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1. Introduction

The study of group-graded categories was initiated by the first author [11] with a view towards constructing 3-
dimensional Homotopy Quantum Field Theory (HQFT) generalizing the 3-dimensional Topological Quantum Field Theory
(TQFT) introduced by E. Witten and M. Atiyah. An HQFT applies to manifolds and cobordisms equipped with maps to
a fixed target space. HQFTs with target the Eilenberg-MacLane space K(G, 1), where G is a group, naturally arise from
G-graded categories via two fundamental constructions based on state-sums on triangulations and on surgery; see [11,13]
and references therein. The present paper is a part of the authors’ work on the following claim: for any group G, the state
sum HQFT associated with a spherical G-fusion category is isomorphic to the surgery HQFT associated with the G-center of
that category. We provide here the algebraic background for this claim and specifically study the G-centers.

A G-graded category is a monoidal category whose objects are equipped with a multiplicative grading by elements of G.
The objects of € graded by « € G form a full subcategory, G, of C called the «-component of €. The multiplicativity of the
grading means that X ® Y € Cup forany X € Gy, Y € Cp with «, B € G. The category C; corresponding to o = 1 is called
the neutral component of C.

A number of standard notions of the theory of monoidal categories (corresponding to G = 1) naturally generalize to this
setting. This leads, in particular, to a notion of a G-fusion category. On the other hand, to define G-braidings in a G-graded
category C, one needs an additional ingredient: an action of G on € by strong monoidal auto-equivalences {¢, : € — C}yec
suchthat @, (Cp) C C,-1p, foralla, B € €. Using this action, called a crossing, we define G-braided and G-ribbon categories.
Under the simplifying assumption that the crossing is strict, these notions were first introduced in [11].

The Drinfeld-Joyal-Street center construction applies to any monoidal category € and produces a braided monoidal
category Z(C), the center of C. An analogue of the center in the setting of G-graded categories was considered by Gelaki,
Naidu, and Nikshych [4]: for a finite group G, they associate to any G-fusion category € a G-braided category Zs(C). The
construction of Z;(€) as a monoidal category is rather straightforward and applies to an arbitrary group G and any G-graded
category C. The objects of Zs(C) are pairs (A, o) where A is an object of € and ¢ is a half-braiding in € relative to Gy, that is
a system of isomorphisms oy : AQY — Y ® Ain € permuting A with arbitrary objects Y of @;. The morphisms in Z¢(C) are
the morphisms in € commuting with the half-braidings. The monoidal product in Z;(€) is essentially the composition of
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half-braidings. The difficult part in the construction of Zs(C€), requiring additional assumptions on €, concerns the crossing
and the G-braiding. We define a crossing and a G-braiding in Z;(€) for non-singular G-graded categories C generalizing the
Gelaki-Naidu-Nikshych construction (see Theorem 4.1).

For topological applications, it is important to study the so-called G-modular categories. A G-modular category is a G-
fusion G-ribbon G-graded category whose neutral component (which is a fusion ribbon category in the usual sense) has an
invertible S-matrix. Our first main result is the following modularity theorem.

Theorem 1.1. If C is a spherical G-fusion category over an algebraically closed field and the dimension of the neutral component
of C is non-zero, then Zs(C) is a G-modular category.

This theorem is highly non-trivial already in the case G = 1 where it was first proved by M. Miiger; see [8, Theorem 1.2].
Our proof of the modularity theorem uses the technique of Hopf monads introduced in [1].

In general, it is not easy to exhibit objects of the G-center of a G-graded category C. When € is non-singular and G-
centralizable (in the sense defined in this paper), the forgetful functor Z;(€) — @€, (A, o) — A, has a left adjoint functor
F: © — Zs(C).The objects of Z(€C) isomorphic to objects in the image of # are said to be free. Our second group of results
yields explicit computations of the free objects. In particular, if € is a G-fusion category over a field, then € is non-singular
and C;-centralizable, and for any object X of C,

FX) > A=EPirexX®ioc={(oy:AQY > Y ®Alyec,)

iely

where I is a representative set of isomorphism classes of simple objects of ¢; and Y runs over objects of C;. The restriction
of oy to the direct summand i* @ X ® i ® Y of A® Y with i € I; is computed by

- Y| b b

¢ || L»]
b

where (p;: iQ Y* — iy, q,: i, — i® Y*), are the projections and the embeddings determined by a splitting of i ® Y* as a
direct sum of simple objects i; € I;. Similar pictorial formulas compute the crossing and the G-braiding in Z;(C) on the free
objects. For example, for any « € G, the object ¢, (F (X)) is computed by the formula above with I; replaced everywhere by
I, a representative set of isomorphism classes of simple objects of C,. For precise statements, see Theorems 10.4 and 10.6.

Every G-modular category gives rise to a 3-dimensional HQFT with target K (G, 1). The modularity theorem above allows
us to derive such an HQFT from Z;(€). Our computations with free objects lead to a computation of the vector spaces
assigned by this HQFT to surfaces equipped with maps to K(G, 1). These results are crucially used in the proof (given
elsewhere) of the claim stated at the beginning of the introduction. In the present paper we focus on the algebraic side
of the theory and do not study HQFTSs.

The organization of the paper is as follows. In Section 2 we recall necessary notions from the theory of monoidal
categories. In Section 3 we introduce the key notions of the theory of G-graded categories. In Section 4 we construct the
G-center. In Section 5 we introduce spherical G-fusion categories, state the modularity theorem, and start its proof. In
Sections 6-8 we discuss G-ribbonness, Hopf monads, and coends, respectively. In Section 9 we finish the proof of the
modularity theorem. In Section 10 we compute the crossing and the G-braiding on the free objects and also discuss the
G-fusion case. The appendix is devoted to the computation of certain objects of Zs(€) which will be instrumental in the
study of the associated HQFT.

Throughout the paper, we fix a (discrete) group G and a commutative ring k.

2. Preliminaries on categories and functors

We recall here several standard notions and techniques of the theory of monoidal categories referring for details to [5].

2.1. Conventions

The unit object of a monoidal category € is denoted by 1 = 1. Notation X € € means that X is an object of €. To simplify
the formulas, we will always pretend that the monoidal categories at hand are strict. Consequently, we omit brackets in the
monoidal products and suppress the associativity constraints (X ® Y) ® Z = X ® (Y ® Z) and the unitality constraints
XQ®1=X =1 ® X. By the monoidal product X; ® X, ® --- ® X,, of n > 2 objects Xy, ..., X, of a monoidal category we
mean ( .. ((X] ®X2) ®X3) & - ®Xn71) ®Xn.
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2.2. Monoidal functors

Let € and £ be monoidal categories. A monoidal functor from € to D is a triple (F, F;, Fy), where F: ¢ — D is a functor,
F={FXY): FX)®FY) > FX®Y)lxyee

is a natural transformation from ® (F x F) to F®,and Fy: 15 — F(1¢) isa morphism in D such that the following diagrams
commute forall X, Y,Z € C:

idF(X) ®F(Y,Z)

FX)QF(Y)® F(2) FX)®F(Y ®2)
F(X.Y)®idp(z) l lh X.Y®Z) (1)
FX®Y)Q®F2) BT D) FX®Y®Z),
FX) Sroo®h F(X) ® F(Le)
Fo®idrx) l e le (X.1¢) (2)
F(le) ® F(X) EdeX FX).

A monoidal functor (F, F,, Fy) is strong if F, and Fy are isomorphisms and strict if F, and Fy are identity morphisms.
A natural transformation ¢ = {gx: F(X) — G(X)}xce from a monoidal functor F: € — D to a monoidal functor
G: C — D is monoidal if Gy = ¢, Fy and

oxerF2(X,Y) = Go(X, Y) (px ® ¢y)

forall X, Y € C. A monoidal natural isomorphism between F and G is a monoidal natural transformation ¢ from F to G which
is an isomorphism in the sense that each gy is an isomorphism. The inverse ¢~ ! = {g0;1 : G(XX) — F(X)}xee is then a
monoidal natural transformation from G to F.

IfF: € —> Dand G: D — & are monoidal functors between monoidal categories, then their composition GF: ¢ — &
is a monoidal functor with

(GF)o = G(Fo)Go and  (GF); = {G(F2(X, Y)) G2 (F(X), F(Y))}x.vec-

2.3. Rigid categories

Let @ = (@G, ®, 1) be a monoidal category. A left dual of an object X € € is an object ¥X € € together with morphisms
evy: "X ®X — 1andcoevy: 1 — X ® “X such that
(idx ® evx)(coevy ® idx) = idx and (evx ® idvy)(idvy ® coevy) = idvy.

One calls C left rigid if every object of € has a left dual. A choice of a left dual for each object of € defines a left dual functor
V?: @ — @, where C° is the category opposite to C with opposite monoidal structure. The functor ¥'? carries a morphism
f:X — YinC (i.e,amorphismY — X in C°)to

Vi = (evy ® idvy)(idvy ® f ® idvy)(idvy ® coevy): VY — VX.
The functor ¥'? is strong monoidal with (¥?)y = coev; : 1 — V1 and with
72X, 7): VX @Y > VX QP Y)="(Y®X)
defined to be equal to
(evx ® idv(xgy)) (idvx ® coevy ® idxgv(xgy))(idvxgvy ® coevxgy).

The isomorphisms (¥?)o and (¥?),(X, Y) are called left monoidal constraints.
Similarly, a right dual of X € € is an object X" of € equipped with morphisms évy: X ® X" — 1 and coevy: 1 — XV ®X
such that

(alx ® ldx)(ldx ® C/O\ET/)() = ldx and (idxv ® alx)((?dﬁ/x ® idXV) = idXV.

One calls C right rigid if every object of € has a right dual. Similarly to the above, for a right rigid category €, one defines a
strong monoidal right dual functor ?¥ : C°° — € and right monoidal constraints.
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to an isomorphism preserving the (co)evaluation morphisms. Different choices of left/right dual objects lead to monoidally
isomorphic left/right dual functors.

2.4. Pivotal categories

By a pivotal category we mean a rigid monoidal category € such that the left and right dual functors are equal as monoidal
functors. Then for each object X € €, we have a dual object X* = VX = X and morphisms

evy: X*®X — 1, coevy: 1 — X ® X*,
ey X QX' — 1, coevy: 1 — X*®@X,

such that (X*, evy, coevy) is a left dual for X and (X*, évy, Coevy) is aright dual for X. The dual f*: Y* — X* of any morphism
f: X — Yin € is computed by

f* = (evy ® idx+)(idy+ ® f ® idx=)(idy+ ® coevy)
= (idy+ ® éVy)(idx+ ® f ® idy«)(CoeVy ® idy+).

Working with a pivotal category G, we will suppress the duality constraints 1* = 1 and X*®@Y* = (Y ®X)*. For example,
we write (f ® g)* = g* ® f* for morphisms f, g in C.
For an endomorphism g of an object X of a pivotal category C, one defines the left and right traces
tri(g) = evx(idx+ ® g)coevx and tr,(g) = éVx(g ® idx+)coevy.

Both traces take values in Ende (1) and are symmetric: try; (fh) = try, (hf) for any morphismsf : X — Y,h:Y — XinC.
Also try;-(g) = try,(g*) for any endomorphism g of an object. The left and right dimensions of an object X € € are defined
by dimy/; (X) = try,(idy). Clearly, dim;/, (X) = dim,(X*) for all X.

2.5. Penrose graphical calculus

We will represent morphisms in a category € by plane diagrams to be read from the bottom to the top. The diagrams are
made of oriented arcs colored by objects of € and of boxes colored by morphisms of C. The arcs connect the boxes and have
no mutual intersections or self-intersections. The identity idy of X € ¢, a morphism f: X — Y, and the composition of two
morphisms f: X — Yandg: Y — Z are represented as follows:

A

v ]
idy = ,f:,and g = {r.
X X f
X

If € is monoidal, then the monoidal product of two morphisms f: X — Y and g: U — V is represented by juxtaposition:

Y Vv
f®g= .
X u

Suppose that € is pivotal. By convention, if an arc colored by X € € is oriented upwards, then the corresponding object in
the source/target of morphisms is X*. For example, idx+ and a morphism f: X* ® Y — U ® V* ® W may be depicted as

U v w
idyx = = and f = -f .

X Y

The duality morphisms are depicted as follows:

EVX:[)\X- coevy = \Jx, é\\‘/X:/‘\X' C/O\éT/XZ vx.

The dual of a morphism f : X — Y and the traces of a morphism g: X — X can be depicted as follows:

f*= 'i‘ = \j‘ and trl(g):X. trr(g)zx.
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Itis easy to see that the morphisms represented by such diagrams are invariant under isotopies of the diagrams in R? keeping
fixed the bottom and top endpoints.

2.6. Pivotal functors

Given a strong monoidal functor F: ¢ — D between pivotal categories, we define for each X € € a morphism
F'(X) = (Fy 'F(evy)Fa(X*, X) ® idpxy+) (idpees) ® coevey) 1 F(X*) — F(X)*.

It is well-known that F' = {F!(X): F(X*) — F(X)*}xce is a monoidal natural isomorphism. Likewise, the morphisms
{FF(X): F(X*) > F(X)*}xec, defined by

F'(X) = (idrxy* ® Fy 'F(8Vx)Fa(X, X*))(COBVE(x) ® idrxr)),
form a monoidal natural isomorphism F’. For all X € ¢, we have

FIX*)F(x) = F'(X)* prx)
where {¢x : X — X**}x is the pivotal structure in € defined by

ox = (6Vx ® idy+)(idy ® coevyx): X — X**, (3)
The monoidal functor F: € — D is pivotal if F'(X) = F"(X) for any X € €. In this case, F' = F" is denoted by F.

2.7. Additive categories

A category C is k-additive if the Hom-sets of C are modules over the ring k, the composition of morphisms is k-bilinear,
and any finite family of objects has a direct sum. In particular, such a € has a zero object, that is, an object 0 € € such that
Ende(0) = 0. A monoidal category is k-additive if it is k-additive as a category and the monoidal product is k-bilinear.

A functor F: ¢ — D between k-additive categories is k-linear if the map from Home (X, Y) to Homg (F(X), F(Y))
induced by F is k-linear for all X, Y € €. Such a functor necessarily preserves direct sums.

3. G-structures on monoidal categories

In this section we define the classes of G-graded, G-crossed, G-braided, and G-ribbon categories.

3.1. G-graded categories

By a G-graded category (over k), we mean a k-additive monoidal category C endowed with a system of pairwise disjoint
full k-additive subcategories {C, }ycc such that

(a) each object X € C splits as a direct sum &, X, where X, € C, and « runs over a finite subset of G;
(b) ifX € Gy and Y € Cg,thenX ® Y € Cqp;

(c) ifX € G, and Y € Cg with o # B, then Home (X, Y) = 0;

(d) Lo € Cs.

The category €1 corresponding to the neutral element 1 € Gis called the neutral component of €. Clearly, €1 is ak-additive
monoidal category.

3.2. G-crossed categories

Given a monoidal k-additive category ©, denote by Aut(C) the category whose objects are k-linear strong monoidal
functors ¢ — € that are equivalences of categories. The morphisms in Aut(€¢) are monoidal natural isomorphisms. The
category Aut(€) has a canonical structure of a monoidal category, in which the monoidal product is the composition of
monoidal functors and the monoidal unit is the identity endofunctor 1¢ of C. _

Denote by G the category whose objects are elements of G and morphisms are identities. We turn G into a monoidal
category with the monoidal product given by the opposite group multiplication in G, i.e., ¢ ® 8 = Ba foralla, 8 € G.

A G-crossed category is a G-graded category C (over k) endowed with a crossing, that is, a strong monoidal functor
@: G — Aut(C) such that ¢, (Cp) C Cy-15, foralla, f € G.Thus, foreacha € G, the crossing ¢ provides a strong monoidal

equivalence ¢, : € — C equipped with an isomorphism (¢, )o: 1 SN ¢y (1) in € and with natural isomorphisms
(@a)2 = {(@)2(X, V) 9u(X) ® @u(Y) —> 00X ® V)}x yee,
02 = {@a(a, B) = {@a(er, B)x: #app(X) —> @paX)xec], pec:

g0 = {(@o)x: X —> ¢1(X¥)}xee
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such that (¢g)1 = (p1)o and forall w, B, y € Gand all X, Y, Z € @, the following diagrams commute:

idge, 00 ®(¢a)2(Y.Z)

0a(X) ® 0o (Y) ® 9o (Z) 0 (X) ® 9 (Y ® Z)
L(Wa)z(X,Y)@dW(z) l(w);(x,vm (4)
P XQY)® ¢y (Z) Y, XY ®Y),

(9a)2(XR®Y,Z)

idgg (x) ®(9a)o

Pa(X) Pa(X) ® @o (1)
id
(@a)0®idyy x) l fo) l(wwz(x,n) (5)
1 X X
Pa(1) ® @u(X) PRNTET @u(X),

Vg (X) ® ‘pﬁa(y)

2(a, B)x @2 (e, By (Ppa)2(X.Y)
aPpX) ® 0upp(Y) Ppa (X ®Y)
(6)
(@a)2(0p (X),0p(Y)) ©2(x.Bxgy

0 (P (X) ® pp(Y)) PaPpX ®Y),

pa((9p)2(X,Y))

(‘ﬂf}a)o
1 PBa (]]-)

(%()Ol Tlpz(aqﬂ)n (7)

(/)ot(]]-) > Qﬂa(/)ﬁ(jl),
va\(9p)o

(Yo)xey

PpXQ®Y)

X®Y
(8)
(%0)x ®(90)y (1)2X,Y)

©1(X) ® p1(Y),

9o (92(B,v)x)

(pa‘/)ﬂ(py(x) (/)a‘/)yﬂ(x)
wz(a,ﬁ)wy(X)L L«)z(a,yﬂ)x (9)
o @y (X «(X),
Ppaty X) 92 (Bay)x PrpaX)
9o ((90)x)
a(X) = a1 (X)
id
(90) gy (X) l m\ l‘ﬂz(“»nx (10)
(/)1(;001()() (/)a(x)-

2(1,0)x
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The commutativity of the diagrams (4) and (5) means that (¢, (¢4)2, (¢«)0) is a monoidal endofunctor of €. The diagrams
(6) and (7) indicate that the natural transformation ¢,(«, 8) is monoidal. The commutativity of (8) and the equality
(po)1 = (¢1)o mean that the natural transformation ¢ is monoidal. Finally, the diagrams (9) and (10) indicate that
(¢, @2, ¢o) is a monoidal functor.

3.3. G-braidings

An object X of a G-graded category C is homogeneous if X € G, for some @ € G. Such an « is then uniquely determined
by X and denoted |X|. If two homogeneous objects X, Y € € are isomorphic, then either they are zero objects or |X| = |Y].
Let Chom = Lyec Gy denote the full subcategory of homogeneous objects of C.

A G-braided category is a G-crossed category (C, ¢) endowed with a G-braiding, i.e., a family of isomorphisms

T={mxy: X®Y = Y ® oy (X)}xee,veehom
which is natural in X, Y and satisfies the following three conditions:
(a) forallX € ¢and Y, Z € Cpom, the following diagram commutes:

TX,Y®Z

XQY®Z Y®Z® ¢yezX)
rx.y®idzl Tidyeaz@(ﬂz(zl,lyl)x (11)
Y®pyX)®Z Y ®ZQ® ¢z19v(X),

idY@TWW\(X)J

(b) forallX,Y € € and Z € Cyom, the following diagram commutes:

XQY.Z

XQY®Z ZQyz1(X®Y)
idx®fy,zl ]idz®(¢z)z(X,Y) (12)
X®Z®py(Y) ZQ ¢12/(X) ® piz)(Y),

TX'Z®idW|Z|(V>

(c) foralla € G, X € G,and Y € Cpom, the following diagram commutes:

($a)2(X.Y)

Pa(X) @ ¢u(Y) (X ®Y)
Tpor (X) .9 (V) @a (Tx,Y)
@ (Y) ® @o-1)yaPa(X) 0. (Y ® ¢y (X)) (13)
idgg (v)®p2 (@Y o)y (@a)2(Y,0py| (X))
0 (Y) ® ¢y (X) 9o (Y) ® @y (X).

idgg (v) @2 (@Y !

For a G-braided category (C, ¢, 7), the category C; is a braided category (in the usual sense of the word) with braiding
{exy = (idy ® (9o)x Nxy: X ®Y — Y ® X}x vee, - (14)

3.4. Pivotality and ribbonness

A G-graded category C is rigid (resp., pivotal) if its underlying monoidal category is rigid (resp., pivotal). If € is pivotal,
then for all X € ¢, with @ € G, we always choose X* to be in C,-1. If C is pivotal, then so is C;.

Acrossing ¢: G — Aut(C) in a pivotal G-graded category € is pivotal if the monoidal functor ¢, is pivotal for all & € G.
A pivotal crossing ¢ gives for each @ € G a natural isomorphism

ol = {pl(X): pa(X*) —> @u(X)*Ixee



1902 V. Turaev, A. Virelizier / Journal of Pure and Applied Algebra 217 (2013) 1895-1941

which preserves both left and right dualities (as in Section 2.6) and is monoidal: (((pa)gl)* = (p; MW (¢g)o : 1* =1 —
@ (1)* and forall X, Y € C,

DX ® V) (@a)2(Y*, X*) = ((¢a)2(X, V) (pa(Y) ® g (X)).

A pivotal crossing ¢ preserves the trace in the following sense: for any « € G and for any endomorphism g of an object of G,

tr(@a(8)) = (@a)g ' Pa (tr(8)) (9e)o-

If Ende (1) = kidy, then this formula implies that tr(p, (g)) = tr(g) for any g.
A pivotal G-braided category (C, ¢, 7) has a twist which is the family of morphisms 6 = {6x}xc¢,,, Where

Ox = (evx ® idyy, ) (idx+ ® Tx x)(Coevy ® idy): X — ¢ (X). (15)

The naturality of  implies that 6y is natural in X.
A G-ribbon category is a pivotal G-braided category (C, ¢, T) whose crossing ¢ is pivotal and whose twist is self-dual in
the sense that for all X € Chom,

(6x)* = (9o)x (@2(1X7", |X|))?l)*¢|lx|—l(QDIXI(X))G(/JP(‘(X)*- (16)

For a G-ribbon category (G, ¢, 7), the category C; is a ribbon category (in the usual sense of the word) with braiding (14)
and twist {(o)y 'Ox : X = X}xee,-

3.5. Example

The following example of a G-ribbon category is adapted from [6]. Let 7 : H — G be a group epimorphism with kernel K.
Let D be the category of H-graded finitely generated projective k-modules M = @y M; endowed with a right action of K
such that M - k C M-, forallh € H and k € K. Since M is finitely generated, M, = O for all but a finite number of h € H.
Morphisms in O are H-graded K-linear morphisms. The category £ is monoidal: the monoidal product of M, N € D is the
k-module M ® N = M ®y N with diagonal K-action and H-grading (M ® N), = ®#,n,—nMp, ®x Np, for h € H. The monoidal
unit of D is k in degree 1 € H with trivial action of K. The category D is k-additive in the obvious way and pivotal: the dual
of M € D is the k-module M* = Homy (M, k) with H-grading (M*), = Hom(M-1, k) for h € H and action of K defined by
(f-k)(m) =f@m -k fork € K,f € M*, m € M. The left and right (co)evaluation morphisms are the usual ones (i.e., are
inherited from the pivotal category of finitely generated projective k-modules). The category D is G-graded as follows: for
o € G, D, is the full subcategory of all M € D such that M, = 0 whenever 7 (h) # «.

Any set-theoretic section s of 7, i.e.,amaps: G — H such that s = id; defines a structure of a G-ribbon category on £
as follows. Fora € Gand M € D, set ¢,(M) = M as a k-module with H-grading ¢, (M) = M)-1p5q) for h € H and
right K-action mk = m - s(a)ks(a) ™" for m € @, (M) and k € K. For a morphism f in D, set ¢, (f) = f. This defines a strict
monoidal endofunctor ¢, of D. Fora, 8 € Gand M € D, the formulas m +— m - s(8)s(e)s(Ba) ' and m — m - s(1)~!
define isomorphisms, respectively,

(e, BIm: @ap(M) — @po (M) and  (@o)m: M — p1(M).

This defines a pivotal crossing in D. Given M € D and N € D, with o € G, the G-braiding iy y: M ® N - N ® ¢, (M)
carriesm®nton ® (m - hs(a)™") form € M,h € 7~ '(a),andn € N,. For M € D, with o € G, the (self-dual) twist
Oy: M — @, (M) carries m € My with h € 7~ () tom - hs(a) ™. In this way, £ becomes a G-ribbon category. Though the
structure of a G-ribbon category on D depends on the choice of a section s: G — H, an appropriately defined equivalence
class of this structure is independent of s; cf. Section 5.6.

3.6. Remarks

1. For G = 1, the definition of a G-crossed category € means that € is a k-additive monoidal category such that every
object X € C gives rise to an object X’ € € and an isomorphism X ~ X'. Indeed, a strong monoidal functor ¢ : 1 — Aut(C)
yields an object X’ = ¢;(X) and an isomorphism (go)x: X — X’ for each X € C. It is easy to see that any system
of objects and isomorphisms {(X’ € C,X = X')}xce arises in this way from a unique strong monoidal functor 1 —
Aut(C). For G = 1, the notions of G-braided/G-ribbon categories are equivalent to the standard notions of braided/ribbon
categories.

2. The notions of G-braided/G-ribbon categories were first introduced in [11] in a special case. Denoting by G° the
group G with opposite multiplication, a G-braided (resp. G-ribbon) category in [11] is a G°P-braided (resp. G°P-ribbon)



V. Turaev, A. Virelizier / Journal of Pure and Applied Algebra 217 (2013) 1895-1941 1903

category in the sense above whose crossing ¢ is strict, meaning that ¢ is strict monoidal (i.e., ¢, («r, B) and ¢, are identity
morphisms) and each ¢, is strict monoidal (i.e., (¢y), and (¢, )o are identity morphisms). For instance, the crossing in
Example 3.5 is strict if and only if s is a group homomorphism. Such an s does not exist unless H is a semidirect product of K
and G.

4. Centers of G-graded categories

We define and study G-centers of G-graded categories. We begin by recalling several notions of the theory of
categories.

4.1. Preliminaries

An idempotent in a category € is an endomorphism e of an object X € € such that e = e. An idempotente: X — X in
C splits if there is an object E € ¢ and morphisms p: X — E and q: E — X such that gp = e and pq = idg. Such a splitting
triple (E, p, q) of e is unique up to isomorphism: if (E’, p’, ') is another splitting triple of e, then ¢ = p’q: E — E’is the
(unique) isomorphism between E and E’ such that p’ = ¢p and ¢’ = q¢~!. A category with split idempotents is a category in
which all idempotents split.

A monoidal category C is pure if f ® idy = idx ® f forall f € Ende (1) and X € €. For example, this condition is satisfied
if Ende (1) = kidy.

If a monoidal category € is pure and pivotal, then the left and right traces in € are ®-multiplicative: tr;;,(f ® g) =
tryr (f) try-(g) for any endomorphisms f, g of objects of €. In particular, dimy,(X ® Y) = dimy, (X) dimy,(Y) for any
X,Y € C.

We call a pivotal G-graded category C non-singular if it is pure, has split idempotents, and for all @ € G, the subcategory
C, of C has at least one object whose left dimension is invertible in Ende (1). Examples of such categories will be given in
Section 5.6.

4.2. Relative centers

Recall the notion of a relative center of a monoidal category due to P. Schauenburg [9]. Let € be a monoidal category
and D be a monoidal subcategory of C. A (left) half braiding of C relative to D is a pair (A, o), where A € € and
0 = {ox: A®X — X ® A}xep is a family of isomorphisms in ¢ which is natural with respect to X and satisfies for all
X, Y € D,

oxgy = (idx ® oy)(ox ® idy). (17)

This implies that o7 = id,.

The (left) center of C relative to D is the monoidal category Z(C; £) whose objects are half braidings of € relative to D.
Amorphism (A, 0) — (A, ') in Z(C; D) is amorphismf: A — A’ in € such that (idx @ f)ox = oy (f ®idx) forall X € D.
The monoidal product in Z(C; D) is defined by

(A, 0)® (B, p) = (A® B, (0 ®idp)(ids ® p)).

and the unit object of Z(C; D) is 1ze.0) = (1, {idx}xen). The forgetful functor Z(C; H) — C carries (A,0) to A € €
and acts in the obvious way on the morphisms. This functor is strict monoidal and reflects isomorphisms, meaning that a
morphism in Z(€; D) carried to an isomorphism in € is itself an isomorphism.

The category Z(C; D) inherits most of the standard properties of C. If € is a category with split idlempotents, then so is
Z(C; D).If Cis pure, then Z(C; D) is pure and Endz (e, 0y (1z(e; p)) = Ende (1).If € isrigid and D is arigid subcategory of €
(that is, a monoidal subcategory stable under left and right dualities), then Z(C; D) is rigid. If € is pivotal and D is a pivotal
subcategory of € (that is, a monoidal subcategory stable under duality), then Z(C; D) is pivotal with (4, o)* = (A*, o) for
(A,0) € Z(C; D), where

X 4A

18
TAFRX > X QAT (18)

O’X = ox* =

and ev(s 5) = €Vp, COEV(4 5y = COBV4, EV(4 o) = EV4, COBV(4 ) = COEV4. The traces of morphisms and dimensions of objects
in Z(C; D) are the same as in C.
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If € is k-additive, then so is Z(C; D), and the forgetful functor Z(C; D) — C isk-linear. If € is an abelian category, then
s0is Z(C; D).

The center Z(C; C) of C relative to itself is the center Z(C) of € in the sense of A. Joyal, R. Street, and V. Drinfeld.
The center Z(C; %) of C relative to its trivial subcategory * formed by the single object 1 and the single morphism id; is
canonically isomorphic to €. When C is pure, Z(C; {1}) is also canonically isomorphic to @, where {1} is the full subcategory
of @ having a single object 1. The canonical isomorphism ¢ — Z(C; {1}) carries any object A of € to the half-braiding
(A,idy: A® 1 — 1 ® A); the naturality of id4 with respect to endomorphisms of 1 is verified using the purity of C.

4.3. The G-center

For a G-graded category C (overk), we set Z¢(C) = Z(C; C1) and call Z;(C) the G-center of C. By Section 4.2, the category
Zc (@) is k-additive. For a € G, let Z,(C) be the full subcategory of Z;(€) formed by the half braidings (A, o) relative to G,
with A € G,. This system of subcategories turns Z¢(€) into a G-graded category (over k). By definition, | (4, 0)| = |A] = «
forany (A, o) € Z,(C).If € is pivotal (or pure, or with split idempotents), then so is Z¢(€). The main result of this section
is the following theorem.

Theorem 4.1. Let C be a non-singular pivotal G-graded category. Then Zs(C) has a canonical structure of a pivotal G-braided
category with pivotal crossing.

When G is finite, k is a field of characteristic zero, and € is a G-fusion category (see Section 5.3 for the definition),
Theorem 4.1 was first obtained by Gelaki, Naidu, and Nikshych [4]. In difference to [4], we give an explicit construction
of the crossing and the G-braiding in Z¢(C).

Theorem 4.1 is proved in Sections 4.4 and 4.5. Several lemmas are stated in these sections without proof which is
postponed to Section 4.6. Throughout the proof of Theorem 4.1 we keep the assumptions of this theorem and use the
following notation. For V € G, we set dy = dim;(V) € Ende(1). For ¢ € G, we denote by &, the class of objects of G,
with invertible left dimension.

4.4. The crossing

The crossing in Zs(C) is constructed in three steps. In Step 1, we construct a family of monoidal endofunctors of
Z(@) numerated by objects of € belonging to L, &,. In Step 2, we construct a system of isomorphisms between
these endofunctors. In Step 3, we define the crossing as the limit of the resulting projective system of endofunctors and
isomorphisms.

Step 1. For any V € &, with o € G, we define a monoidal endofunctor ¢y of Z;(€). We begin with a lemma.

Lemma 4.2. Forany (A, o) € Zs(C), the morphism

VYAYV

Moy =dy' € Ende(V* QAR V)
VYAYV

is an idempotent.
Proof. Using (17) and the naturality of o, we obtain
P\ fv *A v

| oVRV*VeV* |

Tt
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Since all idempotents in € split, there exist an object E(‘ﬁw) € € and morphisms p‘(quo): V QA®V — EX‘\,U) and
@'y o)t Ely) = V- ® A® V such that

v v v VooV :
Tiao) = dao)Piaey ANd D slae) = ldEzw)- (19)

We will depict the morphisms py, ,, and gy, ,, as

v
E(A.c)

"4 \"4
Piao) = and qa o) =

v
VYAYV Ely o)

We can now define an endofunctor ¢y of Zs(€) as follows. For (A, o), set ¢y (A, 0) = (E(‘ﬁw), y(‘f"_a)) € Zq(C) where, for
eachX e ¢y, '

1% —1 .oV 14
Yoy x =dy Epgy ®X = X®E, ).

We show in Section 4.6 that y(‘/g,a) is a half-braiding of € relative to C; so that ¢y (A, 0) € Z¢(C).IfA € Cg with B € G, then
we always choose E(‘ﬁ‘ﬁ) in Cy-1p, S0 that gy (A, o) € Z,-14,(C). For a morphism f: (A, o) — (B, p) in Zs(C), set

4

ov(fH)=V7T

[V ov(A, o) = ev(B, p).

and (pv)o =

v v

Lemma 4.3. (¢v, (¢v)2, (pv)o) is a well-defined pivotal strong monoidal k-linear endofunctor of Z¢(C) such that ¢y (Zlg(@)) -
Z,-1p4(C) forall B € G.
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We now study the endofunctors {¢y}v. Pickany U € &,,V € &3, W € &g, with, B € G. For each (A, o) € Zs(C),

consider the morphism

UVW _ 1,1
Cao) =d; dy,

E¢v (A0)

toupvA, o) = ow(A, o).

Lemma 4.4. (a) The family ¢V"V'W = {C&’,Z’)W}(Amezc;(@) is a monoidal natural isomorphism from gy @y to .
(b) ForallU € &,V € &, W € &, witha, B,y € Gand forallR € &g,,S € &5, and T € &,4,, the following diagram

commutes:
o (775)
PuPyPw ————— PuPs
;_g‘/,ll/,R {.U,S.T
PrROW Qr-

CR‘W‘T

For U € &; and each (A, o) € Z¢(C), consider the morphism

Lemma 4.5. (a) The family n¥ = {ngw)}mﬁ)ezc(@) is a monoidal natural isomorphism from 1z, (e) to ¢y.
(b) ForallU € & and V € &, with « € G, the following diagram commutes:

(4% vy
id(,,v
,,gvl ;v,u,v
PuPv Py.
;U,V,V

Step 2. For each ¢ € G, we construct isomorphisms between the endofunctors {py |V € &,}. For U,V € §&,, define

uv
sV = {840y} oreze(e) DY

SU’V
(b) V'Y =id,, and §V"V8V'W = §U'W forany U, V, W € &,.

Lemma 4.6. (a)

tov(A,0) = gy(A, o).

is a monoidal natural isomorphism from ¢y to ¢y.
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(c) ForallU,U" € &, V,V' € &, and W, W' € &g, the following diagram of monoidal natural isomorphisms commutes:

uv.w

PuPv ow

oy (5"’-")55‘;” sw.w

Py —————————> Pw'.
;U VLW
(d) 8V"UnY = Y forallU, U’ € &,.
Note as a consequence of (a) and (b) that (5(,4 0)) 1= 5(,4 o)
Step 3. By Lemmas 4.3 and 4.6(a), (b), the family (¢y, §V"")y ves, is a projective system in the category of pivotal strong
monoidal k-linear endofunctors of Z¢(€). Since all 8V"V’s are isomorphisms, this system has a well-defined projective limit
Pa = 1<if_n(§0v, 5U’V)U,VG8,1

which is a pivotal strong monoidal k-linear endofunctor of Z;(€C). By Lemma 4.3, we can assume that ¢, (Z,g (G))
Z,-1p,(C) forall g € G.
Denote by 1 = {1} }vee, the universal cone associated with the projective limit above: for V € &,,

1 ={Y) a0 Pa(B, 0) = ov(A 0)}aeezoe) (20)

is a monoidal natural isomorphism from ¢, to ¢y.

By Lemma 4.6(c), (d), the transformations ¢ and n induce monoidal natural isomorphisms ¢, («, 8): ¢a¢p — @ and
@o: lz.e) — @1, respectively. These isomorphisms are related to the universal cone as follows: for U € &,V € &g,
W € &gy, and R € &, the following diagrams commute:

(p2)(a.B)

Yap — 2 g, Tzc(0)
U)W ilﬁf / \
Pupv XA ow ©1 —_— @R

R

By Lemmas 4.4(b) and 4.5(b), ¢, and ¢, satisfy (9) and (10). Note that ¢, and ¢ induce natural isomorphisms ¢,¢,-1 =~
01 2 1z and @190, = @1 2 1z, (c) for a € G. Hence, the endofunctor ¢, of Z(C) is an equivalence. Therefore

0= (0,02, 90): G— Aut(ZG(@)), o= @y

is a strong monoidal functor such that ¢, (Zﬁ (@)) C Zy-15,(C) forall o, B € G. Thus, ¢ is a crossing in Zg(C). It is pivotal
because all ¢, s are pivotal.

4.5. The G-braiding

We construct a G-braiding in Z¢(€) following the scheme of Section 4.4. For (A, 0) € Zs(C),V € &, witha € G, and
X € Chom, Set

1%
F(A,a),X =

The next lemma shows that these morphisms are isomorphisms compatible with the transformations introduced in
Section 4.4.

Lemma4.7. (a) I (A o)X is an isomorphism natural in (A, o) and in X, and
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(b) Forany U,V € &,, the following diagram commutes:
ARX

(c) Forall (A,0) € Zg(C), U € &,V € &3, W € &5, X € Cy, and Y € Cg, the following diagram commutes:

1—~W
A.0).
ARXQ®Y = X®Y®EY,
F(L/’LG)’X@idy Wid)(@y@{(\:‘g,)w
XQE! QY X®Y®EY
(A,0) ldx®F ey pu(Ao)*

(d) Forall (A, o), (B, p) € Zg(C),V € &, and X € C,, the following diagram commutes:

\4
Ta.0)2®.0.x

%
AQB®X X®EQ a0
idy@rY % o)X Tidx®(<pv)2((/t0),(3,p))
A®X®E(Bp) o X®E(An) ®E(Bp)
(A X E(VB p)

(e) I} (Aa)ll = 1.0 forany V e &

(f) I (11 iay.x = 1dx ® (pv)o forallV € &, and X € Cq.

(g) Foralla, B € G, (A,0) € Zc(C), (B, p) € Zp(C), U € &,V € &, W € &gy, and S € &,-15,, the following diagram
commutes:

(pu)2((A,0),(B.p))

U

Eno) ® EGs p) Enorom.0)

rs /s

oy Ao), E(B 2 Yull a5).B
S u
Es.p) ® Egyno E o)y @.0)
S.uw

ld% ))®§(A o) (91)2((B.p).9v (A,0))

Es.p) ® Efro) AT, Et.p) ® Egyao)-

iy © )

(h) Forall (A,0) € Z¢(C),x € G, (B, p) € Zy(C),V € &,, and X € C4, the following diagram commutes:

v .
F(A,a),B®'dX

A®B®X B®E(A”)®X
idy®px idg®y(‘gﬂ)vx

AQRX®B B®X®E(AU)
ox®idp PX®‘d< /s

X®A®B T X®BRE,,).

By Lemma 4.7(a), (b), the transformation I" induces a family of isomorphisms

{Tuorx: A®X = X ® U(@x (A, 0))}a0)eze(@).XeChom (21)
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where U: Zg(€C) — C is the forgetful functor. This family is natural in (A, o) and in X and is related to the universal cones
{t*}aec as follows: for any (A, o) € Z¢(C), X € Chom, and V € x|,

(idx ® (Lli(l)(A,a))f(A,rr),X = F(X,g),xo
We call the family (21) the enhanced G-braiding in Z¢(C).
Lemma 4.8. Forall (A,0) € Zg(C) and X, Y € Chom,

(@) Twoyxey = (dxgy ® @2(IY1], [X])a,0)) (idx ® Ty a.0).v) T,y x @ idy);
(b) Given (B, p) € Z¢(C),

T(A,0)®(B,p).X =(idx ® (@ix))2((A, 0), (B, /0))) (Thorx ® id(pm(s,p)) o (ida ® Tg.p).x);

(€) Thor1 = (P0)a.0);
(d) Twin.x = idx ® (@x)os
(e) The inverse of T(a,¢) x is computed by

Ty x =0 © (90) 4 02(IXI 7", XD o) ® idx) 0 (idx ® Ty a.0).x+ @ idyx) (idxga @ COBVY)
=(idapx ® Ve, o) (Plx (A 0) ® idyy (a0)) © (ida ® Tao)* x ® idgy(a.0)) (COBVA ® idxpya0))-

Proof. Claims (a)-(d) follow respectively from Lemma 4.7(c)-(f). Claim (e) follows from the expression of the inverse of
F(X.a),x given in Lemma 4.7(a) and from the computation of o, ' in terms of oy« and crYT provided by (18)forany Y € ¢;. O

Lemma 4.9. The family T = {T(a,6),3,0)} (4,0)e2c(@),B,p)eZc(C)nom defined by
T(A,0),(,0) = T(A0),8: (A, 0) ® (B, p) = (B, p) @ ¢|8,p) (A, 0).
is a G-braiding in Z(C).

Proof. Lemma 4.7(h) implies that 7(4 o), 8,y is @ morphism in Z¢(C). It is an isomorphism since U(t,0),8,p)) = T(a,0).8 IS
an isomorphism in € and the forgetful functor U reflects isomorphisms. The naturality of the enhanced braiding implies the
naturality of 7. The formulas (11), (12), (13) follow respectively from Lemmas 4.8(a), 4.8(b), and 4.7(e). O

Theorem 4.1 is a direct consequence of Lemma 4.9.
4.6. Proof of Lemmas 4.3-4.7

Let (A, 0) € Zg(C). For X € €1, we depict the morphism oy : A ® X — X ® A and its inverse ox’l X®A—> AR Xby

ax:)\/ and O'l:\/.
1N X X N\

Formula (18) implies that

/<A“xxzxz‘1>\ " \<7)[X=XL>A/

These two morphisms are pictorially represented respectively as

. and \/[X
Py

Axiom (17) implies that for any X1, ..., X, € Gy,

N NG
i@k \ & \

In generalization of this notation, if X € C; decomposes as X = X; ® --- ® X, where Xy, ..., X, are any homogeneous
objects of @, then we will depict oy as

\\

.
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As usual, if an arc colored by X; is oriented upwards, then the corresponding object in the source/target of morphisms is X;".
For example, if X € C; decomposes as X = X; ® X, ® X where X;, X5, X3 € C, then we depict oy as

e N
RN

In this pictorial formalism, for V € G,

G ) = dv A . (22)
1%

Indeed, by the naturality of o,

@%

Lemma 4.10. Let (A, 0) € Z¢(C) andV € &, with a € G. Then

A E(‘ﬁm
Vv
(23) (24)
— YEY
9 - (Ao) )
EX‘M)
T E(‘;,U) EXLU)
(25) (26)
: = dy' :
VYA 14 [
A
YA
(27) (28)

v
Y E(A,n)

Note that the left hand side of (28) does not necessarily depict a morphism in itself because V may not belong to ;. The
equality (28) means that in any diagram, a piece as in the left-hand side of (28) may be replaced with the piece as in right-
hand side of (28) and vice versa.

Proof. Equalities (23) and (24) follow directly from (19) and the definition of n(‘g,a). Composing on the right (23) with q‘(’A’U)
and then using (24) gives (25). Similarly (26) is obtained by composing on the left (23) with p}’A,a). Composing (26) with (25)
and then using (24) and (22) gives (27). Finally (28) is a direct consequence of (23) and (22). O
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We compute now the functor ¢y in this pictorial formalism for V € &, with @ € G. For (A,0) € Z¢(C), we have
ov(A, 0) = (E{) o)» Vr.o)) Where, for X € €4,

Using (25) twice, we obtain that

v
(A,0)®(B.p)

d—2

(pv)2((A,0), (B, p)) =

M

v v v v

Let us prove Lemma 4.3. First, y = y(‘g,a) is a half-braiding. Indeed, the naturality of o implies that of y. Also, using (27)

we obtain y; = id, and
=d,’
\IX Y \X Y

The category C being rigid, these two equalities imply that y is invertible. Hence y is a half-braiding. Second, ¢y is a functor
since @y (id(a,0)) = idy, @4,0) by (24) and, for two composable morphisms g, f in Zs(C), (23) and (25) give

(yx ® idy)(idx ® yy) = d;? = Yxev-

ov(@oev() =

=dy’ = = v (&)

Let us prove that ¢y is strong monoidal. Let (A, o), (B, p), (C, 0) € Zs(C). Applying (28), we obtain

~
d\73 _ d;z _ d;‘l k
X X
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that is,

)’(‘,fxiyg)@(g,p),x (((PV)Z((A, o), (B, P)) ® idx)
= (idX ® ((pv)z((f\, o), (B, p)))(l’(‘f\,a).x ® idzpv(B.p))(idwv(A.o) ® y(‘tl?,p),X)'

Thus (¢v)2((A, @), (B, p)) is a morphism in Z¢(€). Similarly, (¢v)o is a morphism in Z¢(€) because, by (23),

&

Ve iayx ((ev)o ® idx) = ! = idx ® (¢v)o-

Now (¢y ), satisfies (1) since, by using (23), we obtain that both

(QOV)Z((Aa U) ® (Bv 10)7 (Cv Q))(((PV)Z((A» 0)7 (B7 P)) ® id(pv(f,g))

and

((pV)Z((Aa O-)a (B7 ,0) ® (C7 Q))(id(pv(A,a) & (‘pV)Z((Bv 10)5 (C9 Q)))

are equal to
d,?

Axiom (2) is a direct consequence of (23) applied to (1, id). Hence ¢y is a monoidal functor. It remains to prove that both
((pv)z((A, o), (B, p)) and (¢y ) are isomorphisms in Zs(€). Since the forgetful functor Z(€) — C reflects isomorphisms,
we only need to verify that these morphisms are isomorphisms in €. This can be done by verifying (using Lemma 4.10) that

v v
R) ﬂ)

(@)2((A.0). B. p) ' =dy

v
E(Aﬂ )®(B.p)

Finally, let us prove that ¢y is pivotal. For (A, o) € Zs(C), we obtain that

%
A E(A,G)

oy A 0) =d,>
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A similar computation gives that

v
E(Avrr)

oh(A o) =d,>

Vv
Eip oy

Thus <p{, (A,0) = ¢(A, o) by the pivotality of €. This concludes the proof of Lemma 4.3. The proof of Lemmas 4.4-4.9
follows the same lines depicting the morphisms involved as

w
E(A.a)

EU
A,
(A0) W
r A
U

Uv _ -1 la UVW _ —14-1
5 d; , ¢ = dy'd;

Ao) = A,0)
v
EX\.U)
E(Ljic) X
U v
Nae) = u Fiaoyx =
A

and depicting the inverse isomorphisms by

() = ,
A A
w
E(W/LU)
A
U -1 -1 u 1% -1 —1
(”(A,a)) =dy ’ (F(A,(r),X) =d,
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For example, let us check Lemma 4.7(e). Let (A, o) € Z¢(C), (B, p) € Zg(C), U € &,V € &, W € gy, and S € &,-1p,,
with &, 8 € G. Then

. U,V.W\—-15,UW S
Ga((B. ). ov(4.0)) (idgy | @ G ) TS

U
(B,0)

= ou(T(h.0).8) (@0)2((A. 0). (B, p)).

U U
(B,p) (Ao)

Here, the equality (i) is obtained by applying (23) twice and (28), (ii) follows from the definition of the half-braidings of
oy (A, o) and gy (A, o), (iii) is obtained by applying (27) and then (22), (iv) follows from the naturality of o applied to the
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morphism delimited by the dotted blue box (which is indeed a morphism in ©;), (v) is obtained by applying (22), and (vi) is
obtained by applying (23).

4.7. Remarks

1. The G-center Z¢(C) is the left G-center of € while the center studied in [4] is the right G-center Z;(C). The objects
of Z;(€) are right half braidings of € relative to €y, i.e,, pairs (A € C,0) whereo = {ox: X ® A — A ® Xlxee, isa
natural isomorphism such that oxgy = (0x ® idy)(idx ® oy) forall X, Y € C;. The left and right G-centers are related as
follows. Given a G-graded category D, denote by D® the G°P-graded category obtained from £ by replacing ® with
the opposite product ®°° defined by X ®° Y = Y ® X and by setting (D®®P), = D, fora € G.Then ZL(C) =
(Zgon (CBOP)) 2P,

2. Each G-graded pure pivotal category € with split idempotents contains a maximal non-singular graded subcategory.
Namely, let H be the set of all « € G such that G, contains an object with invertible left dimension and an object with
invertible right dimension. Then H is a subgroup of G and the H-category ®ycy C, C C is non-singular.

5. The modularity theorem

We state in this section our main result concerning the modularity of the G-center. We first discuss several important
conditions on categories.

5.1. Sphericity

A spherical category is a pivotal category € such that the left and right traces of endomorphisms in € coincide. For any
endomorphism g of an object of such a € set tr(g) = tr;(g) = tr,(g) and for any object X € € set dim(X) = dim;(X) =
dim, (X) = tr(idx). For instance, all ribbon categories are spherical; see [10].

For a spherical category, the graphical calculus of Section 2.5 has the following additional feature: the morphisms
represented by diagrams in R? are invariant under isotopies of the diagrams in the 2-sphere S> = R? U {oo}. In other words,
these morphisms are preserved under isotopies of diagrams in R? and under isotopies pushing arcs of diagrams across oo. For
example, the diagrams in Section 2.5 representing tr;(g) and tr,(g) are related by such an isotopy. The sphericity condition
tr;(g) = tr;(g) for all g ensures the isotopy invariance.

A G-graded category is spherical if it is spherical as a monoidal category.

5.2. Split semisimplicity

An object i of a k-additive category C is simple if Ende (i) is a free k-module of rank 1. Then the map k — Ende (i), k —
kid; is a k-algebra isomorphism which we use to identify Ende (i) = k. All objects isomorphic to a simple object are simple.
If € is rigid, then the left/right duals of a simple object of € are simple.

Ak-additive category C is split semisimple if each object of € is a finite direct sum of simple objects of € and Home (i, j) = 0
for any non-isomorphic simple objects i, j of C. A set I of simple objects of a split semisimple category C is representative
if every simple object of € is isomorphic to a unique element of I. Then any X € ¢ splits as a (finite) direct sum of
objects of I. In other words, there exists a finite family of morphisms (p,: X — iy, € I,qy: iac — X)aea in € such
that

idy = anpa and peqp =8y pid;, forall «,B € A. (29)

acA

Such a family (py, Qo )aca is called an I-partition of X.

A split semisimple category C is finite if the set of isomorphism classes of simple objects of € is finite. If a finite split
semisimple category € is pivotal, then the dimension of € is defined by

dim(e) = ) dimy(i) dim, (i) € Ende (1),

iel

where I is a representative set of simple objects of €. The sum here is well defined because I is finite and does not depend
on the choice of I.



1916 V. Turaev, A. Virelizier / Journal of Pure and Applied Algebra 217 (2013) 1895-1941

5.3. G-fusion

A G-pre-fusion category is a G-graded category C (over k) such that the unit object 1 is simple and

(a) € is pivotal and split semisimple as a k-additive category;
(b) forall « € G, the category G, has at least one simple object.

A set I of simple objects of a G-pre-fusion category C is G-representative if all elements of I are homogeneous and every
simple object of € is isomorphic to a unique element of I. Any such set I splits as a disjoint union I = Ll,¢; I, where I, is
the (non-empty) set of all elements of I belonging to G,. The existence of a G-representative set I follows from the fact that
any simple object of € is isomorphic to a simple object of G, for a unique o € G. Note also that G, is split semisimple for all
o € G.

Any G-pre-fusion category C is pure and both the left and right dimensions of simple objects of C are invertible (see
Lemma 4.1 of [12]). [f k is a field (or, more generally, a local ring), then € has split idempotents. Therefore any G-pre-fusion
category C over a field is non-singular. Such a € satisfies the hypothesis of Theorem 4.1, and so, Z¢(€) is a pivotal G-braided
category with pivotal crossing.

A G-fusion category is a G-pre-fusion category C (over k) such that the set of isomorphism classes of simple objects of G,
is finite for all« € G.

5.4. Modularity

A G-modular category is a G-ribbon G-fusion category £ whose neutral component £; is modular in the sense of [10],
that is, the S-matrix (tr (cj,ic,-,j)),-,]- is invertible over k. Here i, j run over a representative set of simple objects of £; and
Cij:1®j— i®jisthe braiding (14) in D;.

Theorem 5.1. Let C be a spherical G-fusion category over an algebraically closed field such that dim(C;) # 0. Then Zg(C) is a
G-modular category.

The proof of Theorem 5.1 given below is based on the following two key lemmas.

Lemma 5.2. Let C be a spherical G-pre-fusion category with split idempotents. Then Z¢(C) is a G-ribbon category.

Lemma 5.3. Let C be a G-fusion category over an algebraically closed field such that dim(Cy) # 0. Then Zs(C) is a G-fusion
category.

The proof of Lemma 5.3 uses the following claim of independent interest.

Lemma 5.4. Let C be a split semisimple pivotal category over an algebraically closed field such that the unit object 1. is simple.
Let D be a finite split semisimple pivotal subcategory of C (not necessarily full) such that dim(D) # 0. Then the relative center
Z(C; D) is split semisimple.

Lemma 5.2 is proved in Section 6 and Lemmas 5.3 and 5.4 are proved in Section 9. The arguments in Section 9 use the
results of Sections 7 and 8 concerned with monads and coends, respectively.

5.5. Proof of Theorem 5.1

By Lemmas 5.2 and 5.3, Zs(C€) is a G-ribbon G-fusion category. The neutral component Z1(C) of Z(€) is isomorphic to
the center Z(Cy) = Z(Cq; C1) of C;. Since C is spherical, so is C;. By [8, Theorem 1.2], Z(€,) is modular. Therefore Zs(C)
is G-modular.

5.6. Example

The G-ribbon category O = D(mr) derived from a group epimorphism 7 : H — G in Section 3.5 can be realized as the
G-center of a non-singular pivotal G-graded category. To see this, observe that any pivotal H-graded category € gives rise
to a pivotal G-graded category 7, (C) which is equal to € as a pivotal category and has the grading 7, (C) = Byec 7+ (C)o
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where 7,(C)y = @per-1(4)Cn. We apply this observation to the H-ribbon category ¢ = D(idy: H — H) of H-graded
finitely generated projective k-modules. It is easy to see that € is spherical and has split idempotents. For h € H, letk[h] € €
be the k-module which is k in degree h and zero in all other degrees. The category € is non-singular since its monoidal unit
k[1]is simple and for h € H, the module k[h] has categorical dimension 1. This implies that the category €™ = 7, (C) is non-
singular. By Theorem 4.1, the G-center of C” is a G-braided category. We claim that the G-braided categories £ and Z;(C™)
are equivalent. To see this, lets: G — H be the map used in the definition of © in Section 3.5. Using the objects (k[s(®)])xec
of @, one can explicitly describe Zs(C™); cf. Sections 4.4-6.1. In particular, a relative half braiding (M, o) € Z,(C™) defines
aright action of K = Kerr on M by m - k = oys0)) (M ® 1) for m € M and k € K. This determines the required equivalence
Zc(C™) ~ D. Furthermore, if K is finite and k is an algebraically closed field whose characteristic does not divide the order
#K of K, then it is easy to see that C” is a spherical G-fusion category and dim(C]) = #K. Theorem 5.1 implies that Z¢(C™)
is a G-modular category. We deduce that in this case the category £ is G-modular.

6. G-ribbonness re-examined

6.1. Aribbonness criterion

Consider a non-singular G-graded pivotal category €. Let, for ¢ € G, the symbol &, denote the class of all V € €, with
invertible left dimension dy = dim,;(V) € k. By Theorem 4.1, the G-center Z;(C) is a pivotal G-braided category with pivotal
crossing. The corresponding twist 6 in Zg(C) is computed as follows: if (A, o) € Z,(C) with ¢ € G, then forany U € &,,
we have 64 o) = (Lﬁ)@?wﬂ&,o) where (* is the universal cone (20) and

By definition, Z;(C) is G-ribbon if 0 is self-dual; see Section 3.4. The following lemma gives a necessary and sufficient
condition for Z;(€) to be G-ribbon.

Lemma 6.1. Z;(C) is G-ribbon if and only if
UYA U YA
: - :
A4U A4U

foralla € G, (A,0) € Z,(C),and U € §&,.

Proof. Recall that 6 is self-dual if for alla € Gand (A, o) € Z,(C),
o) = (@) uo) (2@, a)@?g))*wq(%(ﬂ 0))01gu 4.0+ - (30)

o

Pickany U € &,,V € §,-1,and R € &;. Composing (30) on the right with (:{;)*, we rewrite (30) in the equivalent form
0 VURy— TV *
(195%,0))* = (nl(ef\.a)) ((E(A.(r) ) 1) ‘P\I/(‘/’U(A’ U))ﬂ(‘;um,a))*- (31)

Now, using the pictorial formalism of Section 4.6, Lemma 4.10, and the definition of 9, n, &, go‘}, we obtain that the left-hand
side of (31) is equal to

u
E(A.cr)
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while the right-hand side of (31) is equal to

v
EWU(AVG)

v
E‘ﬂu(ﬂvrr)*

—1 -1 -1
dydy d;

U
Eao)

Therefore

o \@ %'< ﬁ)
- \\Q J\ \e

The last equality is exactly the condition of the lemma. O
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6.2. Proof of Lemma 5.2

We check the criterion of Lemma 6.1 for any (A, o) and U. Pick a representative set I of simple objects of C. Let
P AQU > iy, qu: i > AQ U sca, (0, U"®A = iy, q, iy = U ®A)pen

be I-partitions of A ® U* and U* ® A, respectively. Forany A € A and w € §2 such thati, =i, =i € I, we have

Here the first and last equalities follow from the simplicity of i and the formulas d; = dim;(i) = dim, (i). The other equalities
follow from the isotopy invariance in S? and the naturality of o. We conclude using that any morphismf: AQ U* — U* ®A
expandsasf = ) .o ;eca 9, (PLf0:)P1 where p/ fq, = 0 for i, # i,.

7. Monads and Hopf monads

Monads, bimonads, and Hopf monads generalize respectively algebras, bialgebras, and Hopf algebras to the categorical
setting. The concept of a monad originated in Godement’s work on sheaf cohomology in the 1950s. Bimonads were
introduced by Moerdijk [7] in 2002. Hopf monads were introduced by A. Bruguiéres and the second author [1] in 2006;
see also [2,3]. We recall here the basics of the theory of monads, bimonads, and Hopf monads needed in the sequel.

7.1. Monads and modules

Given a category C, we denote by End(C) the category whose objects are endofunctors of € (that is, functors ¢ — @)
and morphisms are natural transformations between the endofunctors. The category End(C) is a strict monoidal category
with monoidal product being composition of endofunctors and unit object being the identity functor 1¢: ¢ — €. A monad
on C is a monoid in the category End(C), that is, a triple (T € End(€), u, ) consisting of a functor T: ¢ — € and two
natural transformations

= {ux: T*X) = TX)lxee and 1= {nx: X = TX)}xec
called the product and the unit of T, such that for all X € G,
uxT(ux) = MX AT (X) and uxnr) = idrgo = uxT(nx).

For example, the identity functor 1o: ¢ — € is a monad on € with identity as product and unit. This is the trivial monad.
Givenamonad T = (T, i, n) on G, a T-module is a pair (M € G, r) wherer: T(M) — M is a morphism in € such

that rT(r) = ruy and rny = idy. We call such a morphism r an action of T on M. A morphism from a T- module (M, r)

to a T-module (N, s) is a morphism f: M — N in € such that fr = sT(f). This defines the category of T-modules, 7, with
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composition induced by that in €. We define a forgetful functor Uy : €T — € by Ur(M,r) = M and Ur(f) = f. We also
define the free module functor Fr: ¢ — €T by Fr(X) = (T(X), ux) forX € € and Fr(f) = T(f) for any morphism f in C.
The functors Fr and Uy are adjoint: there is a system of bijections Homer (F(X), Y) = Home (X, Ur(Y)) natural in X € C,
Y e €. For an endofunctor Q of €7, the functor Q x T = UrQF;: ¢ — € is called the cross product of Q with T. For
example, 1,7 x T = T.If T is the trivial monad, then CT =¢,Ff=Ur =1¢,andQ x T = Q forall Q € End(@).

If € is k-additive and T is k-linear, then the category € is k-additive and the functors Uy, Fy are k-linear.

7.2. Comonoidal functors

To introduce bimonads and Hopf monads we ought to replace endofunctors in the definitions above by comonoidal
endofunctors. We recall here the relevant definitions.

Let € and O be monoidal categories. A comonoidal functor from C to D is a triple (F, F», Fp), where F: ¢ — D is a
functor,

F={RX,Y):FX®Y) > FX) ® F(Y)}x.vee
is a natural transformation from F® to F ® F, and Fy: F(1) — 1 is a morphism in £, such that

(idrxy ® (Y, )X, Y ®Z) = (R(X,Y) ® idrz) )X ® Y, 2);
(idrxy ® Fo)F2(X, 1) = idpxy = (Fo ® idpx))F2(1, X);

for all objects X, Y, Z of €. A comonoidal functor (F, F,, Fy) is strong (resp. strict) if Fy and all the morphisms F,(X, Y) are
isomorphisms (resp. identities). The formula (F, F,, Fo) — (F, F, 1 Fy 1) establishes a bijective correspondence between
strong (resp. strict) comonoidal functors and strong (resp. strict) monoidal functors.

A natural transformation ¢ = {¢x: F(X) — G(X)}xce from a comonoidal functor F: ¢ — D to a comonoidal functor
G: C — D is comonoidal if Gogy = Fp and G2 (X, Y)oxgy = (px @ ¢y)F(X,Y) forall X, Y € C.

IfF: € —> Dand G: H — & are comonoidal functors between monoidal categories, then their composition GF: ¢ — &
is a comonoidal functor with

(GF)o = GoG(Fp) and (GF); = {G2(F(X), F(Y))G(F2(X, Y)}x,vee-

7.3. Bimonads

For a monoidal category C, denote by End.g(C) the category whose objects are comonoidal endofunctors of ©
and morphisms are comonoidal natural transformations. The category Endg,g (C) is strict monoidal with composition of
comonoidal endofunctors as monoidal product and the identity functor 1, as monoidal unit. A bimonad on C is a monoid
in the category End.,g (C). In other words, a bimonad on € is a monad (T, x, ) on € such that the functorT: ¢ — €
and the natural transformations x and n are comonoidal. For example, the trivial monad on € with identity morphisms for
comonoidal structure and for i and 7 is a bimonad called the trivial bimonad.

Let T = ((T, Ty, Ty), i, n) be a bimonad on a monoidal category €. The category of T- modules G has a monoidal
structure with unit object (1, Ty) and with monoidal product

(M, 1) ®(N,s) = (MQN, (r ®s) T>(M, N)).

By [2, Section 3.3], the forgetful functor Ur: €T — @ is strict monoidal while the free module functor Fr: ¢ — €T is
comonoidal with (Fp)g = Tp and (Fp)2(X,Y) = To(X,Y) forany X, Y € €. By [2, Section 3.7], for any Q € Endcog(CT),
the cross product Q x T = UrQF; € End(€) is comonoidal with (Q x T)g = QoQ ((Fr)o) and (Q = T); = Q2Q((Fr)3). The
formula Q — Q x T defines a monoidal functor

? % T: Endeog (CT) — Endeog (C) (32)
with monoidal structure

((?xT))x =nx: X —>TX) and ((? xT)2(Q, R)x = UrQ (errr(x))

forany X € € and Q, R € End,g(C"), where ¢ is the counit of the adjunction (Fr, Ur), that is, the natural transformation
FrUr — 1,1 carrying (M, 1) € CT tor.
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7.4. Hopf monads

Given a bimonad (T, u, n) on a monoidal category € and objects X, Y € G, one defines the left fusion morphism
Hyy = (TX) ® py) X, T(V): TX @ T(Y)) = TX) @ T(Y)
and the right fusion morphism
Hyy = (ux ®TY) L(TX),Y): TTK) ®Y) — TX) ® T(Y);

see [3]. A Hopf monad on C is a bimonad on € whose left and right fusions are isomorphisms for all X, Y € €. For example,
the trivial bimonad on € is a Hopf monad called the trivial Hopf monad.

When € is a rigid category (see Section 2.3) and T is a Hopf monad on €, the monoidal category €T has a canonical
structure of a rigid category. This structure can be computed from the natural transformations

s'={sk: TOTX)) = “Xlxee and s = {si: T(TX)") = X }xee
called the left and right antipodes and determined by the fusion morphisms:
s = (TOT(evT(x))(HIVT(X),X)f1 ® Vnx) (idrevrexy ® coevrey)
and
sk = (11x ® ToT (€V700) (Hy rxyv) ™) (C0Vr () ® idrron))-
Then the left and right duals of any T- module (M, r) € €T are defined by

VM, 1) = ("M, s, T(Vr): T("M) — VM),
M, )Y =M, s, Ta"): TMY) = MY).

Though we shall not need it, note that, conversely, a bimonad T on € such that €7 is rigid is a Hopf monad.
8. Coends, centralizers, and free objects

We outline the theory of coends [5] and discuss connections with Hopf monads and relative centers.

8.1. Coends

Let @, D be categories and F: DP x D — € be a functor. A dinatural transformation from F to an object A of € is a family
d={dy: F(Y,Y) = A}ycop of morphisms in € such that for every morphism f: X — Y in O (viewed also as a morphism
Y — X in D°P), the following diagram commutes:

F(idy,
F(Y,X) tdv) F(Y,Y)
F(f.idx) dy
F(X,X) = A

The composition of such a d with a morphism ¢: A — Bin € is the dinatural transformation ¢ od = {¢p odx: F(Y,Y) —
B}ycp from F to B. A coend of F is a pair (C € G, p) where p is a dinatural transformation from F to C satisfying the
following universality condition: every dinatural transformation d from F to an object of € is the composition of p with a
morphism in € uniquely determined by d. If F has a coend (C, p), then it is unique up to (unique) isomorphism. One writes
C = fye"@ F(Y,Y). In particular, if the category € is monoidal, then for any functors F;: D°° — G, F,: D — C, we

write fYED F1(Y) ® F,(Y) for the coend (if it exists) of the functor D°° x H — C defined on objects and morphisms by
X,Y) > F1(X) ® F(Y).
The following lemma gives a sufficient condition for the existence of coends.

Lemma 8.1. Let C and D be k-additive categories. If D is finite split semisimple, then any k-linear functor F: D°° x D — C
has a coend.

Proof. Pick a (finite) representative set I of simple objects of O and set C = @®;F(i,i) € C. For each object Y € 9, set
oy =2 o, FGu.po): F(Y,Y) = Cwhere (D, : Y — iy, o @ ie — Y)q is an arbitrary I-partition of Y. It is easy to check that
py does not depend on the choice of the [-partition and (C, p = {py}y) is a coend of F. Indeed, each dinatural transformation
d from F to any A € € is the composition of p with @ d;: C > A. O
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The next lemma is a partial inverse to Lemma 8.1. It shows that a finiteness condition is necessary for the existence of
coends.

Lemma 8.2. Let C be a k-additive pivotal category whose Hom-spaces are projective k-modules of finite rank, and let D be a
split semisimple full subcategory of C. If the coend eri) Y* ® Y exists in C, then D is finite.

Proof. Let C = fYEi) Y* ® Y be the coend of the functor F(X,Y) = X* ® Y with universal dinatural transformation

p={py: Y*"®Y — Clycop. Let I be a representative set of isomorphism classes of simple objects of O and let ] C I be an
arbitrary finite subset of I. Set A = ®;¢; i* ® i € C.Forany Y € D, set

dy = Z C®py Y ®Y > A
o,iy €]

where (py, : Y — iy, qy 1 ie = Y), is an I-partition of Y. It is easy to check that dy does not depend on the choice of the
[-partition and that the family {dy}y is a dinatural transformation from F to A. Therefore there is a morphism p: C — A
such thatdy = ppy forallY € D.Setq = Ziej pi: A — C.Then pq = Ziej ppi = Y.y di = ida. Thus, the composition
with g induces a split injection Home (1, A) — Home (1, C). Hence

card()) = Z rank; (Home (i, i) = Z ranky (Home (1, i* ® i))

i€/ i€/

= ranky (Home (1, A)) < rankg (Home (1, C)).

ief

This bound implies the claim of the lemma. O

8.2. Lift of coends

Let T = ((T, T2, Tp), i, ) be a Hopf monad on a rigid category € and let D be a subcategory of € such that T(D) C D.
The functor T restricts to a monad on D, also denoted T, and the corresponding category of modules D7 is a subcategory
of CT. The following lemma allows us to lift from € to €T the coends of certain functors D% x D — € associated with
endofunctors of 7.

Lemma 8.3. Let Q be an endofunctor of CT such that there exists a coend

YeD
C:/ Y@ xTH(Y)®Y € cC.

MeoT

Then there exists a coend f Q(M) ® M € €T carried by the forgetful functor @ — € to C. More precisely, if

p=1{py:"@QxT)(Y)®Y — Clyep

is the universal dinatural transformation of C, then there is a unique morphismr: T(C) — C in C such that forallY € D,

IT(py) = prony (Y QUy)Sgr e, T(Vay) ® idrey)) Ta(¥(Q % TH(Y), Y),

T
where ay is the T-action of the T-module QF;(Y). Then r is an action of T on C and (C,r) = fMED YQ (M) ® M with universal
dinatural transformation

0 ={ows =pn('Q(s) ®idy): YQN,5) ® (N,s) = (C,1)}y.5enT-

Proof. This is a direct corollary of Lemma 3.9 and Proposition 3.10 of [2]. O

8.3. Centralizers of endofunctors

Let C be a rigid category and £ be a subcategory of C. An endofunctor E of C is D-centralizable if for each X € C, the
functor D° x O — € defined by (Y, Y’) — YE(Y) ® X ® Y’ has a coend

YeD
ZP(X) :/ VE(Y)®X®Y € C.

The correspondence X +— Z7°(X) extends to a functor Z”: ¢ — C, called the D-centralizer of E, so that the associated
universal dinatural transformation
pxy: 'EY)®@X®Y — ZP2(X) (33)

isnaturalin X € € and dinaturalin Y € D. For £ = G, the notion of a centralizer of an endofunctor was introduced in [2].
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When the identity endofunctor 1¢ of € is D-centralizable, we say that C is ©D-centralizable. For example, the endofunctor
1¢ is D-centralizable if the category D is finite split semisimple; see Lemma 8.1. Moreover, any (finite) representative set
of simple objects of D determines a D-centralizer Z : € — € of 1¢. The functor Z carriesany X € CtoZ(X) = Pje i* X Qi
and carries any morphism f in € to Z(f) = P idp ® f ® id;.

8.4. Relative centers and free objects

Let C be a rigid category and £ be a rigid subcategory of C, i.e., £ is a monoidal subcategory of C stable under both
left and right dualities. Suppose that € is D-centralizable. We construct a Hopf monad Z = Z4 on € such that the relative
center Z(C; ) is monoidally isomorphic to the category G?.

LetZ: € — C be a D-centralizer of 1, with universal dinatural transformation

p={pxy: 'Y®XQY = Z(X)}xee,ven-
ForX e CandY € D, set
dxy = (idy ® pxy)(coevy @ idxgy): X®Y — Y ® Z(X).
We depict the morphism dx y as follows:
Y Z(X)
Oxy =
X Y

For any X, X1, X, € C, the parameter theorem and the Fubini theorem for coends (see [5]) imply the existence of (unique)
morphisms

px: ZZX)) = Z(X), Zo(X1,X2): Z(X1 @ X2) = Z(X1) ® Z(Xa),
Zo:Z) — 1,  sk:z2(VZ0) = VX, s Z@ZX)Y) — XY,

such that the equalities of morphisms shown in Fig. 1 hold for all Y, Y1, Y, € D, where the trivalent vertex in the third
picture standsford; y: Y — Y ® Z(1).

Z(X) i®Y,  Z(X)
Y1®Y:

Z(X1) Z(X2) Y Z(X)  Z(X2)

&% e

X1 ®X2
Y VX v Y XY
| r
Sx
YZpX) Y VZpX) Y Z(X)Y Y

Fig. 1. Structural morphisms of Z = Z.

Lemma 8.4. (a) Let n = {nx}xecc Wherenx = dx.1: X — Z(X) forallX € C.ThenZ = ((Z, Z3,2p), I, 77) is a Hopf monad on
C with left antipode s' = {s&}xGe and right antipode s = {s} }xcc.
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(b) Let ¥ : G? — Z(C; D) be the functor carrying any object (M, 1) € €% to (M, o") with o™ = {oy = (idy ® r)omy :
M®Y — Y ® M}ycp and carrying any morphism to itself. Then ¥ is a strict monoidal isomorphism, and the composition
of ¥ with the forgetful functor Z(C; D) — C is equal to the forgetful functor Uz : G — €.

(c) If € is k-additive, then the categories CZ and Z(C; D) are k-additive and the functors Z and ¥ are k-linear.

Proof. The proof of (a) and (b) is obtained from the proof of Theorems 5.6 and 5.12 in [2] by replacing Y € C withY € D
whenever necessary and in particular by replacing fYE@ VY @ X ® Y with er@ VY ® X ® Y. Claim (c) is obvious. O

We use this lemma to define free objects in Z(€; D). Recall from Section 7.1 the free module functor F; : ¢ — €7 is left
adjoint to the forgetful functor U;G? — €. It is clear that the functor ¥F;: ¢ — Z(C; D) is left adjoint to the forgetful
functor U: Z(C; H) — C. An object of Z(C; D) is said to be free if it is isomorphic to ¥ F;(X) for some X € C.

8.5. The case of G-centers

We shall apply Lemma 8.4 to study the G-centers of G-graded categories. Consider a rigid G-graded category C such that
C is Gq-centralizable. Lemma 8.4 provides an extension of any ¢;-centralizer Z : ¢ — € to a Hopf monad on € and a
k-linear strict monoidal isomorphism ¥ : € — Z(C; C1) = Z¢(C). We can always choose Z so that Z(C,) C @€, for all
a € G.Then Z restricts to a monad on G, and the corresponding category of modules, denoted 6’5 , is a full subcategory of
CZ.This turns 7 into a G-graded category. It follows from the definitions that ¥ preserves the G-grading. In the terminology
above, an object of Z¢ (@) is free if it is isomorphic to an object in the image of the functor ¥F;: ¢ — Z;(€) left adjoint to
the forgetful functor U: Zs(C) — C.

The @1-centralizability condition on € is satisfied, for example, if G, is finite split semisimple.

9. Proof of Lemmas 5.3 and 5.4

We begin with a fairly general lemma concerning morphisms between indecomposable objects in abelian categories.
Next, we formulate an extension of the graphical calculus allowing to incorporate partitions of objects. Finally, we use these
tools and the theory of Hopf monads to prove Lemmas 5.3 and 5.4.

9.1. Indecomposable objects in abelian categories

We recall several standard definitions of the theory of categories. An object X of an additive category is indecomposable
if X is non-zero and whenever X decomposes as X = X; @ X5, we have X; = 0 or X, = 0. For example, all simple objects of a
k-additive category are indecomposable. An abelian category is an additive category such that any morphism f has a kernel
and a cokernel and coker(ker f) >~ ker(coker f). A monomorphism in a category is a morphism q: X — Y such that any two
morphisms f, g: A — X with gf = qg must be equal. A retract of a morphism q: X — Y is a morphism p: Y — X such
that pq = idy. Clearly, if g has a retract, then q is a monomorphism.

Lemma 9.1. Let A be an abelian category in which any monomorphism has a retract. Then any morphism between
indecomposable objects of A is either zero or an isomorphism.

Proof. Let f: M — P be a morphism in A where M, P are indecomposable objects. Let g: N — M be the kernel of f. Then
g is a monomorphism in » and, by assumption, q has a retract. Since 4 is abelian, this implies that N is a direct summand
of M. The object M being indecomposable, we have N = 0 or M = N & 0 = N. In the latter case, q is an isomorphism, and
so f = 0 (because fq = 0). Assume that N = 0. Then f is a monomorphism (since it is a morphism with zero kernel in an
abelian category). By assumption, f has a retract g: P — M. In particular gf = idy and so e = idp — fg is an idempotent of
P.Since + has split idempotents (because it is abelian), there exist an object A € 4 and morphismsu: A — Pandv: P — A
in A such that vu = id4 and e = uv. In particular, idp = fg + uv and so P = M & A. Since P is indecomposable, M = 0
orA=0.IfM = 0,thenf = 0.1fA = 0, then uv = 0, and so fg = idp, which implies that f is an isomorphism (because
gf =idy). O

9.2. Extension of graphical calculus

Let € be a split semisimple pivotal category. Clearly, the Hom spaces in € are free k-modules of finite rank. For X € € and
a simple objecti € €, the modules Home (X, i) and Home (i, X) have the same rank denoted N)i< and called the multiplicity
number.

An i-decomposition of X is a family of morphisms (py : X — i, gy : i = X)gea Such that card(A) = N)"( and p, qg = 8o p id;
for all «, B € A. Note that if | is a representative set of simple objects of € and (py, Gy )wc is an I-partition of X in the
sense of Section 5.2, then for each i € I the family (py, qo)aca, i, =i iS an i-decomposition of X. Conversely, the union of
i-decompositions of X over all i € [ is an I-partition of X.
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Let i be a simple object of € and let (p,: X — i,qy: i — X)qea be an i-decomposition of an object X of C. Consider a
sum

a€ehA

where the gray area contains an oriented planar graph whose edges and vertices are labeled by objects and morphisms of
C not involving py, q,. By the graphical calculus of Section 2.5, this sum represents a morphism in €. Note that the tensor
Y wen Pa ® qo € Home (X, i) ®x Home (i, X) does not depend on the choice of the i-decomposition of X. Therefore the sum
above also does not depend on this choice. We graphically present this sum by

where the gray area contains the same planar graph as before and two curvilinear boxes are endowed with one and the
same color. If several such pairs of boxes appear in a picture, they must have different colors.
Note that monoidal products of objects may be depicted as bunches of strands. For example,

i i X*QY®Z* X Y Z
= and =
X*®Y®Z* X Y XZ i i

where the equality sign means that the pictures represent the same morphism of C.
To simplify the pictures, we will represent

X X i i
by and by .
i i X X

9.3. Proof of Lemma 5.4

Fix a (finite) representative set I of simple objects of O such that 1 € I. Consider the associated D-centralizerZ: ¢ — C
of 1¢ as defined in Section 8.3. By Lemma 8.4(a), the functor Z extends to a Hopf monad ((Z, Z,, Zy), i, n) on C with
structural morphisms shown in Fig. 2.

LK. Y) =) \\V// ZX®Y) = ZX) ® Z(Y),
iel

Zy = i 1 Z(1) — 1,
1€I

Ux = Z X 1 Z2(X) = Z(X),
ij kel
j i i j

x =idy: X > X=1"@X®1 < Z(X),
X
sk=sx=)_ D Z(ZX)*) — X*.

ijel J i i J

Fig. 2. Structural morphisms of the Hopf monad Z.
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For X € G, set

dim, (i) \'I ‘jl :J' ji
j— T ) , B
xT ”Xe: dim(D) X (X = Z2(X) = Z(Z(X)).

1

It is clear that yx is natural in X € C.

Lemma 9.2. The natural transformation y = {yx: X — Z>(X)}xec satisfies

uxyx =nx and  Z(ux)yzeo = HzeoZ(vx)
forany X € €.

In terminology of [1, Section 6], Lemma 9.2 may be reformulated by saying that the Hopf monad Z is separable.

Proof. ForX € G,

3 dim, (i) j i dime ()
Hxyx = w_; dim(®D) - g dim(D)

i i

dlmr(l) (m) Z dim; (i)
dlm(:D) = dim(D) dimy (i) 4 Q

X i
Z dim; (i) dimy (i) OR LW
dim(D) x - oy T

el

where the dotted lines represent id; and can be removed without changing the morphisms (we depicted them in order to
remember which factor of Z(X) is concerned). In the above, the equality (i) follows from the fact that there are no non-zero
morphisms between non-isomorphic simple objects, and so

..............

.

I
&
5
p—
p—

(34)

where §; = = 1if j is isomorphic to i* and §;; = 0 otherwise. (If j is isomorphic to i*, then the right picture implicitly
involves a box labeled with an isomorphism i* — j attached to the top of the left string and a box labeled with the inverse
isomorphism j — i* attached to the bottom of the right string.) The equality (ii) follows from the fact that for k € I, a
morphism 1 — k is zero unless k = 1. The equality (iii) follows from the equality

.

- dim; (i)

s

(35)

which is a consequence of the duality and the fact that Home (i, i) = k. Finally the equalities (iv) and (v) follow from the
definitions of dim(£) and 7y, respectively.
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Let us prove the second equality of the lemma. We have:

k i
dim, (i) i
Z(ux)vzeo = Z -
ij,k,nel dlm(‘D) X "
i k k i
i,k,nel dlm('D) n X n
i k k i
(i) Z dimy (k)
i,k,nel dim(D) n X n
(iii) dim;(j)
il = Z(¥x).
Z dim(D) mze)Z(vx)
ij,k,nel

In the above, the equality (i) follows from (34), (iii) follows from (34) and the fact that if j >~ k* then dim;(k) = dim;(j*) =
dim; (j), and (ii) follows from the following equality: for any i, k,n € I,

................

_ dimy (k)
= dim, (i)

(36)

It remains to prove (36). Let (p,: n ® i* — k, gy : k — n ® i*),ea be a k-decomposition of n ® i*. For o € A, set

i k n
po= (L) and a= \[o]
k n i
Fora, B € A,
tr, (Py . tri(Padqp) . tr;(8e, g idy) . dimy(k) .
Pugy = Tlel)yy Myl W0l g A,
dim, (i) dim, (i) dim, (i) 7 dim, (i)

Therefore, since card(A) = N,’;@i* = N,i* we obtain that the family

®n’

(dimr(i)P Qa)
dimy(k) ") yen

is an i-decomposition of k* ® n, from which we deduce (36) and the lemma. O

Lemma 9.3. Any monomorphism in the category % of Z-modules has a retract.

Proof. Letq: (N, s) — (M, r) be amonomorphism in G?. The forgetful functor @? — C is a right adjoint of a functor ¢ —
€7 and so carries monomorphisms in ¢Z to monomorphisms in €. Thus, g: N — M is a monomorphism in €. Expanding
N and M as direct sums of simple objects of € we can represent q by a matrix over the field k. Using standard arguments
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of linear algebra, we conclude that there is a morphism v: M — N in € such that vq = idy.Setp = sZ(vr)yy: M — N
where y is the natural transformation of Lemma 9.2. Then

SZ(p) = SZ($)Z>(v)Z (ym)
= s,uNZZ(vr)Z(yM) since s is a Z-action,
= sZ(vr)puzanZ(ym) by the naturality of p,
= sZ(vrpm)yzmy by Lemma 9.2,
= sZ(vr)Z? (r)yzony sinceris a Z-action,
=sZ(vr)yyr by the naturality of y,
= pr.
Thus, p is a morphism (M, r) — (N, s) in GZ. Also,

pq = sZ(vr)ymq
=sZ(vrZ(q))yn by the naturality of y,
= sZ(vqs)yy since q is Z-linear,
= sZ(s)yy since vq = idy,
= suyyn SsincesisaZ-action,
=sny byLemma 9.2,
=idy sincesisaZ-action.

Hence, p is aretractof g. O

We can now complete the proof of Lemma 5.4. Since € is a split semisimple category over k which is assumed to be a field,
C is an abelian k-additive category with finite-dimensional Hom-spaces. Since the Hopf monad Z is k-linear and preserves
cokernels (because Z has a right adjoint by [1, Corollary 3.12]), we deduce that ¢ is an abelian k-additive category with
finite-dimensional Hom-spaces.

Combining Lemmas 9.1 and 9.3, we obtain that the Hom-spaces between non-isomorphic indecomposable Z-modules
are zero, and the algebra of endomorphisms of an indecomposable Z-module is a finite-dimensional division k-algebra. Since
the field k is algebraically closed, such an algebra is isomorphic to k. Thus, all indecomposable Z-modules are simple. The
finite-dimensionality of the End-spaces in GZ implies that any Z-module is a finite direct sum of indecomposable Z-modules.
Hence, €7 is split semisimple. By Lemma 8.4(b), (c), the k-additive categories Z(C; £) and ¢? are isomorphic. Therefore,
Z(C; D) is split semisimple. This concludes the proof of Lemma 5.4.

9.4. Proof of Lemma 5.3

Since C is a G-fusion category, it is split semisimple, its unit object 1 is simple, and each G, with @ € G is finite split
semisimple. Lemma 5.4 applied to D = C; yields that Zg(€C) = Z(C; @,) is split semisimple. The unit object of Z;(C) is
simple because 1. is simple. It remains to prove that the set of isomorphism classes of simple objects of Z, (G) is finite for
all @ € G. In the notation of Section 8.5, it is enough to prove that the set of isomorphism classes of simple objects of the
category @g is finite. By Lemma 8.2, it suffices to prove that the coend

(N,s)e@é
f (N, & (N, $)

exists in %, Lemma 8.3 and the equality 1,z x Z = Z imply that it is enough to establish the existence of a coend
ereu Z(Y)* ® Y in C. The latter follows from Lemma 8.1 because G, is a finite split semisimple subcategory of C.

10. Crossing and G-braiding via free functors

In this section, € is arigid G-graded category which is G-centralizable in the sense that € is G,-centralizable foralla € G
(see Section 8.1). By Section 8.5, the forgetful functor Z;(€) — C has a left adjoint £: € — Z;(€), and the objects of
Zc(C) isomorphic to objects in the image of # are said to be free. We introduce here a larger class of G-free objects of Z¢(C)
and compute for them the crossing and the G-braiding in Zs(C).
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10.1. Free functors

By assumption, for alle € Gand X € G, the coend Z,(X) = er@,, VY @ X ® Y exists in C. Let Z, = Z]eg :C — Cbea
C,-centralizer of 1, with universal dinatural transformation

= {p)D(t,y: YRX®Y — Za(X)}XEG.Y€@a~ (37)

IfX € Cp with B € G, then we always choose Z, (X) in Cy-144-
ForanyX € CandY € G,, set

8¢, = (idy ® py)(coevy ® idxay): XY — ¥ ® Z,(X), (38)
which we depict as
Y Z.(X)
Iy = o
X Y

For any X1, X, € @, the parameter theorem and the Fubini theorem for coends (see [5]) imply the existence of unique
morphisms

(Za)2(X1,X2): Zo (X1 @ Xp) — Zy(X1) ® Z(X2), (Za)o:Z,(1) — 1

such that the first two equalities of Fig. 3 are satisfied for all Y € G,. Similarly, for any «, 8 € Gand X € € there is a unique
morphism Z, (e, B)x : ZoZg(X) — Zp(X) such that the third equality of Fig. 3 is satisfied forall Y € G, and Y’ € Cg. Finally,
forall X € @, set (Zo)x = Oy ;: X = Zi(X).

Y Zy(X1)  Za(X2) Zo(X1)  Za(X2) v
Z
Za2X1. %) | >§< \? _
- :
X1 ® X2 Y Y
Zga(X) Y®Y  ZpX)

MX

®Y

Fig. 3. The structural morphisms of Z.

Lemma 10.1. The endofunctorZ, = (Zy, (Zy)2, (Zy)o) of C is comonoidal for all € G. The formula « — Z, defines a monoidal
functor

Z1=(Z,%,2%): G— Endg,e(C)
such that Z,(Cg) C Cy-1p, foralla, B € G.

Proof. The proofis obtained from that of Theorems 5.6 in [2], by replacing Y € € with Y € @, and in particular by replacing
Yee . YeC
ST with 7740 O

For « = 1, the functor Z, = Z;: ¢ — G, endowed with the product u = Z,(1, 1) and unit n = Zy, is nothing but the
Hopf monad produced by Lemma 8.4(a) for & = C;.LetF; = Fz,: € — %1 be the free module functor; see Section 7.1.
Recall that F;(X) = (Z;(X), Z2(1, 1)x) for any object X of € and F;(f) = Z;(f) for any morphism f in €. The functor F; is
comonoidal with comonoidal structure (F;), = (Z1); and (F1)o = (Z1)o. The forgetful functor U; = Uy, : G4 — @ is strict
monoidal and therefore is comonoidal in the canonical way. One can check that U;F; = Z; as comonoidal functors. Our
immediate aim is to introduce «-analogues of F; for all« € G.



1930 V. Turaev, A. Virelizier / Journal of Pure and Applied Algebra 217 (2013) 1895-1941

Pick any o € G.Forall X, Y € € and any morphism f in @, set
Fo(X) = (Zo(X), Z2(1, @)x),  Fa(f) = Zu(f),
(Fa)2(X,Y) = (Za)2(X, Y), (Fa)o = (Zy)o-
Lemma 10.2. F, = (F,, (Fy)2, (Fy)o): € — €% is a comonoidal functor such that UsF, = Z,, as comonoidal functors.

Proof. The monoidality of Z implies that Z, (1, o)x (Zo)z, x) = idz,x) and

Z;(1, a)xZ1(Z, (1, a)x) = Zo(1, a)xZ> (1, 1)z, ¢x) -

Therefore F,(X) € G%. The naturality of Z,(1, «) implies that

Zo (2 (1, a)x = Z,(1, a)yZ1(Z(f)).

This means that Z, (f) is Z;-linear. Hence F,, is a well-defined functor. Now the comonoidality of the natural transformation
Z,(1, a) gives
Zo (X, V)2 (1, a)xgy = (Za(1, a)x ® Z(1, @)y) (Z1)2(Zu (X)), Zo (Y))Z1((Zs)2(X, Y))

and (Zy)oZ>(1, &)1 = (Z1)0Z1((Zy)o)- Thus (Z,),(X, Y) and (Z,), are Z;-linear. Hence F, is comonoidal. Clearly UF, = Z,
as comonoidal functors because Uj is strict monoidal. O

By Section 8.5 (where Z should be replaced with Z;), the category G?! is G-graded with Gé‘ = (Cy)* foralla € G, and
we have a k-linear strict monoidal isomorphism of G-graded categories ¥ : ¢?1 — Z¢(C).Fora € G, set F, = WF,: C —
Zc(C). By definition, for X € G,

Zo(X)

Fo(X) = (Zuy(X),0x) with oy, = forallY € G;.

Zo(X)

Clearly, #,(Cg) C Zg(C) forall B € G. By Lemma 10.2, #, is a comonoidal functor and U, = Z, as comonoidal functors,
where U: Zs(€C) — C is the (strict monoidal) forgetful functor.

We call #,: ¢ — Z¢(C) the a-free functor, and we call the objects of Z;(€) isomorphic to objects in the image of #,
a-free. For « = 1, this definition is equivalent to the definition of free objects given in Section 8.5. Collectively, the «-free
objects of Z¢(C) with o € G are said to be G-free.

The following lemma will be used in Appendix.
Lemma 10.3. Z,(«, B) is a comonoidal natural transformation from F,Zg to Fp, foralla, B € G.

Proof. Since the isomorphism ¥ : G?1 — Z¢(C) is strict monoidal and acts as the identity on morphisms, it is enough to
prove that Z,(«, B) is a comonoidal natural transformation from F,Zg to Fg,. Since U;F,, = Z, as comonoidal functors for
all y € Gand Z,(«, B) is a comonoidal natural transformation from Z,Zg to Zg,, we only need to check that for X € ¢,
Zy(a, B)x is a morphism in C?! from FyZg(X) to Fgy (X), i.e., that

Zy(a, B)xZa(1, a)zgx) = Z2(1, Ba)xZ1(Za (e, B)x)-

This equality holds by the monoidality of Z (see Lemma 10.1). O

10.2. Computations on G-free objects

Assume that, as above, C is a G-centralizable rigid G-graded category, and assume additionally that € is pivotal and
non-singular. Then Z¢(€) is G-braided by Theorem 4.1. The next theorem computes the action of the crossing ¢: G —
Aut(Zs(C)) of Z:;(€) on the G-free objects. Note that each auto-equivalence ¢, of Zs(®), being strong monoidal, can be
seen as a strong comonoidal endofunctor (¢,, (goa)z_l, (goa)gl) of Z¢(C).



V. Turaev, A. Virelizier / Journal of Pure and Applied Algebra 217 (2013) 1895-1941 1931

Theorem 10.4. For o, 8 € G, there is a canonical comonoidal isomorphism
o = {0y" 0uFs(X) > Fpa(X)lxee

from @, Fp to Fgo. Moreover, the family o = (0%}, gec is compatible with the monoidal structure of the crossing ¢ in the
following sense: w}("" = (<P0)}:(x) andforallx, B,y € Gand X € C, the following diagram commutes

(92)(@.B) 5, (x)
(pa(pﬁfy(x) (/)ﬁotj‘vy(x)
) of
(/)a‘?yﬁ(x) ?ﬁa(x)~
w;,yﬂ

Proof. let o, 8 € Gand X € C.Pick V € §,, where &, denotes the class of objects of G, with invertible left dimension
(recall that &, # ¢ since € is non-singular). Set dy = dim;(V) and

a;’ﬁ =d,’ VR ZgKX)QV — Zgo (X)
1% Zg(X) “ v
and
14 v
byf = 1 Zpa(X) > V¥ ®Zg(X) ® V.

Zga (X)

Observe that
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Here, (i) follows from the naturality of 8“‘_1, (i) from the monoidality of Z, (iii) from the definition of Z,(¢~!, ), and (iv)
from the definition of a)‘z VeVt

We claim that a;’ﬂb;’ﬂ = idz,, ). Indeed, forany Y € Cg,,

Zga (X)

Zy (e, B)x

(idy ® ay by ")af = dy!

) -1
= dV

Here the equality (i) follows from the naturality of 3#¢, (ii) and (v) are consequences of the monoidality of Z, (iii) follows
from the definition of Z, (a, @~ 1), and (iv) is a consequence of the naturality of 3! and the definition of Zy. Now, the universal

property of,o)’ff’; = (evy ® idzﬁa(x))(idy* ® 3)’(3?,‘() implies that a)‘?”gb)‘?’ﬁ = idzﬁa(x).

B

The latter equality and the formula b)‘f”g a;’ = n}‘iﬁ (x) mean that Zg, (X) is the image of the idempotent n}ﬂ x)- Set

V.p _ V.B_V _ Y
oy’ =ay qfﬁ(x) = v ETﬁ(X) — Zﬂa(X).

(39)
By Section 4.1, w)‘f”g is the unique isomorphism E;ﬂ x) > ZBa (X) such that
% V.p\—1_V.B 1% V. _V.B
Pry = (x") 'ax” and g0 = by " ox™ (40)
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Note that (a);'ﬂ)_] = p;ﬂ ) b;’ﬂ. We can now state the key lemma of the proof.

Lemma 10.5. (a) a))‘{’ﬂ: v (F(X)) = Fpo(X) is an isomorphism in Zg(C).

(b) Y82V, = forallU,V € &,
XF1(X) X

Proof. We use the pictorial formalism of Section 4.6. For U,V € §, and Y € Gy, set

Then

(idy ® wy ")y ” = o (g @ idy).

Indeed,

(idy ® wy MHryy’ =

U
| id_]
[
14
v

4
Egz, 0

(i) ;1 ,—
U = duldvl

1933

(41)
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Zﬁa (X)

Zﬁa(x)

Zy(a, B)x
Zy(et, Dzg(x)

- . ve
Wy, W g, = oYy’ ®idy)
v
Vv
Y Y
Y Zgo (X)
(viii) (ix) ,— v, .
= dy! 1 2 g = o3y ®idy).

Here, the equality (i) is obtained by applying (23) and then (22), (ii) follows from the definition of af , (iii) and (vi) from
the naturality of 9%, (iv) and (viii) from the monoidality of Z, (v) from the definition of Z,(«, 1), (vii) from the definition of

Z»(1, &), and (ix) from the naturality of 1.
We now prove the claims of the lemma. Remark first that

VV.g _ v uv.p _ UV Ba .
Ayt = Yeg0,y Ax1 —(Srﬂ(xp and oy, = idz,, ).
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Thus (41) for U = V gives that a);]"9 is a morphism in Z¢(€). Since it is an isomorphism in € and the forgetful functor

U: Zs(C) — C reflects isomorphisms, we obtain that a)f(]’ﬂ is a isomorphism in Z¢(€C), which is claim (a). Finally,
Equation (41) for Y = 1 is nothing but claim (b). This completes the proof of Lemma 10.5. O

By Lemma 10.5, the system (w)‘{)vg;a induces an isomorphism in Zs(C),

o5’ P Fp(X) = Fpa(X),

related to the universal cone (* of (20) by

(t‘é)rﬁ()o
PaFp(X) Qv Fp(X)
rvﬂa (X)

It remains to check that the family

P = (0" QuFp(X) = Fpa(X)}xce

is a comonoidal natural transformation and that the family {w®#}, e is compatible with the monoidal structure of ¢ . We
only need to verify that foralla, 8,y € G U € &,V € &, W € &gy, R € &, and any morphism f: X — Y in G, the
following equalities hold:

Zpa(Neoy " = 0y P ouV (256,

Zpa)2 X, Vyooyidy = (" ® 0y ") (00)2(Z5(X), Z5(Y) ™ pu(Zp)a (X, V),

Zpa)owy” = (9u)g 'ou(Zp)o),

Wy UuVvw _  UyB V,y
Wy s:ry(x) = oy pu(wy”),
R1 _ R

@x =Nz

These equalities are verified via graphical computations similar to those above using the definitions of gy (f), (¢v); ! (ov)g !
gUVW nR given in Sections 4.4 and 4.6. O

We next compute the enhanced G-braiding {t(4 o),y }(a,0)ez¢c(€),veehm Of Zc(€C) on the G-free objects.
Theorem 10.6. Leto, B € G, X € C,and Y € Cg. Then

Tr00.v = (idy ® (§*) ' Z2(B, X)), v

where 3% is defined in (38), that s,

Zaﬁ (X)

(idy ® 0§ “) T, 0.y =

Zo(X)
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Proof. For V € &g, recall notation I"V from Section 4.5. We have

v
Y A

Z(1, a)x

v
Fa (X)

Zy(1, )x

(i)

B

Za(X)

= (idy ® (w)‘(/’a)_122(/3, Ot)X)afa(X),Y'

Here, the equality (i) follows from the definition of IV, (ii) from the definition of Z,(8~!, ), (iii) from the monoidality of Z,

and (iv) from the naturality of ar", Composing the above equality on the left with (idy ® (L(j) #,(x)), where (# is the universal
cone (20), we obtain the claim of the theorem. O

10.3. Remark

Let V be the following composition of monoidal functors:

~ ?xZ-
AUt(ZG(€)) — > Aut(C#) ——> Endeog (%) — > Endeog (C).

Here the first arrow is the strict monoidal isomorphism induced by ¥ : €%t — Z(€), the second arrow is the strict
monoidal functor acting as (F, F, Fy) — (F, Fz_l, Fo_l) on the objects and as the identity on the morphisms, and the third
arrow is the functor (32) with T = Z;. Both Vg and Z are monoidal functors G — Endeg(C), and V() = Ug,Fi
for any @ € G. The comonoidal isomorphism w*': ¢, %1 — %, of Theorem 10.4 induces a comonoidal isomorphism
U(w*Y): Vo(a) = Upe Fi — UF, = Z,. The second statement of Theorem 10.4 implies that the family {U (0% ") }aec is
a monoidal natural isomorphism Vg ~ Z.

10.4. The case of G-fusion categories

Let C be a G-fusion category (over k). It is clear that € satisfies all the assumptions of this section. We give here explicit
formulas for the functor Z of Lemma 10.1.

Fix a G-representative set I of simple objects of € such that 1 € I. Note thatI = L,¢l, where I, is the set of all elements
of I belonging to C,. By Lemma 8.1,

Z,(X) = @i* RX®i,

i€ly
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with universal dinatural transformation
i X i
P)‘?,Y=Z Y'RXQY = Zy(X) for Y € Cy.
i€l
o Y Y

For any morphism f in G, we have Z, (f) = Zie,a id ® f ® id;.
The natural transformations 9% of (38) are given, for X € € and Y € G,, by

a)?,y = Z

i€ly

Y i i

X Y

Then we deduce from Fig. 3 that the comonoidal structure of Z, and the monoidal structure of Z are given, for @, 8 € G and
X,Y € @, by

(Za)Z(XvY):Z \V//:ZQ(X(@Y)—>Za(X)®Za(Y),
iely, i\X Y[i

o= (i 12,0) =1,

iely

k k
L. px=) .  ZoZp(X) — Zpo (X),
i€ly
jelg . . :
kel,fa 1 J J i
Zo)x =idx: X > 1" ®@X ® 1 — Z1(X).

From these formulas, we deduce that for « € G, the a-free functor ,: € — Zs(C) carries any X € C to F,(X) =
(Zo(X), o) whereforY € ¢,

o _
Ux,y—§

ijely

Y J
ZyX)R®Y - Y®Z,(X).

The functor %, carries any morphism f in C to #,(f) = Z,(f).
Lleta, B € Gand X € C.Forany V € G, with invertible left dimension, we always may choose E;a ) to be the object

Zyp(X) and the morphisms py. . 4. «, of (19) to be

\4 -1
Prooo =4y Y

’iela
J€lyp

smmmemsmsmanen.

(42)
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which graphically reflects the fact that

Home (U ® V., i) = @) Home (X, j) ® Home (i @ V. i).
jel

With the above choices, we obtain that ¢, = F,4 as comonoidal functors. Also, the isomorphism wy'® of Theorem 10.4
is the identity, and for any Y € Cg,

TFy(X),Y = Z

Aiela
j€lap

Y J

Appendix. The object (Cy,g, 0*#)

Let C be a non-singular G-centralizable G-graded pivotal category. Let ¢: G — Aut(Zc(@)) be the crossing provided by
Theorem 4.1 and Z: G — End.g(C) be the monoidal functor of Lemma 10.1. Consider «, 8 € G such that the following
coend exists in C:

YeCp
Cop = / Z,(Y)'®Y.

Here we lift C, 4 to an object of Z;(€) in a canonical way. The latter object plays an important role in 3-dimensional HQFT,
as will be discussed elsewhere.
Let o%f = {Q‘;’ Z, V) QY — Cahg}yE@B be the universal dinatural transformation associated with C, g. By [2,

Corollary 3.8], since Z; is a Hopf monad, the dinatural transformation Z; (0®#) is universal. Therefore there is a unique
morphismr, g: Z1(Co,g) — Cy g suchthatforall Y € Cg,

rapZi(0y’) = 05ty (Za(er 1y}, ) Z1(Z(1, @)3) @ idz, 1)) (Z1)2(Za (V)" V), (43)

where s' is the left antipode of Z; (given by Lemma 8.4(a) for D = €;). Define 6%# = {a;"ﬂ : Cup ®X — X ® Cy plxee, DY

oy = (idx ® ro )0, , x =

Ca.p

where 98! is defined in (38).
Theorem A.1. (C, g, o®P) is an object of Z¢(C) lying in Zy-1g-1qp (@) and

(A0)eZp(@)
(Cupr 0F) = / (Ga(A 0))" ® (A, 0).

Proof. LetF,, ¥, and ¥, = ¥F, be as in Section 10.1. Denote by U;: €% — € and U: Z¢(C) — C the forgetful functors.
Set

Q= lI/_l(palI/: el — ¢4,

Observe that Q x Z; = U¥ '@, WF;, = Ug,F;. Theorem 10.4 provides a comonoidal natural isomorphism ! =
(02" 9o F1(Y) = Fo(Y)}yee. Since

{oy! = U@y (Q % Z)(Y) = Zo(V)yeey
is then a natural isomorphism,
YEC’[; YE@ﬁ
Cap = / Z,(Y)"®Y = / Q@xZN)*'®Y,
with associated dinatural transformationj = {jy: (Q xZ)(Y)* ® Y — Ca,ﬁ}yE@ﬁ given by

v =03 ((wyH ™) ®idy).
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Therefore, by Lemma 8.3 applied to & = Cg and T = Z;, we deduce that

(A,r)ec’ﬁl
(Cap.0) = / QA M ®A,),

where ¢ is some Z;-action on Cy . Since ¥ : C?1 — Z(C) is a grading-preserving strict monoidal isomorphism of G-graded
categories,

(A.0)eZg(C) (A,r)e@ﬂ1
/ GalA0)) ® (A o) = ¥ / W W A1) ® (A1)

(A,r)e(?ﬂ1
—v / QAP ®An | =¥(Cup. 0.

Since ¥ (Co g, Ta,p) = (Cop, 0% £, we only need to prove that ¢ = r, . The dinatural transformation Z; (¢® #) being
universal, this is equivalent to proving that cZ; (gy ) = Iy pZ1 (QY ﬁ) forallY € Cg. FixY € Cg. Letay is the Zy-action of
QF1(Y) = ¥ g, WF (Y) = ¥ g, F(Y). Since a)y 1samorph15m is Z(C), the morphism ¥~ ](wy )= a)y 1 QF1(Y) —
F,(Y) is a morphism in G%1, that is,

wflay = Z,(1, @)y Zi (@), andso ay = (') Z(1, @)yZi (@2Y).

By Lemma 8.3, the Z;-action ¢ : Z;(Cy ) — Cq,p satisfies
Zi(iy) = 1z, (QZ (1, Dy)*sg,.z,1Z1(@}) ® idz,v)) Z2((Q x TH(Y)*, Y).

Composing this equality on the right with Zl((cuﬁ'l)* ® idy), using the above expression of ay and the naturality of s', we
obtain that

cZi(oy") = 030, (875, )21 (Z2(1, 0)3) @ idz, (1)) (Z1)2 (Za (Y)*. Y)

where A = o}’ 1Q(Zz(l 1)y)(a)zl(y)) ' Pick V e &,. Since ¥ acts as the identity on morphisms and using that w*! =
) 'w¥1,and g, = (%) "1y 1%, where (* is the universal cone (20), we obtain

-1 -1

A =0y pu (B0, Dy) (0 ) = oy ov@, Dy) (o)

Inview of the definition of r, g givenin (43), to prove that cZ; (Q‘;”g) = To g1 (Qf,"ﬂ), itis enough to prove that A = Z,(«, 1)y,
ie., that wy oy (Zy(1, Dy) = Zs(a, l)yw‘z/l’(ly). Denote by p* the universal dinatural transformation (37) and let 7", p¥, ¢"

be as in (19). Recall from (39) that a))‘f'1 = d;lzz(oc, DXp%(X),ngH(X) for any X € €. Now, by Lemma 10.3, Z(1, 1)y is a
morphism in Z¢(€) from F1(Z;(Y)) to F1(Y). This implies that

7-[3‘1/'1(Y)(idv* ® Zx(1, ])YldY) = (idV* ®ZZ(1’ 1)YidY)7T;/.~1(Z1(y))- (44)
Then

[ . .
oy oy (Za(1, Dy) = dy' Za(e, Dy p%. )0 G, oy Pory vy (s ® Zo(1, Dyidy) gl 7, )

( )
= 122((1 UYle(Y) vﬂfl(y)(ldv* ®7Z(1, 1)Y1dY)fo1(zl(y))

i)
= dy'Zo(ets Dy Sy (v ® Zo (1, DAY, g,y By 2y

(i) )
= ]ZZ(a DyZ,(22(1, 1)Y))022(y) V‘Iyrl(zl(y))

@
= d,'Zy(, Wy Zo(a, 1)21(\/),0220,) VAR

=7 (a, l)ya)zl’(y).

Here, the equality (i) follows from the definition of ¢y (see Section 4.4), (ii) from (19), (iii) from (44), (iv) from (19) and the
naturality of p%, and (v) from the monoidality of Z. This completes the proof of the theorem. O
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We can explicitly compute (Cy g, o®P) in the case where € is a G-fusion category. Fix a G-representative set | = Lyccly
of simple objects of C. By Lemma 8.1,

Cp=EPireieiaj (45)
i€ly
jEIﬂ

with universal dinatural transformation given, for Y € Cg, by

J J
Q;t’ﬁ = Z + + 2, Y RY — Cappr
o |
]‘.Elﬁ I % Y

where ¢ = {¢x: X — X™}xce is the pivotal structure of C; see (3). For X € C, set

i
1

o =Y idegxe ® ¢t Za(X™) > Za(X)",

i€ly
so that
ide, , = Yo" (¢ ®id)).
J€lg

Then using (43), the above description of Z, and the description of s' given in Fig. 2, we obtain that

Fap = TapZ1(ide, ) = Y 1o pZ1(0]"HZ1 (5" ® id))

j€lg
=05l (Zala, 'Sy, ) Z1(Z(1, @))) @ idz,)) (Z0)2Za ()", DZ1 (¢ ® idh)
Jjelg
i,k,bely
j,lelﬁ
z,aely

Ta,p = Z

i,k,€ly
j,lEIﬁ
zely
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