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Starting firom a Hopf algebra endowed with an action of a group n by Hopf
automorphisms, we construct (by a “twisted” double method) a quasitriangular Hopf
n-coalgebra. This method allows us to obtain non-trivial examples of quasitriangular
Hopf m-coalgebras for any finite group n and for infinite groups n such as GL,(k).
In particular, we define the graded quantum groups, which are Hopf n-coalgebras for
7 = C[[k]]' and generalize the Drinfeld-Jimbo quantum enveloping algebras.
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INTRODUCTION

Let n be a group. Turaev (2000) introduced the notion of a braided n category
and showed that such a category gives rise to a 3-dimensional homotopy quantum
field theory (the target being a K(=, 1) space). Moreover braided n-categories, also
called m-equivariant categories, provide a suitable mathematical formalism for the
description of orbifold models that arise in the study of conformal field theories in
which = is the group of automorphisms of the vertex operator algebra, see Kirillov
(2004).

The algebraic structure whose category of representations is a braided -
category is that of a quasitriangular Hopf m-coalgebra, see Turaev (2000), Virelizier
(2002). The aim of the present article is to construct examples of quasitriangular
Hopf =n-coalgebras. Note that quasitriangular Hopf m-coalgebras are also used
in Virelizier (2001) to construct HKR-type invariants of flat n-bundles over link
complements and over 3-manifolds.

Following Turaev (2000), a Hopf n-coalgebra is a family H = {H,},., of
algebras (over a field k) endowed with a comultiplication A ={A,,: H,; —
H, ® Hy}, jey» @ counit & : H; — k, and an antipode § = {S, : H, — H,-1},., which
verify some compatibility conditions. A crossing for H is a family of algebra
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isomorphisms ¢ = {¢g : H, — Hg,s-1}, g, Which preserves the comultiplication and
the counit, and which yields an action of 7 in the sense that g0, = @4, A crossed
Hopf n-coalgebra H is quasitriangular when it is endowed with an R-matrix
R={R,; € H, ® Hg}, g, verifying some axioms (involving the crossing ¢) which
generalize the classical ones given in Drinfeld (1987). Note that the case = = 1 is the
standard setting of Hopf algebras.

Starting from a crossed Hopf n-coalgebra H = {H,},.,, Zunino (2004)
constructed a double Z(H) = {Z(H),},., of H, which is a quasitriangular Hopf -
coalgebra in which H is embedded. One has that Z(H), = H, ® (P, H}) as a
vector space. Unfortunately, each component Z(H), is infinite-dimensional (unless
Hjy; = 0 for all but a finite number of f§ € n).

To obtain non-trivial examples of quasitriangular Hopf zn-coalgebras with
finite-dimensional components, we restrict ourselves to a less general situation: our
initial datum is not any crossed Hopf n-coalgebra but a Hopf algebra endowed with
an action of 7 by Hopf algebra automorphisms. Remark indeed that the component
H, of a Hopf n-coalgebra H = {H,},., is a Hopf algebra and that a crossing for H
induces an action of = on H, by Hopf automorphisms.

In this article, starting from a Hopf algebra A endowed with an action ¢ : 7 —
Auty,,r(A) of a group n by Hopf automorphisms, we construct a quasitriangular
Hopf n-coalgebra D(A, ¢) = {D(A, ¢,)},c.- The algebra D(A, ¢,) is constructed in a
manner similar to the Drinfeld double (in particular D(A, ¢,) = A ® A* as a vector
space) except that its product is “twisted” by the Hopf automorphism ¢, : A — A.
The algebra D(A, id,) is the usual Drinfeld double. Note that the algebras D(A, ¢,)
and D(A, ¢;) are in general not isomorphic when « # f.

This method allows us to define non-trivial examples of quasitriangular Hopf
n-coalgebras for any finite group = and for infinite groups = such as GL, (k).
In particular, given a complex simple Lie algebra g of rank [/, we define the graded
quantum groups {U}(@)},ec+y and {U;(@)},eqyny> Which are crossed Hopf group-
coalgebras. They are obtained as quotients of D(U,(b,), #) and D(U,(b,), ¢'),
where b, denotes the Borel subalgebra of g, ¢ is an action of (C*)' by Hopf
automorphisms of U,(b,), and ¢ is an action of C[[]]' by Hopf automorphisms
of U,(0,). Furthermore, the crossed Hopf C[[/]]'-coalgebra {U;(a)},cqqpy is quasi-
triangular.

The article is organized as follows. In Section 1, we review the basic definitions
and properties of Hopf n-coalgebras. In Section 2, we define the twisted double of
a Hopf algebra A endowed with an action of a group n by Hopf automorphisms.
In Section 3, we explore the case A = k[G], where G is a finite group. In Section 4,
we give an example of a quasitriangular Hopf GL,, (k)-coalgebra. Finally, we define
the graded quantum groups in Sections 5 and 6.

Throughout this article, 7 is a group (with neutral element 1) and k is a field.
Unless otherwise specified, the tensor product ® = ), is assumed to be over k.

1. HOPF GROUP-COALGEBRAS

In this section, we review some definitions and properties concerning Hopf
group-coalgebras. For a detailed treatment of the theory of Hopf group-coalgebras,
we refer to Virelizier (2002).
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1.1. Hopf 7-Coalgebras

A Hopf m-coalgebra (over k) is a family H = {H,},., of k-algebras endowed
with a family A ={A,,: H,; — H, ® Hg}, 5., of algebra homomorphisms (the
comultiplication) and an algebra homomorphism € : H; — k (the counir) such that,
for all o, 8,y € =,

(Aa,ﬁ ® idH;-)Ax/?,v = (ing ® Aﬂ,v)A%ﬂr’ (1.1)
(ide ® S)A%1 =id, = (8 ® idHl)Am, (1.2)

and with a family S={S,: H, > H,.}
verifies that, for all « € =,

of k-linear maps (the antipode) which

oET

ma(Safl ® ide)AaF],s( = 810( = mx(idH, ® S“—I)A“’“—l, (13)

where m, : H,® H, - H, and 1, € H, denote, respectively, the multiplication and
unit element of H,.

When 7 = 1, one recovers the usual notion of a Hopf algebra. In particular
(Hy,my,1,,A;,,¢&,8)) is a Hopf algebra.

Remark that the notion of a Hopf n-coalgebra is not self-dual and that if
H ={H,},., is a Hopf n-coalgebra, then {« € n| H, # 0} is a subgroup of =.

A Hopf n-coalgebra H = {H,},., is said to be of finite type if, for all « € m,
H, is finite-dimensional (over k). Note that it does not mean that ,__ H, is finite-
dimensional (unless H, = 0 for all but a finite number of « € ).

The antipode of a Hopf n-coalgebra H = {H,},., is anti-multiplicative: each
S,:H,— H,. is an anti-homomorphism of algebras, and anti-comultiplicative:
eSy=¢eand Ay 1S, = Ty (S, ® Sp)A, s for any o, f € m, see Virelizier (2002,
Lemma 1.1).

The antipode S = {S,},., of H = {H,},, is said to be bijective if each S, is
bijective. As for Hopf algebras, the antipode of a finite type Hopf n-coalgebra is
always bijective, see Virelizier (2002, Corollary 3.7(a))).

oET

gt

1.2. Crossed Hopf w-Coalgebras

A Hopf n-coalgebra H = {H,}
family ¢ = {@; : H, > Hp,p 1}
for all o, 8,y € =,

4 18 said to be crossed if it is endowed with a

o fex of algebra isomorphisms (the crossing) such that,

(05 ® ©p)A, = Dpopt g1 > (1.4)
gpy = ¢, (1.5)
PuPp = Pyp- (1.6)

It is easy to check that ¢, =idy and ¢S, = Sy, -1, for all o, f € .
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1.3. Quasitriangular Hopf 7-Coalgebras

A crossed Hopf n-coalgebra H = {H,},., is said to be quasitriangular if it
is endowed with a family R ={R,; € H, ® Hg}, s, of invertible elements (the
R-matrix) such that, for all «, f,y € 7 and x € H,,

Roc,ﬁ : Aa,[i(x) = Tﬁ,a(@a*‘ by idH,,_)Aocﬂrl,x(x) . Ra,/?’ (17)
(idy, ® Ap, ) (R, 5) = (R,,)1p35 - (R p)inys (1.8)

(A5 ®idy )(Ryp,) = [(idy, ® @p-1)(Ry )]s - (Rp)0035 (1.9)
(0 ® @p)(R,,) = Rpyp-1 515 (1.10)

where 7, , denotes the flip map H,; ® H, — H, ® Hy; and, for k-spaces P, Q and r =
2;Pi®qGEPRQ, wesetrp, =r®l, e PRO®H, r)=1,8reH, PR 0,
and rpy =3 ;p;®1;®q;, € POH; ® Q.

Note that R, is a (classical) R-matrix for the Hopf algebra H,.

When = is abelian and ¢ is trivial (that is, ¢g|, =id, for all o, f € 7), one
recovers the definition of a quasitriangular n-colored Hopf algebra given in Ohtsuki
(1993).

The R-matrix always verifies (see Virelizier, 2002, Lemma 6.4) that, for any
u B,y em,

(e ®idy)(R,,) =1, = (idy, ® &)(R, 1), (1.1T)
(S0, ®idy )R ) =Ry and (i, ® SR} = Ryprs  (L12)
(Saz ® S,lf)(Rv/}) = (QDa ® ldH )(Rcrl,lﬁfl)’ (113)

pt

and provides a solution of the n-colored Yang-Baxter equation:

(Rﬁ,y)oc23 ' (Roc,y)l/B ' (Roc,/)’)]}/ = (Rx,ﬂ)IZy : [(lde ® goﬁ*l)(Roc,ﬁyﬁ*I)]lﬂS : (Rﬁ,y)xZS'
(1.14)

1.4. Ribbon Hopf 77-Coalgebras

A quasitriangular Hopf n-coalgebra H = {H,},., is said to be ribbon if it is
endowed with a family 0 = {0, € H,},., of invertible elements (the rwist) such that,
for any o, § € 7,

¢,(x) =0'x0, forall x € H,, (1.15)

S,(0,) =0,., (1.16)

©3(0,) = Opyp1, (1.17)

A, 5(0,5) = (0, ® 0p) - 75, (@, ®1dyy ) (Ryp1 1)) - Ry g (1.18)

Note that 60, is a (classical) twist of the quasitriangular Hopf algebra H,.
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1.5. Hopf 7-Coideals
Let H={H,},., be a Hopf n-coalgebra. A Hopf n-coideal of H is a family

I ={l},.., Where each I, is an ideal of H,, such that, for any «, § € 7,
A,p(ly) CL,®Hy+ H, ® Iy, (1.19)
e(l)) =0, (1.20)
S,(1,) C L. (1.21)

The quotient H = {H, = H,/I,},.., endowed with the induced structure maps, is
then a Hopf n-coalgebra. If H is furthermore crossed, with a crossing ¢ such that,
for any a, f§ € =,

ep(l,) Clgp, (1.22)

then so is H (for the induced crossing).

2. TWISTED DOUBLE OF HOPF ALGEBRAS

In this section, we give a method (the twisted double) for defining a
quasitriangular Hopf n-coalgebra from a Hopf algebra endowed with an action of
a group n by Hopf automorphisms.

2.1. Hopf Pairings

Recall that a Hopf pairing between two Hopf algebras A and B (over k) is a
bilinear pairing ¢ : A x B — k such that, for all a,a’ € A and b, b’ € B,

a(a, bb') = a(ag, b)a(ap), b'), (2.1)
o(ad’,b) = a(a, bp))a(d’, b), (2.2)
o(a,1)=¢€(a) and o(1,b) = e(b). (2.3)

Note that such a pairing always verifies that, for any « € A and b € B,
a(S(a), S(b)) = a(a, b), (2.4)

since both ¢ and ¢(S x S) are the inverse of g(id x S) in the algebra Hom, (A x B, k)
endowed with the convolution product.

Let 6: A x B— k be a Hopf pairing. Its annihilator ideals are I, = {a € A|
o(a,b) =0 for all b€ B} and Iy = {b € B|a(a,b) =0 for all a € A}. It is easy to
check that I, and I, are Hopf ideals of A and B, respectively. Recall that ¢ is said to
be non-degenerate if 1, and I, are both reduced to 0. A degenerate Hopf pairing ¢ :
A x B — k induces (by passing to the quotients) a Hopf pairing 6 : A/I, x B/I; —
k, which is non-degenerate.

Most of Hopf algebras we shall consider in the sequel will be defined by
generators and relations. The following provides us with a method of constructing
Hopf pairings, see Van Daele (1993), Kassel et al. (1997).
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Let A (resp. B) be a free algebra generated by elements ay,...,a, (resp.
by, ...,b,) over k. Suppose that A and B have Hopf algebra structures such that
each A(a ) for 1 <i < p (resp. A(b;) for 1 <i < g) is a linear combination of tensors
a, ® a, (resp. b, ® b,). leenpq scalars)t j€kwithl <i<pandl <j<gq, there
is a unique Hopf pairing o : A x B — k such that o(a;, b;) = 7, ;.

Suppose now that A (resp. B) is the algebra obtained as the quotlent of A (resp.
B) by the ideal generated by elements Fseeoaly € A (resp. sy, ...,, € B) Suppose
also that the Hopf algebra structure in A (resp. B) induces a Hopf algebra structure
in A (resp. B). Then a Hopf pairing ¢ : A x B — k induces a Hopf pairing A x B —
k if and only if (r;,,b;) =0 forall 1 <i<m and 1 < j < g, and o(qa;, sj) =0 for
all<i<pandl1<j<n

2.2. The Twisted Double Construction

Definition-Lemma 2.1. Let 6: A x B— k be a Hopf pairing between two Hopf
algebras A and B. Let ¢ : A — A be a Hopf algebra endomorphism of A. Set
D(A,B;0,p) =AQ®B as a k-space. Then D(A, B; g, $p) has a structure of an
associative and unitary algebra given, for any a,a’ € A and b, b’ € B, by

(a®b) - (a®V) = 0(4)(“21))’ S(b(l)))o'(a/e)’ b(3))aa’(2) ® b(z)b/, (2.5)
Lo piog) = 14 ® Lp. (2.6)

Moreover, the linear embeddings A — D(A, B; o, ¢) and B — D(A, B; g, ¢) defined
by ar> a® lgand b — 1, ® b, respectively, are algebra morphisms.

Remark 2.2. (a) Note that D(A, B; g,1d,) is the underlying algebra of the usual
quantum double of A and B (obtained by using the Hopf pairing o).

(b) If ¢ and ¢’ are different Hopf algebra endomorphisms of A, then
the algebras D(A, B; o, ¢) and D(A, B; o, ¢') are not in general isomorphic, see
Remark 4.2.

Proof. Let a,a’,a’ € A and b, ', b" € B. Using the fact that ¢ is a Hopf pairing
and ¢ is a Hopf algebra endomorphism, we have that

(a®b)-(d ®F))- (' @)
= U(d’(a/a))a S(ba)))o'(a/(s)’ b(S))U(qs(a;,l))’ S(b(Z)bél)))
x a(ags baybls))aapap) © bbb
= a(P(agy), S(byy))alag, bis)a((agy), S(byy))a((agy), S(ba))
x a(ag, ba))alag), bi)aapas ® bebpb”,
and
@®b)- (@ ®b)- (' ®b")
= 0((1’(“/(,1))’ S(bb)))a(a/{sy b23))0(q§(a2])a’(/2)), S(bu)))
x a(a@)ays b)aagag ® baybp)b"”
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= a(qﬁ(a;/l)), S(bzl)))a(aéy b23))a(¢(a’(1)), S(b(l)))a((i)(a’(/z)), S(b(z)))
x a(ag), bis))alag, bu)aapag ® bebpb".
Hence the product is associative. Moreover 1, ® 1, is the unit element since

(@®@b)- (1@ 1) = a(p(1), S(ba)))o(l, bsy)a ® by,
= &(S(by)))e(bz))a® by =a®b,
and
(1®1)-(a®b) =da(¢(ay)). S(1))a(aga, Dap &b
= &(¢P(ag)))e(ag)an ®b=a®b.
Finally, for any a, a’ € A and b, b’ € B, we have that
(@@ 1) (@ ®1) = 0(d(ay). S())alay, Daafy © 1

= 8(¢(a/(1)))8(a/(3))aa;2) ®l1
=aad ®1,

and

(1®b)-(100) =a(dp(1),S(by)))a(l, bs))l ® bpyb’
£(S(b(1)))e(bi)1 ® bp)b'

1 ®bb'.

Therefore A — D(A, B; g, ¢) and B — D(A, B; g, ¢) are algebra morphisms. O

In the sequel, the group of Hopf automorphisms of a Hopf algebra A will be
denoted by Auty,(A).

Theorem 2.3. Let 6: A x B— k be a Hopf pairing between two Hopf algebras
A and B, and ¢ : 1 — Auty,(A) be group homomorphism (that is, an action
of m on A by Hopf automorphisms). Then the family of algebras D(A, B; g, ¢) =
{D(A, B; 0, ¢,)}yer (see Definition 2.1) has a structure of a Hopf m-coalgebra given,
forany a € A, b € B, and o, € 7, by:

A, (a®Db) = (dplag) ® b)) ® (ap) ® bp)), (2.7)
e(a® b) = g,(a)eg(h), (2.8)
S,(a®b) = ‘7(%(“(1))7 b(l))o_(a(S)’ S(b(S)))d)aS(a(Z)) ® S(b(z))~ (2.9)

Proof. The coassociativity (1.1) follows directly from the coassociativity of the
coproducts of A and B and the fact that ¢ = ¢p¢h,. Axiom (1.2) is a direct
consequence of g,¢, = €,. Since ¢, = id, and D(A, B; 0, id,) is underlying algebra
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of the usual quantum double of A and B, the counit ¢ is multiplicative. Let us verify
that A, 8 is multiplicative. Let a, @’ € A and b, b’ € B. On one hand we have:

A, p((a®b)-(a"®D))
= G(‘baﬁ(a/(l))’ S(b(l)))a(a/(,%)’ b(S))Aa,ﬁ(aa/Q) ® b(z)b/)
= 0(%/;(“/(1)), S(b(l)))a(“£4)’ b(4))¢ﬁ(“(1)a/(2)) ® b<z>b21> ® “(Z)a,@) ® b(3)b£2)'

One the other hand,

A, (a®b)-A, @D
= (¢5(aq)) ® by ® ag) ® b)) - (Py(ag)) ® by ® dgy) @ by)
= G(¢a¢ﬁ(a/(1))’ S(b(l)))a(qﬁﬁ(ab)), b(3))0(¢/}(a/(4))’ S(b(4)))6(a/(6)’ b(6))
X ¢ylan))dpag) ® bubjy) @ apags @ bs)by,
= 0(4’(4;(“/(1)), S(bu)))a(‘f’ﬁ(ﬁl/@))’ b(3)S(b(4)))a(a/(5), b(é))
x dplanag) ® beybiny ® apay @ beby,
= 0(%/1(‘1/(1)), S(b(l)))‘f(a@)» b(4))¢/3(“(1)a/(2)) ® b(2)b21) ® a(z)a/o) ® b(3>b22)'
Let us verify the first equality of (1.3). Let a € A, b € B, and o € n. Denote the
multiplication in D(A, B; o, ¢,) by m,. We have
M, (S, @ 1dps pig.g,)) Do1 (@ @ D)
= O-(a(l)’ b(l)) O-(d)oc(a(f)))’ S(b(5)))a(¢)“(a(4)), Sz(b(4)))
X ‘7(“(6)’ S(b(Q)))S(a(z))a(S) ® S(b(3))b(6)
= 0(0(1), b(1))0(¢a(‘1(3)), S(b(5))S2(b(4)))
x a(ags), S(b)))S(ap))aw ® S(ba))b
= J(a(l)’ b(l))a(a(ét)’ S(b(z)))s(a(z))a(a) ® S(b(3))b(4)
= a(aqy, bay)a(ap), S(bp))1 @ 1
=a(a, by)S(bp))1 ® 1 = e(a)e(b)l @ 1.

The second equality of (1.3) can be verified similarly. |

Let 6: A x B— k be a Hopf pairing between two Hopf algebras A and B,
and ¢ : 7 — Auty,(A) be an action of = on A by Hopf automorphisms. An
action Y : m — Auty,,(B) of = on B by Hopf automorphisms is said to be (g, ¢)-
compatible if, for all a € A, b € B and f§ € =,

a(pg(a), Yy(b)) = a(a, b). (2.10)

Lemma 2.4. Let 6: A x B— k be a Hopf pairing between two Hopf algebras A
and B. Let ¢ :m— Auty,(A) and  :n — Auty,(B) be two actions of n by
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Hopf automorphisms. Suppose that \ is (o, ¢)-compatible. Then the Hopf m-coalgebra
D(A, B; g, ¢) = {D(A, B; 0, $,)},cr (see Theorem 2.3) admits a crossing ¢ given, for
any a € A, b € Band f € 7, by

¢p(a ®b) = ¢y(a) ® Yy(b). (2.11)

Proof. Let a, f € n. We have that ¢;(1, ® 15) = ¢p(1,) @ (1) =1, ® 1 and,
for any a,a’ € A and b, b’ € B,
¢p(a®Db) - @p(a’ @)
= U(Qﬁﬂaﬁfl (d)ﬁ(a,)(l))’ S(lpﬁ(b)(l)))a(qsﬁ(a/)@)’ ‘W(b)o))
X p(a)dp(a’) o) @ YD) o)y (b)
= ‘7((!5/3(!5“(‘121))), lpﬂs(b(l)))g(d)ﬁ(a/@))’ Wﬁ(b(3)))¢ﬁ(a)¢/}(a/(z)) ® Wﬁ(b(z))lﬁ/;(b,)
= o(¢,(ay)), S(by))o(ag). ba))dglaag,) @ yy(be)b')
=@s((a®Db)-(d ®@D)).
Moreover ¢, and v, are bijective and so is ¢;. Therefore ¢ : D(A, B; 0, ¢,) —
D(A, B; 0, ¢py,4-1) is an algebra isomorphism.
Finally, for any a € A, b € B and «, 3, y € m, we have that:
Ap st pp1 (0p(a ® b)) = bpp-1(Pp(a)ay) @ Yg(b) )y ® Pp(a)m) @ Yy(b)p
= ¢pp1Pp(an)) @ Yy(by) ® dplan) @ Yp(by))
= ¢y, (aq)) @ Ys(bay) ® dplap) ® V(b))
(05 ® p)A, ,(a ® D),
epp(a ® b) = e(pg(a))e(Vhy (b)) = e(a)e(b) = e(a @ b),

and

e.¢5(a ®b) = ¢, ¢5(a) @ Y,y (D) = ¢op(a) @ () = @,5(a @ b).
Hence ¢ satisfies Axioms (1.4), (1.5) and (1.6). O

Corollary 2.5. Let 6: A x B — k be a Hopf pairing and ¢ : m — Auty,(A) be an
action of m on A by Hopf automorphisms. Suppose that ¢ is non-degenerate and that A
(and so B) is finite dimensional. Then there exists a unique action ¢* : © — Auty,.¢(B)
which is (o, ¢)-compatible. It is characterized, for any a € A, b € B and f§ € ©, by

a(a, ¢(b)) = a(¢g-1(a), b). (2.12)

Consequently the Hopf mn-coalgebra D(A, B;a, $)={D(A,B;a, d,)}en (see
Theorem 2.3) is crossed with crossing defined by o5 = ¢y ® ¢y for any B € .

Proof. Let f € n. Since ¢ is non-degenerate and A and B are finite dimensional,
the map b € B+ o(-, b) € A* is a linear isomorphism, and so (2.12) does uniquely
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define a linear map ¢ : B — B. Since ¢ is a Hopf pairing and ¢, is a Hopf
algebra isomorphism of A, the map ¢} is a Hopf algebra isomorphism of B.
Moreover ¢* is an action since ¢} =id, (because ¢, =id,) and a(a, ¢;;(b)) =
o(Pp-1,-1(a), b) = a(dp-1h,-1(a), b) = a(P,-1(a), $j(b)) = a(a, ¢;¢}(b)) for any a €
A, b € B and «, f € n. Finally (2.12) says exactly that ¢* is (g, ¢)-compatible. [

Theorem 2.6. Let 0 : A x B— k be a Hopf pairing between two Hopf algebras A
and B, and ¢ :m — Auty,(A) be an action of m on A by Hopf automorphisms.
Suppose that ¢ is non-degenerate and that A (and so B) is finite dimensional. Then the
crossed Hopf m-coalgebra D(A, B; g, ¢) = {D(A, B; g, §,)},c. (see Corollary 2.5) is
quasitriangular with R-matrix given, for all o, f € =, by

oaET

R.y=2(e;®15) ® (1,8 ), (2.13)

where (e;); and (f;); are basis of A and B, respectively, such that o(e;, f;) = 0, ;.

Remark 2.7. (a) The element } (¢, ® 1;,) @ (1,8 f) e AQB® AR® B is cano-
nical, i.e., independent of the choices of the basis (e;); of A and (f;); of B such that
a(e;, f,) = 5i,j-

(b) Note that the hypothesis A is finite dimensional ensures that the sum
Yile;®1,)® (1, f;) liesin A® B® A® B. More generally, assume that A and B
are graded Hopf algebras with finite dimensional homogeneous components and
that ¢ is compatible with the gradings. Then the quotient Hopf algebras A/I,
and B/I, are also graded and can be identified via ¢ with the duals of each other.
Suppose also that the action ¢ respects the grading so does the quotient ¢ : © —
Auty,e(A/1,). In this case, there exists a unique action © — Auty,¢(B/1z) which is
(G, ¢)-compatible, where & : A/I, x B/I, — k is the induced Hopf pairing. Then the
Hopf n-coalgebra D(A/1,, B/I4; @, $) is quasitriangular by the same construction
as in Theorem 2.6.

Proof. Fix basis (e;) of A and (f;) of B such that a(e;, f;) = 9, ; (such basis always
exist since ¢ is non-degenerate). Note that x = ), a(x, f;)e; and y = Y, a(e;, y) f; for
any x € A and y € B.

Recall that, since > ;e;® 1, ® 1, ® f; is the R-matrix of the usual quantum
double D(A, B, g,1d,), we have

Y. S(e)e; ® fif; =1, ® 1y, (2.14)
i
Zei‘g’fi(l)@fi(z)=Z€i€j®f_,-®fl-, (2.15)
i ij
Zei(l)®ei(2)®fi=Z€i®ej®fifj' (2.16)
i ij

Let o, f € n. From (2.14) and since A (resp. B) can be viewed as a subalgebra
of D(A, B; g, ¢,) (resp. D(A, B; 0, ¢y)) via a > a® 1, (resp. b 1, ® b), we get
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that R, ; is invertible in D(A, B; 0, ¢,) ® D(A, B; g, ¢;) with inverse
Rp=>5(e)®1,01,® f.
Letae A, be Band o, f € n. For all x € A, we have that:

(idagpea ® 0(x, ) (R, 5+ A, 4(a ® b))
= Z a(¢pslagp). S(fin))olaw, fiz)o(x, finba)edslan) ® by ® ag,

= Z 0(%571(51(2))’ iy o(awy, fi3)o(xays fi2))o(xa)s bay)edslag) ® by ® ag,
= Z 0(“(4))6(1)(1"/;571(“(2))’ 1) (xa), bay)edplagy) ® by @ ag,

= 0(x), b)) a@xa dp(S ™ (ap)ag)) ® by, ® ag,
= 0(x@), b)) apxa ® bay @ ag).

and, since Xy ® ) ® X5 ® X(g) = X 0(x) fi) %) ® €y ® eip) @ e,
(idA®B®A ® U(x’ '))(Tﬂ,z(@z‘l Y idHl)Aalioc‘l,a(a ® b) : Ro(,/f)
=Y a(@,(eqn), S(bry)) a(ei)s bay)a(x, ¢ (bay) f)apein) ® by ® agy
= Z a(d,(ei))s S(ba)))a(e;s), buay)o(d,(xa))s ba))o(xp), [)apein) ® ba) @ ag,

= 0(¢,(x), S(b2)))o(x4)s b)) a(d,(x1))s by)apy Xz ® bz @ ag
= (P, (x1))s b(1)S(b2)))0(x(3)5 ba)) a2 X2) ® b3y @ agy
= 0(x@), b)) a@Xa) ® by ® aq-

Hence, since the a(x, -) span B*, Axiom (1.7) is satisfied.

Let us verify Axiom (1.10). Let o, 8,7 € ©. Since ¢* is (o, ¢)-compatible, the
basis (¢4(e;)); of A and (¢5(f)); of B satisfy a(dy(e;), dj(e))) = ale;, f;) =0, ;.

Therefore we get that:

(o5 @ p)(R,,) = Z Pp(e) @ 1@ 1, ® Pp(f;) = Ry pypi-

Finally, let us check Axioms (1.8) and (1.9). Let «, f8, y € n. Using (2.15), we
have:

(dp(a,ie.p,) ® Ap ) (R, 5) = Z 6@l ®1,® finy®1,4® fi
226i9j®13®1A®fj®1A®ﬁ
ij

= (Rz,«;)l/n . (Roa,/f)IZy'
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Likewise, using (2.16) and (1.10), we have:
(A5 ®1dps pio.g ) (Rop,) = Z Pple) @1 Qe ®1;®1,® f;

=Z¢ﬁ(ei)®13®e_f®13®1,4®fif;’

i,j
= [(¢[f ® idD(A,B;a,(/)}.))(R[S‘lm/i,",')]l/B : (R[i,j))0(23
= [(dpa,5:0.9,) ® Pp-1) (R pp-1)]1p3 - (Rp,)s03-

This completes the proof of the quasitriangularity of D(A, B; g, ¢). O

The next corollary is a direct consequence of Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let A be a finite-dimensional Hopf algebra and ¢ : m — Auty,+(A)
be an action of m on A by Hopf algebras automorphisms. Recall that the duality
bracket (,)ga- is a non-degenerate Hopf pairing between A and A*°P. Then
D(A, A*%P; (, ) ggu-> ) is a quasitriangular Hopf m-coalgebra.

Remark 2.9. The group of Hopf automorphisms of a finite-dimensional
semisimple Hopf algebra A over a field of characteristic 0 is finite (see Radford,
1990). To obtain non-trivial examples of (quasitriangular) Hopf n-coalgebras for
an infinite group n by using the twisted double method, one has to consider
non-semisimple Hopf algebras (at least in characteristic 0).

2.3. The h-Adic Case

In this subsection, we develop the h-adic variant of Hopf group-coalgebras.
A technical argument for the need of h-adic Hopf group-coalgebras is that they
are necessary for a mathematically rigorous treatment of R-matrices for quantized
enveloping algebras endowed with a group action.

Recall that if V is a vector space over C[[4]], the topology on V for which
the sets {A"V + v|n € N} are a neighborhood base of v € V is called the h-adic
topology. If V and W are vector spaces over C[[A]], we shall denote by V® W the
completion of the tensor product space V ®¢;; W in the h-adic topology. Let V be
a complex vector space. Then the set V [[]] of all formal power series f = Y>> v, h"
with coefficients v, € V is a vector space over C[[k]] which is complete in the
h-adic topology. Furthermore, V [[h]]® W [[A]] = (V ® W)[[h]] for any complex
vector spaces V and W.

An h-adic algebra is a vector space A over C[[k]], which is complete in the
h-adic topology and endowed with a C[[h]]-linear map m: A® A — A and an
element 1 € A satisfying m(id, ® m) = m(m ®id,) and m(a® 1) = a = m(1 & a) for
all a € A.

By an h-adic Hopf m-coalgebra, we shall mean a family H = {H,},., of
h-adic algebras which is endowed with h-adic algebra homomorphisms A, ; : H,; —
H“®Hﬁ (o, p € ) and e : A — C[[h]] satisfying (1.1) and (1.2), and with C[[A]]-
linear maps S, : H, — H,-(x € =) satisfying (1.3). In the previous axioms, one has
to replace the algebraic tensor products ® by the h-adic completions &.



GRADED QUANTUM GROUPS 3041

The notions of crossed and quasitriangular s-adic Hopf n-coalgebras can be
defined similarly as in Sections 1.2 and 1.3.

The definitions of Section 2 and Theorem 2.3 carry over almost verbatim
to h-adic Hopf algebras. The only modifications are that ¢ : A® B — C[[A]] is
C[[#]]-linear and that the algebra D(A, B; g, ¢), where ¢ is an h-adic Hopf
endomorphism of A, is built over the completion A® B of A® B in the h-adic
topology. The reasoning of the proof of Theorem 2.6 give the following h-adic
version.

Theorem 2.10. Let 6: A® B — C[[h]] be an h-adic Hopf pairing between two
h-adic Hopf algebras A and B, and ¢ : m — Auty,(A) be an action of m on A by
h-adic Hopf automorphisms. Suppose that ¢ is non-degenerate and that (e;); and (f;);
are basis of the vector spaces A and B, respectively, which are dual with respect
to the form o. If R, ;=73 (e, ® 1) ® (1, ® f;) belongs to the h-adic completion
D(A, B; 0, ¢,) & D(A, B; o, ¢p), then R ={R, s}, e, is a R-matrix of the crossed
h-adic Hopf m-coalgebra D(A, B; a, ¢) = {D(A, B; 0, )} sen-

3. THE CASE OF ALGEBRAS OF FINITE GROUPS

Let G be a finite group. In this section, we describe Hopf G-coalgebras
obtained by the twisted double method from the Hopf algebra k[G].

Recall that the Hopf algebra structure of the (finite-dimensional) k-algebra
k[G] of G is given by A(g) =g ® g, e(g) = 1 and S(g) = g~ ! for all g € G. The dual
of k[G] is the Hopf algebra F(G) =k of functions G — k. It has a basis (e, : G —
k), defined by e, (h) =9, , where 6,, =1 and J,, =0 if g # h. The structure
maps of F(G) are given by e,e, =0, ,¢,, lrg) = Deeq €, Ale,) =3, e, ®e,,
e(e,) = d,,, and S(e,) = e 1 for any g, h € G.

Set ¢ : G — Auty,;(k[G]) defined by ¢,(h) = aho™'. It is a well-defined
group homomorphism (since any o € G is grouplike in k[G]). By Corollary 2.8,
this datum leads to a quasitriangular Hopf G-coalgebra D(k[G], F(G)P;
(s Yx[61xF(G)» ¢)» which will be denoted by D;(G) = {D,(G)},cq-

Let us describe D;(G) more precisely. Let o € G. Recall that D,(G) is equal
to k[G] ® F(G) as a k-space. The unit element and product of D,(G) are given, for
all g, ¢', h, W € G, by

Ipg=21®e, and (g®e,): (g ®e€y) = 0,1 419w88 ® ey

geG

The structure maps of D;(G) are given, for any o, f € G and g, h € G, by

Ay(g®e) =) Psf ' ®e,®g®e,,

xy=h
e(g®e;) =0,
Soc(g ® eh) = “g_la_l ® eagr‘h*‘gfl’

Qoy(g ® eh) = OCgO(71 ® €yt
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The crossed Hopf G-coalgebra D;(G) is quasitriangular and furthermore ribbon
with R-matrix and twist given, for any o, 5 € G, by

Ry=Y g®e¢,®1®e, and 0,=) a'ga®e,.

8.heG geG

Note that 0 = >",.; 07 "(g2)" ® e, for any n € Z.

4. EXAMPLE OF A QUASITRIANGULAR HOPF GL,(k)-COALGEBRA

In this section, k is a field whose characteristic is not 2. Fix a positive integer
n. We use a (finite dimensional) Hopf algebra whose group of automorphisms is
known to be the group GL, (k) of invertible n x n-matrices with coefficients in k (see
Radford, 1990) to derive an example of a quasitriangular Hopf GL, (k)-coalgebra.

Definition-Proposition 4.1. For o= (% ;) € GL,(k), let sii be the C-algebra

generated g, X, ..., X,, Y|, --.,Y, subject to the following relations:
82:1’ x%:---:xizo, gx;, = —Xx,8, XiXj = —X;X;, (41)
V== =00 gyi=vg VY=Y (4.2)
XYj — ViXi = (O‘j,i - 51‘,,‘)3’ (4.3)

where 1 <i,j<n. The family s,={sl}},coL @« has a structure of a crossed
Hopf GL,(k)-coalgebra given, for any o = (v ;) € GL,(k), = (B;;) € GL,(k), and
1 <i<n, by:

Ap@)=5®g e@=1 S =g (4.4)
Azx,,li(xi) =1®x; + Z Br.i%e ® 8 e(x;) =0, S,(x;) = Z 8%, (4.5)
k=1 k=1

As0)=y®@1+g®@y, &()=0, S,0)=—g (4.6)

¢, (8) =g @, (x;) = Zak,ixk’ e, () = Z&i,kyk’ (4.7)
k=1 k=1

where (%; ;) = o, Moreover s, is quasitriangular with R-matrix given, for any o, ff €
GL,(k), by:

1
Rog=7 2 Xs® s+ x5 ® gys + 8x5 ® 5 — x5 ® gs.

SC[n]
Here [n] ={1,...,n}, x;, =1, y, =1, and, for a nonempty subset S of [n], we let x4 =
X X, and yg =y, ---y; where i, <--- < are the elements of S.

Remark 4.2. Note that the algebras s¢* and ¢/ are in general not isomorphic when
a, B € GL,(k) are such that o # B. For example, we have that s % si! for any
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o € GL, (k) with o # 1. This can be shown by remarking that:

oty /[50, 5,] 3 o, /[0, 51, ).

Indeed 547 /[s4%, s4*] =0 since g = ﬁ(xiyj —y;%;) € [34, ody] (for some 1 < i, j<n
such that o;; # ¢, ;) and so 1 = g* € [, s42]. Moreover, in s, /[s(}, s, ], we have
that x, = x,g°> = 0 (since x,g = gx;, = —x;¢ and so x,g = 0) and likewise y, = 0.

Hence o4 /[s0), 51l ] =k(g|g*> =1) #0.

n’ n

Proof. Let A, be the k-algebra generated by g, x,,...,x,, which satisfy the
relations (4.1). The algebra A, is 2"*!-dimensional and is a Hopf algebra with
structure maps defined by:

Alg)=¢®sg el@=1 S =g
Ax)=x,®g+1®x;, e(x;) =0, S(x;) = gx;.
Radford (1990) showed that the group of Hopf automorphisms of A, is isomorphic

to the group GL, (k) of invertible n x n-matrices with coefficients in k. This group
automorphism ¢ : GL, (k) — Auty,,(A,) is given by:

0. =g and  ¢,(x) =Y o forany z= () € GL,(K).
k=1

The Hopf algebra B, = AS? is the k-algebra generated by the symbols &, y, ..., y,
which satisfy the relations h* =1, y7 =0, hy, = —y;h, and y,y; = —y,y,. Its Hopf
algebra structure is given by:

A(hy=h®h, eh)=1, S(h)=h,
A(y) =y ®@1+h®y, &()=0, S(y)=—hy.

Let us denote the cardinality of a set T by |T|. The elements g¥xg (resp. h*y), where
k € {0,1} and S C [n], form a basis for A, (resp. B,). Since A is multiplicative, it
follows that

A(g"xs) = Z )“T,SgkxT ® 8k+mxS\T (4.8)
TCS
and
A(hk)’s) = Z )'T,SthﬂyS\T ® hk)’r’ 4.9)
TCS

where A; g =+l and 4,53 =1 = /Ag.

By Section 2.1, there exists a (unique) Hopf pairing o: A, x B, — k such
that a(g, h) = =1, (g, y;) = o(x;, h) =0, and o(x;,y;) =6, ; for all 1 <i, j<n.
Using (4.8) and (4.9), one gets (by induction on |S]|) that

a(gkxs, thT) = (_l)klés,r
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for any k,1 € {0,1} and S, T C [n], where d33 =1 and 65, =0 if S # T. Set z;, =
(14 h)/2 and z; = (1 — h)/2. The elements z,ys, where k € {0, 1} and S C [n], form
a basis for B, such that:

a(gkxs, Zyr) = 5k,153,r (4.10)

for any k, 1 € {0, 1} and S, T C [n]. Therefore the pairing ¢ is non-degenerate. Note
that this implies that A% = A, as a Hopf algebra.

By Theorem 2.6, we get a quasitriangular Hopf GL,(k)-coalgebra
D(A,, B,;0,¢). For any o= (% ;) €GL,(k), D(A,, B0, ¢, is the algebra
generated by g, h, x;,...,X,, y|,...,,, subject to the relations h* = 1, (4.1), (4.2)
with g replaced by A, and the following relations:

gh = hg, gy, = —Y;& hx; = —x;h, (4.11)
X;y; = VX = ;8 — 0, ;h. (4.12)

Indeed D(A,, B,; o, ¢,) is the free algebra generated by the algebras A, and B, with
cross relation (2.5). Further, it suffices to require the cross relations (2.5) for (1 ® b) -
(a®1) with a = g, x; and b = h, ;. To simplify the notations, we identify of a with
a® 1 and b with 1 ® b (recall that these natural maps A, — D(A,, B,; g, ¢,) and
B, — D(A,, B,; g, ¢,) are algebra monomorphisms). For example, let a = x; and
b =y,. Since a(x;, 1) = a(g, y;) = a(x;, h) = o(1, y;) = 0, relation (2.5) gives

YiXi = (¢, (x;), yjh)o-(g’ Dg-1+a(l, h)a(g, D)x; - y;+ a(l, hyo(x;, yj)l - h.

Inserting the values o(g, 1) = a(1, h) = 1, a(x;, y;) = 0, ;, and a(¢,(x,), y;h) = —a;,
we get (4.12).

From Theorem 2.3, we obtain that the comultiplication A, 4, the counit &, the
antipode S,, and the crossing ¢, of D(A,, B,; g, ¢,) are given by

n’

A%ﬂ(g) =g®g, ij(h) =hQ®h, (4.13)

A (x)=1®x+ iﬁkyixk ® g, A 00)=y®@1+h®Yy, (4.14)
B =) =1, e(x)=e()=0, S(=g (4.15)
S =h  S0)=Yauen SO0 =—hy (4.16)

k=1

v, (8) =&, ®,(h) = h, @, (x;) = Zak,ixk’ @, (y;) = Z Oi 1 Vis (4.17)

k=1 k=1

where (3, ;) = o™

For any a € GL,(k), let I, be the ideal of D(A,, B,; 0, ¢,) generated by
g — h. Using the above description of the structure maps of D(A,, B,; g, ¢),
we get that I ={I},, is a crossed Hopf GL,(k)-coideal of D(A,, B,; g, ¢).

The quotient D(A,, B,;0,¢)/I ={D(A,,B,;0,¢,)/1,},.GL ® is  precisely
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o, = {0y} ,ec1, 4 and so the latter has a quasitriangular Hopf GL, (k)-coalgebra
structure which can be described by replacing & with g in (4.13)—(4.17).

Finally, the R-matrix of &/, is obtained as the image under the projection maps
D(A,.B,; 0. ¢,) —> D(A,.B,; 6, $,)/1, = s1* of the R-matrix of D(A,, B,; o, ¢).
that is, using (4.10),

R, ;= Y P(x5) ® py(zoys) + P, (gxs) ® pp(z,ys)

SC[n]
1+¢ 1—¢g
=2 %0 (T>ys+gxs® <T Ys
SC[n]
1
2

Z Xs @ Yg + X5 @ 8ys + X5 ® Yy — Xy D gYs-
SC[n]

This completes the proof of Proposition 4.1. O

5. GRADED QUANTUM GROUPS

Let g be a finite-dimensional complex simple Lie algebra of rank / with Cartan
matrix (a;;). We let d; be the coprime integers such that the matrix (d,q; ;) is
symmetric. Let ¢ be a fixed nonzero complex number and set g; = ¢%. Suppose that
@ #1fori=1,2,...,1

Definition-Proposition 5.1. Ser n = (C*). For o= (a,...,%) € n, let U}(q) be
the C-algebra generated by K*', E, F, 1 <i <1, subject to the following defining
relations:

KK, =KK, KK'=K'K =1, (5.1)
K.E, =q,"EK, (5:2)
K.F,=q; ""FK, (5.3)
K. — K1
EF,—FE =3, 222 (5.4)
qi — 4;
gy 1 1
r —4a,; ; —a; j—r r o .
N R e N (55)
r=0 i
1-a;;
Sy |V BT — 0 it 5.6
2(:)(_) p i i = ifi# ] (5.6)
r= qi

The family U7 (a) = {U;(8)},ex has a structure of a crossed Hopf m-coalgebra given,
fora=(o,...,)en, f=(P,....0) emand 1 <i < by:

Aa,ﬁ(Ki) = Ki ® Ki’

A 4(E)=BERK +1QE,

M(F) = F@1 4K ®F,
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s(k)=1. e(E)=s(F)=0,
S(K) =K', S,(E)=-aEK . S,(F)=-KF

¢, (K;) = K, @, (E)) = o, E;, @, (F;) = “lez
Remark 5.2. Note that (Uq1 (@), Ay, &, 8)) is the usual quantum group U, (g).
Proof. Let U, be the C-algebra generated by E,, Kiil, 1 <i <, subject to the
relations (5.1), (5.2) and (5.5). Let U_ be the C-algebra generated by F,, K,fil, 1<
i <1, subject to the relations (5.1), (5.3) and (5.6), where one has to replace K; with
K. The algebras U, and U_ have a Hopf algebra structure given by

A(K) =K, ®K;, AE)=E®K +1QE,

e(K)=1, &(E)=0, SK)=K ", S(E)=-EK,
AK)=K/ ®K, AF)=F®1+K '®F,
sK)=1, &F)=0, SK)=K ', S(F)=-KF.

Using the method described in Section 2.1, it can be verified that there exists a
(unique) Hopf pairing ¢ : U, x U_ — C such that

51‘;‘
o(E;, Fj) =— 0

> o(E;, K;) =o(K;, Fj) =0, o(K;, KJ,) = qlfli"] = Q_?’i'i~

i i

Let ¢ : m — Auty,,(U;) and ¢ : 1 — Auty,(U_) be the group homomorphisms
defined as follows: for f = (f,,..., ;) enand 1 <i <], set

d)ﬁ(Ki) =K, d)ﬁ(Ei) = ﬂiEi’ ‘//ﬁ(K:) = K,{’ lpﬂ(E) = ﬁl_le

It is straightforward to verify that y is (g, ¢)-compatible. By Lemma 2.4, we can
consider the crossed Hopf n-coalgebra D(U,, U_; 0, ¢) = {D(U,, U_; 7, ¢,) } er-

Now, for any a € n, D(U,, U_; g, ¢,) is the algebra generated by Kiil, K,fil,
E., F,, where 1 < i <, subject to the relations (5.1), (5.2), (5.5), the relations (5.1),
(5.3), (5.6) with K, replaced by K, and the following relations:

KK, =KK,

—dj i aj, !
KF,=q, “"FK, KE,=q"EK, (5.7)

K
EF,— FiE, =5, jfj_‘—q’ﬂl (5.8)
Indeed, D(U,, U_; 0, ¢,) is the free algebra generated by the algebras U, and
U_ with cross relation (2.5). Further, it suffices to require the cross relations
2.5) for 1®b)-(a® 1) with a =K, E; and b = K|, F,. To simplify the notations,
we identify of a with ¢ ® 1 and b with 1 ® b (recall that these natural maps
U, —DWU,,U_;0,¢,) and U_— DU, U_; 0, ¢,) are algebra monomorphisms).
For example, let a =E, and b=F,. Since o(E;1)=0(K,F)=0(E,K/")=
a(1, F;) = 0, relation (2.5) gives

/ / /=1
FiE; = a(o,E;, S(Fj))a(K,-, DK, + o(1, Kj)o*(Ki, l)EiFj +a(1, Kj)a(E,-, F_/»)Kj .
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Inserting the values o(K;,1)=0(1,K}) =1, o(E,F,) =0,,(¢;—¢;")" and
a(E;, S(F))) = =0, ,(q; — ¢;")~", we get (5.8).

From Theorem 2.3, we obtain that the comultiplication A, s> the counit &, the
antipode S,, and the crossing ¢, of D(U,, U_; o, ¢) are given, for 1 <i <[, by

A, 4(K)=K,®K,, A, 4(K) =K ® K], (5.9)

Aa,ﬂ(Ei) = ﬁiEi ®K; + 1® E,, Aa,ﬂ(Fi) =F® 1+ K,‘*l ® F, (5'10)
s(K)=¢eK) =1, &(E)=8F)=0, S,(K)=K", (5.11)
S,K) =K', S(E)=-wEK]', S,F)=-K[F, (5.12)

¢, (K;) = K, ¢, (K}) = K|, ¢, (E) = E,, ¢, (F;) = 0‘71Fi~ (5.13)

Finally, for any o € =, let I, be the ideal of D(U,, U_; 0, ¢,) generated by K, —
K! and K; I K,f’l, where 1 <i < /. Using the above description of the structure
maps of D(U,,U_;a,¢), we get that I ={I,},.. is a crossed Hopf n-coideal
of D(U,,U_;a,¢). The quotient D(U,,U_; 0, ¢)/I ={DU,,U_;0,¢,)/1,},cr 1S
precisely U (a) = {U;(a)},e,- Hence the latter has a crossed Hopf m-coalgebra
structure given by replacing K, with K; in (5.9)—(5.13). O

Remark 5.3. In the above construction, we use the diagonal Hopf automorphisms
of U, = U,(b,). What happens if we use also the Hopf automorphisms coming from
diagram automorphisms? Recall that a diagram automorphism of g is a permutation
o of {1,...,1} such that a, ,; = a;; for all 1 <i,j < 1. Denote by I' the group
of diagram automorphisms of g. In the following table, we recall the isomorphism
class of I" depending on the type of g (see, e.g., Bourbaki, 1981):

Al Bl Cl Dl
a A (=2 (I=2) (=2 (=31#4 D, E E; E F, G,
r 1z 1 1 z, sz 1 1 1 1

There exists a group morphism ¢ : I' x (C*)" — Auty, (U, ) defined by ¢4(K;) =
K, and ¢4(E) = B, E, ) for f=(w,py, ..., ) e x (€)' and 1 <i <1 Note
that ¢ is in fact a group isomorphism, see Fleury (1997). We can then consider
the Hopf (F X ((E*)’)-coalgebra D(U,, U_; g, ¢). Nevertheless, unlike in the proof
of Proposition 5.1, there is no natural way to quotient D(U,, U_; o, ¢) in order to
eliminate the K.

6. h-ADIC GRADED QUANTUM GROUPS

Let g be a finite-dimensional complex simple Lie algebra of rank / with Cartan

matrix (a;;). We let d; be the coprime integers such that the matrix (d;q; ;) is
symmetric.
Definition-Proposition 6.1. Set = = C[[A]]". For o« = («,, ..., ) € ©, let U}(q) be

the h-adic algebra generated by the elements H, E, F, 1 <i<I, subject to the
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following defining relations:

[H;, H;] =0, (6.1)
[H;, E}] = a;E}, (6.2)
[H;, F;] = —aj;F}, (6.3)
il pdihH; _ p—dihH;
[E:, Fj] =0, edih — g—d;h ’ (6:4)
gy l—a 1
ZCJY[r“ﬂM&'”@Hzo (i # J), (6.5)
r=0 edin
gy l—a 1
ZGJY[r“ﬂME’JﬂH=O (i # )). (6.6)
r=0 edit

The family U] (g) = {U}(8)},cr has a structure of a crossed h-adic Hopf m-coalgebra
given, for o = (), ..., ) €n, f=(P,...,p) €Enand 1 <i < by:

A, 4H)=H®1l+1®H,
Aa,ﬁ(Ei) — edihﬂiE; ® edihHi +1® Ei’
A F)=F®1+ e "M QF,,
e(H)) = ¢(E;)) = e(F)) =0,
S,(H;) = —H,, S,(E;) = —e" e S,(F) = —e"™F,

e,(H) =H,, @,E)=¢"E, ¢,(F)=e""F,.

Remark 6.2. (a) (U)(g), Ay, €, Sp) is the usual quantum group U, (g).

(b) The element %" — ¢=%" ¢ C[[R]] is not invertible in C[[4]], because the
constant term is zero. But the expression of the right hand side of (6.4) is a formal
power series Y, p,(H;)h" with certain polynomials p,(H;), and so it is a well-defined
element of the h-adic algebra generated by E;, F;, H,.

Proof. Let U, be the h-adic algebra generated by H;, E;, 1 <i <[, subject to the
relations (6.1), (6.2) and (6.5). Let U_ be the h-adic algebra generated by H, F;,
1 <i <, subject to the relations (6.1), (6.3) and (6.6) with H; replaced by H;. The
algebras U, and U_ have a h-adic Hopf algebra structure given by:

AH)=H®1+1®H, AE)=EQ®"+1QE,
e(H) =¢(E)=0, S(H)=-H, S(E)=—E.e ",
AH)=H Q1 +1QH, AF)=FQ®l+e%QF,
e(H)) = e(F) =0, S(H)=-H, S(F)=—e""F,
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In order to construct a Hopf pairing adapted to our needs, let us consider the
h-adic Hopf algebra U_ = C[[A]]l + hU_. The elements H; = hH; and F, = hF,
belong to U_ and satisfy

Ty ™ T/ Ty Ty T T —(1i~,-' T
[H,F] = —hayF;, AH)=HQ®l+1®H, AF)=F®l+e " QF,.

The element e~ =1+ Y., &(~d;h)*H* is also in U_. Note that e~ is not
in the h-adic subalgebra of U generated by H{ . Using the method described in
Section 2.1 (see also Klimyk and Schmudgen, 1997, Proposition 38), it can be
verified that there exists a (unique) Hopf pairing ¢ : U, x U_ — C[[h]] such that:

~ ~ ~ 0;;h
o(H;, H) = di—laj,l., o(H;, F;) = o(E;, H)) = 0, a(E;, ]) = s
Let ¢ : 1 — Autyoy(U,) and ¢ : m — AutHOpf(ﬁ_) defined, for o = (o, ..., ) €n
and 1 <i </ by

¢1(Hi) =H,, d)az(Ei) = edillaiEi7 l//x(Hz,) = Hi,7 ‘//x(Fz) = e_dih[xiFi-

It is straightforward to verify that ¥ is (o, ¢p)-compatible. By the h-adic version of
Lemma 2.4, we can consider the crossed h-adic Hopf n-coalgebra D(U,, Uo, o) =
{D(U,, U_; 0, $,)},.. whose structure can be explicitly described as in the proof of
Proposition 5.1.

For any aem, let I, be the h-adic ideal of D(U,, lNJ,; g, ¢,) generated
by ITI[ — hH; where 1 <i <. Using the description of the structure maps of
D(U,, U:o,$,), we get that I ={L},., is a crossed h-adic Hopf r-coideal
of D(U,,U_;a,¢). The quotient D(U,, U_; 0, $)/I = {D(U,,U_;0,¢,)/L},cr is
precisely Uj(g) = {U;(a)},c.- Hence the latter has a structure of a crossed h-adic
Hopf n-coalgebra. O

It is well-know (see, e.g., Klimyk and Schmudgen, 1997) that the Hopf pairing
o:U, x U — C|[[#]] is non-degenerate and that, if (e;); and (f;); are dual basis
of the vector spaces U, and U_ with respect to the form o, then } (¢, ® 1) ®
(1® f;) belongs to the h-adic completion D(U+,U a, o, )®D(U+,U a, dp)-
Therefore, by Theorem 2.10, the crossed h-adic Hopf n-coalgebra D(U,., U_; , ¢)
is quasitriangular. Hence, as a quotient of D(U,, U o, ), U“(g) is also
quasitriangular.

For example, when g = 3/, and so © = (E[[h]], we have that the R-matrix of

U (s1,) is given, for any o, § € C[[h]], b

R, ;="M N R () E" ® F" € Up(sl,) ® Uy (s1,),

n=0

where R, (h) = q”““””“fj—ﬁy and g = e".
Let o € C[[h]]. For any non-negative integer n, consider a (n + 1)-dimensional
C-vector space V, with basis {v,, ..., v,}. The space V* = V,[[1]] = V, ® C[[4]] has
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a structure of a (topological) left U} (s(,)-module given, for 0 < i < n, as follows:

E-v = e%[n_i—"_l]qvi—l %fi>0,
0 ifi =0,
F.v = [+ 1]vis if i <n,
L ifi=n.

Together with the quasitriangularity of U,:D [[h]](é[Q), these data lead in particular to
a solution of the C[[4]]-colored Yang-Baxter equation.
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