

GRADED QUANTUM GROUPS AND QUASITRIANGULAR HOPF GROUP-COALGEBRAS[#]

Alexis Virelizier

Max Planck Institute for Mathematics, Bonn, Germany

Starting from a Hopf algebra endowed with an action of a group π by Hopf automorphisms, we construct (by a "twisted" double method) a quasitriangular Hopf π -coalgebra. This method allows us to obtain non-trivial examples of quasitriangular Hopf π -coalgebras for any finite group π and for infinite groups π such as $GL_n(\mathbf{k})$. In particular, we define the graded quantum groups, which are Hopf π -coalgebras for $\pi = \mathbb{C}[[\hbar]]^l$ and generalize the Drinfeld-Jimbo quantum enveloping algebras.

Key Words: Drinfeld double; Graded quantum groups; Hopf algebra automorphisms; Quasi-triangular Hopf group-coalgebras.

2000 Mathematics Subject Classification: 81R50; 17B37; 16W30.

INTRODUCTION

Let π be a group. Turaev (2000) introduced the notion of a *braided* π *category* and showed that such a category gives rise to a 3-dimensional homotopy quantum field theory (the target being a $K(\pi, 1)$ space). Moreover braided π -categories, also called π -equivariant categories, provide a suitable mathematical formalism for the description of orbifold models that arise in the study of conformal field theories in which π is the group of automorphisms of the vertex operator algebra, see Kirillov (2004).

The algebraic structure whose category of representations is a braided π -category is that of a *quasitriangular Hopf* π -coalgebra, see Turaev (2000), Virelizier (2002). The aim of the present article is to construct examples of quasitriangular Hopf π -coalgebras. Note that quasitriangular Hopf π -coalgebras are also used in Virelizier (2001) to construct HKR-type invariants of flat π -bundles over link complements and over 3-manifolds.

Following Turaev (2000), a Hopf π -coalgebra is a family $H = \{H_{\alpha}\}_{\alpha \in \pi}$ of algebras (over a field k) endowed with a comultiplication $\Delta = \{\Delta_{\alpha,\beta} : H_{\alpha\beta} \to H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in \pi}$, a counit $\varepsilon : H_1 \to k$, and an antipode $S = \{S_{\alpha} : H_{\alpha} \to H_{\alpha^{-1}}\}_{\alpha \in \pi}$ which verify some compatibility conditions. A crossing for H is a family of algebra

Received March 15, 2004; Revised January 15, 2005; Accepted March 6, 2005

^{*}Communicated by H. J. Schneider.

Address correspondence to Alexis Virelizier, Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany; Fax: +49-228-402277; E-mail: virelizi@mpim-bonn.mpg.de

isomorphisms $\varphi = \{\varphi_{\beta} : H_{\alpha} \to H_{\beta\alpha\beta^{-1}}\}_{\alpha,\beta\in\pi}$, which preserves the comultiplication and the counit, and which yields an action of π in the sense that $\varphi_{\beta}\varphi_{\beta'} = \varphi_{\beta\beta'}$. A crossed Hopf π -coalgebra H is quasitriangular when it is endowed with an R-matrix $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta\in\pi}$ verifying some axioms (involving the crossing φ) which generalize the classical ones given in Drinfeld (1987). Note that the case $\pi = 1$ is the standard setting of Hopf algebras.

Starting from a crossed Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$, Zunino (2004) constructed a double $Z(H) = \{Z(H)_{\alpha}\}_{\alpha \in \pi}$ of H, which is a quasitriangular Hopf π -coalgebra in which H is embedded. One has that $Z(H)_{\alpha} = H_{\alpha} \otimes (\bigoplus_{\beta \in \pi} H_{\beta}^{*})$ as a vector space. Unfortunately, each component $Z(H)_{\alpha}$ is infinite-dimensional (unless $H_{\beta} = 0$ for all but a finite number of $\beta \in \pi$).

To obtain non-trivial examples of quasitriangular Hopf π -coalgebras with finite-dimensional components, we restrict ourselves to a less general situation: our initial datum is not any crossed Hopf π -coalgebra but a Hopf algebra endowed with an action of π by Hopf algebra automorphisms. Remark indeed that the component H_1 of a Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is a Hopf algebra and that a crossing for H induces an action of π on H_1 by Hopf automorphisms.

In this article, starting from a Hopf algebra A endowed with an action $\phi : \pi \rightarrow \text{Aut}_{\text{Hopf}}(A)$ of a group π by Hopf automorphisms, we construct a quasitriangular Hopf π -coalgebra $D(A, \phi) = \{D(A, \phi_{\alpha})\}_{\alpha \in \pi}$. The algebra $D(A, \phi_{\alpha})$ is constructed in a manner similar to the Drinfeld double (in particular $D(A, \phi_{\alpha}) = A \otimes A^*$ as a vector space) except that its product is "twisted" by the Hopf automorphism $\phi_{\alpha} : A \rightarrow A$. The algebra $D(A, \phi_{\beta})$ is the usual Drinfeld double. Note that the algebras $D(A, \phi_{\alpha})$ and $D(A, \phi_{\beta})$ are in general not isomorphic when $\alpha \neq \beta$.

This method allows us to define non-trivial examples of quasitriangular Hopf π -coalgebras for any finite group π and for infinite groups π such as $\operatorname{GL}_n(\Bbbk)$. In particular, given a complex simple Lie algebra \mathfrak{g} of rank l, we define the graded quantum groups $\{U_h^{\alpha}(\mathfrak{g})\}_{\alpha \in (\mathbb{C}^*)^l}$ and $\{U_h^{\alpha}(\mathfrak{g})\}_{\alpha \in \mathbb{C}[[h]]^l}$, which are crossed Hopf group-coalgebras. They are obtained as quotients of $D(U_q(\mathfrak{b}_+), \phi)$ and $D(U_h(\mathfrak{b}_+), \phi')$, where \mathfrak{b}_+ denotes the Borel subalgebra of \mathfrak{g}, ϕ is an action of $(\mathbb{C}^*)^l$ by Hopf automorphisms of $U_q(\mathfrak{b}_+)$, and ϕ' is an action of $\mathbb{C}[[h]]^l$ by Hopf automorphisms of $U_h(\mathfrak{b}_+)$. Furthermore, the crossed Hopf $\mathbb{C}[[h]]^l$ -coalgebra $\{U_h^{\alpha}(\mathfrak{g})\}_{\alpha \in \mathbb{C}[[h]]^l}$ is quasitriangular.

The article is organized as follows. In Section 1, we review the basic definitions and properties of Hopf π -coalgebras. In Section 2, we define the twisted double of a Hopf algebra A endowed with an action of a group π by Hopf automorphisms. In Section 3, we explore the case $A = \Bbbk[G]$, where G is a finite group. In Section 4, we give an example of a quasitriangular Hopf $GL_n(\Bbbk)$ -coalgebra. Finally, we define the graded quantum groups in Sections 5 and 6.

Throughout this article, π is a group (with neutral element 1) and \Bbbk is a field. Unless otherwise specified, the tensor product $\otimes = \bigotimes_{\Bbbk}$ is assumed to be over \Bbbk .

1. HOPF GROUP-COALGEBRAS

In this section, we review some definitions and properties concerning Hopf group-coalgebras. For a detailed treatment of the theory of Hopf group-coalgebras, we refer to Virelizier (2002).

GRADED QUANTUM GROUPS

1.1. Hopf π -Coalgebras

A Hopf π -coalgebra (over k) is a family $H = \{H_{\alpha}\}_{\alpha \in \pi}$ of k-algebras endowed with a family $\Delta = \{\Delta_{\alpha,\beta} : H_{\alpha\beta} \to H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in \pi}$ of algebra homomorphisms (the *comultiplication*) and an algebra homomorphism $\varepsilon : H_1 \to k$ (the *counit*) such that, for all $\alpha, \beta, \gamma \in \pi$,

$$\left(\Delta_{\alpha,\beta}\otimes \mathrm{id}_{H_{\gamma}}\right)\Delta_{\alpha\beta,\gamma} = \left(\mathrm{id}_{H_{\alpha}}\otimes\Delta_{\beta,\gamma}\right)\Delta_{\alpha,\beta\gamma},\tag{1.1}$$

$$(\mathrm{id}_{H_{\alpha}}\otimes\varepsilon)\Delta_{\alpha,1}=\mathrm{id}_{H_{\alpha}}=(\varepsilon\otimes\mathrm{id}_{H_{\alpha}})\Delta_{1,\alpha},\qquad(1.2)$$

and with a family $S = \{S_{\alpha} : H_{\alpha} \to H_{\alpha^{-1}}\}_{\alpha \in \pi}$ of k-linear maps (the *antipode*) which verifies that, for all $\alpha \in \pi$,

$$m_{\alpha}(S_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}})\Delta_{\alpha^{-1},\alpha} = \varepsilon 1_{\alpha} = m_{\alpha}(\mathrm{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}})\Delta_{\alpha,\alpha^{-1}}, \tag{1.3}$$

where $m_{\alpha}: H_{\alpha} \otimes H_{\alpha} \to H_{\alpha}$ and $1_{\alpha} \in H_{\alpha}$ denote, respectively, the multiplication and unit element of H_{α} .

When $\pi = 1$, one recovers the usual notion of a Hopf algebra. In particular $(H_1, m_1, 1_1, \Delta_{1,1}, \varepsilon, S_1)$ is a Hopf algebra.

Remark that the notion of a Hopf π -coalgebra is not self-dual and that if $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is a Hopf π -coalgebra, then $\{\alpha \in \pi \mid H_{\alpha} \neq 0\}$ is a subgroup of π .

A Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is said to be of *finite type* if, for all $\alpha \in \pi$, H_{α} is finite-dimensional (over k). Note that it does not mean that $\bigoplus_{\alpha \in \pi} H_{\alpha}$ is finite-dimensional (unless $H_{\alpha} = 0$ for all but a finite number of $\alpha \in \pi$).

The antipode of a Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is anti-multiplicative: each $S_{\alpha} : H_{\alpha} \to H_{\alpha^{-1}}$ is an anti-homomorphism of algebras, and anti-comultiplicative: $\varepsilon S_1 = \varepsilon$ and $\Delta_{\beta^{-1},\alpha^{-1}}S_{\alpha\beta} = \tau_{H_{\alpha^{-1}},H_{\beta^{-1}}}(S_{\alpha} \otimes S_{\beta})\Delta_{\alpha,\beta}$ for any $\alpha, \beta \in \pi$, see Virelizier (2002, Lemma 1.1).

The antipode $S = \{S_{\alpha}\}_{\alpha \in \pi}$ of $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is said to be *bijective* if each S_{α} is bijective. As for Hopf algebras, the antipode of a finite type Hopf π -coalgebra is always bijective, see Virelizier (2002, Corollary 3.7(a))).

1.2. Crossed Hopf π -Coalgebras

A Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is said to be *crossed* if it is endowed with a family $\varphi = \{\varphi_{\beta} : H_{\alpha} \to H_{\beta \alpha \beta^{-1}}\}_{\alpha,\beta \in \pi}$ of algebra isomorphisms (the *crossing*) such that, for all $\alpha, \beta, \gamma \in \pi$,

$$(\varphi_{\beta} \otimes \varphi_{\beta}) \Delta_{\alpha,\gamma} = \Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \varphi_{\beta}, \qquad (1.4)$$

$$\varepsilon \varphi_{\beta} = \varepsilon,$$
 (1.5)

$$\varphi_{\alpha}\varphi_{\beta} = \varphi_{\alpha\beta}.\tag{1.6}$$

It is easy to check that $\varphi_1|_{H_{\alpha}} = \mathrm{id}_{H_{\alpha}}$ and $\varphi_{\beta}S_{\alpha} = S_{\beta\alpha\beta^{-1}}\varphi_{\beta}$ for all $\alpha, \beta \in \pi$.

1.3. Quasitriangular Hopf π -Coalgebras

A crossed Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is said to be *quasitriangular* if it is endowed with a family $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta \in \pi}$ of invertible elements (the *R*-matrix) such that, for all $\alpha, \beta, \gamma \in \pi$ and $x \in H_{\alpha\beta}$,

$$R_{\alpha,\beta} \cdot \Delta_{\alpha,\beta}(x) = \tau_{\beta,\alpha}(\varphi_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}}) \Delta_{\alpha\beta\alpha^{-1},\alpha}(x) \cdot R_{\alpha,\beta}, \tag{1.7}$$

$$(\mathrm{id}_{H_{\alpha}} \otimes \Delta_{\beta,\gamma})(R_{\alpha,\beta\gamma}) = (R_{\alpha,\gamma})_{1\beta3} \cdot (R_{\alpha,\beta})_{12\gamma}, \tag{1.8}$$

$$(\Delta_{\alpha,\beta} \otimes \mathrm{id}_{H_{\gamma}})(R_{\alpha\beta,\gamma}) = [(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23}, \tag{1.9}$$

$$(\varphi_{\beta} \otimes \varphi_{\beta})(R_{\alpha,\gamma}) = R_{\beta\alpha\beta^{-1},\beta\gamma\beta^{-1}}, \qquad (1.10)$$

where $\tau_{\beta,\alpha}$ denotes the flip map $H_{\beta} \otimes H_{\alpha} \to H_{\alpha} \otimes H_{\beta}$ and, for k-spaces P, Q and $r = \sum_{j} p_{j} \otimes q_{j} \in P \otimes Q$, we set $r_{12\gamma} = r \otimes 1_{\gamma} \in P \otimes Q \otimes H_{\gamma}$, $r_{\alpha 23} = 1_{\alpha} \otimes r \in H_{\alpha} \otimes P \otimes Q$, and $r_{1\beta3} = \sum_{j} p_{j} \otimes 1_{\beta} \otimes q_{j} \in P \otimes H_{\beta} \otimes Q$.

Note that $R_{1,1}$ is a (classical) *R*-matrix for the Hopf algebra H_1 .

When π is abelian and φ is *trivial* (that is, $\varphi_{\beta}|_{H_{\alpha}} = id_{H_{\alpha}}$ for all $\alpha, \beta \in \pi$), one recovers the definition of a quasitriangular π -colored Hopf algebra given in Ohtsuki (1993).

The *R*-matrix always verifies (see Virelizier, 2002, Lemma 6.4) that, for any $\alpha, \beta, \gamma \in \pi$,

$$(\varepsilon \otimes \mathrm{id}_{H_{\alpha}})(R_{1,\alpha}) = 1_{\alpha} = (\mathrm{id}_{H_{\alpha}} \otimes \varepsilon)(R_{\alpha,1}), \qquad (1.11)$$

$$(S_{\alpha^{-1}}\varphi_{\alpha}\otimes \mathrm{id}_{H_{\beta}})(R_{\alpha^{-1},\beta}) = R_{\alpha,\beta}^{-1} \quad \text{and} \quad (\mathrm{id}_{H_{\alpha}}\otimes S_{\beta})(R_{\alpha,\beta}^{-1}) = R_{\alpha,\beta^{-1}}, \quad (1.12)$$

$$(S_{\alpha} \otimes S_{\beta})(R_{\alpha,\beta}) = (\varphi_{\alpha} \otimes \mathrm{id}_{H_{\beta^{-1}}})(R_{\alpha^{-1},\beta^{-1}}), \qquad (1.13)$$

and provides a solution of the π -colored Yang-Baxter equation:

$$(R_{\beta,\gamma})_{\alpha23} \cdot (R_{\alpha,\gamma})_{1\beta3} \cdot (R_{\alpha,\beta})_{12\gamma} = (R_{\alpha,\beta})_{12\gamma} \cdot [(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23}.$$
(1.14)

1.4. Ribbon Hopf π -Coalgebras

A quasitriangular Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ is said to be *ribbon* if it is endowed with a family $\theta = \{\theta_{\alpha} \in H_{\alpha}\}_{\alpha \in \pi}$ of invertible elements (the *twist*) such that, for any $\alpha, \beta \in \pi$,

$$\varphi_{\alpha}(x) = \theta_{\alpha}^{-1} x \theta_{\alpha} \quad \text{for all } x \in H_{\alpha},$$
 (1.15)

$$S_{\alpha}(\theta_{\alpha}) = \theta_{\alpha^{-1}}, \tag{1.16}$$

$$\varphi_{\beta}(\theta_{\alpha}) = \theta_{\beta\alpha\beta^{-1}}, \qquad (1.17)$$

$$\Delta_{\alpha,\beta}(\theta_{\alpha\beta}) = (\theta_{\alpha} \otimes \theta_{\beta}) \cdot \tau_{\beta,\alpha}((\varphi_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}})(R_{\alpha\beta\alpha^{-1},\alpha})) \cdot R_{\alpha,\beta}.$$
 (1.18)

Note that θ_1 is a (classical) twist of the quasitriangular Hopf algebra H_1 .

1.5. Hopf π -Coideals

Let $H = \{H_{\alpha}\}_{\alpha \in \pi}$ be a Hopf π -coalgebra. A Hopf π -coideal of H is a family $I = \{I_{\alpha}\}_{\alpha \in \pi}$, where each I_{α} is an ideal of H_{α} , such that, for any $\alpha, \beta \in \pi$,

$$\Delta_{\alpha,\beta}(I_{\alpha\beta}) \subset I_{\alpha} \otimes H_{\beta} + H_{\alpha} \otimes I_{\beta}, \tag{1.19}$$

$$\varepsilon(I_1) = 0, \tag{1.10}$$

$$S_{\alpha}(I_{\alpha}) \subset I_{\alpha^{-1}}.$$
(1.21)

The quotient $\overline{H} = \{\overline{H}_{\alpha} = H_{\alpha}/I_{\alpha}\}_{\alpha \in \pi}$, endowed with the induced structure maps, is then a Hopf π -coalgebra. If H is furthermore crossed, with a crossing φ such that, for any $\alpha, \beta \in \pi$,

$$\varphi_{\beta}(I_{\alpha}) \subset I_{\beta\alpha\beta^{-1}}, \tag{1.22}$$

then so is \overline{H} (for the induced crossing).

2. TWISTED DOUBLE OF HOPF ALGEBRAS

In this section, we give a method (the twisted double) for defining a quasitriangular Hopf π -coalgebra from a Hopf algebra endowed with an action of a group π by Hopf automorphisms.

2.1. Hopf Pairings

Recall that a *Hopf pairing* between two Hopf algebras A and B (over \Bbbk) is a bilinear pairing $\sigma : A \times B \to \Bbbk$ such that, for all $a, a' \in A$ and $b, b' \in B$,

$$\sigma(a, bb') = \sigma(a_{(1)}, b)\sigma(a_{(2)}, b'), \qquad (2.1)$$

$$\sigma(aa', b) = \sigma(a, b_{(2)})\sigma(a', b_{(1)}), \qquad (2.2)$$

$$\sigma(a, 1) = \varepsilon(a)$$
 and $\sigma(1, b) = \varepsilon(b)$. (2.3)

Note that such a pairing always verifies that, for any $a \in A$ and $b \in B$,

$$\sigma(S(a), S(b)) = \sigma(a, b), \tag{2.4}$$

since both σ and $\sigma(S \times S)$ are the inverse of $\sigma(id \times S)$ in the algebra $\operatorname{Hom}_{\Bbbk}(A \times B, \Bbbk)$ endowed with the convolution product.

Let $\sigma: A \times B \to \Bbbk$ be a Hopf pairing. Its annihilator ideals are $I_A = \{a \in A \mid A \in A\}$ $\sigma(a, b) = 0$ for all $b \in B$ and $I_B = \{b \in B \mid \sigma(a, b) = 0 \text{ for all } a \in A\}$. It is easy to check that I_A and I_B are Hopf ideals of A and B, respectively. Recall that σ is said to be non-degenerate if I_A and I_B are both reduced to 0. A degenerate Hopf pairing σ : $A \times B \rightarrow k$ induces (by passing to the quotients) a Hopf pairing $\bar{\sigma} : A/I_A \times B/I_B \rightarrow b$ k, which is non-degenerate.

Most of Hopf algebras we shall consider in the sequel will be defined by generators and relations. The following provides us with a method of constructing Hopf pairings, see Van Daele (1993), Kassel et al. (1997).

Let \widetilde{A} (resp. \widetilde{B}) be a free algebra generated by elements a_1, \ldots, a_p (resp. b_1, \ldots, b_q) over k. Suppose that \widetilde{A} and \widetilde{B} have Hopf algebra structures such that each $\Delta(a_i)$ for $1 \le i \le p$ (resp. $\Delta(b_j)$ for $1 \le i \le q$) is a linear combination of tensors $a_r \otimes a_s$ (resp. $b_r \otimes b_s$). Given pq scalars $\lambda_{i,j} \in \mathbb{k}$ with $1 \le i \le p$ and $1 \le j \le q$, there is a unique Hopf pairing $\sigma : \widetilde{A} \times \widetilde{B} \to \mathbb{k}$ such that $\sigma(a_i, b_j) = \lambda_{i,j}$.

Suppose now that A (resp. B) is the algebra obtained as the quotient of \widetilde{A} (resp. \widetilde{B}) by the ideal generated by elements $r_1, \ldots, r_m \in \widetilde{A}$ (resp. $s_1, \ldots, s_n \in \widetilde{B}$). Suppose also that the Hopf algebra structure in \widetilde{A} (resp. \widetilde{B}) induces a Hopf algebra structure in A (resp. B). Then a Hopf pairing $\sigma : \widetilde{A} \times \widetilde{B} \to \Bbbk$ induces a Hopf pairing $A \times B \to \Bbbk$ if and only if $\sigma(r_i, b_j) = 0$ for all $1 \le i \le m$ and $1 \le j \le q$, and $\sigma(a_i, s_j) = 0$ for all $1 \le i \le p$ and $1 \le j \le n$.

2.2. The Twisted Double Construction

Definition-Lemma 2.1. Let $\sigma : A \times B \to \Bbbk$ be a Hopf pairing between two Hopf algebras A and B. Let $\phi : A \to A$ be a Hopf algebra endomorphism of A. Set $D(A, B; \sigma, \phi) = A \otimes B$ as a \Bbbk -space. Then $D(A, B; \sigma, \phi)$ has a structure of an associative and unitary algebra given, for any $a, a' \in A$ and $b, b' \in B$, by

$$(a \otimes b) \cdot (a' \otimes b') = \sigma(\phi(a'_{(1)}), S(b_{(1)}))\sigma(a'_{(3)}, b_{(3)})aa'_{(2)} \otimes b_{(2)}b',$$
(2.5)

$$\mathbf{1}_{D(A,B;\sigma,\phi)} = \mathbf{1}_A \otimes \mathbf{1}_B. \tag{2.6}$$

Moreover, the linear embeddings $A \hookrightarrow D(A, B; \sigma, \phi)$ and $B \hookrightarrow D(A, B; \sigma, \phi)$ defined by $a \mapsto a \otimes 1_B$ and $b \mapsto 1_A \otimes b$, respectively, are algebra morphisms.

Remark 2.2. (a) Note that $D(A, B; \sigma, \text{id}_A)$ is the underlying algebra of the usual quantum double of A and B (obtained by using the Hopf pairing σ).

(b) If ϕ and ϕ' are different Hopf algebra endomorphisms of A, then the algebras $D(A, B; \sigma, \phi)$ and $D(A, B; \sigma, \phi')$ are not in general isomorphic, see Remark 4.2.

Proof. Let $a, a', a'' \in A$ and $b, b', b'' \in B$. Using the fact that σ is a Hopf pairing and ϕ is a Hopf algebra endomorphism, we have that

$$\begin{split} \left((a \otimes b) \cdot (a' \otimes b') \right) \cdot (a'' \otimes b'') \\ &= \sigma(\phi(a'_{(1)}), S(b_{(1)})) \sigma(a'_{(3)}, b_{(5)}) \sigma(\phi(a''_{(1)}), S(b_{(2)}b'_{(1)})) \\ &\times \sigma(a''_{(3)}, b_{(4)}b'_{(3)}) aa'_{(2)}a''_{(2)} \otimes b_{(3)}b'_{(2)}b'' \\ &= \sigma(\phi(a'_{(1)}), S(b_{(1)})) \sigma(a'_{(3)}, b_{(5)}) \sigma(\phi(a''_{(1)}), S(b'_{(1)})) \sigma(\phi(a''_{(2)}), S(b_{(2)})) \\ &\times \sigma(a''_{(4)}, b_{(4)}) \sigma(a''_{(5)}, b'_{(3)}) aa'_{(2)}a''_{(3)} \otimes b_{(3)}b'_{(2)}b'', \end{split}$$

and

$$(a \otimes b) \cdot ((a' \otimes b') \cdot (a'' \otimes b''))$$

= $\sigma(\phi(a'_{(1)}), S(b'_{(1)}))\sigma(a''_{(5)}, b'_{(3)})\sigma(\phi(a'_{(1)}a''_{(2)}), S(b_{(1)}))$
 $\times \sigma(a'_{(3)}a''_{(4)}, b_{(3)})aa'_{(2)}a''_{(3)} \otimes b_{(2)}b'_{(2)}b''$

GRADED QUANTUM GROUPS

$$= \sigma(\phi(a''_{(1)}), S(b'_{(1)}))\sigma(a''_{(5)}, b'_{(3)})\sigma(\phi(a'_{(1)}), S(b_{(1)}))\sigma(\phi(a''_{(2)}), S(b_{(2)}))$$

$$\times \sigma(a'_{(3)}, b_{(5)})\sigma(a''_{(4)}, b_{(4)})aa'_{(2)}a''_{(3)} \otimes b_{(3)}b'_{(2)}b''.$$

Hence the product is associative. Moreover $1_A \otimes 1_B$ is the unit element since

$$(a \otimes b) \cdot (1 \otimes 1) = \sigma(\phi(1), S(b_{(1)}))\sigma(1, b_{(3)})a \otimes b_{(2)}$$
$$= \varepsilon(S(b_{(1)}))\varepsilon(b_{(3)})a \otimes b_{(2)} = a \otimes b,$$

and

$$(1 \otimes 1) \cdot (a \otimes b) = \sigma(\phi(a_{(1)}), S(1))\sigma(a_{(3)}, 1)a_{(2)} \otimes b$$
$$= \varepsilon(\phi(a_{(1)}))\varepsilon(a_{(3)})a_{(2)} \otimes b = a \otimes b.$$

Finally, for any $a, a' \in A$ and $b, b' \in B$, we have that

$$(a \otimes 1) \cdot (a' \otimes 1) = \sigma(\phi(a'_{(1)}), S(1))\sigma(a'_{(3)}, 1)aa'_{(2)} \otimes 1$$
$$= \varepsilon(\phi(a'_{(1)}))\varepsilon(a'_{(3)})aa'_{(2)} \otimes 1$$
$$= aa' \otimes 1,$$

and

$$(1 \otimes b) \cdot (1 \otimes b') = \sigma(\phi(1), S(b_{(1)}))\sigma(1, b_{(3)})1 \otimes b_{(2)}b'$$
$$= \varepsilon(S(b_{(1)}))\varepsilon(b_{(3)})1 \otimes b_{(2)}b'$$
$$= 1 \otimes bb'.$$

Therefore $A \hookrightarrow D(A, B; \sigma, \phi)$ and $B \hookrightarrow D(A, B; \sigma, \phi)$ are algebra morphisms. \Box

In the sequel, the group of Hopf automorphisms of a Hopf algebra A will be denoted by $Aut_{Hopf}(A)$.

Theorem 2.3. Let $\sigma : A \times B \to \Bbbk$ be a Hopf pairing between two Hopf algebras A and B, and $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be group homomorphism (that is, an action of π on A by Hopf automorphisms). Then the family of algebras $D(A, B; \sigma, \phi) =$ $\{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha \in \pi}$ (see Definition 2.1) has a structure of a Hopf π -coalgebra given, for any $a \in A$, $b \in B$, and α , $\beta \in \pi$, by:

$$\Delta_{\alpha,\beta}(a \otimes b) = (\phi_{\beta}(a_{(1)}) \otimes b_{(1)}) \otimes (a_{(2)} \otimes b_{(2)}),$$
(2.7)

$$\varepsilon(a \otimes b) = \varepsilon_A(a)\varepsilon_B(b), \qquad (2.8)$$

$$S_{\alpha}(a \otimes b) = \sigma(\phi_{\alpha}(a_{(1)}), b_{(1)})\sigma(a_{(3)}, S(b_{(3)}))\phi_{\alpha}S(a_{(2)}) \otimes S(b_{(2)}).$$
(2.9)

Proof. The coassociativity (1.1) follows directly from the coassociativity of the coproducts of A and B and the fact that $\phi_{\beta\gamma} = \phi_{\beta}\phi_{\gamma}$. Axiom (1.2) is a direct consequence of $\varepsilon_A \phi_{\alpha} = \varepsilon_A$. Since $\phi_1 = id_A$ and $D(A, B; \sigma, id_A)$ is underlying algebra

of the usual quantum double of *A* and *B*, the counit ε is multiplicative. Let us verify that $\Delta_{\alpha,\beta}$ is multiplicative. Let $a, a' \in A$ and $b, b' \in B$. On one hand we have:

$$\begin{split} \Delta_{\alpha,\beta}((a \otimes b) \cdot (a' \otimes b')) \\ &= \sigma(\phi_{\alpha\beta}(a'_{(1)}), S(b_{(1)}))\sigma(a'_{(3)}, b_{(3)})\Delta_{\alpha,\beta}(aa'_{(2)} \otimes b_{(2)}b') \\ &= \sigma(\phi_{\alpha\beta}(a'_{(1)}), S(b_{(1)}))\sigma(a'_{(4)}, b_{(4)})\phi_{\beta}(a_{(1)}a'_{(2)}) \otimes b_{(2)}b'_{(1)} \otimes a_{(2)}a'_{(3)} \otimes b_{(3)}b'_{(2)}. \end{split}$$

One the other hand,

$$\begin{split} &\Delta_{\alpha,\beta}(a\otimes b)\cdot\Delta_{\alpha,\beta}(a'\otimes b')\\ &=(\phi_{\beta}(a_{(1)})\otimes b_{(1)}\otimes a_{(2)}\otimes b_{(2)})\cdot(\phi_{\beta}(a'_{(1)})\otimes b'_{(1)}\otimes a'_{(2)}\otimes b'_{(2)})\\ &=\sigma(\phi_{\alpha}\phi_{\beta}(a'_{(1)}),S(b_{(1)}))\sigma(\phi_{\beta}(a'_{(3)}),b_{(3)})\sigma(\phi_{\beta}(a'_{(4)}),S(b_{(4)}))\sigma(a'_{(6)},b_{(6)})\\ &\times\phi_{\beta}(a_{(1)})\phi_{\beta}(a'_{(2)})\otimes b_{(2)}b'_{(1)}\otimes a_{(2)}a'_{(5)}\otimes b_{(5)}b'_{(2)}\\ &=\sigma(\phi_{\alpha\beta}(a'_{(1)}),S(b_{(1)}))\sigma(\phi_{\beta}(a'_{(3)}),b_{(3)}S(b_{(4)}))\sigma(a'_{(5)},b_{(6)})\\ &\times\phi_{\beta}(a_{(1)}a'_{(2)})\otimes b_{(2)}b'_{(1)}\otimes a_{(2)}a'_{(4)}\otimes b_{(5)}b'_{(2)}\\ &=\sigma(\phi_{\alpha\beta}(a'_{(1)}),S(b_{(1)}))\sigma(a'_{(4)},b_{(4)})\phi_{\beta}(a_{(1)}a'_{(2)})\otimes b_{(2)}b'_{(1)}\otimes a_{(2)}a'_{(3)}\otimes b_{(3)}b'_{(2)} \end{split}$$

Let us verify the first equality of (1.3). Let $a \in A$, $b \in B$, and $\alpha \in \pi$. Denote the multiplication in $D(A, B; \sigma, \phi_{\alpha})$ by m_{α} . We have

$$\begin{split} m_{\alpha}(S_{\alpha^{-1}} \otimes \mathrm{id}_{D(A,B;\sigma,\phi_{\alpha})})\Delta_{\alpha^{-1},\alpha}(a \otimes b) \\ &= \sigma(a_{(1)}, b_{(1)}) \, \sigma(\phi_{\alpha}(a_{(3)}), S(b_{(5)})) \sigma(\phi_{\alpha}(a_{(4)}), S^{2}(b_{(4)}))) \\ &\times \sigma(a_{(6)}, S(b_{(2)}))S(a_{(2)})a_{(5)} \otimes S(b_{(3)})b_{(6)} \\ &= \sigma(a_{(1)}, b_{(1)})\sigma(\phi_{\alpha}(a_{(3)}), S(b_{(5)})S^{2}(b_{(4)}))) \\ &\times \sigma(a_{(5)}, S(b_{(2)}))S(a_{(2)})a_{(4)} \otimes S(b_{(3)})b_{(6)} \\ &= \sigma(a_{(1)}, b_{(1)})\sigma(a_{(4)}, S(b_{(2)}))S(a_{(2)})a_{(3)} \otimes S(b_{(3)})b_{(4)} \\ &= \sigma(a_{(1)}, b_{(1)})\sigma(a_{(2)}, S(b_{(2)}))1 \otimes 1 \\ &= \sigma(a, b_{(1)}S(b_{(2)}))1 \otimes 1 = \varepsilon(a)\varepsilon(b)1 \otimes 1. \end{split}$$

The second equality of (1.3) can be verified similarly.

Let $\sigma : A \times B \to \mathbb{k}$ be a Hopf pairing between two Hopf algebras A and B, and $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be an action of π on A by Hopf automorphisms. An action $\psi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(B)$ of π on B by Hopf automorphisms is said to be (σ, ϕ) *compatible* if, for all $a \in A$, $b \in B$ and $\beta \in \pi$,

$$\sigma(\phi_{\beta}(a),\psi_{\beta}(b)) = \sigma(a,b).$$
(2.10)

Lemma 2.4. Let $\sigma : A \times B \to \Bbbk$ be a Hopf pairing between two Hopf algebras A and B. Let $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ and $\psi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(B)$ be two actions of π by

3036

Hopf automorphisms. Suppose that ψ is (σ, ϕ) -compatible. Then the Hopf π -coalgebra $D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha \in \pi}$ (see Theorem 2.3) admits a crossing φ given, for any $a \in A$, $b \in B$ and $\beta \in \pi$, by

$$\varphi_{\beta}(a \otimes b) = \phi_{\beta}(a) \otimes \psi_{\beta}(b). \tag{2.11}$$

Proof. Let $\alpha, \beta \in \pi$. We have that $\varphi_{\beta}(1_A \otimes 1_B) = \phi_{\beta}(1_A) \otimes \psi_{\beta}(1_B) = 1_A \otimes 1_B$ and, for any $a, a' \in A$ and $b, b' \in B$,

$$\begin{split} \varphi_{\beta}(a \otimes b) \cdot \varphi_{\beta}(a' \otimes b') \\ &= \sigma(\phi_{\beta \alpha \beta^{-1}}(\phi_{\beta}(a')_{(1)}), S(\psi_{\beta}(b)_{(1)}))\sigma(\phi_{\beta}(a')_{(3)}, \psi_{\beta}(b)_{(3)}) \\ &\times \phi_{\beta}(a)\phi_{\beta}(a')_{(2)} \otimes \psi_{\beta}(b)_{(2)}\psi_{\beta}(b') \\ &= \sigma(\phi_{\beta}\phi_{\alpha}(a'_{(1)})), \psi_{\beta}S(b_{(1)}))\sigma(\phi_{\beta}(a'_{(3)}), \psi_{\beta}(b_{(3)}))\phi_{\beta}(a)\phi_{\beta}(a'_{(2)}) \otimes \psi_{\beta}(b_{(2)})\psi_{\beta}(b') \\ &= \sigma(\phi_{\alpha}(a'_{(1)})), S(b_{(1)}))\sigma(a'_{(3)}, b_{(3)})\phi_{\beta}(aa'_{(2)}) \otimes \psi_{\beta}(b_{(2)}b') \\ &= \varphi_{\beta}((a \otimes b) \cdot (a' \otimes b')). \end{split}$$

Moreover ϕ_{β} and ψ_{β} are bijective and so is φ_{β} . Therefore $\varphi_{\beta} : D(A, B; \sigma, \phi_{\alpha}) \to D(A, B; \sigma, \phi_{\beta \alpha \beta^{-1}})$ is an algebra isomorphism.

Finally, for any $a \in A$, $b \in B$ and α , β , $\gamma \in \pi$, we have that:

$$\begin{split} \Delta_{\beta\alpha\beta^{-1},\beta\gamma\beta^{-1}}(\varphi_{\beta}(a\otimes b)) &= \phi_{\beta\gamma\beta^{-1}}(\phi_{\beta}(a)_{(1)}) \otimes \psi_{\beta}(b)_{(1)} \otimes \phi_{\beta}(a)_{(2)} \otimes \psi_{\beta}(b)_{(2)} \\ &= \phi_{\beta\gamma\beta^{-1}}\phi_{\beta}(a_{(1)}) \otimes \psi_{\beta}(b_{(1)}) \otimes \phi_{\beta}(a_{(2)}) \otimes \psi_{\beta}(b_{(2)}) \\ &= \phi_{\beta}\phi_{\gamma}(a_{(1)}) \otimes \psi_{\beta}(b_{(1)}) \otimes \phi_{\beta}(a_{(2)}) \otimes \psi_{\beta}(b_{(2)}) \\ &= (\varphi_{\beta} \otimes \varphi_{\beta})\Delta_{\alpha,\gamma}(a\otimes b), \\ \varepsilon\varphi_{\beta}(a\otimes b) &= \varepsilon(\phi_{\beta}(a))\varepsilon(\psi_{\beta}(b)) = \varepsilon(a)\varepsilon(b) = \varepsilon(a\otimes b), \end{split}$$

and

$$\varphi_{\alpha}\varphi_{\beta}(a\otimes b) = \phi_{\alpha}\phi_{\beta}(a)\otimes\psi_{\alpha}\psi_{\beta}(b) = \phi_{\alpha\beta}(a)\otimes\psi_{\alpha\beta}(b) = \varphi_{\alpha\beta}(a\otimes b)$$

Hence φ satisfies Axioms (1.4), (1.5) and (1.6).

Corollary 2.5. Let $\sigma : A \times B \to \Bbbk$ be a Hopf pairing and $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be an action of π on A by Hopf automorphisms. Suppose that σ is non-degenerate and that A (and so B) is finite dimensional. Then there exists a unique action $\phi^* : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(B)$ which is (σ, ϕ) -compatible. It is characterized, for any $a \in A$, $b \in B$ and $\beta \in \pi$, by

$$\sigma(a,\phi_{\beta}^{*}(b)) = \sigma(\phi_{\beta^{-1}}(a),b). \tag{2.12}$$

Consequently the Hopf π -coalgebra $D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha \in \pi}$ (see Theorem 2.3) is crossed with crossing defined by $\varphi_{\beta} = \phi_{\beta} \otimes \phi_{\beta}^{*}$ for any $\beta \in \pi$.

Proof. Let $\beta \in \pi$. Since σ is non-degenerate and A and B are finite dimensional, the map $b \in B \mapsto \sigma(\cdot, b) \in A^*$ is a linear isomorphism, and so (2.12) does uniquely

define a linear map $\phi_{\beta}^*: B \to B$. Since σ is a Hopf pairing and $\phi_{\beta^{-1}}$ is a Hopf algebra isomorphism of A, the map ϕ_{β}^* is a Hopf algebra isomorphism of B. Moreover ϕ^* is an action since $\phi_1^* = \mathrm{id}_B$ (because $\phi_1 = \mathrm{id}_A$) and $\sigma(a, \phi_{\alpha\beta}^*(b)) = \sigma(\phi_{\beta^{-1}\alpha^{-1}}(a), b) = \sigma(\phi_{\beta^{-1}}\phi_{\alpha^{-1}}(a), b) = \sigma(\phi_{\alpha^{-1}}(a), \phi_{\beta}^*(b)) = \sigma(a, \phi_{\alpha}^*\phi_{\beta}^*(b))$ for any $a \in A, b \in B$ and $\alpha, \beta \in \pi$. Finally (2.12) says exactly that ϕ^* is (σ, ϕ) -compatible. \Box

Theorem 2.6. Let $\sigma : A \times B \to \Bbbk$ be a Hopf pairing between two Hopf algebras A and B, and $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be an action of π on A by Hopf automorphisms. Suppose that σ is non-degenerate and that A (and so B) is finite dimensional. Then the crossed Hopf π -coalgebra $D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha \in \pi}$ (see Corollary 2.5) is quasitriangular with R-matrix given, for all $\alpha, \beta \in \pi$, by

$$R_{\alpha,\beta} = \sum_{i} (e_i \otimes 1_B) \otimes (1_A \otimes f_i), \qquad (2.13)$$

where $(e_i)_i$ and $(f_i)_i$ are basis of A and B, respectively, such that $\sigma(e_i, f_j) = \delta_{i,j}$.

Remark 2.7. (a) The element $\sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i) \in A \otimes B \otimes A \otimes B$ is canonical, i.e., independent of the choices of the basis $(e_i)_i$ of A and $(f_i)_i$ of B such that $\sigma(e_i, f_j) = \delta_{i,j}$.

(b) Note that the hypothesis A is finite dimensional ensures that the sum $\sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i)$ lies in $A \otimes B \otimes A \otimes B$. More generally, assume that A and B are graded Hopf algebras with finite dimensional homogeneous components and that σ is compatible with the gradings. Then the quotient Hopf algebras A/I_A and B/I_B are also graded and can be identified via σ with the duals of each other. Suppose also that the action ϕ respects the grading so does the quotient $\overline{\phi}: \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A/I_A)$. In this case, there exists a unique action $\pi \to \operatorname{Aut}_{\operatorname{Hopf}}(B/I_B)$ which is $(\overline{\sigma}, \overline{\phi})$ -compatible, where $\overline{\sigma}: A/I_A \times B/I_B \to \Bbbk$ is the induced Hopf pairing. Then the Hopf π -coalgebra $D(A/I_A, B/I_B; \overline{\sigma}, \overline{\phi})$ is quasitriangular by the same construction as in Theorem 2.6.

Proof. Fix basis (e_i) of A and (f_i) of B such that $\sigma(e_i, f_j) = \delta_{i,j}$ (such basis always exist since σ is non-degenerate). Note that $x = \sum_i \sigma(x, f_i)e_i$ and $y = \sum_i \sigma(e_i, y)f_i$ for any $x \in A$ and $y \in B$.

Recall that, since $\sum_i e_i \otimes 1_B \otimes 1_A \otimes f_i$ is the *R*-matrix of the usual quantum double $D(A, B, \sigma, id_A)$, we have

$$\sum_{i,j} S(e_i)e_j \otimes f_i f_j = 1_A \otimes 1_B,$$
(2.14)

$$\sum_{i} e_i \otimes f_{i(1)} \otimes f_{i(2)} = \sum_{i,j} e_i e_j \otimes f_j \otimes f_i, \qquad (2.15)$$

$$\sum_{i} e_{i(1)} \otimes e_{i(2)} \otimes f_{i} = \sum_{i,j} e_{i} \otimes e_{j} \otimes f_{i}f_{j}.$$
(2.16)

Let $\alpha, \beta \in \pi$. From (2.14) and since A (resp. B) can be viewed as a subalgebra of $D(A, B; \sigma, \phi_{\alpha})$ (resp. $D(A, B; \sigma, \phi_{\beta})$) via $a \mapsto a \otimes 1_{B}$ (resp. $b \mapsto 1_{A} \otimes b$), we get

that $R_{\alpha,\beta}$ is invertible in $D(A, B; \sigma, \phi_{\alpha}) \otimes D(A, B; \sigma, \phi_{\beta})$ with inverse

$$R_{\alpha,\beta}^{-1} = \sum_{i} S(e_i) \otimes 1_B \otimes 1_A \otimes f_i$$

Let $a \in A$, $b \in B$ and $\alpha, \beta \in \pi$. For all $x \in A$, we have that:

$$\begin{aligned} (\mathrm{id}_{A\otimes B\otimes A}\otimes\sigma(x,\cdot))(R_{\alpha,\beta}\cdot\Delta_{\alpha,\beta}(a\otimes b)) \\ &=\sum_{i}\sigma(\phi_{\beta}(a_{(2)}),S(f_{i(1)}))\sigma(a_{(4)},f_{i(3)})\sigma(x,f_{i(2)}b_{(2)})e_{i}\phi_{\beta}(a_{(1)})\otimes b_{(1)}\otimes a_{(3)} \\ &=\sum_{i}\sigma(\phi_{\beta}S^{-1}(a_{(2)}),f_{i(1)})\sigma(a_{(4)},f_{i(3)})\sigma(x_{(1)},f_{i(2)})\sigma(x_{(2)},b_{(2)})e_{i}\phi_{\beta}(a_{(1)})\otimes b_{(1)}\otimes a_{(3)} \\ &=\sum_{i}\sigma(a_{(4)}x_{(1)}\phi_{\beta}S^{-1}(a_{(2)}),f_{i})\sigma(x_{(2)},b_{(2)})e_{i}\phi_{\beta}(a_{(1)})\otimes b_{(1)}\otimes a_{(3)} \\ &=\sigma(x_{(2)},b_{(2)})a_{(4)}x_{(1)}\phi_{\beta}(S^{-1}(a_{(2)})a_{(1)})\otimes b_{(1)}\otimes a_{(3)} \\ &=\sigma(x_{(2)},b_{(2)})a_{(2)}x_{(1)}\otimes b_{(1)}\otimes a_{(1)}, \end{aligned}$$

and, since $x_{(1)} \otimes x_{(2)} \otimes x_{(3)} \otimes x_{(4)} = \sum_{i} \sigma(x_{(2)}, f_i) x_{(1)} \otimes e_{i(1)} \otimes e_{i(2)} \otimes e_{i(3)}$,

$$\begin{aligned} (\mathrm{id}_{A\otimes B\otimes A}\otimes\sigma(x,\cdot))(\tau_{\beta,\alpha}(\varphi_{\alpha^{-1}}\otimes\mathrm{id}_{H_{\alpha}})\Delta_{\alpha\beta\alpha^{-1},\alpha}(a\otimes b)\cdot R_{\alpha,\beta}) \\ &= \sum_{i}\sigma(\phi_{\alpha}(e_{i(1)}),S(b_{(2)}))\sigma(e_{i(3)},b_{(4)})\sigma(x,\phi_{\alpha^{-1}}^{*}(b_{(1)})f_{i})a_{(2)}e_{i(2)}\otimes b_{(3)}\otimes a_{(1)} \\ &= \sum_{i}\sigma(\phi_{\alpha}(e_{i(1)}),S(b_{(2)}))\sigma(e_{i(3)},b_{(4)})\sigma(\phi_{\alpha}(x_{(1)}),b_{(1)})\sigma(x_{(2)},f_{i})a_{(2)}e_{i(2)}\otimes b_{(3)}\otimes a_{(1)} \\ &= \sigma(\phi_{\alpha}(x_{(2)}),S(b_{(2)}))\sigma(x_{(4)},b_{(4)})\sigma(\phi_{\alpha}(x_{(1)}),b_{(1)})a_{(2)}x_{(3)}\otimes b_{(3)}\otimes a_{(1)} \\ &= \sigma(\phi_{\alpha}(x_{(1)}),b_{(1)}S(b_{(2)}))\sigma(x_{(3)},b_{(4)})a_{(2)}x_{(2)}\otimes b_{(3)}\otimes a_{(1)} \\ &= \sigma(x_{(2)},b_{(2)})a_{(2)}x_{(1)}\otimes b_{(1)}\otimes a_{(1)}. \end{aligned}$$

Hence, since the $\sigma(x, \cdot)$ span B^* , Axiom (1.7) is satisfied.

Let us verify Axiom (1.10). Let $\alpha, \beta, \gamma \in \pi$. Since ϕ^* is (σ, ϕ) -compatible, the basis $(\phi_{\beta}(e_i))_i$ of A and $(\phi^*_{\beta}(f_i))_i$ of B satisfy $\sigma(\phi_{\beta}(e_i), \phi^*_{\beta}(e_j)) = \sigma(e_i, f_j) = \delta_{i,j}$. Therefore we get that:

$$(\varphi_{\beta}\otimes\varphi_{\beta})(R_{\alpha,\gamma})=\sum_{i}\phi_{\beta}(e_{i})\otimes 1_{B}\otimes 1_{A}\otimes\phi_{\beta}^{*}(f_{j})=R_{\beta\alpha\beta^{-1},\beta\gamma\beta^{-1}}.$$

Finally, let us check Axioms (1.8) and (1.9). Let $\alpha, \beta, \gamma \in \pi$. Using (2.15), we have:

$$(\mathrm{id}_{D(A,B;\sigma,\phi_{\alpha})}\otimes\Delta_{\beta,\gamma})(R_{\alpha,\beta\gamma}) = \sum_{i} e_{i}\otimes1_{B}\otimes1_{A}\otimes f_{i(1)}\otimes1_{A}\otimes f_{i(2)}$$
$$= \sum_{i,j} e_{i}e_{j}\otimes1_{B}\otimes1_{A}\otimes f_{j}\otimes1_{A}\otimes f_{i}$$
$$= (R_{\alpha,\gamma})_{1\beta3}\cdot(R_{\alpha,\beta})_{12\gamma}.$$

Likewise, using (2.16) and (1.10), we have:

$$\begin{split} (\Delta_{\alpha,\beta} \otimes \mathrm{id}_{D(A,B;\sigma,\phi_{\gamma})})(R_{\alpha\beta,\gamma}) &= \sum_{i} \phi_{\beta}(e_{i(1)}) \otimes 1_{B} \otimes e_{i(2)} \otimes 1_{B} \otimes 1_{A} \otimes f_{i} \\ &= \sum_{i,j} \phi_{\beta}(e_{i}) \otimes 1_{B} \otimes e_{j} \otimes 1_{B} \otimes 1_{A} \otimes f_{i}f_{j} \\ &= [(\varphi_{\beta} \otimes \mathrm{id}_{D(A,B;\sigma,\phi_{\gamma})})(R_{\beta^{-1}\alpha\beta,\gamma})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23} \\ &= [(\mathrm{id}_{D(A,B;\sigma,\phi_{\alpha})} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23}. \end{split}$$

This completes the proof of the quasitriangularity of $D(A, B; \sigma, \phi)$.

The next corollary is a direct consequence of Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let A be a finite-dimensional Hopf algebra and $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be an action of π on A by Hopf algebras automorphisms. Recall that the duality bracket $\langle , \rangle_{A\otimes A^*}$ is a non-degenerate Hopf pairing between A and $A^{\operatorname{*cop}}$. Then $D(A, A^{\operatorname{*cop}}; \langle , \rangle_{A\otimes A^*}, \phi)$ is a quasitriangular Hopf π -coalgebra.

Remark 2.9. The group of Hopf automorphisms of a finite-dimensional semisimple Hopf algebra A over a field of characteristic 0 is finite (see Radford, 1990). To obtain non-trivial examples of (quasitriangular) Hopf π -coalgebras for an infinite group π by using the twisted double method, one has to consider non-semisimple Hopf algebras (at least in characteristic 0).

2.3. The *h*-Adic Case

In this subsection, we develop the h-adic variant of Hopf group-coalgebras. A technical argument for the need of h-adic Hopf group-coalgebras is that they are necessary for a mathematically rigorous treatment of R-matrices for quantized enveloping algebras endowed with a group action.

Recall that if V is a vector space over $\mathbb{C}[[h]]$, the topology on V for which the sets $\{h^n V + v \mid n \in \mathbb{N}\}$ are a neighborhood base of $v \in V$ is called the *h*-adic topology. If V and W are vector spaces over $\mathbb{C}[[h]]$, we shall denote by $V \otimes W$ the completion of the tensor product space $V \otimes_{\mathbb{C}[[h]]} W$ in the *h*-adic topology. Let V be a complex vector space. Then the set V[[h]] of all formal power series $f = \sum_{n=0}^{\infty} v_n h^n$ with coefficients $v_n \in V$ is a vector space over $\mathbb{C}[[h]]$ which is complete in the *h*-adic topology. Furthermore, $V[[h]] \otimes W[[h]] = (V \otimes W)[[h]]$ for any complex vector spaces V and W.

An *h*-adic algebra is a vector space A over $\mathbb{C}[[h]]$, which is complete in the *h*-adic topology and endowed with a $\mathbb{C}[[h]]$ -linear map $m : A \otimes A \to A$ and an element $1 \in A$ satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ and $m(a \otimes 1) = a = m(1 \otimes a)$ for all $a \in A$.

By an *h*-adic Hopf π -coalgebra, we shall mean a family $H = \{H_{\alpha}\}_{\alpha \in \pi}$ of *h*-adic algebras which is endowed with *h*-adic algebra homomorphisms $\Delta_{\alpha,\beta} : H_{\alpha\beta} \to H_{\alpha} \otimes H_{\beta}$ ($\alpha, \beta \in \pi$) and $\varepsilon : A \to \mathbb{C}[[h]]$ satisfying (1.1) and (1.2), and with C[[h]]-linear maps $S_{\alpha} : H_{\alpha} \to H_{\alpha^{-1}}(\alpha \in \pi)$ satisfying (1.3). In the previous axioms, one has to replace the algebraic tensor products \otimes by the *h*-adic completions $\hat{\otimes}$.

The notions of crossed and quasitriangular *h*-adic Hopf π -coalgebras can be defined similarly as in Sections 1.2 and 1.3.

The definitions of Section 2 and Theorem 2.3 carry over almost verbatim to *h*-adic Hopf algebras. The only modifications are that $\sigma : A \otimes B \to \mathbb{C}[[h]]$ is $\mathbb{C}[[h]]$ -linear and that the algebra $D(A, B; \sigma, \phi)$, where ϕ is an *h*-adic Hopf endomorphism of *A*, is built over the completion $A \otimes B$ of $A \otimes B$ in the *h*-adic topology. The reasoning of the proof of Theorem 2.6 give the following *h*-adic version.

Theorem 2.10. Let $\sigma: A \otimes B \to \mathbb{C}[[h]]$ be an h-adic Hopf pairing between two h-adic Hopf algebras A and B, and $\phi: \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(A)$ be an action of π on A by h-adic Hopf automorphisms. Suppose that σ is non-degenerate and that $(e_i)_i$ and $(f_i)_i$ are basis of the vector spaces A and B, respectively, which are dual with respect to the form σ . If $R_{\alpha,\beta} = \sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i)$ belongs to the h-adic completion $D(A, B; \sigma, \phi_{\alpha}) \otimes D(A, B; \sigma, \phi_{\beta})$, then $R = \{R_{\alpha,\beta}\}_{\alpha,\beta\in\pi}$ is a R-matrix of the crossed h-adic Hopf π -coalgebra $D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_{\alpha})\}_{\alpha\in\pi}$.

3. THE CASE OF ALGEBRAS OF FINITE GROUPS

Let G be a finite group. In this section, we describe Hopf G-coalgebras obtained by the twisted double method from the Hopf algebra k[G].

Recall that the Hopf algebra structure of the (finite-dimensional) k-algebra k[G] of G is given by $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$ and $S(g) = g^{-1}$ for all $g \in G$. The dual of k[G] is the Hopf algebra $F(G) = k^G$ of functions $G \to k$. It has a basis $(e_g : G \to k)_{g \in G}$ defined by $e_g(h) = \delta_{g,h}$ where $\delta_{g,g} = 1$ and $\delta_{g,h} = 0$ if $g \neq h$. The structure maps of F(G) are given by $e_g e_h = \delta_{g,h} e_g$, $1_{F(G)} = \sum_{g \in G} e_g$, $\Delta(e_g) = \sum_{xy=g} e_x \otimes e_y$, $\varepsilon(e_g) = \delta_{g,1}$, and $S(e_g) = e_{g^{-1}}$ for any $g, h \in G$.

Set $\phi: G \to \operatorname{Aut}_{\operatorname{Hopf}}(\Bbbk[G])$ defined by $\phi_{\alpha}(h) = \alpha h \alpha^{-1}$. It is a well-defined group homomorphism (since any $\alpha \in G$ is grouplike in $\Bbbk[G]$). By Corollary 2.8, this datum leads to a quasitriangular Hopf *G*-coalgebra $D(\Bbbk[G], F(G)^{\operatorname{cop}};$ $\langle, \rangle_{\Bbbk[G] \times F(G)}, \phi)$, which will be denoted by $D_G(G) = \{D_{\alpha}(G)\}_{\alpha \in G}$.

Let us describe $D_G(G)$ more precisely. Let $\alpha \in G$. Recall that $D_{\alpha}(G)$ is equal to $\Bbbk[G] \otimes F(G)$ as a \Bbbk -space. The unit element and product of $D_{\alpha}(G)$ are given, for all $g, g', h, h' \in G$, by

$$1_{D_{\alpha}(G)} = \sum_{g \in G} 1 \otimes e_g \quad \text{and} \quad (g \otimes e_h) \cdot (g' \otimes e_{h'}) = \delta_{\alpha g' \alpha^{-1}, h^{-1} g' h'} gg' \otimes e_{h'}.$$

The structure maps of $D_G(G)$ are given, for any $\alpha, \beta \in G$ and $g, h \in G$, by

$$\begin{split} \Delta_{\alpha,\beta}(g\otimes e_h) &= \sum_{xy=h} \beta g \beta^{-1} \otimes e_y \otimes g \otimes e_x, \\ \varepsilon(g\otimes e_h) &= \delta_{h,1}, \\ S_{\alpha}(g\otimes e_h) &= \alpha g^{-1} \alpha^{-1} \otimes e_{\alpha g \alpha^{-1} h^{-1} g^{-1}}, \\ \varphi_{\alpha}(g\otimes e_h) &= \alpha g \alpha^{-1} \otimes e_{\alpha h \alpha^{-1}}. \end{split}$$

The crossed Hopf G-coalgebra $D_G(G)$ is quasitriangular and furthermore ribbon with *R*-matrix and twist given, for any $\alpha, \beta \in G$, by

$$R_{\alpha,\beta} = \sum_{g,h\in G} g \otimes e_h \otimes 1 \otimes e_g \quad \text{and} \quad \theta_{\alpha} = \sum_{g\in G} \alpha^{-1} g \alpha \otimes e_g.$$

Note that $\theta_{\alpha}^{n} = \sum_{g \in G} \alpha^{-n} (g\alpha)^{n} \otimes e_{g}$ for any $n \in \mathbb{Z}$.

4. EXAMPLE OF A QUASITRIANGULAR HOPF GL_n(k)-COALGEBRA

In this section, \Bbbk is a field whose characteristic is not 2. Fix a positive integer *n*. We use a (finite dimensional) Hopf algebra whose group of automorphisms is known to be the group $GL_n(\Bbbk)$ of invertible $n \times n$ -matrices with coefficients in \Bbbk (see Radford, 1990) to derive an example of a quasitriangular Hopf $GL_n(\Bbbk)$ -coalgebra.

Definition-Proposition 4.1. For $\alpha = (\alpha_{i,j}) \in GL_n(\mathbb{k})$, let \mathcal{A}_n^{α} be the \mathbb{C} -algebra generated $g, x_1, \ldots, x_n, y_1, \ldots, y_n$, subject to the following relations:

$$g^2 = 1, \quad x_1^2 = \dots = x_n^2 = 0, \quad gx_i = -x_i g, \quad x_i x_j = -x_j x_i,$$
 (4.1)

$$y_1^2 = \dots = y_n^2 = 0, \quad gy_i = -y_i g, \quad y_i y_j = -y_j y_i,$$
 (4.2)

$$x_i y_j - y_j x_i = (\alpha_{j,i} - \delta_{i,j})g,$$
 (4.3)

where $1 \leq i, j \leq n$. The family $\mathcal{A}_n = \{\mathcal{A}_n^{\alpha}\}_{\alpha \in \mathrm{GL}_n(\Bbbk)}$ has a structure of a crossed Hopf $GL_n(\Bbbk)$ -coalgebra given, for any $\alpha = (\alpha_{i,j}) \in GL_n(\Bbbk)$, $\beta = (\beta_{i,j}) \in GL_n(\Bbbk)$, and $1 \leq i \leq n$, by:

$$\Delta_{\alpha,\beta}(g) = g \otimes g, \qquad \varepsilon(g) = 1, \qquad S_{\alpha}(g) = g, \tag{4.4}$$

$$\Delta_{\alpha,\beta}(x_i) = 1 \otimes x_i + \sum_{k=1}^n \beta_{k,i} x_k \otimes g, \qquad \varepsilon(x_i) = 0, \qquad S_\alpha(x_i) = \sum_{k=1}^n \alpha_{k,i} g x_k, \quad (4.5)$$

$$\Delta_{\alpha,\beta}(y_i) = y_i \otimes 1 + g \otimes y_i, \quad \varepsilon(y_i) = 0, \quad S_{\alpha}(y_i) = -gy_i, \quad (4.6)$$

$$\varphi_{\alpha}(g) = g, \qquad \varphi_{\alpha}(x_i) = \sum_{k=1}^{n} \alpha_{k,i} x_k, \qquad \varphi_{\alpha}(y_i) = \sum_{k=1}^{n} \tilde{\alpha}_{i,k} y_k, \tag{4.7}$$

where $(\tilde{\alpha}_{i,j}) = \alpha^{-1}$. Moreover \mathcal{A}_n is quasitriangular with *R*-matrix given, for any $\alpha, \beta \in GL_n(\mathbb{k})$, by:

$$R_{\alpha,\beta} = \frac{1}{2} \sum_{S \subseteq [n]} x_S \otimes y_S + x_S \otimes gy_S + gx_S \otimes y_S - gx_S \otimes gy_S.$$

Here $[n] = \{1, ..., n\}$, $x_{\emptyset} = 1$, $y_{\emptyset} = 1$, and, for a nonempty subset S of [n], we let $x_S = x_{i_1} \cdots x_{i_s}$ and $y_S = y_{i_1} \cdots y_{i_s}$ where $i_1 < \cdots < i_s$ are the elements of S.

Remark 4.2. Note that the algebras \mathscr{A}_n^{α} and \mathscr{A}_n^{β} are in general not isomorphic when $\alpha, \beta \in GL_n(\mathbb{k})$ are such that $\alpha \neq \beta$. For example, we have that $\mathscr{A}_n^{\alpha} \not\simeq \mathscr{A}_n^1$ for any

 $\alpha \in \operatorname{GL}_n(\Bbbk)$ with $\alpha \neq 1$. This can be shown by remarking that:

$$\mathscr{A}_n^{\alpha}/[\mathscr{A}_n^{\alpha}, \mathscr{A}_n^{\alpha}] \not\simeq \mathscr{A}_n^1/[\mathscr{A}_n^1, \mathscr{A}_n^1].$$

Indeed $\mathcal{A}_n^{\alpha}/[\mathcal{A}_n^{\alpha}, \mathcal{A}_n^{\alpha}] = 0$ since $g = \frac{1}{\alpha_{j,i} - \delta_{i,j}} (x_i y_j - y_j x_i) \in [\mathcal{A}_n^{\alpha}, \mathcal{A}_n^{\alpha}]$ (for some $1 \le i, j \le n$ such that $\alpha_{j,i} \ne \delta_{i,j}$) and so $1 = g^2 \in [\mathcal{A}_n^{\alpha}, \mathcal{A}_n^{\alpha}]$. Moreover, in $\mathcal{A}_n^1/[\mathcal{A}_n^1, \mathcal{A}_n^1]$, we have that $x_k = x_k g^2 = 0$ (since $x_k g = g x_k = -x_k g$ and so $x_k g = 0$) and likewise $y_k = 0$. Hence $\mathcal{A}_n^1/[\mathcal{A}_n^1, \mathcal{A}_n^1] = \Bbbk \langle g | g^2 = 1 \rangle \ne 0$.

Proof. Let A_n be the k-algebra generated by g, x_1, \ldots, x_n , which satisfy the relations (4.1). The algebra A_n is 2^{n+1} -dimensional and is a Hopf algebra with structure maps defined by:

$$\Delta(g) = g \otimes g, \qquad \varepsilon(g) = 1, \qquad S(g) = g,$$

$$\Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \qquad \varepsilon(x_i) = 0, \qquad S(x_i) = gx_i$$

Radford (1990) showed that the group of Hopf automorphisms of A_n is isomorphic to the group $\operatorname{GL}_n(\Bbbk)$ of invertible $n \times n$ -matrices with coefficients in \Bbbk . This group automorphism $\phi : \operatorname{GL}_n(\Bbbk) \to \operatorname{Aut}_{\operatorname{Hopf}}(A_n)$ is given by:

$$\phi_{\alpha}(g) = g$$
 and $\phi_{\alpha}(x_i) = \sum_{k=1}^{n} \alpha_{k,i} x_k$ for any $\alpha = (\alpha_{i,j}) \in \operatorname{GL}_n(\Bbbk)$.

The Hopf algebra $B_n = A_n^{\text{cop}}$ is the k-algebra generated by the symbols h, y_1, \dots, y_n which satisfy the relations $h^2 = 1$, $y_i^2 = 0$, $hy_i = -y_i h$, and $y_i y_j = -y_j y_i$. Its Hopf algebra structure is given by:

$$\Delta(h) = h \otimes h, \quad \varepsilon(h) = 1, \quad S(h) = h,$$

$$\Delta(y_i) = y_i \otimes 1 + h \otimes y_i, \quad \varepsilon(y_i) = 0, \quad S(y_i) = -hy_i.$$

Let us denote the cardinality of a set T by |T|. The elements $g^k x_s$ (resp. $h^k y_s$), where $k \in \{0, 1\}$ and $S \subseteq [n]$, form a basis for A_n (resp. B_n). Since Δ is multiplicative, it follows that

$$\Delta(g^k x_S) = \sum_{T \subseteq S} \lambda_{T,S} g^k x_T \otimes g^{k+|T|} x_{S \setminus T}$$
(4.8)

and

$$\Delta(h^k y_S) = \sum_{T \subseteq S} \lambda_{T,S} h^{k+|T|} y_{S \setminus T} \otimes h^k y_T,$$
(4.9)

where $\lambda_{T,S} = \pm 1$ and $\lambda_{\emptyset,S} = 1 = \lambda_{S,S}$.

By Section 2.1, there exists a (unique) Hopf pairing $\sigma : A_n \times B_n \to \Bbbk$ such that $\sigma(g, h) = -1$, $\sigma(g, y_j) = \sigma(x_i, h) = 0$, and $\sigma(x_i, y_j) = \delta_{i,j}$ for all $1 \le i, j \le n$. Using (4.8) and (4.9), one gets (by induction on |S|) that

$$\sigma(g^k x_S, h^l y_T) = (-1)^{kl} \delta_{S,T}$$

for any $k, l \in \{0, 1\}$ and $S, T \subseteq [n]$, where $\delta_{S,S} = 1$ and $\delta_{S,T} = 0$ if $S \neq T$. Set $z_0 = (1+h)/2$ and $z_1 = (1-h)/2$. The elements $z_k y_s$, where $k \in \{0, 1\}$ and $S \subseteq [n]$, form a basis for B_n such that:

$$\sigma(g^k x_s, z_l y_T) = \delta_{k,l} \delta_{s,T} \tag{4.10}$$

for any $k, l \in \{0, 1\}$ and $S, T \subseteq [n]$. Therefore the pairing σ is non-degenerate. Note that this implies that $A_n^* \cong A_n$ as a Hopf algebra.

By Theorem 2.6, we get a quasitriangular Hopf $GL_n(\Bbbk)$ -coalgebra $D(A_n, B_n; \sigma, \phi)$. For any $\alpha = (\alpha_{i,j}) \in GL_n(\Bbbk)$, $D(A_n, B_n; \sigma, \phi_{\alpha})$ is the algebra generated by $g, h, x_1, \ldots, x_n, y_1, \ldots, y_n$, subject to the relations $h^2 = 1$, (4.1), (4.2) with g replaced by h, and the following relations:

$$gh = hg, \quad gy_j = -y_jg, \quad hx_i = -x_ih,$$
 (4.11)

$$x_i y_j - y_j x_i = \alpha_{j,i} g - \delta_{i,j} h. \tag{4.12}$$

Indeed $D(A_n, B_n; \sigma, \phi_\alpha)$ is the free algebra generated by the algebras A_n and B_n with cross relation (2.5). Further, it suffices to require the cross relations (2.5) for $(1 \otimes b) \cdot (a \otimes 1)$ with $a = g, x_i$ and $b = h, y_j$. To simplify the notations, we identify of a with $a \otimes 1$ and b with $1 \otimes b$ (recall that these natural maps $A_n \hookrightarrow D(A_n, B_n; \sigma, \phi_\alpha)$ and $B_n \hookrightarrow D(A_n, B_n; \sigma, \phi_\alpha)$ are algebra monomorphisms). For example, let $a = x_i$ and $b = y_j$. Since $\sigma(x_i, 1) = \sigma(g, y_j) = \sigma(x_i, h) = \sigma(1, y_j) = 0$, relation (2.5) gives

$$y_j x_i = \sigma(\phi_\alpha(x_i), y_j h) \sigma(g, 1) g \cdot 1 + \sigma(1, h) \sigma(g, 1) x_i \cdot y_j + \sigma(1, h) \sigma(x_i, y_j) 1 \cdot h.$$

Inserting the values $\sigma(g, 1) = \sigma(1, h) = 1$, $\sigma(x_i, y_j) = \delta_{i,j}$, and $\sigma(\phi_{\alpha}(x_i), y_j h) = -\alpha_{j,i}$, we get (4.12).

From Theorem 2.3, we obtain that the comultiplication $\Delta_{\alpha,\beta}$, the counit ε , the antipode S_{α} , and the crossing φ_{α} of $D(A_n, B_n; \sigma, \phi_{\alpha})$ are given by

$$\Delta_{\alpha,\beta}(g) = g \otimes g, \qquad \Delta_{\alpha,\beta}(h) = h \otimes h, \tag{4.13}$$

$$\Delta_{\alpha,\beta}(x_i) = 1 \otimes x_i + \sum_{k=1}^n \beta_{k,i} x_k \otimes g, \qquad \Delta_{\alpha,\beta}(y_i) = y_i \otimes 1 + h \otimes y_i, \tag{4.14}$$

$$\varepsilon(g) = \varepsilon(h) = 1, \quad \varepsilon(x_i) = \varepsilon(y_i) = 0, \quad S_{\alpha}(g) = g,$$
 (4.15)

$$S_{\alpha}(h) = h, \qquad S_{\alpha}(x_i) = \sum_{k=1}^{n} \alpha_{k,i} g x_k, \qquad S_{\alpha}(y_i) = -h y_i,$$
 (4.16)

$$\varphi_{\alpha}(g) = g, \qquad \varphi_{\alpha}(h) = h, \qquad \varphi_{\alpha}(x_i) = \sum_{k=1}^{n} \alpha_{k,i} x_k, \qquad \varphi_{\alpha}(y_i) = \sum_{k=1}^{n} \tilde{\alpha}_{i,k} y_k, \quad (4.17)$$

where $(\tilde{\alpha}_{i,i}) = \alpha^{-1}$.

For any $\alpha \in \operatorname{GL}_n(\mathbb{k})$, let I_{α} be the ideal of $D(A_n, B_n; \sigma, \phi_{\alpha})$ generated by g - h. Using the above description of the structure maps of $D(A_n, B_n; \sigma, \phi)$, we get that $I = \{I_{\alpha}\}_{\alpha \in \pi}$ is a crossed Hopf $\operatorname{GL}_n(\mathbb{k})$ -coideal of $D(A_n, B_n; \sigma, \phi)$. The quotient $D(A_n, B_n; \sigma, \phi)/I = \{D(A_n, B_n; \sigma, \phi_{\alpha})/I_{\alpha}\}_{\alpha \in \operatorname{GL}_n(\mathbb{k})}$ is precisely

 $\mathscr{A}_n = \{\mathscr{A}_n^{\alpha}\}_{\alpha \in \mathrm{GL}_n(\Bbbk)}$ and so the latter has a quasitriangular Hopf $\mathrm{GL}_n(\Bbbk)$ -coalgebra structure which can be described by replacing *h* with *g* in (4.13)–(4.17).

Finally, the *R*-matrix of \mathcal{A}_n is obtained as the image under the projection maps $D(A_n, B_n; \sigma, \phi_\alpha) \xrightarrow{p_\alpha} D(A_n, B_n; \sigma, \phi_\alpha)/I_\alpha = \mathcal{A}_n^\alpha$ of the *R*-matrix of $D(A_n, B_n; \sigma, \phi)$, that is, using (4.10),

$$R_{\alpha,\beta} = \sum_{S \subseteq [n]} p_{\alpha}(x_S) \otimes p_{\beta}(z_0 y_S) + p_{\alpha}(g x_S) \otimes p_{\beta}(z_1 y_S)$$
$$= \sum_{S \subseteq [n]} x_S \otimes \left(\frac{1+g}{2}\right) y_S + g x_S \otimes \left(\frac{1-g}{2}\right) y_S$$
$$= \frac{1}{2} \sum_{S \subseteq [n]} x_S \otimes y_S + x_S \otimes g y_S + g x_S \otimes y_S - g x_S \otimes g y_S.$$

This completes the proof of Proposition 4.1.

5. GRADED QUANTUM GROUPS

Let g be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $(a_{i,j})$. We let d_i be the coprime integers such that the matrix $(d_i a_{i,j})$ is symmetric. Let q be a fixed nonzero complex number and set $q_i = q^{d_i}$. Suppose that $q_i^2 \neq 1$ for i = 1, 2, ..., l.

Definition-Proposition 5.1. Set $\pi = (\mathbb{C}^*)^l$. For $\alpha = (\alpha_1, \ldots, \alpha_l) \in \pi$, let $U_q^{\alpha}(\mathfrak{g})$ be the \mathbb{C} -algebra generated by $K_i^{\pm 1}$, E_i , F_i , $1 \le i \le l$, subject to the following defining relations:

$$K_i K_j = K_j K_i, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1,$$
 (5.1)

$$K_i E_j = q_i^{a_{i,j}} E_j K_i, (5.2)$$

$$K_i F_j = q_i^{-a_{i,j}} F_j K_i, (5.3)$$

$$E_i F_j - F_j E_i = \delta_{i,j} \frac{\alpha_i K_i - K_i^{-1}}{q_i - q_i^{-1}},$$
(5.4)

$$\sum_{r=0}^{1-a_{i,j}} (-1)^r \begin{bmatrix} 1-a_{i,j} \\ r \end{bmatrix}_{q_i} E_i^{1-a_{i,j}-r} E_j E_i^r = 0 \quad if \ i \neq j,$$
(5.5)

$$\sum_{r=0}^{1-a_{i,j}} (-1)^r \begin{bmatrix} 1-a_{i,j} \\ r \end{bmatrix}_{q_i} F_i^{1-a_{i,j}-r} F_j F_i^r = 0 \quad if \ i \neq j.$$
(5.6)

The family $U_q^{\pi}(\mathfrak{g}) = \{U_q^{\alpha}(\mathfrak{g})\}_{\alpha \in \pi}$ has a structure of a crossed Hopf π -coalgebra given, for $\alpha = (\alpha_1, \ldots, \alpha_l) \in \pi$, $\beta = (\beta_1, \ldots, \beta_l) \in \pi$ and $1 \le i \le l$, by:

$$\begin{split} &\Delta_{\alpha,\beta}(K_i) = K_i \otimes K_i, \\ &\Delta_{\alpha,\beta}(E_i) = \beta_i E_i \otimes K_i + 1 \otimes E_i, \\ &\Delta_{\alpha,\beta}(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i, \end{split}$$

$$\varepsilon(K_i) = 1, \qquad \varepsilon(E_i) = \varepsilon(F_i) = 0,$$

$$S_{\alpha}(K_i) = K_i^{-1}, \qquad S_{\alpha}(E_i) = -\alpha_i E_i K_i^{-1}, \qquad S_{\alpha}(F_i) = -K_i F_i,$$

$$\varphi_{\alpha}(K_i) = K_i, \qquad \varphi_{\alpha}(E_i) = \alpha_i E_i, \qquad \varphi_{\alpha}(F_i) = \alpha_i^{-1} F_i.$$

Remark 5.2. Note that $(U_q^1(\mathfrak{g}), \Delta_{1,1}, \varepsilon, S_1)$ is the usual quantum group $U_q(\mathfrak{g})$.

Proof. Let U_+ be the \mathbb{C} -algebra generated by E_i , $K_i^{\pm 1}$, $1 \le i \le l$, subject to the relations (5.1), (5.2) and (5.5). Let U_- be the \mathbb{C} -algebra generated by F_i , $K_i^{\prime \pm 1}$, $1 \le i \le l$, subject to the relations (5.1), (5.3) and (5.6), where one has to replace K_i with K_i^{\prime} . The algebras U_+ and U_- have a Hopf algebra structure given by

$$\begin{split} \Delta(K_i) &= K_i \otimes K_i, \quad \Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i, \\ \varepsilon(K_i) &= 1, \quad \varepsilon(E_i) = 0, \quad S(K_i) = K_i^{-1}, \quad S(E_i) = -E_i K_i^{-1}, \\ \Delta(K'_i) &= K'_i \otimes K'_i, \quad \Delta(F_i) = F_i \otimes 1 + {K'_i}^{-1} \otimes F_i, \\ \varepsilon(K'_i) &= 1, \quad \varepsilon(F_i) = 0, \quad S(K'_i) = {K'_i}^{-1}, \quad S(F_i) = -K'_i F_i. \end{split}$$

Using the method described in Section 2.1, it can be verified that there exists a (unique) Hopf pairing $\sigma: U_+ \times U_- \to \mathbb{C}$ such that

$$\sigma(E_i, F_j) = \frac{\partial_{i,j}}{q_i - q_i^{-1}}, \quad \sigma(E_i, K'_j) = \sigma(K_i, F_j) = 0, \quad \sigma(K_i, K'_j) = q_i^{a_{i,j}} = q_j^{a_{j,i}}.$$

Let $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(U_+)$ and $\psi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(U_-)$ be the group homomorphisms defined as follows: for $\beta = (\beta_1, \ldots, \beta_l) \in \pi$ and $1 \le i \le l$, set

$$\phi_{\beta}(K_i) = K_i, \qquad \phi_{\beta}(E_i) = \beta_i E_i, \qquad \psi_{\beta}(K'_i) = K'_i, \qquad \psi_{\beta}(F_i) = \beta_i^{-1} F_i.$$

It is straightforward to verify that ψ is (σ, ϕ) -compatible. By Lemma 2.4, we can consider the crossed Hopf π -coalgebra $D(U_+, U_-; \sigma, \phi) = \{D(U_+, U_-; \sigma, \phi_\alpha)\}_{\alpha \in \pi}$.

Now, for any $\alpha \in \pi$, $D(U_+, U_-; \sigma, \phi_{\alpha})$ is the algebra generated by $K_i^{\pm 1}$, $K_i^{\prime \pm 1}$, E_i , F_i , where $1 \le i \le l$, subject to the relations (5.1), (5.2), (5.5), the relations (5.1), (5.3), (5.6) with K_i replaced by K_i^{\prime} , and the following relations:

$$K_i K'_j = K'_j K_i, \qquad K_i F_j = q_i^{-a_{i,j}} F_j K_i, \qquad K'_i E_j = q_i^{a_{i,j}} E_j K'_i, \tag{5.7}$$

$$E_i F_j - F_j E_i = \delta_{i,j} \frac{\alpha_i K_i - K_i'^{-1}}{q_i - q_i^{-1}}.$$
(5.8)

Indeed, $D(U_+, U_-; \sigma, \phi_\alpha)$ is the free algebra generated by the algebras U_+ and U_- with cross relation (2.5). Further, it suffices to require the cross relations (2.5) for $(1 \otimes b) \cdot (a \otimes 1)$ with $a = K_i, E_i$ and $b = K'_i, F_i$. To simplify the notations, we identify of a with $a \otimes 1$ and b with $1 \otimes b$ (recall that these natural maps $U_+ \hookrightarrow D(U_+, U_-; \sigma, \phi_\alpha)$ and $U_- \hookrightarrow D(U_+, U_-; \sigma, \phi_\alpha)$ are algebra monomorphisms). For example, let $a = E_i$ and $b = F_j$. Since $\sigma(E_i, 1) = \sigma(K_i, F_j) = \sigma(E_i, K'_j) = \sigma(1, F_j) = 0$, relation (2.5) gives

$$F_{j}E_{i} = \sigma(\alpha_{i}E_{i}, S(F_{j}))\sigma(K_{i}, 1)K_{i} + \sigma(1, K_{j}')\sigma(K_{i}, 1)E_{i}F_{j} + \sigma(1, K_{j}')\sigma(E_{i}, F_{j})K_{j}'^{-1}.$$

Inserting the values $\sigma(K_i, 1) = \sigma(1, K'_j) = 1$, $\sigma(E_i, F_j) = \delta_{i,j}(q_i - q_i^{-1})^{-1}$ and $\sigma(E_i, S(F_j)) = -\delta_{i,j}(q_i - q_i^{-1})^{-1}$, we get (5.8).

From Theorem 2.3, we obtain that the comultiplication $\Delta_{\alpha,\beta}$, the counit ε , the antipode S_{α} , and the crossing φ_{α} of $D(U_{+}, U_{-}; \sigma, \phi)$ are given, for $1 \le i \le l$, by

$$\Delta_{\alpha,\beta}(K_i) = K_i \otimes K_i, \qquad \Delta_{\alpha,\beta}(K'_i) = K'_i \otimes K'_i, \tag{5.9}$$

$$\Delta_{\alpha,\beta}(E_i) = \beta_i E_i \otimes K_i + 1 \otimes E_i, \qquad \Delta_{\alpha,\beta}(F_i) = F_i \otimes 1 + K_i^{\prime - 1} \otimes F_i, \qquad (5.10)$$

$$\varepsilon(K_i) = \varepsilon(K'_i) = 1, \qquad \varepsilon(E_i) = \varepsilon(F_i) = 0, \qquad S_{\alpha}(K_i) = K_i^{-1}, \qquad (5.11)$$

$$S_{\alpha}(K'_{i}) = K'^{-1}_{i}, \qquad S_{\alpha}(E_{i}) = -\alpha_{i}E_{i}K^{-1}_{i}, \qquad S_{\alpha}(F_{i}) = -K'_{i}F_{i},$$
(5.12)

$$\varphi_{\alpha}(K_i) = K_i, \qquad \varphi_{\alpha}(K'_i) = K'_i, \qquad \varphi_{\alpha}(E_i) = \alpha_i E_i, \qquad \varphi_{\alpha}(F_i) = \alpha_i^{-1} F_i.$$
 (5.13)

Finally, for any $\alpha \in \pi$, let I_{α} be the ideal of $D(U_+, U_-; \sigma, \phi_{\alpha})$ generated by $K_i - K'_i$ and $K_i^{-1} - K'_i^{-1}$, where $1 \le i \le l$. Using the above description of the structure maps of $D(U_+, U_-; \sigma, \phi)$, we get that $I = \{I_{\alpha}\}_{\alpha \in \pi}$ is a crossed Hopf π -coideal of $D(U_+, U_-; \sigma, \phi)$. The quotient $D(U_+, U_-; \sigma, \phi)/I = \{D(U_+, U_-; \sigma, \phi_{\alpha})/I_{\alpha}\}_{\alpha \in \pi}$ is precisely $U_q^{\pi}(\mathfrak{g}) = \{U_q^{\alpha}(\mathfrak{g})\}_{\alpha \in \pi}$. Hence the latter has a crossed Hopf π -coalgebra structure given by replacing K'_i with K_i in (5.9)–(5.13).

Remark 5.3. In the above construction, we use the diagonal Hopf automorphisms of $U_+ = U_q(\mathfrak{b}_+)$. What happens if we use also the Hopf automorphisms coming from diagram automorphisms? Recall that a *diagram automorphism* of \mathfrak{g} is a permutation ω of $\{1, \ldots, l\}$ such that $a_{\omega(i),\omega(j)} = a_{i,j}$ for all $1 \le i, j \le l$. Denote by Γ the group of diagram automorphisms of \mathfrak{g} . In the following table, we recall the isomorphism class of Γ depending on the type of \mathfrak{g} (see, e.g., Bourbaki, 1981):

g	A_1	$\begin{array}{c} A_l \\ (l \geq 2) \end{array}$	$B_l \\ (l \ge 2)$	$C_l \\ (l \ge 2)$	$D_l \\ (l \ge 3, l \ne 4)$	D_4	E_6	E_7	E_8	F_4	G_2
Г	1	\mathbb{Z}_2	1	1	\mathbb{Z}_2	\mathfrak{S}_3	\mathbb{Z}_2	1	1	1	1

There exists a group morphism $\phi: \Gamma \times (\mathbb{C}^*)^l \to \operatorname{Aut}_{\operatorname{Hopf}}(U_+)$ defined by $\phi_\beta(K_i) = K_{\omega(i)}$ and $\phi_\beta(E_i) = \beta_i E_{\omega(i)}$ for $\beta = (\omega, \beta_1, \dots, \beta_l) \in \Gamma \times (\mathbb{C}^*)^l$ and $1 \le i \le l$. Note that ϕ is in fact a group isomorphism, see Fleury (1997). We can then consider the Hopf $(\Gamma \times (\mathbb{C}^*)^l)$ -coalgebra $D(U_+, U_-; \sigma, \phi)$. Nevertheless, unlike in the proof of Proposition 5.1, there is no natural way to quotient $D(U_+, U_-; \sigma, \phi)$ in order to eliminate the K'_i .

6. h-ADIC GRADED QUANTUM GROUPS

Let g be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $(a_{i,j})$. We let d_i be the coprime integers such that the matrix $(d_i a_{i,j})$ is symmetric.

Definition-Proposition 6.1. Set $\pi = \mathbb{C}[[h]]^l$. For $\alpha = (\alpha_1, \ldots, \alpha_l) \in \pi$, let $U_h^{\alpha}(\mathfrak{g})$ be the h-adic algebra generated by the elements H_i , E_i , F_i , $1 \le i \le l$, subject to the

following defining relations:

$$[H_i, H_i] = 0, (6.1)$$

$$[H_i, E_j] = a_{ij}E_j, \tag{6.2}$$

$$[H_i, F_j] = -a_{ij}F_j, (6.3)$$

$$[E_i, F_j] = \delta_{i,j} \frac{e^{d_i h \alpha_i} e^{d_i h H_i} - e^{-d_i h H_i}}{e^{d_i h} - e^{-d_i h}},$$
(6.4)

$$\sum_{r=0}^{1-a_{i,j}} (-1)^r \begin{bmatrix} 1-a_{i,j} \\ r \end{bmatrix}_{e^{d_i h}} E_i^{1-a_{i,j}-r} E_j E_i^r = 0 \quad (i \neq j),$$
(6.5)

$$\sum_{r=0}^{1-a_{i,j}} (-1)^r \begin{bmatrix} 1-a_{i,j} \\ r \end{bmatrix}_{e^{d_i h}} F_i^{1-a_{i,j}-r} F_j F_i^r = 0 \quad (i \neq j).$$
(6.6)

The family $U_h^{\pi}(\mathfrak{g}) = \{U_h^{\alpha}(\mathfrak{g})\}_{\alpha \in \pi}$ has a structure of a crossed h-adic Hopf π -coalgebra given, for $\alpha = (\alpha_1, \ldots, \alpha_l) \in \pi$, $\beta = (\beta_1, \ldots, \beta_l) \in \pi$ and $1 \le i \le l$, by:

$$\begin{split} \Delta_{\alpha,\beta}(H_i) &= H_i \otimes 1 + 1 \otimes H_i, \\ \Delta_{\alpha,\beta}(E_i) &= e^{d_i h \beta_i} E_i \otimes e^{d_j h H_i} + 1 \otimes E_i, \\ \Delta_{\alpha,\beta}(F_i) &= F_i \otimes 1 + e^{-d_i h H_i} \otimes F_i, \\ \varepsilon(H_i) &= \varepsilon(E_i) = \varepsilon(F_i) = 0, \\ S_{\alpha}(H_i) &= -H_i, \qquad S_{\alpha}(E_i) = -e^{d_i h \alpha_i} E_i e^{-d_i h H_i}, \qquad S_{\alpha}(F_i) = -e^{d_i h H_i} F_i, \\ \varphi_{\alpha}(H_i) &= H_i, \qquad \varphi_{\alpha}(E_i) = e^{d_i h \alpha_i} E_i, \qquad \varphi_{\alpha}(F_i) = e^{-d_i h \alpha_i} F_i. \end{split}$$

Remark 6.2. (a) $(U_h^0(\mathfrak{g}), \Delta_{0,0}, \varepsilon, S_0)$ is the usual quantum group $U_h(\mathfrak{g})$.

(b) The element $e^{d_i h} - e^{-d_i h} \in \mathbb{C}[[h]]$ is not invertible in $\mathbb{C}[[h]]$, because the constant term is zero. But the expression of the right hand side of (6.4) is a formal power series $\sum_n p_n(H_i)h^n$ with certain polynomials $p_n(H_i)$, and so it is a well-defined element of the *h*-adic algebra generated by E_i , F_i , H_i .

Proof. Let U_+ be the *h*-adic algebra generated by H_i , E_i , $1 \le i \le l$, subject to the relations (6.1), (6.2) and (6.5). Let U_- be the *h*-adic algebra generated by H'_i , F_i , $1 \le i \le l$, subject to the relations (6.1), (6.3) and (6.6) with H_i replaced by H'_i . The algebras U_+ and U_- have a *h*-adic Hopf algebra structure given by:

$$\begin{split} \Delta(H_i) &= H_i \otimes 1 + 1 \otimes H_i, \quad \Delta(E_i) = E_i \otimes e^{d_i h H_i} + 1 \otimes E_i, \\ \varepsilon(H_i) &= \varepsilon(E_i) = 0, \quad S(H_i) = -H_i, \quad S(E_i) = -E_i e^{-d_i h H_i}, \\ \Delta(H'_i) &= H'_i \otimes 1 + 1 \otimes H'_i, \quad \Delta(F_i) = F_i \otimes 1 + e^{-d_i h H'_i} \otimes F_i, \\ \varepsilon(H'_i) &= \varepsilon(F_i) = 0, \quad S(H'_i) = -H'_i, \quad S(F_i) = -e^{d_i h H'_i} F_i. \end{split}$$

In order to construct a Hopf pairing adapted to our needs, let us consider the *h*-adic Hopf algebra $\widetilde{U}_{-} = \mathbb{C}[[h]]1 + hU_{-}$. The elements $\widetilde{H}'_{i} = hH'_{i}$ and $\widetilde{F}_{i} = hF_{i}$ belong to \widetilde{U}_{-} and satisfy

$$[\widetilde{H}'_i,\widetilde{F}_j] = -ha_{ij}\widetilde{F}_j, \qquad \Delta(\widetilde{H}'_i) = \widetilde{H}'_i \otimes 1 + 1 \otimes \widetilde{H}'_i, \qquad \Delta(\widetilde{F}_i) = \widetilde{F}_i \otimes 1 + e^{-d_i\widetilde{H}'_i} \otimes \widetilde{F}_i.$$

The element $e^{-d_i \widetilde{H}'_i} = 1 + \sum_{k \ge 1} \frac{1}{k!} (-d_i h)^k H'^k_i$ is also in \widetilde{U}_- . Note that $e^{-d_i \widetilde{H}'_i}$ is not in the *h*-adic subalgebra of \widetilde{U}_- generated by \widetilde{H}'_i . Using the method described in Section 2.1 (see also Klimyk and Schmudgen, 1997, Proposition 38), it can be verified that there exists a (unique) Hopf pairing $\sigma: U_+ \times \widetilde{U}_- \to \mathbb{C}[[h]]$ such that:

$$\sigma(H_i, \widetilde{H}'_j) = d_i^{-1} a_{j,i}, \qquad \sigma(H_i, \widetilde{F}_j) = \sigma(E_i, \widetilde{H}'_j) = 0, \qquad \sigma(E_i, \widetilde{F}_j) = \frac{\delta_{i,j} h}{e^{d_i h} - e^{-d_i h}}.$$

Let $\phi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(U_+)$ and $\psi : \pi \to \operatorname{Aut}_{\operatorname{Hopf}}(\widetilde{U}_-)$ defined, for $\alpha = (\alpha_1, \ldots, \alpha_l) \in \pi$ and $1 \le i \le l$, by

$$\phi_{\alpha}(H_i) = H_i, \qquad \phi_{\alpha}(E_i) = e^{d_i h \alpha_i} E_i, \qquad \psi_{\alpha}(\widetilde{H}'_i) = \widetilde{H}'_i, \qquad \psi_{\alpha}(\widetilde{F}_i) = e^{-d_i h \alpha_i} \widetilde{F}_i.$$

It is straightforward to verify that ψ is (σ, ϕ) -compatible. By the *h*-adic version of Lemma 2.4, we can consider the crossed *h*-adic Hopf π -coalgebra $D(U_+, \widetilde{U}_-; \sigma, \phi) = \{D(U_+, \widetilde{U}_-; \sigma, \phi_\alpha)\}_{\alpha \in \pi}$ whose structure can be explicitly described as in the proof of Proposition 5.1.

For any $\alpha \in \pi$, let I_{α} be the *h*-adic ideal of $D(U_{+}, \widetilde{U}_{-}; \sigma, \phi_{\alpha})$ generated by $\widetilde{H}'_{i} - hH_{i}$ where $1 \leq i \leq l$. Using the description of the structure maps of $D(U_{+}, \widetilde{U}_{-}; \sigma, \phi_{\alpha})$, we get that $I = \{I_{\alpha}\}_{\alpha \in \pi}$ is a crossed *h*-adic Hopf π -coideal of $D(U_{+}, U_{-}; \sigma, \phi)$. The quotient $D(U_{+}, \widetilde{U}_{-}; \sigma, \phi)/I = \{D(U_{+}, \widetilde{U}_{-}; \sigma, \phi_{\alpha})/I_{\alpha}\}_{\alpha \in \pi}$ is precisely $U_{h}^{\pi}(\mathfrak{g}) = \{U_{h}^{\alpha}(\mathfrak{g})\}_{\alpha \in \pi}$. Hence the latter has a structure of a crossed *h*-adic Hopf π -coalgebra.

It is well-know (see, e.g., Klimyk and Schmudgen, 1997) that the Hopf pairing $\sigma: U_+ \times \widetilde{U}_- \to \mathbb{C}[[h]]$ is non-degenerate and that, if $(e_i)_i$ and $(f_i)_i$ are dual basis of the vector spaces U_+ and \widetilde{U}_- with respect to the form σ , then $\sum_i (e_i \otimes 1) \otimes (1 \otimes f_i)$ belongs to the *h*-adic completion $D(U_+, \widetilde{U}_-; \sigma, \phi_a) \otimes D(U_+, \widetilde{U}_-; \sigma, \phi_\beta)$. Therefore, by Theorem 2.10, the crossed *h*-adic Hopf π -coalgebra $D(U_+, \widetilde{U}_-; \sigma, \phi)$ is quasitriangular. Hence, as a quotient of $D(U_+, \widetilde{U}_-; \sigma, \phi)$, $U_h^{\pi}(\mathfrak{g})$ is also quasitriangular.

For example, when $\mathfrak{g} = \mathfrak{S}l_2$ and so $\pi = \mathbb{C}[[h]]$, we have that the *R*-matrix of $U_h^{\mathbb{C}[[h]]}(\mathfrak{S}l_2)$ is given, for any $\alpha, \beta \in \mathbb{C}[[h]]$, by

$$R_{lpha,eta}=e^{h(H\otimes H)/2}\sum_{n=0}^{\infty}R_n(h)\,E^n\otimes F^n\in U^{lpha}_h(\mathfrak{S}l_2)\,\hat{\otimes}\,U^{eta}_h(\mathfrak{S}l_2),$$

where $R_n(h) = q^{n(n+1)/2} \frac{(1-q^{-2})^n}{[n]_q!}$ and $q = e^h$.

Let $\alpha \in \mathbb{C}[[h]]$. For any non-negative integer *n*, consider a (n + 1)-dimensional \mathbb{C} -vector space V_n with basis $\{v_0, \ldots, v_n\}$. The space $V_n^{\alpha} = V_n[[h]] = V_n \otimes \mathbb{C}[[h]]$ has

a structure of a (topological) left $U_h^{\alpha}(\mathfrak{sl}_2)$ -module given, for $0 \leq i \leq n$, as follows:

$$\begin{aligned} H \cdot v_i &= \left(n - 2i - \frac{\alpha}{2}\right) v_i, \\ E \cdot v_i &= \begin{cases} e^{\frac{h\alpha}{2}} [n - i + 1]_q v_{i-1} & \text{if } i > 0, \\ 0 & \text{if } i = 0, \end{cases} \\ F \cdot v_i &= \begin{cases} [i + 1]_q v_{i+1} & \text{if } i < n, \\ 0 & \text{if } i = n. \end{cases} \end{aligned}$$

Together with the quasitriangularity of $U_h^{\mathbb{C}[[h]]}(\mathfrak{sl}_2)$, these data lead in particular to a solution of the $\mathbb{C}[[h]]$ -colored Yang-Baxter equation.

REFERENCES

Bourbaki, N. (1981). Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Paris: Masson.

- Drinfeld, V. G. (1987). Quantum groups. In: Proc. I.C.M. Berkeley 1986. Vol. 1, 2 (Berkeley, Calif., 1986). Providence, RI, Amer. Math. Soc., pp. 798–820.
- Fleury, O. (1997). Automorphismes de $U_q(\mathfrak{b}_+)$. Beiträge Algebra Geom. 38(2):343–356.
- Kassel, C., Rosso, M., Turaev, V. (1997). Quantum groups and knot invariants. *Panoramas et Synthèses [Panoramas and Syntheses]*. Vol. 5. Société Mathématique de France.
- Kirillov, A. Jr., (2004). On G-equivariant modular categories. math.QA/0401119.
- Klimyk, A., Schmudgen, K. (1997). Quantum Groups and Their Representations. Berlin, New York: Springer-Verlag.
- Ohtsuki, T. (1993). Colored ribbon Hopf algebras and universal invariants of framed links. *J. Knot Theory and Its Rami.* 2(2):211–232.
- Radford, D. E. (1990). The group of automorphisms of a semisimple Hopf algebra over a field of characteristic 0 is finite. *Amer. J. Math.* 112(2):331–357.
- Turaev, V. (2000). Homotopy field theory in dimension 3 and group-categories. preprint GT/0005291.

Van Daele, A. (1993). Dual pairs of Hopf *-algebras. *Bull. London Math. Soc.* 25(3):209–230. Virelizier, A. (2001). Algèbres de Hopf graduées et fibrés plats sur les 3-variétés. Ph.D. thesis.

Virelizier, A. (2002). Hopf group-coalgebras. J. Pure Appl. Algebra 171(1):75-122.

Zunino, M. (2004). Double construction for crossed Hopf coalgebras. J. Algebra 278(1):43–75.