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GRADED QUANTUM GROUPS AND QUASITRIANGULAR
HOPF GROUP-COALGEBRAS#
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Starting from a Hopf algebra endowed with an action of a group � by Hopf
automorphisms, we construct �by a “twisted” double method� a quasitriangular Hopf
�-coalgebra. This method allows us to obtain non-trivial examples of quasitriangular
Hopf �-coalgebras for any finite group � and for infinite groups � such as GLn�kkk �.
In particular, we define the graded quantum groups, which are Hopf �-coalgebras for
� = ���h��l and generalize the Drinfeld-Jimbo quantum enveloping algebras.
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INTRODUCTION

Let � be a group. Turaev (2000) introduced the notion of a braided � category
and showed that such a category gives rise to a 3-dimensional homotopy quantum
field theory (the target being a K��� 1� space). Moreover braided �-categories, also
called �-equivariant categories, provide a suitable mathematical formalism for the
description of orbifold models that arise in the study of conformal field theories in
which � is the group of automorphisms of the vertex operator algebra, see Kirillov
(2004).

The algebraic structure whose category of representations is a braided �-
category is that of a quasitriangular Hopf �-coalgebra, see Turaev (2000), Virelizier
(2002). The aim of the present article is to construct examples of quasitriangular
Hopf �-coalgebras. Note that quasitriangular Hopf �-coalgebras are also used
in Virelizier (2001) to construct HKR-type invariants of flat �-bundles over link
complements and over 3-manifolds.

Following Turaev (2000), a Hopf �-coalgebra is a family H = �H���∈� of
algebras (over a field k ) endowed with a comultiplication � = ����	 
 H�	 →
H� ⊗H	���	∈�, a counit � 
 H1 → k , and an antipode S = �S� 
 H� → H�−1��∈� which
verify some compatibility conditions. A crossing for H is a family of algebra
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isomorphisms � = ��	 
 H� → H	�	−1���	∈�, which preserves the comultiplication and
the counit, and which yields an action of � in the sense that �	�	′ = �		′ . A crossed
Hopf �-coalgebra H is quasitriangular when it is endowed with an R-matrix
R = �R��	 ∈ H� ⊗H	���	∈� verifying some axioms (involving the crossing �) which
generalize the classical ones given in Drinfeld (1987). Note that the case � = 1 is the
standard setting of Hopf algebras.

Starting from a crossed Hopf �-coalgebra H = �H���∈�, Zunino (2004)
constructed a double Z�H� = �Z�H����∈� of H , which is a quasitriangular Hopf �-
coalgebra in which H is embedded. One has that Z�H�� = H� ⊗

(⊕
	∈� H

∗
	

)
as a

vector space. Unfortunately, each component Z�H�� is infinite-dimensional (unless
H	 = 0 for all but a finite number of 	 ∈ �).

To obtain non-trivial examples of quasitriangular Hopf �-coalgebras with
finite-dimensional components, we restrict ourselves to a less general situation: our
initial datum is not any crossed Hopf �-coalgebra but a Hopf algebra endowed with
an action of � by Hopf algebra automorphisms. Remark indeed that the component
H1 of a Hopf �-coalgebra H = �H���∈� is a Hopf algebra and that a crossing for H
induces an action of � on H1 by Hopf automorphisms.

In this article, starting from a Hopf algebra A endowed with an action 
 
 � →
AutHopf�A� of a group � by Hopf automorphisms, we construct a quasitriangular
Hopf �-coalgebra D�A�
� = �D�A�
����∈�. The algebra D�A�
�� is constructed in a
manner similar to the Drinfeld double (in particular D�A�
�� = A⊗ A∗ as a vector
space) except that its product is “twisted” by the Hopf automorphism 
� 
 A → A.
The algebra D�A� idA� is the usual Drinfeld double. Note that the algebras D�A�
��
and D�A�
	� are in general not isomorphic when � �= 	.

This method allows us to define non-trivial examples of quasitriangular Hopf
�-coalgebras for any finite group � and for infinite groups � such as GLn�k �.
In particular, given a complex simple Lie algebra � of rank l, we define the graded
quantum groups �U�

h �����∈��∗�l and �U�
h �����∈���h��l , which are crossed Hopf group-

coalgebras. They are obtained as quotients of D�Uq��+�� 
� and D�Uh�b+�� 
′�,
where �+ denotes the Borel subalgebra of �, 
 is an action of ��∗�l by Hopf
automorphisms of Uq��+�, and 
′ is an action of ���h��l by Hopf automorphisms
of Uh��+�. Furthermore, the crossed Hopf ���h��l-coalgebra �U�

h �����∈���h��l is quasi-
triangular.

The article is organized as follows. In Section 1, we review the basic definitions
and properties of Hopf �-coalgebras. In Section 2, we define the twisted double of
a Hopf algebra A endowed with an action of a group � by Hopf automorphisms.
In Section 3, we explore the case A = k �G�, where G is a finite group. In Section 4,
we give an example of a quasitriangular Hopf GLn�k �-coalgebra. Finally, we define
the graded quantum groups in Sections 5 and 6.

Throughout this article, � is a group (with neutral element 1) and k is a field.
Unless otherwise specified, the tensor product ⊗ = ⊗

k
is assumed to be over k .

1. HOPF GROUP-COALGEBRAS

In this section, we review some definitions and properties concerning Hopf
group-coalgebras. For a detailed treatment of the theory of Hopf group-coalgebras,
we refer to Virelizier (2002).
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1.1. Hopf �-Coalgebras

A Hopf �-coalgebra (over k ) is a family H = �H���∈� of k -algebras endowed
with a family � = ����	 
 H�	 → H� ⊗H	���	∈� of algebra homomorphisms (the
comultiplication) and an algebra homomorphism � 
 H1 → k (the counit) such that,
for all �� 	� � ∈ �,

(
���	 ⊗ idH�

)
��	�� =

(
idH�

⊗ �	��

)
���	�� (1.1)(

idH�
⊗ �

)
���1 = idH�

= (
�⊗ idH�

)
�1��� (1.2)

and with a family S = �S� 
 H� → H�−1��∈� of k -linear maps (the antipode) which
verifies that, for all � ∈ �,

m��S�−1 ⊗ idH�
���−1�� = �1� = m��idH�

⊗ S�−1�����−1� (1.3)

where m� 
 H� ⊗H� → H� and 1� ∈ H� denote, respectively, the multiplication and
unit element of H�.

When � = 1, one recovers the usual notion of a Hopf algebra. In particular
�H1�m1� 11� �1�1� �� S1� is a Hopf algebra.

Remark that the notion of a Hopf �-coalgebra is not self-dual and that if
H = �H���∈� is a Hopf �-coalgebra, then �� ∈ � �H� �= 0� is a subgroup of �.

A Hopf �-coalgebra H = �H���∈� is said to be of finite type if, for all � ∈ �,
H� is finite-dimensional (over k ). Note that it does not mean that

⊕
�∈� H� is finite-

dimensional (unless H� = 0 for all but a finite number of � ∈ �).
The antipode of a Hopf �-coalgebra H = �H���∈� is anti-multiplicative: each

S� 
 H� → H�−1 is an anti-homomorphism of algebras, and anti-comultiplicative:
�S1 = � and �	−1��−1S�	 = �H

�−1 �H	−1
�S� ⊗ S	����	 for any �� 	 ∈ �, see Virelizier (2002,

Lemma 1.1).
The antipode S = �S���∈� of H = �H���∈� is said to be bijective if each S� is

bijective. As for Hopf algebras, the antipode of a finite type Hopf �-coalgebra is
always bijective, see Virelizier (2002, Corollary 3.7(a))).

1.2. Crossed Hopf �-Coalgebras

A Hopf �-coalgebra H = �H���∈� is said to be crossed if it is endowed with a
family � = {

�	 
 H� → H	�	−1

}
��	∈� of algebra isomorphisms (the crossing) such that,

for all �� 	� � ∈ �,

��	 ⊗ �	����� = �	�	−1�	�	−1�	� (1.4)

��	 = �� (1.5)

���	 = ��	� (1.6)

It is easy to check that �1�H�
= idH�

and �	S� = S	�	−1�	 for all �� 	 ∈ �.
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1.3. Quasitriangular Hopf �-Coalgebras

A crossed Hopf �-coalgebra H = �H���∈� is said to be quasitriangular if it
is endowed with a family R = �R��	 ∈ H� ⊗H	���	∈� of invertible elements (the
R-matrix) such that, for all �� 	� � ∈ � and x ∈ H�	,

R��	 · ���	�x� = �	�����−1 ⊗ idH�
���	�−1���x� · R��	� (1.7)

�idH�
⊗ �	����R��	�� = �R����1	3 · �R��	�12�� (1.8)

����	 ⊗ idH�
��R�	��� = ��idH�

⊗ �	−1��R��	�	−1��1	3 · �R	����23� (1.9)

��	 ⊗ �	��R���� = R	�	−1�	�	−1� (1.10)

where �	�� denotes the flip map H	 ⊗H� → H� ⊗H	 and, for k -spaces P�Q and r =∑
j pj ⊗ qj ∈ P ⊗Q, we set r12� = r ⊗ 1� ∈ P ⊗Q⊗H�, r�23 = 1� ⊗ r ∈ H� ⊗ P ⊗Q,

and r1	3 =
∑

j pj ⊗ 1	 ⊗ qj ∈ P ⊗H	 ⊗Q.
Note that R1�1 is a (classical) R-matrix for the Hopf algebra H1.
When � is abelian and � is trivial (that is, �	�H�

= idH�
for all �� 	 ∈ �), one

recovers the definition of a quasitriangular �-colored Hopf algebra given in Ohtsuki
(1993).

The R-matrix always verifies (see Virelizier, 2002, Lemma 6.4) that, for any
�� 	� � ∈ �,

��⊗ idH�
��R1��� = 1� = �idH�

⊗ ���R��1�� (1.11)

�S�−1�� ⊗ idH	
��R�−1�	� = R−1

��	 and �idH�
⊗ S	��R

−1
��	� = R��	−1� (1.12)

�S� ⊗ S	��R��	� = ��� ⊗ idH
	−1

��R�−1�	−1�� (1.13)

and provides a solution of the �-colored Yang-Baxter equation:

�R	����23 · �R����1	3 · �R��	�12� = �R��	�12� · ��idH�
⊗ �	−1��R��	�	−1��1	3 · �R	����23�

(1.14)

1.4. Ribbon Hopf �-Coalgebras

A quasitriangular Hopf �-coalgebra H = �H���∈� is said to be ribbon if it is
endowed with a family � = ��� ∈ H���∈� of invertible elements (the twist) such that,
for any �� 	 ∈ �,

���x� = �−1
� x�� for all x ∈ H�� (1.15)

S����� = ��−1� (1.16)

�	���� = �	�	−1� (1.17)

���	���	� = ��� ⊗ �	� · �	������−1 ⊗ idH�
��R�	�−1���� · R��	� (1.18)

Note that �1 is a (classical) twist of the quasitriangular Hopf algebra H1.
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1.5. Hopf �-Coideals

Let H = �H���∈� be a Hopf �-coalgebra. A Hopf �-coideal of H is a family
I = �I���∈�, where each I� is an ideal of H�, such that, for any �� 	 ∈ �,

���	�I�	� ⊂ I� ⊗H	 +H� ⊗ I	� (1.19)

��I1� = 0� (1.20)

S��I�� ⊂ I�−1 � (1.21)

The quotient H = �H� = H�/I���∈�, endowed with the induced structure maps, is
then a Hopf �-coalgebra. If H is furthermore crossed, with a crossing � such that,
for any �� 	 ∈ �,

�	�I�� ⊂ I	�	−1� (1.22)

then so is H (for the induced crossing).

2. TWISTED DOUBLE OF HOPF ALGEBRAS

In this section, we give a method (the twisted double) for defining a
quasitriangular Hopf �-coalgebra from a Hopf algebra endowed with an action of
a group � by Hopf automorphisms.

2.1. Hopf Pairings

Recall that a Hopf pairing between two Hopf algebras A and B (over k ) is a
bilinear pairing � 
 A× B → k such that, for all a� a′ ∈ A and b� b′ ∈ B,

��a� bb′� = ��a�1�� b���a�2�� b
′�� (2.1)

��aa′� b� = ��a� b�2����a
′� b�1��� (2.2)

��a� 1� = ��a� and ��1� b� = ��b�� (2.3)

Note that such a pairing always verifies that, for any a ∈ A and b ∈ B,

��S�a�� S�b�� = ��a� b�� (2.4)

since both � and ��S × S� are the inverse of ��id× S� in the algebra Hom
k
�A× B� k �

endowed with the convolution product.
Let � 
 A× B → k be a Hopf pairing. Its annihilator ideals are IA = �a ∈ A �

��a� b� = 0 for all b ∈ B� and IB = �b ∈ B � ��a� b� = 0 for all a ∈ A�. It is easy to
check that IA and IB are Hopf ideals of A and B, respectively. Recall that � is said to
be non-degenerate if IA and IB are both reduced to 0. A degenerate Hopf pairing � 

A× B → k induces (by passing to the quotients) a Hopf pairing �̄ 
 A/IA × B/IB →
k , which is non-degenerate.

Most of Hopf algebras we shall consider in the sequel will be defined by
generators and relations. The following provides us with a method of constructing
Hopf pairings, see Van Daele (1993), Kassel et al. (1997).
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Let Ã (resp. B̃) be a free algebra generated by elements a1� � � � � ap (resp.
b1� � � � � bq) over k . Suppose that Ã and B̃ have Hopf algebra structures such that
each ��ai� for 1 ≤ i ≤ p (resp. ��bj� for 1 ≤ i ≤ q) is a linear combination of tensors
ar ⊗ as (resp. br ⊗ bs). Given pq scalars �i�j ∈ k with 1 ≤ i ≤ p and 1 ≤ j ≤ q, there
is a unique Hopf pairing � 
 Ã× B̃ → k such that ��ai� bj� = �i�j .

Suppose now that A (resp. B) is the algebra obtained as the quotient of Ã (resp.
B̃) by the ideal generated by elements r1� � � � � rm ∈ Ã (resp. s1� � � � � sn ∈ B̃). Suppose
also that the Hopf algebra structure in Ã (resp. B̃) induces a Hopf algebra structure
in A (resp. B). Then a Hopf pairing � 
 Ã× B̃ → k induces a Hopf pairing A× B →
k if and only if ��ri� bj� = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ q, and ��ai� sj� = 0 for
all 1 ≤ i ≤ p and 1 ≤ j ≤ n.

2.2. The Twisted Double Construction

Definition-Lemma 2.1. Let � 
 A× B → k be a Hopf pairing between two Hopf
algebras A and B. Let 
 
 A → A be a Hopf algebra endomorphism of A. Set
D�A�B� �� 
� = A⊗ B as a k -space. Then D�A�B� �� 
� has a structure of an
associative and unitary algebra given, for any a� a′ ∈ A and b� b′ ∈ B, by

�a⊗ b� · �a′ ⊗ b′� = ��
�a′
�1��� S�b�1�����a

′
�3�� b�3��aa

′
�2� ⊗ b�2�b

′� (2.5)

1D�A�B���
� = 1A ⊗ 1B� (2.6)

Moreover, the linear embeddings A ↪→ D�A�B� �� 
� and B ↪→ D�A�B� �� 
� defined
by a 
→ a⊗ 1B and b 
→ 1A ⊗ b, respectively, are algebra morphisms.

Remark 2.2. (a) Note that D�A�B� �� idA� is the underlying algebra of the usual
quantum double of A and B (obtained by using the Hopf pairing �).

(b) If 
 and 
′ are different Hopf algebra endomorphisms of A, then
the algebras D�A�B� �� 
� and D�A�B� �� 
′� are not in general isomorphic, see
Remark 4.2.

Proof. Let a� a′� a′′ ∈ A and b� b′� b′′ ∈ B. Using the fact that � is a Hopf pairing
and 
 is a Hopf algebra endomorphism, we have that(

�a⊗ b� · �a′ ⊗ b′�
) · �a′′ ⊗ b′′�

= ��
�a′
�1��� S�b�1�����a

′
�3�� b�5����
�a

′′
�1��� S�b�2�b

′
�1���

× ��a′′
�3�� b�4�b

′
�3��aa

′
�2�a

′′
�2� ⊗ b�3�b

′
�2�b

′′

= ��
�a′
�1��� S�b�1�����a

′
�3�� b�5����
�a

′′
�1��� S�b

′
�1�����
�a

′′
�2��� S�b�2���

× ��a′′
�4�� b�4����a

′′
�5�� b

′
�3��aa

′
�2�a

′′
�3� ⊗ b�3�b

′
�2�b

′′�

and

�a⊗ b� · (�a′ ⊗ b′� · �a′′ ⊗ b′′�
)

= ��
�a′′
�1��� S�b

′
�1�����a

′′
�5�� b

′
�3����
�a

′
�1�a

′′
�2��� S�b�1���

× ��a′
�3�a

′′
�4�� b�3��aa

′
�2�a

′′
�3� ⊗ b�2�b

′
�2�b

′′
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= ��
�a′′
�1��� S�b

′
�1�����a

′′
�5�� b

′
�3����
�a

′
�1��� S�b�1�����
�a

′′
�2��� S�b�2���

× ��a′
�3�� b�5����a

′′
�4�� b�4��aa

′
�2�a

′′
�3� ⊗ b�3�b

′
�2�b

′′�

Hence the product is associative. Moreover 1A ⊗ 1B is the unit element since

�a⊗ b� · �1⊗ 1� = ��
�1�� S�b�1�����1� b�3��a⊗ b�2�

= ��S�b�1�����b�3��a⊗ b�2� = a⊗ b�

and

�1⊗ 1� · �a⊗ b� = ��
�a�1��� S�1����a�3�� 1�a�2� ⊗ b

= ��
�a�1�����a�3��a�2� ⊗ b = a⊗ b�

Finally, for any a� a′ ∈ A and b� b′ ∈ B, we have that

�a⊗ 1� · �a′ ⊗ 1� = ��
�a′
�1��� S�1����a

′
�3�� 1�aa

′
�2� ⊗ 1

= ��
�a′
�1�����a

′
�3��aa

′
�2� ⊗ 1

= aa′ ⊗ 1�

and

�1⊗ b� · �1⊗ b′� = ��
�1�� S�b�1�����1� b�3��1⊗ b�2�b
′

= ��S�b�1�����b�3��1⊗ b�2�b
′

= 1⊗ bb′�

Therefore A ↪→ D�A�B� �� 
� and B ↪→ D�A�B� �� 
� are algebra morphisms. �

In the sequel, the group of Hopf automorphisms of a Hopf algebra A will be
denoted by AutHopf�A�.

Theorem 2.3. Let � 
 A× B → k be a Hopf pairing between two Hopf algebras
A and B, and 
 
 � → AutHopf�A� be group homomorphism (that is, an action
of � on A by Hopf automorphisms). Then the family of algebras D�A�B� �� 
� =
�D�A� B� �� 
����∈� (see Definition 2.1) has a structure of a Hopf �-coalgebra given,
for any a ∈ A, b ∈ B, and �� 	 ∈ �, by:

���	�a⊗ b� = �
	�a�1��⊗ b�1��⊗ �a�2� ⊗ b�2��� (2.7)

��a⊗ b� = �A�a��B�b�� (2.8)

S��a⊗ b� = ��
��a�1��� b�1����a�3�� S�b�3���
�S�a�2��⊗ S�b�2��� (2.9)

Proof. The coassociativity (1.1) follows directly from the coassociativity of the
coproducts of A and B and the fact that 
	� = 
	
�. Axiom (1.2) is a direct
consequence of �A
� = �A. Since 
1 = idA and D�A�B� �� idA� is underlying algebra
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of the usual quantum double of A and B, the counit � is multiplicative. Let us verify
that ���	 is multiplicative. Let a� a′ ∈ A and b� b′ ∈ B. On one hand we have:

���	��a⊗ b� · �a′ ⊗ b′��

= ��
�	�a
′
�1��� S�b�1�����a

′
�3�� b�3�����	�aa

′
�2� ⊗ b�2�b

′�

= ��
�	�a
′
�1��� S�b�1�����a

′
�4�� b�4��
	�a�1�a

′
�2��⊗ b�2�b

′
�1� ⊗ a�2�a

′
�3� ⊗ b�3�b

′
�2��

One the other hand,

���	�a⊗ b� · ���	�a
′ ⊗ b′�

= �
	�a�1��⊗ b�1� ⊗ a�2� ⊗ b�2�� · �
	�a
′
�1��⊗ b′�1� ⊗ a′

�2� ⊗ b′�2��

= ��
�
	�a
′
�1��� S�b�1�����
	�a

′
�3��� b�3����
	�a

′
�4��� S�b�4�����a

′
�6�� b�6��

×
	�a�1��
	�a
′
�2��⊗ b�2�b

′
�1� ⊗ a�2�a

′
�5� ⊗ b�5�b

′
�2�

= ��
�	�a
′
�1��� S�b�1�����
	�a

′
�3��� b�3�S�b�4�����a

′
�5�� b�6��

×
	�a�1�a
′
�2��⊗ b�2�b

′
�1� ⊗ a�2�a

′
�4� ⊗ b�5�b

′
�2�

= ��
�	�a
′
�1��� S�b�1�����a

′
�4�� b�4��
	�a�1�a

′
�2��⊗ b�2�b

′
�1� ⊗ a�2�a

′
�3� ⊗ b�3�b

′
�2��

Let us verify the first equality of (1.3). Let a ∈ A, b ∈ B, and � ∈ �. Denote the
multiplication in D�A�B� �� 
�� by m�. We have

m��S�−1 ⊗ idD�A�B���
��
���−1���a⊗ b�

= ��a�1�� b�1�� ��
��a�3��� S�b�5�����
��a�4��� S
2�b�4���

× ��a�6�� S�b�2���S�a�2��a�5� ⊗ S�b�3��b�6�

= ��a�1�� b�1����
��a�3��� S�b�5��S
2�b�4���

× ��a�5�� S�b�2���S�a�2��a�4� ⊗ S�b�3��b�6�

= ��a�1�� b�1����a�4�� S�b�2���S�a�2��a�3� ⊗ S�b�3��b�4�

= ��a�1�� b�1����a�2�� S�b�2���1⊗ 1

= ��a� b�1�S�b�2���1⊗ 1 = ��a���b�1⊗ 1�

The second equality of (1.3) can be verified similarly. �

Let � 
 A× B → k be a Hopf pairing between two Hopf algebras A and B,
and 
 
 � → AutHopf�A� be an action of � on A by Hopf automorphisms. An
action � 
 � → AutHopf�B� of � on B by Hopf automorphisms is said to be ��� 
�-
compatible if, for all a ∈ A, b ∈ B and 	 ∈ �,

��
	�a�� �	�b�� = ��a� b�� (2.10)

Lemma 2.4. Let � 
 A× B → k be a Hopf pairing between two Hopf algebras A
and B. Let 
 
 � → AutHopf�A� and � 
 � → AutHopf�B� be two actions of � by



GRADED QUANTUM GROUPS 3037

Hopf automorphisms. Suppose that � is ��� 
�-compatible. Then the Hopf �-coalgebra
D�A�B� �� 
� = �D�A� B� �� 
����∈� (see Theorem 2.3) admits a crossing � given, for
any a ∈ A, b ∈ B and 	 ∈ �, by

�	�a⊗ b� = 
	�a�⊗ �	�b�� (2.11)

Proof. Let �� 	 ∈ �. We have that �	�1A ⊗ 1B� = 
	�1A�⊗ �	�1B� = 1A ⊗ 1B and,
for any a� a′ ∈ A and b� b′ ∈ B,

�	�a⊗ b� · �	�a
′ ⊗ b′�

= ��
	�	−1�
	�a
′��1��� S��	�b��1�����
	�a

′��3�� �	�b��3��

×
	�a�
	�a
′��2� ⊗ �	�b��2��	�b

′�

= ��
	
��a
′
�1���� �	S�b�1�����
	�a

′
�3��� �	�b�3���
	�a�
	�a

′
�2��⊗ �	�b�2���	�b

′�

= ��
��a
′
�1���� S�b�1�����a

′
�3�� b�3��
	�aa

′
�2��⊗ �	�b�2�b

′�

= �	��a⊗ b� · �a′ ⊗ b′���

Moreover 
	 and �	 are bijective and so is �	. Therefore �	 
 D�A� B� �� 
�� →
D�A�B� �� 
	�	−1� is an algebra isomorphism.

Finally, for any a ∈ A, b ∈ B and �� 	� � ∈ �, we have that:

�	�	−1�	�	−1��	�a⊗ b�� = 
	�	−1�
	�a��1��⊗ �	�b��1� ⊗ 
	�a��2� ⊗ �	�b��2�

= 
	�	−1
	�a�1��⊗ �	�b�1��⊗ 
	�a�2��⊗ �	�b�2��

= 
	
��a�1��⊗ �	�b�1��⊗ 
	�a�2��⊗ �	�b�2��

= ��	 ⊗ �	������a⊗ b��

��	�a⊗ b� = ��
	�a�����	�b�� = ��a���b� = ��a⊗ b��

and

���	�a⊗ b� = 
�
	�a�⊗ ���	�b� = 
�	�a�⊗ ��	�b� = ��	�a⊗ b��

Hence � satisfies Axioms (1.4), (1.5) and (1.6). �

Corollary 2.5. Let � 
 A× B → k be a Hopf pairing and 
 
 � → AutHopf�A� be an
action of � on A by Hopf automorphisms. Suppose that � is non-degenerate and that A
(and so B) is finite dimensional. Then there exists a unique action 
∗ 
 � → AutHopf�B�
which is ��� 
�-compatible. It is characterized, for any a ∈ A, b ∈ B and 	 ∈ �, by

��a� 
∗
	�b�� = ��
	−1�a�� b�� (2.12)

Consequently the Hopf �-coalgebra D�A�B� �� 
� = �D�A� B� �� 
����∈� (see
Theorem 2.3) is crossed with crossing defined by �	 = 
	 ⊗ 
∗

	 for any 	 ∈ �.

Proof. Let 	 ∈ �. Since � is non-degenerate and A and B are finite dimensional,
the map b ∈ B 
→ ��·� b� ∈ A∗ is a linear isomorphism, and so (2.12) does uniquely
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define a linear map 
∗
	 
 B → B. Since � is a Hopf pairing and 
	−1 is a Hopf

algebra isomorphism of A, the map 
∗
	 is a Hopf algebra isomorphism of B.

Moreover 
∗ is an action since 
∗
1 = idB (because 
1 = idA) and ��a� 
∗

�	�b�� =
��
	−1�−1�a�� b� = ��
	−1
�−1�a�� b� = ��
�−1�a�� 
∗

	�b�� = ��a� 
∗
�


∗
	�b�� for any a ∈

A, b ∈ B and �� 	 ∈ �. Finally (2.12) says exactly that 
∗ is ��� 
�-compatible. �

Theorem 2.6. Let � 
 A× B → k be a Hopf pairing between two Hopf algebras A
and B, and 
 
 � → AutHopf�A� be an action of � on A by Hopf automorphisms.
Suppose that � is non-degenerate and that A (and so B) is finite dimensional. Then the
crossed Hopf �-coalgebra D�A�B� �� 
� = �D�A� B� �� 
����∈� (see Corollary 2.5) is
quasitriangular with R-matrix given, for all �� 	 ∈ �, by

R��	 =
∑
i

�ei ⊗ 1B�⊗ �1A ⊗ fi�� (2.13)

where �ei�i and �fi�i are basis of A and B, respectively, such that ��ei� fj� = �i�j .

Remark 2.7. (a) The element
∑

i�ei ⊗ 1B�⊗ �1A ⊗ fi� ∈ A⊗ B ⊗ A⊗ B is cano-
nical, i.e., independent of the choices of the basis �ei�i of A and �fi�i of B such that
��ei� fj� = �i�j .

(b) Note that the hypothesis A is finite dimensional ensures that the sum∑
i�ei ⊗ 1B�⊗ �1A ⊗ fi� lies in A⊗ B ⊗ A⊗ B. More generally, assume that A and B

are graded Hopf algebras with finite dimensional homogeneous components and
that � is compatible with the gradings. Then the quotient Hopf algebras A/IA
and B/IB are also graded and can be identified via � with the duals of each other.
Suppose also that the action 
 respects the grading so does the quotient 
̄ 
 � →
AutHopf�A/IA�. In this case, there exists a unique action � → AutHopf�B/IB� which is
��̄� 
̄�-compatible, where �̄ 
 A/IA × B/IB → k is the induced Hopf pairing. Then the
Hopf �-coalgebra D�A/IA� B/IB� �̄� 
̄� is quasitriangular by the same construction
as in Theorem 2.6.

Proof. Fix basis �ei� of A and �fi� of B such that ��ei� fj� = �i�j (such basis always
exist since � is non-degenerate). Note that x = ∑

i ��x� fi�ei and y = ∑
i ��ei� y�fi for

any x ∈ A and y ∈ B.
Recall that, since

∑
i ei ⊗ 1B ⊗ 1A ⊗ fi is the R-matrix of the usual quantum

double D�A�B� �� idA�, we have∑
i�j

S�ei�ej ⊗ fifj = 1A ⊗ 1B� (2.14)

∑
i

ei ⊗ fi�1� ⊗ fi�2� =
∑
i�j

eiej ⊗ fj ⊗ fi� (2.15)

∑
i

ei�1� ⊗ ei�2� ⊗ fi =
∑
i�j

ei ⊗ ej ⊗ fifj� (2.16)

Let �� 	 ∈ �. From (2.14) and since A (resp. B) can be viewed as a subalgebra
of D�A�B� �� 
�� (resp. D�A�B� �� 
	�) via a 
→ a⊗ 1B (resp. b 
→ 1A ⊗ b), we get
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that R��	 is invertible in D�A�B� �� 
��⊗D�A�B� �� 
	� with inverse

R−1
��	 =

∑
i

S�ei�⊗ 1B ⊗ 1A ⊗ fi�

Let a ∈ A, b ∈ B and �� 	 ∈ �. For all x ∈ A, we have that:

�idA⊗B⊗A ⊗ ��x� ·���R��	 · ���	�a⊗ b��

= ∑
i

��
	�a�2��� S�fi�1�����a�4�� fi�3����x� fi�2�b�2��ei
	�a�1��⊗ b�1� ⊗ a�3�

= ∑
i

��
	S
−1�a�2��� fi�1����a�4�� fi�3����x�1�� fi�2����x�2�� b�2��ei
	�a�1��⊗ b�1� ⊗ a�3�

= ∑
i

��a�4�x�1�
	S
−1�a�2��� fi���x�2�� b�2��ei
	�a�1��⊗ b�1� ⊗ a�3�

= ��x�2�� b�2��a�4�x�1�
	�S
−1�a�2��a�1��⊗ b�1� ⊗ a�3�

= ��x�2�� b�2��a�2�x�1� ⊗ b�1� ⊗ a�1��

and, since x�1� ⊗ x�2� ⊗ x�3� ⊗ x�4� =
∑

i ��x�2�� fi�x�1� ⊗ ei�1� ⊗ ei�2� ⊗ ei�3�,

�idA⊗B⊗A ⊗ ��x� ·����	�����−1 ⊗ idH�
���	�−1���a⊗ b� · R��	�

= ∑
i

��
��ei�1��� S�b�2��� ��ei�3�� b�4����x� 

∗
�−1�b�1��fi�a�2�ei�2� ⊗ b�3� ⊗ a�1�

= ∑
i

��
��ei�1��� S�b�2�����ei�3�� b�4����
��x�1��� b�1����x�2�� fi�a�2�ei�2� ⊗ b�3� ⊗ a�1�

= ��
��x�2��� S�b�2�����x�4�� b�4����
��x�1��� b�1��a�2�x�3� ⊗ b�3� ⊗ a�1�

= ��
��x�1��� b�1�S�b�2�����x�3�� b�4��a�2�x�2� ⊗ b�3� ⊗ a�1�

= ��x�2�� b�2�� a�2�x�1� ⊗ b�1� ⊗ a�1��

Hence, since the ��x� ·� span B∗, Axiom (1.7) is satisfied.
Let us verify Axiom (1.10). Let �� 	� � ∈ �. Since 
∗ is ��� 
�-compatible, the

basis �
	�ei��i of A and �
∗
	�fi��i of B satisfy ��
	�ei�� 


∗
	�ej�� = ��ei� fj� = �i�j .

Therefore we get that:

��	 ⊗ �	��R���� =
∑
i


	�ei�⊗ 1B ⊗ 1A ⊗ 
∗
	�fj� = R	�	−1�	�	−1 �

Finally, let us check Axioms (1.8) and (1.9). Let �� 	� � ∈ �. Using (2.15), we
have:

�idD�A�B���
��
⊗ �	����R��	�� =

∑
i

ei ⊗ 1B ⊗ 1A ⊗ fi�1� ⊗ 1A ⊗ fi�2�

= ∑
i�j

eiej ⊗ 1B ⊗ 1A ⊗ fj ⊗ 1A ⊗ fi

= �R����1	3 · �R��	�12��
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Likewise, using (2.16) and (1.10), we have:

����	 ⊗ idD�A�B���
��
��R�	��� =

∑
i


	�ei�1��⊗ 1B ⊗ ei�2� ⊗ 1B ⊗ 1A ⊗ fi

= ∑
i�j


	�ei�⊗ 1B ⊗ ej ⊗ 1B ⊗ 1A ⊗ fifj

= ���	 ⊗ idD�A�B���
��
��R	−1�	����1	3 · �R	����23

= ��idD�A�B���
��
⊗ �	−1��R��	�	−1��1	3 · �R	����23�

This completes the proof of the quasitriangularity of D�A�B� �� 
�. �

The next corollary is a direct consequence of Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let A be a finite-dimensional Hopf algebra and 
 
 � → AutHopf�A�
be an action of � on A by Hopf algebras automorphisms. Recall that the duality
bracket �� �A⊗A∗ is a non-degenerate Hopf pairing between A and A∗cop. Then
D�A�A∗cop� �� �A⊗A∗� 
� is a quasitriangular Hopf �-coalgebra.

Remark 2.9. The group of Hopf automorphisms of a finite-dimensional
semisimple Hopf algebra A over a field of characteristic 0 is finite (see Radford,
1990). To obtain non-trivial examples of (quasitriangular) Hopf �-coalgebras for
an infinite group � by using the twisted double method, one has to consider
non-semisimple Hopf algebras (at least in characteristic 0).

2.3. The h-Adic Case

In this subsection, we develop the h-adic variant of Hopf group-coalgebras.
A technical argument for the need of h-adic Hopf group-coalgebras is that they
are necessary for a mathematically rigorous treatment of R-matrices for quantized
enveloping algebras endowed with a group action.

Recall that if V is a vector space over ���h��, the topology on V for which
the sets �hnV + v � n ∈ �� are a neighborhood base of v ∈ V is called the h-adic
topology. If V and W are vector spaces over ���h��, we shall denote by V ⊗̂W the
completion of the tensor product space V ⊗���h�� W in the h-adic topology. Let V be
a complex vector space. Then the set V ��h�� of all formal power series f = ∑


n=0 vnh
n

with coefficients vn ∈ V is a vector space over ���h�� which is complete in the
h-adic topology. Furthermore, V ��h�� ⊗̂W ��h�� = �V ⊗W���h�� for any complex
vector spaces V and W .

An h-adic algebra is a vector space A over ���h��, which is complete in the
h-adic topology and endowed with a ���h��-linear map m 
 A ⊗̂A → A and an
element 1 ∈ A satisfying m�idA ⊗̂m� = m�m ⊗̂ idA� and m�a ⊗̂ 1� = a = m�1 ⊗̂ a� for
all a ∈ A.

By an h-adic Hopf �-coalgebra, we shall mean a family H = �H���∈� of
h-adic algebras which is endowed with h-adic algebra homomorphisms ���	 
 H�	 →
H� ⊗̂H	 (�� 	 ∈ �) and � 
 A → ���h�� satisfying (1.1) and (1.2), and with C��h��-
linear maps S� 
 H� → H�−1�� ∈ �) satisfying (1.3). In the previous axioms, one has
to replace the algebraic tensor products ⊗ by the h-adic completions ⊗̂.
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The notions of crossed and quasitriangular h-adic Hopf �-coalgebras can be
defined similarly as in Sections 1.2 and 1.3.

The definitions of Section 2 and Theorem 2.3 carry over almost verbatim
to h-adic Hopf algebras. The only modifications are that � 
 A ⊗̂B → ���h�� is
���h��-linear and that the algebra D�A�B� �� 
�, where 
 is an h-adic Hopf
endomorphism of A, is built over the completion A ⊗̂B of A⊗ B in the h-adic
topology. The reasoning of the proof of Theorem 2.6 give the following h-adic
version.

Theorem 2.10. Let � 
 A ⊗̂B → ���h�� be an h-adic Hopf pairing between two
h-adic Hopf algebras A and B, and 
 
 � → AutHopf�A� be an action of � on A by
h-adic Hopf automorphisms. Suppose that � is non-degenerate and that �ei�i and �fi�i
are basis of the vector spaces A and B, respectively, which are dual with respect
to the form �. If R��	 =

∑
i�ei ⊗ 1B�⊗ �1A ⊗ fi� belongs to the h-adic completion

D�A�B� �� 
�� ⊗̂D�A�B� �� 
	�, then R = �R��	���	∈� is a R-matrix of the crossed
h-adic Hopf �-coalgebra D�A�B� �� 
� = �D�A� B� �� 
����∈�.

3. THE CASE OF ALGEBRAS OF FINITE GROUPS

Let G be a finite group. In this section, we describe Hopf G-coalgebras
obtained by the twisted double method from the Hopf algebra k �G�.

Recall that the Hopf algebra structure of the (finite-dimensional) k -algebra
k �G� of G is given by ��g� = g ⊗ g, ��g� = 1 and S�g� = g−1 for all g ∈ G. The dual
of k �G� is the Hopf algebra F�G� = k

G of functions G → k . It has a basis �eg 
 G →
k �g∈G defined by eg�h� = �g�h where �g�g = 1 and �g�h = 0 if g �= h. The structure
maps of F�G� are given by egeh = �g�heg, 1F�G� =

∑
g∈G eg, ��eg� =

∑
xy=g ex ⊗ ey,

��eg� = �g�1, and S�eg� = eg−1 for any g� h ∈ G.
Set 
 
 G → AutHopf�k �G�� defined by 
��h� = �h�−1. It is a well-defined

group homomorphism (since any � ∈ G is grouplike in k �G�). By Corollary 2.8,
this datum leads to a quasitriangular Hopf G-coalgebra D�k �G�� F�G�cop�
�� �

k �G�×F�G�� 
�, which will be denoted by DG�G� = �D��G���∈G.
Let us describe DG�G� more precisely. Let � ∈ G. Recall that D��G� is equal

to k �G�⊗ F�G� as a k -space. The unit element and product of D��G� are given, for
all g� g′� h� h′ ∈ G, by

1D��G� =
∑
g∈G

1⊗ eg and �g ⊗ eh� · �g′ ⊗ eh′� = ��g′�−1�h−1g′h′gg
′ ⊗ eh′ �

The structure maps of DG�G� are given, for any �� 	 ∈ G and g� h ∈ G, by

���	�g ⊗ eh� =
∑
xy=h

	g	−1 ⊗ ey ⊗ g ⊗ ex�

��g ⊗ eh� = �h�1�

S��g ⊗ eh� = �g−1�−1 ⊗ e�g�−1h−1g−1�

���g ⊗ eh� = �g�−1 ⊗ e�h�−1 �
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The crossed Hopf G-coalgebra DG�G� is quasitriangular and furthermore ribbon
with R-matrix and twist given, for any �� 	 ∈ G, by

R��	 =
∑

g�h∈G
g ⊗ eh ⊗ 1⊗ eg and �� =

∑
g∈G

�−1g�⊗ eg�

Note that �n� =
∑

g∈G �−n�g��n ⊗ eg for any n ∈ �.

4. EXAMPLE OF A QUASITRIANGULAR HOPF GLn�kkk �-COALGEBRA

In this section, k is a field whose characteristic is not 2. Fix a positive integer
n. We use a (finite dimensional) Hopf algebra whose group of automorphisms is
known to be the group GLn�k � of invertible n× n-matrices with coefficients in k (see
Radford, 1990) to derive an example of a quasitriangular Hopf GLn�k �-coalgebra.

Definition-Proposition 4.1. For � = ��i�j� ∈ GLn�k �, let ��
n be the �-algebra

generated g, x1� � � � � xn, y1� � � � � yn, subject to the following relations:

g2 = 1� x21 = · · · = x2n = 0� gxi = −xig� xixj = −xjxi� (4.1)

y21 = · · · = y2n = 0� gyi = −yig� yiyj = −yjyi� (4.2)

xiyj − yjxi = ��j�i − �i�j�g� (4.3)

where 1 ≤ i� j ≤ n. The family �n = ���
n��∈GLn�k �

has a structure of a crossed
Hopf GLn�k �-coalgebra given, for any � = ��i�j� ∈ GLn�k �, 	 = �	i�j� ∈ GLn�k �, and
1 ≤ i ≤ n, by:

���	�g� = g ⊗ g� ��g� = 1� S��g� = g� (4.4)

���	�xi� = 1⊗ xi +
n∑

k=1

	k�ixk ⊗ g� ��xi� = 0� S��xi� =
n∑

k=1

�k�igxk� (4.5)

���	�yi� = yi ⊗ 1+ g ⊗ yi� ��yi� = 0� S��yi� = −gyi� (4.6)

���g� = g� ���xi� =
n∑

k=1

�k�ixk� ���yi� =
n∑

k=1

�̃i�kyk� (4.7)

where ��̃i�j� = �−1. Moreover �n is quasitriangular with R-matrix given, for any �� 	 ∈
GLn�k �, by:

R��	 =
1
2

∑
S⊆�n�

xS ⊗ yS + xS ⊗ gyS + gxS ⊗ yS − gxS ⊗ gyS�

Here �n� = �1� � � � � n�, x∅ = 1, y∅ = 1, and, for a nonempty subset S of �n�, we let xS =
xi1 · · · xis and yS = yi1 · · · yis where i1 < · · · < is are the elements of S.

Remark 4.2. Note that the algebras ��
n and �	

n are in general not isomorphic when
�� 	 ∈ GLn�k � are such that � �= 	. For example, we have that ��

n �� �1
n for any
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� ∈ GLn�k � with � �= 1. This can be shown by remarking that:

��
n/��

�
n��

�
n� �� �1

n/��
1
n��

1
n��

Indeed ��
n/��

�
n��

�
n�= 0 since g= 1

�j�i−�i�j
�xiyj − yjxi� ∈ ���

n��
�
n� (for some 1 ≤ i, j ≤ n

such that �j�i �= �i�j) and so 1 = g2 ∈ ���
n��

�
n�. Moreover, in �1

n/��
1
n��

1
n�, we have

that xk = xkg
2 = 0 (since xkg = gxk = −xkg and so xkg = 0) and likewise yk = 0.

Hence �1
n/��

1
n��

1
n� = k �g � g2 = 1� �� 0.

Proof. Let An be the k -algebra generated by g� x1� � � � � xn, which satisfy the
relations (4.1). The algebra An is 2n+1-dimensional and is a Hopf algebra with
structure maps defined by:

��g� = g ⊗ g� ��g� = 1� S�g� = g�

��xi� = xi ⊗ g + 1⊗ xi� ��xi� = 0� S�xi� = gxi�

Radford (1990) showed that the group of Hopf automorphisms of An is isomorphic
to the group GLn�k � of invertible n× n-matrices with coefficients in k . This group
automorphism 
 
 GLn�k � → AutHopf�An� is given by:


��g� = g and 
��xi� =
n∑

k=1

�k�ixk for any � = ��i�j� ∈ GLn�k ��

The Hopf algebra Bn = Acop
n is the k -algebra generated by the symbols h� y1� � � � � yn

which satisfy the relations h2 = 1, y2i = 0, hyi = −yih, and yiyj = −yjyi. Its Hopf
algebra structure is given by:

��h� = h⊗ h� ��h� = 1� S�h� = h�

��yi� = yi ⊗ 1+ h⊗ yi� ��yi� = 0� S�yi� = −hyi�

Let us denote the cardinality of a set T by �T �. The elements gkxS (resp. hkyS), where
k ∈ �0� 1� and S ⊆ �n�, form a basis for An (resp. Bn). Since � is multiplicative, it
follows that

��gkxS� =
∑
T⊆S

�T�Sg
kxT ⊗ gk+�T �xS\T (4.8)

and

��hkyS� =
∑
T⊆S

�T�Sh
k+�T �yS\T ⊗ hkyT � (4.9)

where �T�S = ±1 and �∅�S = 1 = �S�S .
By Section 2.1, there exists a (unique) Hopf pairing � 
 An × Bn → k such

that ��g� h� = −1, ��g� yj� = ��xi� h� = 0, and ��xi� yj� = �i�j for all 1 ≤ i, j ≤ n.
Using (4.8) and (4.9), one gets (by induction on �S�) that

��gkxS� h
lyT � = �−1�kl�S�T
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for any k� l ∈ �0� 1� and S� T ⊆ �n�, where �S�S = 1 and �S�T = 0 if S �= T . Set z0 =
�1+ h�/2 and z1 = �1− h�/2. The elements zkyS , where k ∈ �0� 1� and S ⊆ �n�, form
a basis for Bn such that:

��gkxS� zlyT � = �k�l�S�T (4.10)

for any k� l ∈ �0� 1� and S� T ⊆ �n�. Therefore the pairing � is non-degenerate. Note
that this implies that A∗

n � An as a Hopf algebra.
By Theorem 2.6, we get a quasitriangular Hopf GLn�k �-coalgebra

D�An� Bn� �� 
�. For any � = ��i�j� ∈ GLn�k �, D�An� Bn� �� 
�� is the algebra
generated by g, h, x1� � � � � xn, y1� � � � � yn, subject to the relations h2 = 1, (4.1), (4.2)
with g replaced by h, and the following relations:

gh = hg� gyj = −yjg� hxi = −xih� (4.11)

xiyj − yjxi = �j�ig − �i�jh� (4.12)

Indeed D�An� Bn� �� 
�� is the free algebra generated by the algebras An and Bn with
cross relation (2.5). Further, it suffices to require the cross relations (2.5) for �1⊗ b� ·
�a⊗ 1� with a = g� xi and b = h� yj . To simplify the notations, we identify of a with
a⊗ 1 and b with 1⊗ b (recall that these natural maps An ↪→ D�An� Bn� �� 
�� and
Bn ↪→ D�An� Bn� �� 
�� are algebra monomorphisms). For example, let a = xi and
b = yj . Since ��xi� 1� = ��g� yj� = ��xi� h� = ��1� yj� = 0, relation (2.5) gives

yjxi = ��
��xi�� yjh���g� 1�g · 1+ ��1� h���g� 1�xi · yj + ��1� h���xi� yj�1 · h�

Inserting the values ��g� 1� = ��1� h� = 1, ��xi� yj� = �i�j , and ��
��xi�� yjh� = −�j�i,
we get (4.12).

From Theorem 2.3, we obtain that the comultiplication ���	, the counit �, the
antipode S�, and the crossing �� of D�An� Bn� �� 
�� are given by

���	�g� = g ⊗ g� ���	�h� = h⊗ h� (4.13)

���	�xi� = 1⊗ xi +
n∑

k=1

	k�ixk ⊗ g� ���	�yi� = yi ⊗ 1+ h⊗ yi� (4.14)

��g� = ��h� = 1� ��xi� = ��yi� = 0� S��g� = g� (4.15)

S��h� = h� S��xi� =
n∑

k=1

�k�igxk� S��yi� = −hyi� (4.16)

���g� = g� ���h� = h� ���xi� =
n∑

k=1

�k�ixk� ���yi� =
n∑

k=1

�̃i�kyk� (4.17)

where ��̃i�j� = �−1.
For any � ∈ GLn�k �, let I� be the ideal of D�An� Bn� �� 
�� generated by

g − h. Using the above description of the structure maps of D�An� Bn� �� 
�,
we get that I = �I���∈� is a crossed Hopf GLn�k �-coideal of D�An� Bn� �� 
�.
The quotient D�An� Bn� �� 
�/I = �D�An� Bn� �� 
��/I���∈GLn�k �

is precisely
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�n = ���
n��∈GLn�k �

and so the latter has a quasitriangular Hopf GLn�k �-coalgebra
structure which can be described by replacing h with g in (4.13)–(4.17).

Finally, the R-matrix of �n is obtained as the image under the projection maps
D�An� Bn� �� 
��

p�−→ D�An� Bn� �� 
��/I� = ��
n of the R-matrix of D�An� Bn� �� 
�,

that is, using (4.10),

R��	 = ∑
S⊆�n�

p��xS�⊗ p	�z0yS�+ p��gxS�⊗ p	�z1yS�

= ∑
S⊆�n�

xS ⊗
(
1+ g

2

)
yS + gxS ⊗

(
1− g

2

)
yS

= 1
2

∑
S⊆�n�

xS ⊗ yS + xS ⊗ gyS + gxS ⊗ yS − gxS ⊗ gyS�

This completes the proof of Proposition 4.1. �

5. GRADED QUANTUM GROUPS

Let � be a finite-dimensional complex simple Lie algebra of rank l with Cartan
matrix �ai�j�. We let di be the coprime integers such that the matrix �diai�j� is
symmetric. Let q be a fixed nonzero complex number and set qi = qdi . Suppose that
q2
i �= 1 for i = 1� 2� � � � � l.

Definition-Proposition 5.1. Set � = ��∗�l. For � = ��1� � � � � �l� ∈ �, let U�
q ��� be

the �-algebra generated by K±1
i , Ei, Fi, 1 ≤ i ≤ l, subject to the following defining

relations:

KiKj = KjKi� KiK
−1
i = K−1

i Ki = 1� (5.1)

KiEj = q
ai�j
i EjKi� (5.2)

KiFj = q
−ai�j
i FjKi� (5.3)

EiFj − FjEi = �i�j
�iKi − K−1

i

qi − q−1
i

� (5.4)

1−ai�j∑
r=0

�−1�r
[
1− ai�j

r

]
qi

E
1−ai�j−r

i EjE
r
i = 0 if i �= j� (5.5)

1−ai�j∑
r=0

�−1�r
[
1− ai�j

r

]
qi

F
1−ai�j−r

i FjF
r
i = 0 if i �= j� (5.6)

The family U�
q ��� = �U�

q �����∈� has a structure of a crossed Hopf �-coalgebra given,
for � = ��1� � � � � �l� ∈ �, 	 = �	1� � � � � 	l� ∈ � and 1 ≤ i ≤ l, by:

���	�Ki� = Ki ⊗ Ki�

���	�Ei� = 	iEi ⊗ Ki + 1⊗ Ei�

���	�Fi� = Fi ⊗ 1+ K−1
i ⊗ Fi�
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��Ki� = 1� ��Ei� = ��Fi� = 0�

S��Ki� = K−1
i � S��Ei� = −�iEiK

−1
i � S��Fi� = −KiFi�

���Ki� = Ki� ���Ei� = �iEi� ���Fi� = �−1
i Fi�

Remark 5.2. Note that �U 1
q ���� �1�1� �� S1� is the usual quantum group Uq���.

Proof. Let U+ be the �-algebra generated by Ei, K
±1
i , 1 ≤ i ≤ l, subject to the

relations (5.1), (5.2) and (5.5). Let U− be the �-algebra generated by Fi, K
′
i
±1, 1 ≤

i ≤ l, subject to the relations (5.1), (5.3) and (5.6), where one has to replace Ki with
K′

i . The algebras U+ and U− have a Hopf algebra structure given by

��Ki� = Ki ⊗ Ki� ��Ei� = Ei ⊗ Ki + 1⊗ Ei�

��Ki� = 1� ��Ei� = 0� S�Ki� = K−1
i � S�Ei� = −EiK

−1
i �

��K′
i� = K′

i ⊗ K′
i � ��Fi� = Fi ⊗ 1+ K′

i
−1 ⊗ Fi�

��K′
i� = 1� ��Fi� = 0� S�K′

i� = K′
i
−1
� S�Fi� = −K′

iFi�

Using the method described in Section 2.1, it can be verified that there exists a
(unique) Hopf pairing � 
 U+ × U− → � such that

��Ei� Fj� =
�i�j

qi − q−1
i

� ��Ei� K
′
j� = ��Ki� Fj� = 0� ��Ki� K

′
j� = q

ai�j
i = q

aj�i
j �

Let 
 
 � → AutHopf�U+� and � 
 � → AutHopf�U−� be the group homomorphisms
defined as follows: for 	 = �	1� � � � � 	l� ∈ � and 1 ≤ i ≤ l, set


	�Ki� = Ki� 
	�Ei� = 	iEi� �	�K
′
i� = K′

i � �	�Fi� = 	−1
i Fi�

It is straightforward to verify that � is ��� 
�-compatible. By Lemma 2.4, we can
consider the crossed Hopf �-coalgebra D�U+� U−� �� 
� = �D�U+� U−� �� 
����∈�.

Now, for any � ∈ �, D�U+� U−� �� 
�� is the algebra generated by K±1
i , K′

i
±1,

Ei, Fi, where 1 ≤ i ≤ l, subject to the relations (5.1), (5.2), (5.5), the relations (5.1),
(5.3), (5.6) with Ki replaced by K′

i , and the following relations:

KiK
′
j = K′

jKi� KiFj = q
−ai�j
i FjKi� K′

iEj = q
ai�j
i EjK

′
i � (5.7)

EiFj − FjEi = �i�j
�iKi−K′

i
−1

qi−q−1
i

� (5.8)

Indeed, D�U+� U−� �� 
�� is the free algebra generated by the algebras U+ and
U− with cross relation (2.5). Further, it suffices to require the cross relations
(2.5) for �1⊗ b� · �a⊗ 1� with a = Ki� Ei and b = K′

i � Fi. To simplify the notations,
we identify of a with a⊗ 1 and b with 1⊗ b (recall that these natural maps
U+ ↪→ D�U+� U−� �� 
�� and U− ↪→ D�U+� U−� �� 
�� are algebra monomorphisms).
For example, let a = Ei and b = Fj . Since ��Ei� 1� = ��Ki� Fj� = ��Ei� K

′
j
−1� =

��1� Fj� = 0, relation (2.5) gives

FjEi = ���iEi� S�Fj����Ki� 1�Ki + ��1� K′
j���Ki� 1�EiFj + ��1� K′

j���Ei� Fj�K
′
j
−1
�
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Inserting the values ��Ki� 1� = ��1� K′
j� = 1, ��Ei� Fj� = �i�j�qi − q−1

i �−1 and
��Ei� S�Fj�� = −�i�j�qi − q−1

i �−1, we get (5.8).
From Theorem 2.3, we obtain that the comultiplication ���	, the counit �, the

antipode S�, and the crossing �� of D�U+� U−� �� 
� are given, for 1 ≤ i ≤ l, by

���	�Ki� = Ki ⊗ Ki� ���	�K
′
i� = K′

i ⊗ K′
i � (5.9)

���	�Ei� = 	iEi ⊗ Ki + 1⊗ Ei� ���	�Fi� = Fi ⊗ 1+ K′
i
−1 ⊗ Fi� (5.10)

��Ki� = ��K′
i� = 1� ��Ei� = ��Fi� = 0� S��Ki� = K−1

i � (5.11)

S��K
′
i� = K′

i
−1� S��Ei� = −�iEiK

−1
i � S��Fi� = −K′

iFi� (5.12)

���Ki� = Ki� ���K
′
i� = K′

i � ���Ei� = �iEi� ���Fi� = �−1
i Fi� (5.13)

Finally, for any � ∈ �, let I� be the ideal of D�U+� U−� �� 
�� generated by Ki −
K′

i and K−1
i − K′

i
−1, where 1 ≤ i ≤ l. Using the above description of the structure

maps of D�U+� U−� �� 
�, we get that I = �I���∈� is a crossed Hopf �-coideal
of D�U+� U−� �� 
�. The quotient D�U+� U−� �� 
�/I = �D�U+� U−� �� 
��/I���∈� is
precisely U�

q ��� = �U�
q �����∈�. Hence the latter has a crossed Hopf �-coalgebra

structure given by replacing K′
i with Ki in (5.9)–(5.13). �

Remark 5.3. In the above construction, we use the diagonal Hopf automorphisms
of U+ = Uq��+�. What happens if we use also the Hopf automorphisms coming from
diagram automorphisms? Recall that a diagram automorphism of � is a permutation
� of �1� � � � � l� such that a��i����j� = ai�j for all 1 ≤ i� j ≤ l. Denote by � the group
of diagram automorphisms of �. In the following table, we recall the isomorphism
class of � depending on the type of � (see, e.g., Bourbaki, 1981):

Al Bl Cl Dl

� A1 �l ≥ 2� �l ≥ 2� �l ≥ 2� �l ≥ 3� l �= 4� D4 E6 E7 E8 F4 G2

� 1 �2 1 1 �2 �3 �2 1 1 1 1

There exists a group morphism 
 
 � × ��∗�l → AutHopf�U+� defined by 
	�Ki� =
K��i� and 
	�Ei� = 	i E��i� for 	 = ��� 	1� � � � � 	l� ∈ � × ��∗�l and 1 ≤ i ≤ l. Note
that 
 is in fact a group isomorphism, see Fleury (1997). We can then consider
the Hopf

(
� × ��∗�l

)
-coalgebra D�U+� U−� �� 
�. Nevertheless, unlike in the proof

of Proposition 5.1, there is no natural way to quotient D�U+� U−� �� 
� in order to
eliminate the K′

j .

6. h-ADIC GRADED QUANTUM GROUPS

Let � be a finite-dimensional complex simple Lie algebra of rank l with Cartan
matrix �ai�j�. We let di be the coprime integers such that the matrix �diai�j� is
symmetric.

Definition-Proposition 6.1. Set � = ���h��l. For � = ��1� � � � � �l� ∈ �, let U�
h ��� be

the h-adic algebra generated by the elements Hi, Ei, Fi, 1 ≤ i ≤ l, subject to the
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following defining relations:

�Hi� Hj� = 0� (6.1)

�Hi� Ej� = aijEj� (6.2)

�Hi� Fj� = −aijFj� (6.3)

�Ei� Fj� = �i�j
edih�iedihHi − e−dihHi

edih − e−dih
� (6.4)

1−ai�j∑
r=0

�−1�r
[
1− ai�j

r

]
edih

E
1−ai�j−r

i EjE
r
i = 0 �i �= j�� (6.5)

1−ai�j∑
r=0

�−1�r
[
1− ai�j

r

]
edih

F
1−ai�j−r

i FjF
r
i = 0 �i �= j�� (6.6)

The family U�
h ��� = �U�

h �����∈� has a structure of a crossed h-adic Hopf �-coalgebra
given, for � = ��1� � � � � �l� ∈ �, 	 = �	1� � � � � 	l� ∈ � and 1 ≤ i ≤ l, by:

���	�Hi� = Hi ⊗ 1+ 1⊗Hi�

���	�Ei� = edih	iEi ⊗ edihHi + 1⊗ Ei�

���	�Fi� = Fi ⊗ 1+ e−dihHi ⊗ Fi�

��Hi� = ��Ei� = ��Fi� = 0�

S��Hi� = −Hi� S��Ei� = −edih�iEie
−dihHi � S��Fi� = −edihHiFi�

���Hi� = Hi� ���Ei� = edih�iEi� ���Fi� = e−dih�iFi�

Remark 6.2. (a) �U 0
h ���� �0�0� �� S0� is the usual quantum group Uh���.

(b) The element edih − e−dih ∈ ���h�� is not invertible in ���h��, because the
constant term is zero. But the expression of the right hand side of (6.4) is a formal
power series

∑
n pn�Hi�h

n with certain polynomials pn�Hi�, and so it is a well-defined
element of the h-adic algebra generated by Ei, Fi, Hi.

Proof. Let U+ be the h-adic algebra generated by Hi, Ei, 1 ≤ i ≤ l, subject to the
relations (6.1), (6.2) and (6.5). Let U− be the h-adic algebra generated by H ′

i , Fi,
1 ≤ i ≤ l, subject to the relations (6.1), (6.3) and (6.6) with Hi replaced by H ′

i . The
algebras U+ and U− have a h-adic Hopf algebra structure given by:

��Hi� = Hi ⊗ 1+ 1⊗Hi� ��Ei� = Ei ⊗ edihHi + 1⊗ Ei�

��Hi� = ��Ei� = 0� S�Hi� = −Hi� S�Ei� = −Eie
−dihHi �

��H ′
i � = H ′

i ⊗ 1+ 1⊗H ′
i � ��Fi� = Fi ⊗ 1+ e−dihH

′
i ⊗ Fi�

��H ′
i � = ��Fi� = 0� S�H ′

i � = −H ′
i � S�Fi� = −edihH

′
i Fi�
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In order to construct a Hopf pairing adapted to our needs, let us consider the
h-adic Hopf algebra Ũ− = ���h��1+ hU−. The elements H̃ ′

i = hH ′
i and F̃i = hFi

belong to Ũ− and satisfy

�H̃ ′
i � F̃j� = −haijF̃j� ��H̃ ′

i � = H̃ ′
i ⊗ 1+ 1⊗ H̃ ′

i � ��F̃i� = F̃i ⊗ 1+ e−diH̃
′
i ⊗ F̃i�

The element e−diH̃
′
i = 1+∑

k≥1
1
k! �−dih�

kH ′
i
k is also in Ũ−. Note that e−diH̃

′
i is not

in the h-adic subalgebra of Ũ− generated by H̃ ′
i . Using the method described in

Section 2.1 (see also Klimyk and Schmudgen, 1997, Proposition 38), it can be
verified that there exists a (unique) Hopf pairing � 
 U+ × Ũ− → ���h�� such that:

��Hi� H̃
′
j� = d−1

i aj�i� ��Hi� F̃j� = ��Ei� H̃
′
j� = 0� ��Ei� F̃j� =

�i�j h

edih − e−dih
�

Let 
 
 � → AutHopf�U+� and � 
 � → AutHopf�Ũ−� defined, for � = ��1� � � � � �l� ∈ �
and 1 ≤ i ≤ l, by


��Hi� = Hi� 
��Ei� = edih�iEi� ���H̃
′
i � = H̃ ′

i � ���F̃i� = e−dih�i F̃i�

It is straightforward to verify that � is ��� 
�-compatible. By the h-adic version of
Lemma 2.4, we can consider the crossed h-adic Hopf �-coalgebra D�U+� Ũ−� �� 
� =
�D�U+� Ũ−� �� 
����∈� whose structure can be explicitly described as in the proof of
Proposition 5.1.

For any � ∈ �, let I� be the h-adic ideal of D�U+� Ũ−� �� 
�� generated
by H̃ ′

i − hHi where 1 ≤ i ≤ l. Using the description of the structure maps of
D�U+� Ũ−� �� 
��, we get that I = �I���∈� is a crossed h-adic Hopf �-coideal
of D�U+� U−� �� 
�. The quotient D�U+� Ũ−� �� 
�/I = �D�U+� Ũ−� �� 
��/I���∈� is
precisely U�

h ��� = �U�
h �����∈�. Hence the latter has a structure of a crossed h-adic

Hopf �-coalgebra. �

It is well-know (see, e.g., Klimyk and Schmudgen, 1997) that the Hopf pairing
� 
 U+ × Ũ− → ���h�� is non-degenerate and that, if �ei�i and �fi�i are dual basis
of the vector spaces U+ and Ũ− with respect to the form �, then

∑
i�ei ⊗ 1�⊗

�1⊗ fi� belongs to the h-adic completion D�U+� Ũ−� �� 
�� ⊗̂D�U+� Ũ−� �� 
	�.
Therefore, by Theorem 2.10, the crossed h-adic Hopf �-coalgebra D�U+� Ũ−� �� 
�
is quasitriangular. Hence, as a quotient of D�U+� Ũ−� �� 
�, U�

h ��� is also
quasitriangular.

For example, when � = �l2 and so � = ���h��, we have that the R-matrix of
U

���h��
h ��l2� is given, for any �� 	 ∈ ���h��, by

R��	 = eh�H⊗H�/2

∑
n=0

Rn�h� E
n ⊗ Fn ∈ U�

h ��l2� ⊗̂U
	
h ��l2��

where Rn�h� = qn�n+1�/2 �1−q−2�n

�n�q ! and q = eh.
Let � ∈ ���h��. For any non-negative integer n, consider a �n+ 1�-dimensional

�-vector space Vn with basis �v0� � � � � vn�. The space V
�
n = Vn��h�� = Vn ⊗���h�� has
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a structure of a (topological) left U�
h ��	2�-module given, for 0 ≤ i ≤ n, as follows:

H · vi =
(
n− 2i− �

2

)
vi�

E · vi =
{
e

h�
2 �n− i+ 1�qvi−1 if i > 0�

0 if i = 0�

F · vi =
{
�i+ 1�qvi+1 if i < n�

0 if i = n�

Together with the quasitriangularity of U���h��
h ��	2�, these data lead in particular to

a solution of the ���h��-colored Yang-Baxter equation.
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