1)} \otimes e_{i(2)} \otimes e_{i(3)}$,

$$
\begin{aligned}
& \left(\mathrm{id}_{A \otimes B \otimes A} \otimes \sigma(x, \cdot)\right)\left(\tau_{\beta, \alpha}\left(\varphi_{\alpha^{-1}} \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{\alpha \beta \alpha^{-1}, \alpha}(a \otimes b) \cdot R_{\alpha, \beta}\right) \\
& \quad=\sum_{i} \sigma\left(\phi_{\alpha}\left(e_{i(1)}\right), S\left(b_{(2)}\right)\right) \sigma\left(e_{i(3)}, b_{(4)}\right) \sigma\left(x, \phi_{\alpha^{-1}}^{*}\left(b_{(1)}\right) f_{i}\right) a_{(2)} e_{i(2)} \otimes b_{(3)} \otimes a_{(1)} \\
& \quad=\sum_{i} \sigma\left(\phi_{\alpha}\left(e_{i(1)}\right), S\left(b_{(2)}\right)\right) \sigma\left(e_{i(3)}, b_{(4)}\right) \sigma\left(\phi_{\alpha}\left(x_{(1)}\right), b_{(1)}\right) \sigma\left(x_{(2)}, f_{i}\right) a_{(2)} e_{i(2)} \otimes b_{(3)} \otimes a_{(1)} \\
& \quad=\sigma\left(\phi_{\alpha}\left(x_{(2)}\right), S\left(b_{(2)}\right)\right) \sigma\left(x_{(4)}, b_{(4)}\right) \sigma\left(\phi_{\alpha}\left(x_{(1)}\right), b_{(1)}\right) a_{(2)} x_{(3)} \otimes b_{(3)} \otimes a_{(1)} \\
& \quad=\sigma\left(\phi_{\alpha}\left(x_{(1)}\right), b_{(1)} S\left(b_{(2)}\right)\right) \sigma\left(x_{(3)}, b_{(4)}\right) a_{(2)} x_{(2)} \otimes b_{(3)} \otimes a_{(1)} \\
& \quad=\sigma\left(x_{(2)}, b_{(2)}\right) a_{(2)} x_{(1)} \otimes b_{(1)} \otimes a_{(1)} .
\end{aligned}
$$

Hence, since the $\sigma(x, \cdot)$ span B^{*}, Axiom (1.7) is satisfied.
Let us verify Axiom (1.10). Let $\alpha, \beta, \gamma \in \pi$. Since ϕ^{*} is (σ, ϕ)-compatible, the $\operatorname{basis}\left(\phi_{\beta}\left(e_{i}\right)\right)_{i}$ of A and $\left(\phi_{\beta}^{*}\left(f_{i}\right)\right)_{i}$ of B satisfy $\sigma\left(\phi_{\beta}\left(e_{i}\right), \phi_{\beta}^{*}\left(e_{j}\right)\right)=\sigma\left(e_{i}, f_{j}\right)=\delta_{i, j}$. Therefore we get that:

$$
\left(\varphi_{\beta} \otimes \varphi_{\beta}\right)\left(R_{\alpha, \gamma}\right)=\sum_{i} \phi_{\beta}\left(e_{i}\right) \otimes 1_{B} \otimes 1_{A} \otimes \phi_{\beta}^{*}\left(f_{j}\right)=R_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}}
$$

Finally, let us check Axioms (1.8) and (1.9). Let $\alpha, \beta, \gamma \in \pi$. Using (2.15), we have:

$$
\begin{aligned}
\left(\operatorname{id}_{D\left(A, B ; \sigma, \phi_{\alpha}\right)} \otimes \Delta_{\beta, \gamma}\right)\left(R_{\alpha, \beta \gamma}\right) & =\sum_{i} e_{i} \otimes 1_{B} \otimes 1_{A} \otimes f_{i(1)} \otimes 1_{A} \otimes f_{i(2)} \\
& =\sum_{i, j} e_{i} e_{j} \otimes 1_{B} \otimes 1_{A} \otimes f_{j} \otimes 1_{A} \otimes f_{i} \\
& =\left(R_{\alpha, \gamma}\right)_{1 \beta 3} \cdot\left(R_{\alpha, \beta}\right)_{12 \gamma} .
\end{aligned}
$$

Likewise, using (2.16) and (1.10), we have:

$$
\begin{aligned}
\left(\Delta_{\alpha, \beta} \otimes \operatorname{id}_{D\left(A, B ; \sigma, \phi_{\gamma}\right)}\right)\left(R_{\alpha \beta, \gamma}\right) & =\sum_{i} \phi_{\beta}\left(e_{i(1)}\right) \otimes 1_{B} \otimes e_{i(2)} \otimes 1_{B} \otimes 1_{A} \otimes f_{i} \\
& =\sum_{i, j} \phi_{\beta}\left(e_{i}\right) \otimes 1_{B} \otimes e_{j} \otimes 1_{B} \otimes 1_{A} \otimes f_{i} f_{j} \\
& =\left[\left(\varphi_{\beta} \otimes \operatorname{id}_{D\left(A, B ; \sigma, \phi_{\gamma}\right)}\right)\left(R_{\beta-1} \alpha \beta, \gamma\right)\right]_{1 \beta 3} \cdot\left(R_{\beta, \gamma}\right)_{\alpha 23} \\
& =\left[\left(\operatorname{id}_{D\left(A, B ; \sigma, \phi_{\alpha}\right)} \otimes \varphi_{\beta^{-1}}\right)\left(R_{\alpha, \beta \gamma \beta \beta^{-1}}\right)\right]_{1 \beta 3} \cdot\left(R_{\beta, \gamma}\right)_{\alpha 23} .
\end{aligned}
$$

This completes the proof of the quasitriangularity of $D(A, B ; \sigma, \phi)$.
The next corollary is a direct consequence of Corollary 2.5 and Theorem 2.6.
Corollary 2.8. Let A be a finite-dimensional Hopf algebra and $\phi: \pi \rightarrow \operatorname{Aut}_{H o p f}(A)$ be an action of π on A by Hopf algebras automorphisms. Recall that the duality bracket $\langle,\rangle_{A \otimes A^{*}}$ is a non-degenerate Hopf pairing between A and $A^{* c o p}$. Then $D\left(A, A^{* c o p} ;\langle,\rangle_{A \otimes A^{*}}, \phi\right)$ is a quasitriangular Hopf π-coalgebra.

Remark 2.9. The group of Hopf automorphisms of a finite-dimensional semisimple Hopf algebra A over a field of characteristic 0 is finite (see Radford, 1990). To obtain non-trivial examples of (quasitriangular) Hopf π-coalgebras for an infinite group π by using the twisted double method, one has to consider non-semisimple Hopf algebras (at least in characteristic 0).

2.3. The \boldsymbol{h}-Adic Case

In this subsection, we develop the h-adic variant of Hopf group-coalgebras. A technical argument for the need of h-adic Hopf group-coalgebras is that they are necessary for a mathematically rigorous treatment of R-matrices for quantized enveloping algebras endowed with a group action.

Recall that if V is a vector space over $\mathbb{C}[[h]]$, the topology on V for which the sets $\left\{h^{n} V+v \mid n \in \mathbb{N}\right\}$ are a neighborhood base of $v \in V$ is called the h-adic topology. If V and W are vector spaces over $\mathbb{C}[[h]]$, we shall denote by $V \hat{\otimes} W$ the completion of the tensor product space $V \otimes_{\mathbb{C}[[h]]} W$ in the h-adic topology. Let V be a complex vector space. Then the set $V[[h]]$ of all formal power series $f=\sum_{n=0}^{\infty} v_{n} h^{n}$ with coefficients $v_{n} \in V$ is a vector space over $\mathbb{C}[[h]]$ which is complete in the h-adic topology. Furthermore, $V[[h]] \hat{\otimes} W[[h]]=(V \otimes W)[[h]]$ for any complex vector spaces V and W.

An h-adic algebra is a vector space A over $\mathbb{C}[[h]]$, which is complete in the h-adic topology and endowed with a $\mathbb{C}[[h]]$-linear map $m: A \hat{\otimes} A \rightarrow A$ and an element $1 \in A$ satisfying $m\left(\mathrm{id}_{A} \hat{\otimes} m\right)=m\left(m \hat{\otimes} \mathrm{id}_{A}\right)$ and $m(a \hat{\otimes} 1)=a=m(1 \hat{\otimes} a)$ for all $a \in A$.

By an h-adic Hopf π-coalgebra, we shall mean a family $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ of h-adic algebras which is endowed with h-adic algebra homomorphisms $\Delta_{\alpha, \beta}: H_{\alpha \beta} \rightarrow$ $H_{\alpha} \hat{\otimes} H_{\beta}(\alpha, \beta \in \pi)$ and $\varepsilon: A \rightarrow \mathbb{C}[[h]]$ satisfying (1.1) and (1.2), and with $C[[h]]-$ linear maps $S_{\alpha}: H_{\alpha} \rightarrow H_{\alpha^{-1}}(\alpha \in \pi)$ satisfying (1.3). In the previous axioms, one has to replace the algebraic tensor products \otimes by the h-adic completions $\hat{\otimes}$.

The notions of crossed and quasitriangular h-adic Hopf π-coalgebras can be defined similarly as in Sections 1.2 and 1.3.

The definitions of Section 2 and Theorem 2.3 carry over almost verbatim to h-adic Hopf algebras. The only modifications are that $\sigma: A \hat{\otimes} B \rightarrow \mathbb{C}[[h]]$ is $\mathbb{C}[[h]]$-linear and that the algebra $D(A, B ; \sigma, \phi)$, where ϕ is an h-adic Hopf endomorphism of A, is built over the completion $A \hat{\otimes} B$ of $A \otimes B$ in the h-adic topology. The reasoning of the proof of Theorem 2.6 give the following h-adic version.

Theorem 2.10. Let $\sigma: A \hat{\otimes} B \rightarrow \mathbb{C}[[h]]$ be an h-adic Hopf pairing between two h-adic Hopf algebras A and B, and $\phi: \pi \rightarrow \operatorname{Aut}_{H o p f}(A)$ be an action of π on A by h-adic Hopf automorphisms. Suppose that σ is non-degenerate and that $\left(e_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ are basis of the vector spaces A and B, respectively, which are dual with respect to the form σ. If $R_{\alpha, \beta}=\sum_{i}\left(e_{i} \otimes 1_{B}\right) \otimes\left(1_{A} \otimes f_{i}\right)$ belongs to the h-adic completion $D\left(A, B ; \sigma, \phi_{\alpha}\right) \hat{\otimes} D\left(A, B ; \sigma, \phi_{\beta}\right)$, then $R=\left\{R_{\alpha, \beta}\right\}_{\alpha, \beta \in \pi}$ is a R-matrix of the crossed h-adic Hopf π-coalgebra $D(A, B ; \sigma, \phi)=\left\{D\left(A, B ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$.

3. THE CASE OF ALGEBRAS OF FINITE GROUPS

Let G be a finite group. In this section, we describe Hopf G-coalgebras obtained by the twisted double method from the Hopf algebra $\mathbb{k}[G]$.

Recall that the Hopf algebra structure of the (finite-dimensional) \mathbb{k}-algebra $\mathbb{k}[G]$ of G is given by $\Delta(g)=g \otimes g, \varepsilon(g)=1$ and $S(g)=g^{-1}$ for all $g \in G$. The dual of $\mathbb{k}[G]$ is the Hopf algebra $F(G)=\mathbb{k}^{G}$ of functions $G \rightarrow \mathbb{k}$. It has a basis $\left(e_{g}: G \rightarrow\right.$ $\mathbb{k})_{g \in G}$ defined by $e_{g}(h)=\delta_{g, h}$ where $\delta_{g, g}=1$ and $\delta_{g, h}=0$ if $g \neq h$. The structure maps of $F(G)$ are given by $e_{g} e_{h}=\delta_{g, h} e_{g}, 1_{F(G)}=\sum_{g \in G} e_{g}, \Delta\left(e_{g}\right)=\sum_{x y=g} e_{x} \otimes e_{y}$, $\varepsilon\left(e_{g}\right)=\delta_{g, 1}$, and $S\left(e_{g}\right)=e_{g^{-1}}$ for any $g, h \in G$.

Set $\phi: G \rightarrow \operatorname{Aut}_{\text {Hopf }}(\mathbb{k}[G])$ defined by $\phi_{\alpha}(h)=\alpha h \alpha^{-1}$. It is a well-defined group homomorphism (since any $\alpha \in G$ is grouplike in $\mathbb{k}[G]$). By Corollary 2.8, this datum leads to a quasitriangular Hopf G-coalgebra $D\left(\mathbb{k}[G], F(G)^{\text {cop }}\right.$; $\left.\langle,\rangle_{\mathrm{k}[G] \times F(G)}, \phi\right)$, which will be denoted by $D_{G}(G)=\left\{D_{\alpha}(G)\right\}_{\alpha \in G}$.

Let us describe $D_{G}(G)$ more precisely. Let $\alpha \in G$. Recall that $D_{\alpha}(G)$ is equal to $\mathbb{k}[G] \otimes F(G)$ as a \mathbb{k}-space. The unit element and product of $D_{\alpha}(G)$ are given, for all $g, g^{\prime}, h, h^{\prime} \in G$, by

$$
1_{D_{\alpha}(G)}=\sum_{g \in G} 1 \otimes e_{g} \quad \text { and } \quad\left(g \otimes e_{h}\right) \cdot\left(g^{\prime} \otimes e_{h^{\prime}}\right)=\delta_{\alpha g^{\prime} \alpha^{-1}, h^{-1} g^{\prime} h^{\prime}} g g^{\prime} \otimes e_{h^{\prime}}
$$

The structure maps of $D_{G}(G)$ are given, for any $\alpha, \beta \in G$ and $g, h \in G$, by

$$
\begin{aligned}
\Delta_{\alpha, \beta}\left(g \otimes e_{h}\right) & =\sum_{x y=h} \beta g \beta^{-1} \otimes e_{y} \otimes g \otimes e_{x}, \\
\varepsilon\left(g \otimes e_{h}\right) & =\delta_{h, 1}, \\
S_{\alpha}\left(g \otimes e_{h}\right) & =\alpha g^{-1} \alpha^{-1} \otimes e_{\alpha g \alpha^{-1} h^{-1} g^{-1}}, \\
\varphi_{\alpha}\left(g \otimes e_{h}\right) & =\alpha g \alpha^{-1} \otimes e_{\alpha h \alpha^{-1}} .
\end{aligned}
$$

The crossed Hopf G-coalgebra $D_{G}(G)$ is quasitriangular and furthermore ribbon with R-matrix and twist given, for any $\alpha, \beta \in G$, by

$$
R_{\alpha, \beta}=\sum_{g, h \in G} g \otimes e_{h} \otimes 1 \otimes e_{g} \quad \text { and } \quad \theta_{\alpha}=\sum_{g \in G} \alpha^{-1} g \alpha \otimes e_{g} .
$$

Note that $\theta_{\alpha}^{n}=\sum_{g \in G} \alpha^{-n}(g \alpha)^{n} \otimes e_{g}$ for any $n \in \mathbb{Z}$.

4. EXAMPLE OF A QUASITRIANGULAR HOPF GL $\boldsymbol{H}_{\boldsymbol{n}}(\mathrm{k})$-COALGEBRA

In this section, \mathbb{k} is a field whose characteristic is not 2 . Fix a positive integer n. We use a (finite dimensional) Hopf algebra whose group of automorphisms is known to be the group $\mathrm{GL}_{n}(\mathbb{k})$ of invertible $n \times n$-matrices with coefficients in \mathbb{k} (see Radford, 1990) to derive an example of a quasitriangular Hopf $\mathrm{GL}_{n}(\mathbb{k})$-coalgebra.

Definition-Proposition 4.1. For $\alpha=\left(\alpha_{i, j}\right) \in G L_{n}(\mathbb{k})$, let \mathscr{A}_{n}^{α} be the \mathbb{C}-algebra generated $g, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, subject to the following relations:

$$
\begin{gather*}
g^{2}=1, \quad x_{1}^{2}=\cdots=x_{n}^{2}=0, \quad g x_{i}=-x_{i} g, \quad x_{i} x_{j}=-x_{j} x_{i}, \tag{4.1}\\
y_{1}^{2}=\cdots=y_{n}^{2}=0, \quad g y_{i}=-y_{i} g, \quad y_{i} y_{j}=-y_{j} y_{i}, \tag{4.2}\\
x_{i} y_{j}-y_{j} x_{i}=\left(\alpha_{j, i}-\delta_{i, j}\right) g, \tag{4.3}
\end{gather*}
$$

where $1 \leq i, j \leq n$. The family $\mathscr{A}_{n}=\left\{\mathscr{A}_{n}^{\alpha}\right\}_{\alpha \in \operatorname{GL}_{n}(\mathbb{k})}$ has a structure of a crossed Hopf $G L_{n}(\mathbb{k})$-coalgebra given, for any $\alpha=\left(\alpha_{i, j}\right) \in G L_{n}(\mathbb{k}), \beta=\left(\beta_{i, j}\right) \in G L_{n}(\mathbb{k})$, and $1 \leq i \leq n$, by:

$$
\begin{gather*}
\Delta_{\alpha, \beta}(g)=g \otimes g, \quad \varepsilon(g)=1, \quad S_{\alpha}(g)=g, \tag{4.4}\\
\Delta_{\alpha, \beta}\left(x_{i}\right)=1 \otimes x_{i}+\sum_{k=1}^{n} \beta_{k, i} x_{k} \otimes g, \quad \varepsilon\left(x_{i}\right)=0, \quad S_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} g x_{k}, \tag{4.5}\\
\Delta_{\alpha, \beta}\left(y_{i}\right)=y_{i} \otimes 1+g \otimes y_{i}, \quad \varepsilon\left(y_{i}\right)=0, \quad S_{\alpha}\left(y_{i}\right)=-g y_{i}, \tag{4.6}\\
\varphi_{\alpha}(g)=g, \quad \varphi_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} x_{k}, \quad \varphi_{\alpha}\left(y_{i}\right)=\sum_{k=1}^{n} \tilde{\alpha}_{i, k} y_{k}, \tag{4.7}
\end{gather*}
$$

where $\left(\tilde{\alpha}_{i, j}\right)=\alpha^{-1}$. Moreover \mathscr{A}_{n} is quasitriangular with R-matrix given, for any $\alpha, \beta \in$ $G L_{n}(\mathbb{k})$, by:

$$
R_{\alpha, \beta}=\frac{1}{2} \sum_{S \subseteq[n]} x_{S} \otimes y_{S}+x_{S} \otimes g y_{S}+g x_{S} \otimes y_{S}-g x_{S} \otimes g y_{S}
$$

Here $[n]=\{1, \ldots, n\}, x_{\emptyset}=1, y_{\emptyset}=1$, and, for a nonempty subset S of $[n]$, we let $x_{S}=$ $x_{i_{1}} \cdots x_{i_{s}}$ and $y_{S}=y_{i_{1}} \cdots y_{i_{s}}$ where $i_{1}<\cdots<i_{s}$ are the elements of S.

Remark 4.2. Note that the algebras $\mathscr{A}{ }_{n}^{\alpha}$ and $\mathscr{A}{ }_{n}^{\beta}$ are in general not isomorphic when $\alpha, \beta \in \mathrm{GL}_{n}(\mathbb{k})$ are such that $\alpha \neq \beta$. For example, we have that $\mathscr{A}_{n}^{\alpha} \nsim A_{n}^{1}$ for any
$\alpha \in \mathrm{GL}_{n}(\mathbb{k})$ with $\alpha \neq 1$. This can be shown by remarking that:

$$
\mathscr{A} \mathbb{A}_{n}^{\alpha} /\left[\mathscr{A}_{n}^{\alpha}, \mathscr{A}_{n}^{\alpha}\right] \not 千 A_{n}^{1} /\left[\mathscr{A}_{n}^{1}, \mathscr{A}_{n}^{1}\right] .
$$

Indeed $\mathscr{A}_{n}^{\alpha} /\left[\mathscr{A}_{n}^{\alpha}, \mathscr{A}_{n}^{\alpha}\right]=0$ since $g=\frac{1}{\alpha_{j i i} \delta_{i, j}}\left(x_{i} y_{j}-y_{j} x_{i}\right) \in\left[\mathscr{A}_{n}^{\alpha}, \mathscr{A}_{n}^{\alpha}\right]$ (for some $1 \leq i, j \leq n$ such that $\alpha_{j, i} \neq \delta_{i, j}$) and so $1=g^{2} \in\left[\mathscr{A}_{n}^{\alpha}, \mathscr{A}_{n}^{\alpha}\right]$. Moreover, in $\mathscr{A}_{n}^{1} /\left[\mathscr{A}_{n}^{1}, \mathscr{A}_{n}^{1}\right]$, we have that $x_{k}=x_{k} g^{2}=0$ (since $x_{k} g=g x_{k}=-x_{k} g$ and so $x_{k} g=0$) and likewise $y_{k}=0$. Hence $\mathscr{A} \mathscr{A}_{n}^{1} /\left[\mathscr{A}_{n}^{1}, \mathscr{A}_{n}^{1}\right]=\mathbb{k}\left\langle g \mid g^{2}=1\right\rangle \nsucceq 0$.

Proof. Let A_{n} be the \mathbb{k}-algebra generated by g, x_{1}, \ldots, x_{n}, which satisfy the relations (4.1). The algebra A_{n} is 2^{n+1}-dimensional and is a Hopf algebra with structure maps defined by:

$$
\begin{gathered}
\Delta(g)=g \otimes g, \quad \varepsilon(g)=1, \quad S(g)=g \\
\Delta\left(x_{i}\right)=x_{i} \otimes g+1 \otimes x_{i}, \quad \varepsilon\left(x_{i}\right)=0, \quad S\left(x_{i}\right)=g x_{i} .
\end{gathered}
$$

Radford (1990) showed that the group of Hopf automorphisms of A_{n} is isomorphic to the group $\mathrm{GL}_{n}(\mathbb{k})$ of invertible $n \times n$-matrices with coefficients in \mathbb{k}. This group automorphism $\phi: \mathrm{GL}_{n}(\mathbb{k}) \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}\left(A_{n}\right)$ is given by:

$$
\phi_{\alpha}(g)=g \quad \text { and } \quad \phi_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} x_{k} \quad \text { for any } \alpha=\left(\alpha_{i, j}\right) \in \mathrm{GL}_{n}(\mathbb{k})
$$

The Hopf algebra $B_{n}=A_{n}^{\text {cop }}$ is the \mathbb{k}-algebra generated by the symbols h, y_{1}, \ldots, y_{n} which satisfy the relations $h^{2}=1, y_{i}^{2}=0, h y_{i}=-y_{i} h$, and $y_{i} y_{j}=-y_{j} y_{i}$. Its Hopf algebra structure is given by:

$$
\begin{gathered}
\Delta(h)=h \otimes h, \quad \varepsilon(h)=1, \quad S(h)=h, \\
\Delta\left(y_{i}\right)=y_{i} \otimes 1+h \otimes y_{i}, \quad \varepsilon\left(y_{i}\right)=0, \quad S\left(y_{i}\right)=-h y_{i} .
\end{gathered}
$$

Let us denote the cardinality of a set T by $|T|$. The elements $g^{k} x_{S}$ (resp. $h^{k} y_{S}$), where $k \in\{0,1\}$ and $S \subseteq[n]$, form a basis for A_{n} (resp. B_{n}). Since Δ is multiplicative, it follows that

$$
\begin{equation*}
\Delta\left(g^{k} x_{S}\right)=\sum_{T \subseteq S} \lambda_{T, S} g^{k} x_{T} \otimes g^{k+|T|} x_{S \backslash T} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(h^{k} y_{S}\right)=\sum_{T \subseteq S} \lambda_{T, S} h^{k+|T|} y_{S \backslash T} \otimes h^{k} y_{T} \tag{4.9}
\end{equation*}
$$

where $\lambda_{T, S}= \pm 1$ and $\lambda_{\emptyset, S}=1=\lambda_{S, S}$.
By Section 2.1, there exists a (unique) Hopf pairing $\sigma: A_{n} \times B_{n} \rightarrow \mathbb{k}$ such that $\sigma(g, h)=-1, \sigma\left(g, y_{j}\right)=\sigma\left(x_{i}, h\right)=0$, and $\sigma\left(x_{i}, y_{j}\right)=\delta_{i, j}$ for all $1 \leq i, j \leq n$. Using (4.8) and (4.9), one gets (by induction on $|S|$) that

$$
\sigma\left(g^{k} x_{S}, h^{l} y_{T}\right)=(-1)^{k l} \delta_{S, T}
$$

for any $k, l \in\{0,1\}$ and $S, T \subseteq[n]$, where $\delta_{S, S}=1$ and $\delta_{S, T}=0$ if $S \neq T$. Set $z_{0}=$ $(1+h) / 2$ and $z_{1}=(1-h) / 2$. The elements $z_{k} y_{S}$, where $k \in\{0,1\}$ and $S \subseteq[n]$, form a basis for B_{n} such that:

$$
\begin{equation*}
\sigma\left(g^{k} x_{S}, z_{l} y_{T}\right)=\delta_{k, l} \delta_{S, T} \tag{4.10}
\end{equation*}
$$

for any $k, l \in\{0,1\}$ and $S, T \subseteq[n]$. Therefore the pairing σ is non-degenerate. Note that this implies that $A_{n}^{*} \cong A_{n}$ as a Hopf algebra.

By Theorem 2.6, we get a quasitriangular Hopf $\mathrm{GL}_{n}(\mathbb{k})$-coalgebra $D\left(A_{n}, B_{n} ; \sigma, \phi\right)$. For any $\alpha=\left(\alpha_{i, j}\right) \in \mathrm{GL}_{n}(\mathbb{k}), D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right)$ is the algebra generated by $g, h, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, subject to the relations $h^{2}=1$, (4.1), (4.2) with g replaced by h, and the following relations:

$$
\begin{gather*}
g h=h g, \quad g y_{j}=-y_{j} g, \quad h x_{i}=-x_{i} h, \tag{4.11}\\
x_{i} y_{j}-y_{j} x_{i}=\alpha_{j, i} g-\delta_{i, j} h . \tag{4.12}
\end{gather*}
$$

Indeed $D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right)$ is the free algebra generated by the algebras A_{n} and B_{n} with cross relation (2.5). Further, it suffices to require the cross relations (2.5) for $(1 \otimes b)$. $(a \otimes 1)$ with $a=g, x_{i}$ and $b=h, y_{j}$. To simplify the notations, we identify of a with $a \otimes 1$ and b with $1 \otimes b$ (recall that these natural maps $A_{n} \hookrightarrow D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right)$ and $B_{n} \hookrightarrow D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right)$ are algebra monomorphisms). For example, let $a=x_{i}$ and $b=y_{j}$. Since $\sigma\left(x_{i}, 1\right)=\sigma\left(g, y_{j}\right)=\sigma\left(x_{i}, h\right)=\sigma\left(1, y_{j}\right)=0$, relation (2.5) gives

$$
y_{j} x_{i}=\sigma\left(\phi_{\alpha}\left(x_{i}\right), y_{j} h\right) \sigma(g, 1) g \cdot 1+\sigma(1, h) \sigma(g, 1) x_{i} \cdot y_{j}+\sigma(1, h) \sigma\left(x_{i}, y_{j}\right) 1 \cdot h
$$

Inserting the values $\sigma(g, 1)=\sigma(1, h)=1, \sigma\left(x_{i}, y_{j}\right)=\delta_{i, j}$, and $\sigma\left(\phi_{\alpha}\left(x_{i}\right), y_{j} h\right)=-\alpha_{j, i}$, we get (4.12).

From Theorem 2.3, we obtain that the comultiplication $\Delta_{\alpha, \beta}$, the counit ε, the antipode S_{α}, and the crossing φ_{α} of $D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right)$ are given by

$$
\begin{gather*}
\Delta_{\alpha, \beta}(g)=g \otimes g, \quad \Delta_{\alpha, \beta}(h)=h \otimes h, \tag{4.13}\\
\Delta_{\alpha, \beta}\left(x_{i}\right)=1 \otimes x_{i}+\sum_{k=1}^{n} \beta_{k, i} x_{k} \otimes g, \quad \Delta_{\alpha, \beta}\left(y_{i}\right)=y_{i} \otimes 1+h \otimes y_{i}, \tag{4.14}\\
\varepsilon(g)=\varepsilon(h)=1, \quad \varepsilon\left(x_{i}\right)=\varepsilon\left(y_{i}\right)=0, \quad S_{\alpha}(g)=g, \tag{4.15}\\
S_{\alpha}(h)=h, \quad S_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} g x_{k}, \quad S_{\alpha}\left(y_{i}\right)=-h y_{i}, \tag{4.16}\\
\varphi_{\alpha}(g)=g, \quad \varphi_{\alpha}(h)=h, \quad \varphi_{\alpha}\left(x_{i}\right)=\sum_{k=1}^{n} \alpha_{k, i} x_{k}, \quad \varphi_{\alpha}\left(y_{i}\right)=\sum_{k=1}^{n} \tilde{\alpha}_{i, k} y_{k}, \tag{4.17}
\end{gather*}
$$

where $\left(\tilde{\alpha}_{i, j}\right)=\alpha^{-1}$.
For any $\alpha \in \mathrm{GL}_{n}(\mathbb{k})$, let I_{α} be the ideal of $D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right)$ generated by $g-h$. Using the above description of the structure maps of $D\left(A_{n}, B_{n} ; \sigma, \phi\right)$, we get that $I=\left\{I_{\alpha}\right\}_{\alpha \in \pi}$ is a crossed Hopf $\mathrm{GL}_{n}(\mathbb{k})$-coideal of $D\left(A_{n}, B_{n} ; \sigma, \phi\right)$. The quotient $\quad D\left(A_{n}, B_{n} ; \sigma, \phi\right) / I=\left\{D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right) / I_{\alpha}\right\}_{\alpha \in} \mathrm{GL}_{n}(\mathrm{k}) \quad$ is precisely
$\mathscr{A}_{n}=\left\{\mathscr{A}_{n}^{\alpha}\right\}_{\alpha \in \mathrm{GL}_{n}(\mathbb{k})}$ and so the latter has a quasitriangular Hopf $\mathrm{GL}_{n}(\mathbb{k})$-coalgebra structure which can be described by replacing h with g in (4.13)-(4.17).

Finally, the R-matrix of \mathscr{A}_{n} is obtained as the image under the projection maps $D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right) \xrightarrow{p_{\alpha}} D\left(A_{n}, B_{n} ; \sigma, \phi_{\alpha}\right) / I_{\alpha}=\mathscr{A}_{n}^{\alpha}$ of the R-matrix of $D\left(A_{n}, B_{n} ; \sigma, \phi\right)$, that is, using (4.10),

$$
\begin{aligned}
R_{\alpha, \beta} & =\sum_{S \subseteq[n]} p_{\alpha}\left(x_{S}\right) \otimes p_{\beta}\left(z_{0} y_{S}\right)+p_{\alpha}\left(g x_{S}\right) \otimes p_{\beta}\left(z_{1} y_{S}\right) \\
& =\sum_{S \subseteq[n]} x_{S} \otimes\left(\frac{1+g}{2}\right) y_{S}+g x_{S} \otimes\left(\frac{1-g}{2}\right) y_{S} \\
& =\frac{1}{2} \sum_{S \subseteq[n]} x_{S} \otimes y_{S}+x_{S} \otimes g y_{S}+g x_{S} \otimes y_{S}-g x_{S} \otimes g y_{S} .
\end{aligned}
$$

This completes the proof of Proposition 4.1.

5. GRADED QUANTUM GROUPS

Let g be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $\left(a_{i, j}\right)$. We let d_{i} be the coprime integers such that the matrix $\left(d_{i} a_{i, j}\right)$ is symmetric. Let q be a fixed nonzero complex number and set $q_{i}=q^{d_{i}}$. Suppose that $q_{i}^{2} \neq 1$ for $i=1,2, \ldots, l$.

Definition-Proposition 5.1. Set $\pi=\left(\mathbb{C}^{*}\right)^{l}$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in \pi$, let $U_{q}^{\alpha}(\mathfrak{g})$ be the \mathbb{C}-algebra generated by $K_{i}^{ \pm 1}, E_{i}, F_{i}, 1 \leq i \leq l$, subject to the following defining relations:

$$
\begin{gather*}
K_{i} K_{j}=K_{j} K_{i}, \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \tag{5.1}\\
K_{i} E_{j}=q_{i}^{a_{i, j}} E_{j} K_{i}, \tag{5.2}\\
K_{i} F_{j}=q_{i}^{-a_{i, j}} F_{j} K_{i}, \tag{5.3}\\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{\alpha_{i} K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \tag{5.4}\\
\sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i, j}-r} E_{j} E_{i}^{r}=0 \quad \text { if } i \neq j, \tag{5.5}\\
\sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i, j}-r} F_{j} F_{i}^{r}=0 \quad \text { if } i \neq j . \tag{5.6}
\end{gather*}
$$

The family $U_{q}^{\pi}(\mathrm{g})=\left\{U_{q}^{\alpha}(\mathrm{g})\right\}_{\alpha \in \pi}$ has a structure of a crossed Hopf π-coalgebra given, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in \pi, \beta=\left(\beta_{1}, \ldots, \beta_{l}\right) \in \pi$ and $1 \leq i \leq l$, by:

$$
\begin{aligned}
& \Delta_{\alpha, \beta}\left(K_{i}\right)=K_{i} \otimes K_{i}, \\
& \Delta_{\alpha, \beta}\left(E_{i}\right)=\beta_{i} E_{i} \otimes K_{i}+1 \otimes E_{i}, \\
& \Delta_{\alpha, \beta}\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i},
\end{aligned}
$$

$$
\begin{aligned}
\varepsilon\left(K_{i}\right) & =1, \quad \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \\
S_{\alpha}\left(K_{i}\right) & =K_{i}^{-1}, \quad S_{\alpha}\left(E_{i}\right)=-\alpha_{i} E_{i} K_{i}^{-1}, \quad S_{\alpha}\left(F_{i}\right)=-K_{i} F_{i}, \\
\varphi_{\alpha}\left(K_{i}\right) & =K_{i}, \quad \varphi_{\alpha}\left(E_{i}\right)=\alpha_{i} E_{i}, \quad \varphi_{\alpha}\left(F_{i}\right)=\alpha_{i}^{-1} F_{i} .
\end{aligned}
$$

Remark 5.2. Note that $\left(U_{q}^{1}(\mathfrak{g}), \Delta_{1,1}, \varepsilon, S_{1}\right)$ is the usual quantum group $U_{q}(\mathrm{~g})$.
Proof. Let U_{+}be the \mathbb{C}-algebra generated by $E_{i}, K_{i}^{ \pm 1}, 1 \leq i \leq l$, subject to the relations (5.1), (5.2) and (5.5). Let U_{-}be the \mathbb{C}-algebra generated by $F_{i}, K_{i}^{\prime \pm 1}, 1 \leq$ $i \leq l$, subject to the relations (5.1), (5.3) and (5.6), where one has to replace K_{i} with K_{i}^{\prime}. The algebras U_{+}and U_{-}have a Hopf algebra structure given by

$$
\begin{aligned}
& \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(E_{i}\right)=E_{i} \otimes K_{i}+1 \otimes E_{i}, \\
& \varepsilon\left(K_{i}\right)=1, \quad \varepsilon\left(E_{i}\right)=0, \quad S\left(K_{i}\right)=K_{i}^{-1}, \quad S\left(E_{i}\right)=-E_{i} K_{i}^{-1}, \\
& \Delta\left(K_{i}^{\prime}\right)=K_{i}^{\prime} \otimes K_{i}^{\prime}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{\prime-1} \otimes F_{i}, \\
& \varepsilon\left(K_{i}^{\prime}\right)=1, \quad \varepsilon\left(F_{i}\right)=0, \quad S\left(K_{i}^{\prime}\right)=K_{i}^{\prime-1}, \quad S\left(F_{i}\right)=-K_{i}^{\prime} F_{i} .
\end{aligned}
$$

Using the method described in Section 2.1, it can be verified that there exists a (unique) Hopf pairing $\sigma: U_{+} \times U_{-} \rightarrow \mathbb{C}$ such that

$$
\sigma\left(E_{i}, F_{j}\right)=\frac{\delta_{i, j}}{q_{i}-q_{i}^{-1}}, \quad \sigma\left(E_{i}, K_{j}^{\prime}\right)=\sigma\left(K_{i}, F_{j}\right)=0, \quad \sigma\left(K_{i}, K_{j}^{\prime}\right)=q_{i}^{a_{i, j}}=q_{j}^{a_{j, i}} .
$$

Let $\phi: \pi \rightarrow \operatorname{Aut}_{\text {Hopf }}\left(U_{+}\right)$and $\psi: \pi \rightarrow \operatorname{Aut}_{\text {Hopf }}\left(U_{-}\right)$be the group homomorphisms defined as follows: for $\beta=\left(\beta_{1}, \ldots, \beta_{l}\right) \in \pi$ and $1 \leq i \leq l$, set

$$
\phi_{\beta}\left(K_{i}\right)=K_{i}, \quad \phi_{\beta}\left(E_{i}\right)=\beta_{i} E_{i}, \quad \psi_{\beta}\left(K_{i}^{\prime}\right)=K_{i}^{\prime}, \quad \psi_{\beta}\left(F_{i}\right)=\beta_{i}^{-1} F_{i}
$$

It is straightforward to verify that ψ is (σ, ϕ)-compatible. By Lemma 2.4, we can consider the crossed Hopf π-coalgebra $D\left(U_{+}, U_{-} ; \sigma, \phi\right)=\left\{D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$.

Now, for any $\alpha \in \pi, D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right)$ is the algebra generated by $K_{i}^{ \pm 1}, K_{i}^{\prime \pm 1}$, E_{i}, F_{i}, where $1 \leq i \leq l$, subject to the relations (5.1), (5.2), (5.5), the relations (5.1), (5.3), (5.6) with K_{i} replaced by K_{i}^{\prime}, and the following relations:

$$
\begin{gather*}
K_{i} K_{j}^{\prime}=K_{j}^{\prime} K_{i}, \quad K_{i} F_{j}=q_{i}^{-a_{i, j}} F_{j} K_{i}, \quad K_{i}^{\prime} E_{j}=q_{i}^{a_{i, j}} E_{j} K_{i}^{\prime}, \tag{5.7}\\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{\alpha_{i} K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}} . \tag{5.8}
\end{gather*}
$$

Indeed, $D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right)$ is the free algebra generated by the algebras U_{+}and U_{-}with cross relation (2.5). Further, it suffices to require the cross relations (2.5) for $(1 \otimes b) \cdot(a \otimes 1)$ with $a=K_{i}, E_{i}$ and $b=K_{i}^{\prime}, F_{i}$. To simplify the notations, we identify of a with $a \otimes 1$ and b with $1 \otimes b$ (recall that these natural maps $U_{+} \hookrightarrow D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right)$ and $U_{-} \hookrightarrow D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right)$ are algebra monomorphisms $)$. For example, let $a=E_{i}$ and $b=F_{j}$. Since $\sigma\left(E_{i}, 1\right)=\sigma\left(K_{i}, F_{j}\right)=\sigma\left(E_{i}, K_{j}^{\prime-1}\right)=$ $\sigma\left(1, F_{j}\right)=0$, relation (2.5) gives

$$
F_{j} E_{i}=\sigma\left(\alpha_{i} E_{i}, S\left(F_{j}\right)\right) \sigma\left(K_{i}, 1\right) K_{i}+\sigma\left(1, K_{j}^{\prime}\right) \sigma\left(K_{i}, 1\right) E_{i} F_{j}+\sigma\left(1, K_{j}^{\prime}\right) \sigma\left(E_{i}, F_{j}\right) K_{j}^{\prime-1}
$$

Inserting the values $\sigma\left(K_{i}, 1\right)=\sigma\left(1, K_{j}^{\prime}\right)=1, \quad \sigma\left(E_{i}, F_{j}\right)=\delta_{i, j}\left(q_{i}-q_{i}^{-1}\right)^{-1} \quad$ and $\sigma\left(E_{i}, S\left(F_{j}\right)\right)=-\delta_{i, j}\left(q_{i}-q_{i}^{-1}\right)^{-1}$, we get (5.8).

From Theorem 2.3, we obtain that the comultiplication $\Delta_{\alpha, \beta}$, the counit ε, the antipode S_{α}, and the crossing φ_{α} of $D\left(U_{+}, U_{-} ; \sigma, \phi\right)$ are given, for $1 \leq i \leq l$, by

$$
\begin{gather*}
\Delta_{\alpha, \beta}\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta_{\alpha, \beta}\left(K_{i}^{\prime}\right)=K_{i}^{\prime} \otimes K_{i}^{\prime}, \tag{5.9}\\
\Delta_{\alpha, \beta}\left(E_{i}\right)=\beta_{i} E_{i} \otimes K_{i}+1 \otimes E_{i}, \quad \Delta_{\alpha, \beta}\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{\prime-1} \otimes F_{i}, \tag{5.10}\\
\varepsilon\left(K_{i}\right)=\varepsilon\left(K_{i}^{\prime}\right)=1, \quad \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \quad S_{\alpha}\left(K_{i}\right)=K_{i}^{-1}, \tag{5.11}\\
S_{\alpha}\left(K_{i}^{\prime}\right)=K_{i}^{\prime-1}, \quad S_{\alpha}\left(E_{i}\right)=-\alpha_{i} E_{i} K_{i}^{-1}, \quad S_{\alpha}\left(F_{i}\right)=-K_{i}^{\prime} F_{i}, \tag{5.12}\\
\varphi_{\alpha}\left(K_{i}\right)=K_{i}, \quad \varphi_{\alpha}\left(K_{i}^{\prime}\right)=K_{i}^{\prime}, \quad \varphi_{\alpha}\left(E_{i}\right)=\alpha_{i} E_{i}, \quad \varphi_{\alpha}\left(F_{i}\right)=\alpha_{i}^{-1} F_{i} . \tag{5.13}
\end{gather*}
$$

Finally, for any $\alpha \in \pi$, let I_{α}, be the ideal of $D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right)$ generated by $K_{i}-$ K_{i}^{\prime} and $K_{i}^{-1}-K_{i}^{\prime-1}$, where $1 \leq i \leq l$. Using the above description of the structure maps of $D\left(U_{+}, U_{-} ; \sigma, \phi\right)$, we get that $I=\left\{I_{\alpha}\right\}_{\alpha \in \pi}$ is a crossed Hopf π-coideal of $D\left(U_{+}, U_{-} ; \sigma, \phi\right)$. The quotient $D\left(U_{+}, U_{-} ; \sigma, \phi\right) / I=\left\{D\left(U_{+}, U_{-} ; \sigma, \phi_{\alpha}\right) / I_{\alpha}\right\}_{\alpha \in \pi}$ is precisely $U_{q}^{\pi}(\mathrm{g})=\left\{U_{q}^{\alpha}(\mathrm{g})\right\}_{\alpha \in \pi}$. Hence the latter has a crossed Hopf π-coalgebra structure given by replacing K_{i}^{\prime} with K_{i} in (5.9)-(5.13).

Remark 5.3. In the above construction, we use the diagonal Hopf automorphisms of $U_{+}=U_{q}\left(\mathfrak{b}_{+}\right)$. What happens if we use also the Hopf automorphisms coming from diagram automorphisms? Recall that a diagram automorphism of g is a permutation ω of $\{1, \ldots, l\}$ such that $a_{\omega(i), \omega(j)}=a_{i, j}$ for all $1 \leq i, j \leq l$. Denote by Γ the group of diagram automorphisms of \mathfrak{g}. In the following table, we recall the isomorphism class of Γ depending on the type of g (see, e.g., Bourbaki, 1981):

		A_{l}	B_{l}	C_{l}	D_{l}						
\mathfrak{g}	A_{1}	$(l \geq 2)$	$(l \geq 2)$	$(l \geq 2)$	$(l \geq 3, l \neq 4)$	D_{4}	E_{6}	E_{7}	E_{8}	F_{4}	G_{2}
Γ	1	\mathbb{Z}_{2}	1	1	\mathbb{Z}_{2}	Ξ_{3}	\mathbb{Z}_{2}	1	1	1	1

There exists a group morphism $\phi: \Gamma \times\left(\mathbb{C}^{*}\right)^{l} \rightarrow \operatorname{Aut}_{\mathrm{Hopf}}\left(U_{+}\right)$defined by $\phi_{\beta}\left(K_{i}\right)=$ $K_{\omega(i)}$ and $\phi_{\beta}\left(E_{i}\right)=\beta_{i} E_{\omega(i)}$ for $\beta=\left(\omega, \beta_{1}, \ldots, \beta_{l}\right) \in \Gamma \times\left(\mathbb{C}^{*}\right)^{l}$ and $1 \leq i \leq l$. Note that ϕ is in fact a group isomorphism, see Fleury (1997). We can then consider the Hopf $\left(\Gamma \times\left(\mathbb{C}^{*}\right)^{l}\right)$-coalgebra $D\left(U_{+}, U_{-} ; \sigma, \phi\right)$. Nevertheless, unlike in the proof of Proposition 5.1, there is no natural way to quotient $D\left(U_{+}, U_{-} ; \sigma, \phi\right)$ in order to eliminate the K_{j}^{\prime}.

6. h-ADIC GRADED QUANTUM GROUPS

Let \mathfrak{g} be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $\left(a_{i, j}\right)$. We let d_{i} be the coprime integers such that the matrix $\left(d_{i} a_{i, j}\right)$ is symmetric.

Definition-Proposition 6.1. Set $\pi=\mathbb{C}[[h]]^{l}$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in \pi$, let $U_{h}^{\alpha}(\mathrm{g})$ be the h-adic algebra generated by the elements $H_{i}, E_{i}, F_{i}, 1 \leq i \leq l$, subject to the
following defining relations:

$$
\begin{gather*}
{\left[H_{i}, H_{j}\right]=0,} \tag{6.1}\\
{\left[H_{i}, E_{j}\right]=a_{i j} E_{j},} \tag{6.2}\\
{\left[H_{i}, F_{j}\right]=-a_{i j} F_{j},} \tag{6.3}\\
{\left[E_{i}, F_{j}\right]=\delta_{i, j} \frac{e^{d_{i} h x_{i}} e^{d_{i} h H_{i}}-e^{-d_{i} h H_{i}}}{e^{d_{i} h}-e^{-d_{i} h}},} \tag{6.4}\\
\sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{e^{d_{i} h}} E_{i}^{1-a_{i, j}-r} E_{j} E_{i}^{r}=0 \quad(i \neq j), \tag{6.5}\\
\sum_{r=0}^{1-a_{i, j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i, j} \\
r
\end{array}\right]_{e^{d_{i} h}} F_{i}^{1-a_{i, j}-r} F_{j} F_{i}^{r}=0 \quad(i \neq j) . \tag{6.6}
\end{gather*}
$$

The family $U_{h}^{\pi}(\mathrm{g})=\left\{U_{h}^{\alpha}(\mathrm{g})\right\}_{\alpha \in \pi}$ has a structure of a crossed h-adic Hopf π-coalgebra given, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in \pi, \beta=\left(\beta_{1}, \ldots, \beta_{l}\right) \in \pi$ and $1 \leq i \leq l$, by:

$$
\begin{aligned}
\Delta_{\alpha, \beta}\left(H_{i}\right) & =H_{i} \otimes 1+1 \otimes H_{i}, \\
\Delta_{\alpha, \beta}\left(E_{i}\right) & =e^{d_{i} h \beta_{i}} E_{i} \otimes e^{d_{i} h H_{i}}+1 \otimes E_{i}, \\
\Delta_{\alpha, \beta}\left(F_{i}\right) & =F_{i} \otimes 1+e^{-d_{i} h H_{i}} \otimes F_{i}, \\
\varepsilon\left(H_{i}\right) & =\varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \\
S_{\alpha}\left(H_{i}\right) & =-H_{i}, \quad S_{\alpha}\left(E_{i}\right)=-e^{d_{i} h \alpha_{i}} E_{i} e^{-d_{i} h H_{i}}, \quad S_{\alpha}\left(F_{i}\right)=-e^{d_{i} h H_{i}} F_{i}, \\
\varphi_{\alpha}\left(H_{i}\right) & =H_{i}, \quad \varphi_{\alpha}\left(E_{i}\right)=e^{d_{i} h \alpha_{i}} E_{i}, \quad \varphi_{\alpha}\left(F_{i}\right)=e^{-d_{i} h \alpha_{i}} F_{i} .
\end{aligned}
$$

Remark 6.2. (a) $\left(U_{h}^{0}(\mathrm{~g}), \Delta_{0,0}, \varepsilon, S_{0}\right)$ is the usual quantum group $U_{h}(\mathrm{~g})$.
(b) The element $e^{d_{i} h}-e^{-d_{i} h} \in \mathbb{C}[[h]]$ is not invertible in $\mathbb{C}[[h]]$, because the constant term is zero. But the expression of the right hand side of (6.4) is a formal power series $\sum_{n} p_{n}\left(H_{i}\right) h^{n}$ with certain polynomials $p_{n}\left(H_{i}\right)$, and so it is a well-defined element of the h-adic algebra generated by E_{i}, F_{i}, H_{i}.

Proof. Let U_{+}be the h-adic algebra generated by $H_{i}, E_{i}, 1 \leq i \leq l$, subject to the relations (6.1), (6.2) and (6.5). Let U_{-}be the h-adic algebra generated by H_{i}^{\prime}, F_{i}, $1 \leq i \leq l$, subject to the relations (6.1), (6.3) and (6.6) with H_{i} replaced by H_{i}^{\prime}. The algebras U_{+}and U_{-}have a h-adic Hopf algebra structure given by:

$$
\begin{aligned}
& \Delta\left(H_{i}\right)=H_{i} \otimes 1+1 \otimes H_{i}, \quad \Delta\left(E_{i}\right)=E_{i} \otimes e^{d_{i} h H_{i}}+1 \otimes E_{i}, \\
& \varepsilon\left(H_{i}\right)=\varepsilon\left(E_{i}\right)=0, \quad S\left(H_{i}\right)=-H_{i}, \quad S\left(E_{i}\right)=-E_{i} e^{-d_{i} h H_{i}}, \\
& \Delta\left(H_{i}^{\prime}\right)=H_{i}^{\prime} \otimes 1+1 \otimes H_{i}^{\prime}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+e^{-d_{i} h H_{i}^{\prime}} \otimes F_{i}, \\
& \varepsilon\left(H_{i}^{\prime}\right)=\varepsilon\left(F_{i}\right)=0, \quad S\left(H_{i}^{\prime}\right)=-H_{i}^{\prime}, \quad S\left(F_{i}\right)=-e^{d_{i} h H_{i}^{\prime}} F_{i} .
\end{aligned}
$$

In order to construct a Hopf pairing adapted to our needs, let us consider the h-adic Hopf algebra $\widetilde{U}_{-}=\mathbb{C}[[h]] 1+h U_{-}$. The elements $\widetilde{H}_{i}^{\prime}=h H_{i}^{\prime}$ and $\widetilde{F}_{i}=h F_{i}$ belong to \widetilde{U}_{-}and satisfy

$$
\left[\widetilde{H}_{i}^{\prime}, \widetilde{F}_{j}\right]=-h a_{i j} \widetilde{F}_{j}, \quad \Delta\left(\widetilde{H}_{i}^{\prime}\right)=\widetilde{H}_{i}^{\prime} \otimes 1+1 \otimes \widetilde{H}_{i}^{\prime}, \quad \Delta\left(\widetilde{F}_{i}\right)=\widetilde{F}_{i} \otimes 1+e^{-d_{i} \tilde{H}_{i}} \otimes \widetilde{F}_{i}
$$

The element $e^{-d_{i} \tilde{H}_{i}^{\prime}}=1+\sum_{k \geq 1} \frac{1}{k!}\left(-d_{i} h\right)^{k} H_{i}^{k}$ is also in \widetilde{U}_{-}. Note that $e^{-d_{i} \tilde{H}_{i}^{\prime}}$ is not in the h-adic subalgebra of \widetilde{U}_{-}generated by $\widetilde{H}_{i}^{\prime}$. Using the method described in Section 2.1 (see also Klimyk and Schmudgen, 1997, Proposition 38), it can be verified that there exists a (unique) Hopf pairing $\sigma: U_{+} \times \widetilde{U}_{-} \rightarrow \mathbb{C}[[h]]$ such that:

$$
\sigma\left(H_{i}, \widetilde{H}_{j}^{\prime}\right)=d_{i}^{-1} a_{j, i}, \quad \sigma\left(H_{i}, \widetilde{F}_{j}\right)=\sigma\left(E_{i}, \widetilde{H}_{j}^{\prime}\right)=0, \quad \sigma\left(E_{i}, \widetilde{F}_{j}\right)=\frac{\delta_{i, j} h}{e^{d_{i} h}-e^{-d_{i} h}} .
$$

Let $\phi: \pi \rightarrow \operatorname{Aut}_{\text {Hopf }}\left(U_{+}\right)$and $\psi: \pi \rightarrow \operatorname{Aut}_{\text {Hopf }}\left(\widetilde{U}_{-}\right)$defined, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in \pi$ and $1 \leq i \leq l$, by

$$
\phi_{\alpha}\left(H_{i}\right)=H_{i}, \quad \phi_{\alpha}\left(E_{i}\right)=e^{d_{i} h \alpha_{i}} E_{i}, \quad \psi_{\alpha}\left(\widetilde{H}_{i}^{\prime}\right)=\widetilde{H}_{i}^{\prime}, \quad \psi_{\alpha}\left(\widetilde{F}_{i}\right)=e^{-d_{i} h \alpha_{i}} \widetilde{F}_{i}
$$

It is straightforward to verify that ψ is (σ, ϕ)-compatible. By the h-adic version of Lemma 2.4, we can consider the crossed h-adic Hopf π-coalgebra $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi\right)=$ $\left\{D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi_{\alpha}\right)\right\}_{\alpha \in \pi}$ whose structure can be explicitly described as in the proof of Proposition 5.1.

For any $\alpha \in \pi$, let I_{α} be the h-adic ideal of $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi_{\alpha}\right)$ generated by $\widetilde{H}_{i}^{\prime} \sim h H_{i}$ where $1 \leq i \leq l$. Using the description of the structure maps of $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi_{\alpha}\right)$, we get that $I=\left\{I_{\alpha}\right\}_{\alpha \in \pi}$ is a crossed h-adic Hopf π-coideal of $D\left(U_{+}, U_{-} ; \sigma, \phi\right)$. The quotient $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi\right) / I=\left\{D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi_{\alpha}\right) / I_{\alpha}\right\}_{\alpha \in \pi}$ is precisely $U_{h}^{\pi}(\mathrm{g})=\left\{U_{h}^{\alpha}(\mathrm{g})\right\}_{\alpha \in \pi}$. Hence the latter has a structure of a crossed h-adic Hopf π-coalgebra.

It is well-know (see, e.g., Klimyk and Schmudgen, 1997) that the Hopf pairing $\sigma: U_{+} \times \widetilde{U}_{-} \rightarrow \mathbb{C}[[h]]$ is non-degenerate and that, if $\left(e_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ are dual basis of the vector spaces U_{+}and \widetilde{U}_{-}with respect to the form σ, then $\sum_{i}\left(e_{i} \otimes 1\right) \otimes$ $\left(1 \otimes f_{i}\right)$ belongs to the h-adic completion $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi_{\alpha}\right) \hat{\otimes} D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi_{\beta}\right)$. Therefore, by Theorem 2.10, the crossed h-adic Hopf π-coalgebra $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi\right)$ is quasitriangular. Hence, as a quotient of $D\left(U_{+}, \widetilde{U}_{-} ; \sigma, \phi\right), U_{h}^{\pi}(\mathrm{g})$ is also quasitriangular.

For example, when $\mathfrak{g}=\mathfrak{\xi l} l_{2}$ and so $\pi=\mathbb{C}[[h]]$, we have that the R-matrix of $U_{h}^{\mathbb{C}[h]]}\left(\mathfrak{E} l_{2}\right)$ is given, for any $\alpha, \beta \in \mathbb{C}[[h]]$, by

$$
R_{\alpha, \beta}=e^{h(H \otimes H) / 2} \sum_{n=0}^{\infty} R_{n}(h) E^{n} \otimes F^{n} \in U_{h}^{\alpha}\left(\mathfrak{\xi} l_{2}\right) \hat{\otimes} U_{h}^{\beta}\left(\mathfrak{\xi} l_{2}\right),
$$

where $R_{n}(h)=q^{n(n+1) / 2} \frac{\left(1-q^{-2}\right)^{n}}{[n] q^{\prime}}$ and $q=e^{h}$.
Let $\alpha \in \mathbb{C}[[h]]$. For any non-negative integer n, consider a $(n+1)$-dimensional \mathbb{C}-vector space V_{n} with basis $\left\{v_{0}, \ldots, v_{n}\right\}$. The space $V_{n}^{\alpha}=V_{n}[[h]]=V_{n} \otimes \mathbb{C}[[h]]$ has
a structure of a (topological) left $U_{h}^{\alpha}\left(\mathfrak{F l}_{2}\right)$-module given, for $0 \leq i \leq n$, as follows:

$$
\begin{aligned}
H \cdot v_{i} & =\left(n-2 i-\frac{\alpha}{2}\right) v_{i}, \\
E \cdot v_{i} & = \begin{cases}e^{\frac{h x}{2}}[n-i+1]_{q} v_{i-1} & \text { if } i>0, \\
0 & \text { if } i=0,\end{cases} \\
F \cdot v_{i} & = \begin{cases}{[i+1]_{q} v_{i+1}} & \text { if } i<n, \\
0 & \text { if } i=n .\end{cases}
\end{aligned}
$$

Together with the quasitriangularity of $U_{h}^{\mathbb{C}[h]]}\left(\mathfrak{E r}_{2}\right)$, these data lead in particular to a solution of the $\mathbb{C}[[h]]$-colored Yang-Baxter equation.

REFERENCES

Bourbaki, N. (1981). Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Paris: Masson.
Drinfeld, V. G. (1987). Quantum groups. In: Proc. I.C.M. Berkeley 1986. Vol. 1, 2 (Berkeley, Calif., 1986). Providence, RI, Amer. Math. Soc., pp. 798-820.
Fleury, O. (1997). Automorphismes de $U_{q}\left(\mathfrak{b}_{+}\right)$. Beiträge Algebra Geom. 38(2):343-356.
Kassel, C., Rosso, M., Turaev, V. (1997). Quantum groups and knot invariants. Panoramas et Synthèses [Panoramas and Syntheses]. Vol. 5. Société Mathématique de France.
Kirillov, A. Jr., (2004). On G-equivariant modular categories. math.QA/0401119.
Klimyk, A., Schmudgen, K. (1997). Quantum Groups and Their Representations. Berlin, New York: Springer-Verlag.
Ohtsuki, T. (1993). Colored ribbon Hopf algebras and universal invariants of framed links. J. Knot Theory and Its Rami. 2(2):211-232.

Radford, D. E. (1990). The group of automorphisms of a semisimple Hopf algebra over a field of characteristic 0 is finite. Amer. J. Math. 112(2):331-357.
Turaev, V. (2000). Homotopy field theory in dimension 3 and group-categories. preprint GT/0005291.
Van Daele, A. (1993). Dual pairs of Hopf *-algebras. Bull. London Math. Soc. 25(3):209-230.
Virelizier, A. (2001). Algèbres de Hopf graduées et fibrés plats sur les 3 -variétés. Ph.D. thesis.
Virelizier, A. (2002). Hopf group-coalgebras. J. Pure Appl. Algebra 171(1):75-122.
Zunino, M. (2004). Double construction for crossed Hopf coalgebras. J. Algebra 278(1):43-75.

