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1. Introduction

Homotopy quantum field theory (HQFT) is a branch of quantum topology con-
cerned with maps from manifolds to a fixed target space. The aim is to define
and to study homotopy invariants of such maps using methods of quantum topol-
ogy. A formal notion of an HQFT was introduced in the monograph [12] which
treats in detail the 2-dimensional case. The present paper focuses on 3-dimensional
HQFTs with target the Eilenberg–MacLane space K(G, 1) where G is a discrete
group. These HQFTs generalize more familiar 3-dimensional topological quantum
field theories (TQFTs) which correspond to the case G = 1.

Two fundamental constructions of 3-dimensional TQFTs are due to
Reshetikhin–Turaev and Turaev–Viro. The RT-construction may be viewed as a
mathematical realization of Witten’s Chern–Simons TQFT. The TV-construction
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is closely related to the Ponzano–Regge state-sum model for 3-dimensional quantum
gravity. The Turaev–Viro [14] state-sum approach, as generalized by Barrett and
Westbury [3] (see also [5]), derives TQFTs from spherical fusion categories. In this
paper, we extend the state-sum approach to the setting of HQFTs. Specifically, we
show that any spherical G-fusion category C (of invertible dimension) gives rise to
a 3-dimensional HQFT | · |C with target K(G, 1).

As in the above mentioned papers, we represent 3-manifolds by their skeletons.
The maps to K(G, 1) are represented by certain labels on the faces of the skeletons.
The HQFTs are obtained by taking appropriate state-sums on the skeletons. In
distinction to the earlier papers, we entirely avoid the use of 6j-symbols and allow
non-generic skeletons, i.e. skeletons with edges incident to ≥4 regions. In the case
G = 1 this approach was introduced in [13].

This paper is the first in a series of papers in which we will establish the fol-
lowing further results. We will show that the Reshetikhin–Turaev surgery method
also extends to HQFTs: any G-modular category C determines a 3-dimensional
HQFT τC . We will generalize the center construction for categories to G-categories
and show that the G-center ZG(C) of a spherical G-fusion category C over an alge-
braically closed field of characteristic zero is a G-modular category. Finally, we
will show that under these assumptions on C, the HQFTs | · |C and τZG(C) are iso-
morphic. This theorem is nontrivial already for G = 1. In this case it was first
established by the present authors in [13] and somewhat later but independently
by Balsam and Kirillov [6, 1, 2]. The case of an arbitrary G is considerably more
difficult; it will be treated in the sequel.

The content of this paper is as follows. We recall the notion of a 3-dimensional
HQFT in Sec. 2. Then we discuss various classes of monoidal categories and in
particular G-fusion categories (Secs. 3 and 4). In Sec. 5 we consider symmetrized
multiplicity modules in categories and invariants of planar graphs needed for our
state-sums. In Sec. 6 we discuss skeletons of 3-manifolds and presentations of maps
to K(G, 1) by labelings of skeletons. We use these presentations in Sec. 7 to derive
from any G-fusion category a numerical invariant of maps from closed 3-manifolds
to K(G, 1). In the final Sec. 8 we extend these numerical invariance to an HQFT
with target K(G, 1). In the appendix we briefly discuss push-forwards of categories
and HQFTs.

Throughout the paper, we fix a (discrete) group G and an Eilenberg–MacLane
space X of type K(G, 1) with base point x. Thus, X is a connected aspherical
CW-space such that π1(X, x) = G. The symbol k will denote a commutative
ring.

2. 3-Dimensional HQFTs

We recall following [12] the definition of a 3-dimensional homotopy quantum field
theory (HQFT) with target X = K(G, 1). Warning: our terminology here is adapted
to the 3-dimensional case and differs from that in [12].
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2.1. Preliminaries on G-surfaces and G-manifolds

A topological space Σ is pointed if every connected component of Σ is provided
with a base point. The set of base points of Σ is denoted Σ•. By a G-surface we
mean a pair (a pointed closed oriented smooth surface Σ, a homotopy class of maps
f : (Σ, Σ•) → (X, x)). Reversing orientation in a G-surface (Σ, f), we obtain a G-
surface (−Σ, f). By convention, an empty set is a G-surface with unique orientation.

By a G-manifold we mean a pair (a compact oriented smooth 3-dimensional
manifold M with pointed boundary, a homotopy class of maps f : (M, (∂M)•) →
(X, x)). The manifold M itself is not required to be pointed. The boundary
(∂M, f |∂M ) of a G-manifold (M, f) is a G-surface. We use the “outward vector
first” convention for the induced orientation of the boundary: at any point of ∂M

the given orientation of M is determined by the tuple (a tangent vector directed
outward, a basis in the tangent space of ∂M positive with respect to the induced
orientation). A G-manifold M is closed if ∂M = ∅ (in this case (∂M)• = ∅).

Any G-surface (Σ, f) determines the cylinder G-manifold (Σ × [0, 1], f), where
f : Σ× [0, 1]→ X is the composition of the projection to Σ with f . Here Σ× [0, 1]
has the base points {(m, 0), (m, 1) |m ∈ Σ•} and is oriented so that its oriented
boundary is (−Σ× {0})� (Σ× {1}).

Disjoint unions of G-surfaces (respectively G-manifolds) are G-surfaces (respec-
tively G-manifolds) in the obvious way. A G-homeomorphism of G-surfaces
(Σ, f) → (Σ′, f ′) is an orientation preserving diffeomorphism g : Σ → Σ′ such that
g(Σ•) = Σ′

• and f = f ′g. A G-homeomorphism of G-manifolds (M, f) → (M ′, f ′)
is an orientation preserving diffeomorphism g : M → M ′ such that g((∂M)•) =
(∂M ′)• and f = f ′g. In both cases, the equality f = f ′g is understood as an equal-
ity of homotopy classes of maps.

For brevity, we shall usually omit the maps to X from the notation for G-surfaces
and G-manifolds.

2.2. The category of G-cobordisms

We define a category of 3-dimensional G-cobordisms CobG = CobG
3 . Objects of

CobG are G-surfaces. A morphism Σ0 → Σ1 in CobG is represented by a pair (a
G-manifold M , a G-homeomorphism h : (−Σ0) � Σ1 � ∂M). We call such pairs
G-cobordisms with bases Σ0 and Σ1. Two G-cobordisms (M, h : (−Σ0)�Σ1 → ∂M)
and (M ′, h′ : (−Σ0) � Σ1 → ∂M ′) represent the same morphism if there is a
G-homeomorphism g :M → M ′ such that h′ = gh. The identity morphism of
a G-surface Σ is represented by the cylinder G-manifold Σ × [0, 1] with tau-
tological identification of the boundary with (−Σ) � Σ. Composition of mor-
phisms in CobG is defined through gluing of G-cobordisms: the composition of
morphisms (M0, h0) : Σ0→Σ1 and (M1, h1) : Σ1→Σ2 is represented by the G-
cobordism (M, h), where M is the G-manifold obtained by gluing M0 and M1

along h1h
−1
0 : h0(Σ1)→ h1(Σ1) and

h = h0|Σ0 � h1|Σ2 : (−Σ0) � Σ2 � ∂M.
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The given maps (Mi, (∂Mi)•)→ (X, x), i = 0, 1 may be chosen in their homotopy
classes to agree on h0(Σ1) ≈ h1(Σ1) and define thus a map (M, (∂M)•)→ (X, x).
The asphericity of X ensures that the homotopy class of this map is well-defined.

The category CobG is a symmetric monoidal category with tensor product given
by disjoint union of G-surfaces and G-manifolds. The unit object of CobG is the
empty G-surface ∅.

2.3. HQFTs

Let vectk be the category of finitely generated projective k-modules and k-
homomorphisms. It is a symmetric monoidal category with standard tensor product
and unit object k. A (3-dimensional) homotopy quantum field theory (HQFT ) with
target X is a symmetric strong monoidal functor Z : CobG → vectk. In particular,
Z(Σ � Σ′) � Z(Σ)⊗ Z(Σ′) for any G-surfaces Σ, Σ′, and similarly for morphisms.
Also, Z(∅) � k. We refer to [7] for a detailed definition of a strong monoidal functor.

Every G-manifold M determines two morphisms ∅ → ∂M and −∂M → ∅
in CobG. The associated homomorphisms k � Z(∅) → Z(∂M) and Z(−∂M) →
Z(∅) � k are denoted Z(M, ∅, ∂M) and Z(M,−∂M, ∅), respectively. If ∂M = ∅,
then Z(M, ∅, ∂M) :k → Z(∅) � k and Z(M − ∂M, ∅) :k � Z(∅) → k are multipli-
cation by the same element of k denoted Z(M).

The category of G-cobordisms CobG includes as a subcategory the category
HomeoG of G-surfaces and their G-homeomorphisms considered up to isotopy
(in the class of G-homeomorphisms). Indeed, a G-homeomorphism of G-surfaces
g : Σ → Σ′ determines a morphism Σ → Σ′ in CobG represented by the pair
(C = Σ′ × [0, 1], h : (−Σ) � Σ′ � ∂C), where h(x) = (g(x), 0) for x ∈ Σ and
h(x′) = (x′, 1) for x′ ∈ Σ′. Isotopic G-homeomorphisms give rise to the same mor-
phism in CobG. The category HomeoG inherits a structure of a symmetric strong
monoidal category from that of CobG. Restricting an HQFT Z : CobG → vectk to
HomeoG, we obtain a symmetric monoidal functor HomeoG → vectk. In particular,
Z induces a k-linear representation of the mapping class group of a G-surface Σ
defined as the group of isotopy classes of G-homeomorphisms Σ→ Σ.

For G = {1}, the space X is just a point and without any loss of information we
may forget the maps of surfaces and manifolds to X. We recover thus the familiar
notion of a 3-dimensional TQFT.

3. Preliminaries on Monoidal Categories

In this section we recall several basic definitions of the theory of monoidal categories
needed for the sequel.

3.1. Conventions

The symbol C will denote a monoidal category with unit object �. Notation X ∈
C will mean that X is an object of C. To simplify the formulas, we will always
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pretend that C is strict. Consequently, we omit brackets in the tenor products and
suppress the associativity constraints (X ⊗Y )⊗Z ∼= X ⊗ (Y ⊗Z) and the unitality
constraints X ⊗� ∼= X ∼= �⊗X . By the tensor product X1⊗X2⊗ · · · ⊗Xn of
n ≥ 2 objects X1, . . . , Xn ∈ C we mean (· · · ((X1⊗X2)⊗X3)⊗ · · · ⊗Xn−1)⊗Xn.

3.2. Pivotal and spherical categories

Following [8], by a pivotal category we mean a monoidal category C endowed with
a rule which assigns to each object X ∈ C a dual object X∗ ∈ C and four morphisms

evX : X∗ ⊗X →�, coevX :�→X ⊗X∗,

ẽvX : X ⊗X∗ →�, c̃oevX :�→X∗ ⊗X,

satisfying the following conditions:

(a) For every X ∈ C, the triple (X∗, evX , coevX) is a left dual of X , i.e.

(idX ⊗ evX)(coevX ⊗ idX) = idX and (evX ⊗ idX∗)(idX∗ ⊗ coevX) = idX∗ ;

(b) For every X ∈ C, the triple (X∗, ẽvX , c̃oevX) is a right dual of X , i.e.

(ẽvX ⊗ idX)(idX ⊗ c̃oevX) = idX and (idX∗ ⊗ ẽvX)(c̃oevX ⊗ idX∗) = idX∗ ;

(c) For every morphism f : X → Y in C, the left dual

f∗ = (evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗ ⊗ coevX) : Y ∗ → X∗

is equal to the right dual

f∗ = (idX∗ ⊗ ẽvY )(idX∗ ⊗ f ⊗ idY ∗)(c̃oevX ⊗ idY ∗) : Y ∗ → X∗;

(d) For all X, Y ∈ C, the left monoidal constraint

(evX ⊗ id(Y ⊗X)∗)(idX∗ ⊗ evY ⊗ id(Y ⊗X)∗)(idX∗⊗Y ∗ ⊗ coevY ⊗X) :

X∗ ⊗ Y ∗ → (Y ⊗X)∗

is equal to the right monoidal constraint

(id(Y ⊗X)∗ ⊗ ẽvY )(id(Y ⊗X)∗ ⊗ ẽvX ⊗ idX∗)(c̃oevY ⊗X ⊗ idX∗⊗Y ∗) :

X∗ ⊗ Y ∗ → (Y ⊗X)∗;

(e) ev�= ẽv�:�∗ → � (or, equivalently, coev�= c̃oev�:�→ �
∗).

If C is pivotal, then for any endomorphism f of an object X ∈ C, one defines
the left and right traces

trl(f) = evX(idX∗ ⊗ f)c̃oevX and trr(f) = ẽvX(f ⊗ idX∗)coevX .

Both traces take values in EndC(�) and are symmetric: trl(gh) = trl(hg) for any
morphisms g : X → Y , h : Y → X in C and similarly for trr. Also trl(f) = trr(f∗) =
trl(f∗∗) for any endomorphism f of an object. The left and right dimensions of an
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object X ∈ C are defined by diml(X) = trl(idX) and dimr(X) = trr(idX). Clearly,
diml(X) = dimr(X∗) = diml(X∗∗) for all X .

When C is pivotal, we will suppress the duality constraints �
∗ ∼= � and

X∗⊗Y ∗ ∼= (Y ⊗X)∗. For example, we will write (f ⊗ g)∗ = g∗⊗ f∗ for morphisms
f, g in C.

A pivotal category C is spherical if the left and right traces of endomorphisms
in C coincide. Set then tr(f) = trl(f) = trr(f) for any endomorphism f of an object
of C, and dim(X) = diml(X) = dimr(X) = tr(idX) for any X ∈ C.

3.3. Additive categories

A category C is k-additive if the Hom-sets in C are modules over the ring k, the
composition of morphisms of C are k-bilinear, and any finite family of objects of C
has a direct sum in C. Note that the direct sum of an empty family of objects is a
null object, that is, an object 0 ∈ C such that EndC(0) = 0.

A monoidal category is k-additive if it is k-additive as a category and the
monoidal product of morphisms is k-bilinear.

3.4. Semisimple categories

We call an object U of a k-additive category C simple if EndC(U) is a free k-module
of rank 1 (and so has the basis {idU}). It is clear that an object isomorphic to a
simple object is itself simple. If C is pivotal, then the dual of a simple object of C
is simple.

A split semisimple category (over k) is a k-additive category C such that

(a) each object of C is a finite direct sum of simple objects;
(b) for any non-isomorphic simple objects i, j of C, we have HomC(i, j) = 0.

Clearly, the Hom spaces in such a C are free k-modules of finite rank. For X ∈ C
and a simple object i ∈ C, the modules Hi

X = HomC(X, i) and HX
i = HomC(i, X)

have same rank denoted N i
X and called the multiplicity number. The bilinear form

Hi
X ×HX

i → k carrying (p ∈ Hi
X , q ∈ HX

i ) to pq ∈ EndC(i) = k is non-degenerate.
Note that if i admits a left or right dual ı̂, then N�

i⊗X = N ı̂
X = N�

X⊗i.

3.5. Pre-fusion and fusion categories

A pre-fusion category (over k) is a split semisimple k-additive pivotal category C
such that the unit object � is simple. In such a category, the map k→ EndC(�), k �→
k id� is a k-algebra isomorphism which we use to identify EndC(�) = k. The left
and right dimensions of any simple object of a pre-fusion category are invertible
(see, for example, [13, Lemma 4.1]).

If I is a set of simple objects of pre-fusion category C such that every simple
object of C is isomorphic to a unique element of I, then for any object X of C,
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N i
X = 0 for all but a finite number of i ∈ I, and

diml(X) =
∑
i∈I

diml(i)N i
X , dimr(X) =

∑
i∈I

dimr(i)N i
X . (3.1)

A fusion category is a pre-fusion category such that the set of isomorphism
classes of simple objects is finite. The dimension dim(C) of a fusion category C is
defined by

dim(C) =
∑
i∈I

diml(i) dimr(i) ∈ k,

where I is a (finite) set of simple objects of C such that every simple object of
C is isomorphic to a unique element of I. The sum on the right-hand side does
not depend on the choice of I. Note that if k is an algebraically closed field of
characteristic zero, then dim(C) �= 0, see [4].

4. G-Fusion Categories

4.1. G-categories

A G-graded category or shorter a G-category is a k-additive monoidal category C
endowed with a system of pairwise disjoint full k-additive subcategories {Cg}g∈G

such that

(a) each object U ∈ C splits as a direct sum
⊕

g Ug where Ug ∈ Cg and g runs over
a finite subset of G;

(b) if U ∈ Cg and V ∈ Ch, then U ⊗ V ∈ Cgh;
(c) if U ∈ Cg and V ∈ Ch with g �= h, then HomC(U, V ) = 0;
(d) the unit object � of C belongs to C1.

Under these assumptions, we write C =
⊕

g Cg. The category C1 corresponding
to the neutral element 1 ∈ G is called the neutral component of C. Clearly, C1 is a
k-additive monoidal category.

An object X of a G-category C =
⊕

g Cg is homogeneous if X ∈ Cg for some g ∈
G. Such a g is then uniquely determined by X and denoted |X |. If two homogeneous
objects X, Y ∈ C are isomorphic, then either they are null objects or |X | = |Y |.

A G-category C is pivotal (respectively, spherical) if it is pivotal (respectively,
spherical) as a monoidal category. For such C and all X ∈ Cg with g ∈ G, we can
and always do choose X∗ to be in Cg−1 . Note that if C is pivotal (respectively,
spherical), then so is C1.

A G-category is pre-fusion if it is pre-fusion as a monoidal category. In partic-
ular, a pre-fusion G-category is supposed to be pivotal. In a pre-fusion G-category
C=

⊕
g∈G Cg, every simple object is isomorphic to a simple object of Cg for a unique

g ∈ G. Moreover, for all g ∈ G, each object of Cg is a finite direct sum of simple
objects of Cg.

A set I of simple objects of a pre-fusion G-category C is representative if � ∈ I,
all elements of I are homogeneous, and every simple object of C is isomorphic to a
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unique element of I. Any such set I splits as a disjoint union I =
∐

g∈G Ig where
Ig is the set of all elements of I belonging to Cg.

4.2. G-fusion categories

A G-fusion category is a pre-fusion G-category C such that the set of isomorphism
classes of simple objects of Cg is finite and nonempty for every g ∈ G. For G = 1,
we obtain the notion of a fusion category (see Sec. 3.5). The neutral component
C1 of a G-fusion category C is a fusion category. A G-fusion category is a fusion
category if and only if G is finite.

In the next statement we use the multiplicity numbers defined in Sec. 3.4.

Lemma 4.1. Let I =
∐

g∈G Ig be a representative set of simple objects of a G-
fusion category C. Then

(a) For all g ∈ G, ∑
i∈Ig

diml(i) dimr(i) = dim(C1).

(b) For all a, b, g ∈ G, U ∈ Ca and V ∈ Cb,∑
k∈Ig ,�∈I(agb)−1

diml(k) diml(�)N�

U⊗k⊗V ⊗� = dimr(U) dimr(V ) dim(C1).

Proof. Let us prove (a). Pick k ∈ Ig and fix it till the end of the argument. For
every i ∈ Ig, the object i⊗ k∗ ∈ C1 splits as a (finite) direct sum of simple objects
necessarily belonging to C1. Every j ∈ I1 occurs N j

i⊗k∗ times in this sum. Then
there is a family of morphisms (pj,α

i : i⊗ k∗ → j, qj,α
i : j → i⊗ k∗)α∈Ai,j such that

Ai,j has N j
i⊗k∗ elements and pj,α

i qj,α
i = δα,β idj for all α, β ∈ Ai,j . This implies

idi⊗k∗ =
∑

j∈I1,α∈Ai,j

qj,α
i pj,α

i . (4.1)

For i ∈ Ig , j ∈ I1 and α ∈ Ai,j , set

P i,α
j =

dimr(i)
dimr(j)

(idi ⊗ evk)(qj,α
i ⊗ idk) =

dimr(i)
dimr(j)

: j ⊗ k → i,

Qi,α
j = (pj,α

i ⊗ idk)(idi ⊗ coevk) = : i→ j ⊗ k.

For any α, β ∈ Ai,j ,

P i,α
j Qi,β

j =
trr(P

i,α
j Qi,β

j )
dimr(i)

idi =
trr(p

j,α
i qj,β

i )
dimr(j)

idi = δα,β idi.

Note that the set Ai,j has N j
i⊗k∗ = N i

j⊗k elements. Thus, for every j ∈ I1, the
family (P i,α

j , Qi,α
j )i∈Ig ,α∈Ai,j encodes a splitting of j ⊗ k as a direct sum of simple
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objects of Cg. Hence

idj⊗k =
∑

i∈Ig,α∈Ai,j

Qi,α
j P i,α

j . (4.2)

Using (4.1), the definition of P i,α
j , Qi,α

j and (4.2), we obtain∑
i∈Ig

dimr(i) diml(i) diml(k)

=
∑

i∈Ig,j∈I1
α∈Ai,j

dimr(i)

=
∑

i∈Ig,j∈I1,α∈Ai,j

dimr(j)trl(P
i,α
j Qi,α

j ) =
∑
j∈I1

dimr(j)
∑

i∈Ig,α∈Ai,j

trl(Q
i,α
j P i,α

j )

=
∑
j∈I1

dimr(j)trl(idj⊗k) =
∑
j∈I1

dimr(j) diml(j) diml(k) = dim(C1) diml(k).

We conclude using that diml(k) ∈ k is invertible.
Let us prove (b). Using (3.1) and Claim (a) of the lemma, we obtain∑

k∈Ig,�∈I(agb)−1

diml(k) diml(�)N�

U⊗k⊗V ⊗�

=
∑

k∈Ig ,�∈I(agb)−1

diml(k) dimr(�∗)N �∗
U⊗k⊗V

=
∑
k∈Ig

diml(k)
∑

m∈Iagb

dimr(m)Nm
U⊗k⊗V =

∑
k∈Ig

diml(k) dimr(U ⊗ k ⊗ V )

= dimr(U) dimr(V )
∑
k∈Ig

diml(k) dimr(k) = dimr(U) dimr(V ) dim(C1).

4.3. Example

Let k∗ be the group of invertible elements of k and let vectG be the category of
G-graded free k-modules of finite rank. It is well-known that every θ ∈ H3(G; k∗)
determines associativity constraints on vectG extending the usual tensor product
to a monoidal structure. Denote the resulting monoidal category by vectθG. This
category is G-graded: vectθ

G =
⊕

g∈G vectθ
g, where vectθg is the full subcategory of

modules of degree g. The module k viewed as an object of vectθg is the unique simple
object of vectθ

g, at least up to isomorphism. The usual (co)evaluation morphisms
define a pivotal structure on vectθG. It is easy to check that vectθ

G is spherical G-
fusion category. Clearly, dim(vectθ

1) = 1 ∈ k.
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4.4. Remark

Each pre-fusion category C has a universal grading defined as follows. Let I be
the set of isomorphism classes of simple objects of C. Note that gradings of C by a
group (in the sense of Sec. 4.1) bijectively correspond to maps 	 from I to this group
verifying 	(X) 	(Y ) = 	(Z) for all X, Y, Z ∈ I such that Z is a direct summand of
X ⊗Y . A grading ∂ : I → Γ of C by a group Γ is universal if any grading of C by
any group can be uniquely expressed as the composition of ∂ with a homomorphism
from Γ to that group. To construct a universal grading of C set Γ = I/∼, where ∼ is
the weakest equivalence relation on I such that any two simple objects appearing
as direct summands of the same (finite) monoidal product of simple objects are
equivalent. The product, the unit, and the inverses in Γ are induced by the pivotal
structure of C. The projection I → Γ = I/∼ is a universal grading of C. The group
Γ is called the graduator of C. For instance, the grading of vectθG in Example 4.3 is
universal, and the graduator is G.

5. Multiplicity Modules and Graphs

We recall here symmetrized multiplicity modules and invariants of colored plane
graphs introduced in [13]. Throughout this section, we fix a pivotal k-additive
monoidal category C such that EndC(�) = k.

5.1. Multiplicity modules

A signed object of C is a pair (U, ε) where U ∈ C and ε ∈ {+,−}. For a signed
object (U, ε) of C, we set Uε = U if ε = + and Uε = U∗ if ε = −. A cyclic C-set is
a triple (E, c : E → C, ε :E → {+,−}), where E is a totally cyclically ordered finite
set. In other words, a cyclic C-set is a totally cyclically ordered finite set whose
elements are labeled by signed objects of C. For shortness, we sometimes write E

for (E, c, ε).
Given a cyclic C-set E = (E, c, ε) and e ∈ E, we can order e = e1 < e2 < · · · < en

the elements of E starting from e and using the given cyclic order in E (here n = #E

is the number of elements of E). Set

Ze = c(e1)ε(e1) ⊗ · · · ⊗ c(en)ε(en) ∈ C and He = HomC(�, Ze).

By [13], the structure of a pivotal category in C determines a projective system of
k-module isomorphisms {He ≈ He′}e,e′∈E . For example, if in the notation above
ε(e1) = −, then the isomorphism He1 → He2 carries any f ∈ He1 to

(ẽvc(e1) ⊗ idZe2
)(idc(e1) ⊗ f ⊗ idc(e1)∗)coevc(e1) ∈ He2 .

If ε(e1) = +, then the isomorphism He1→ He2 carries f ∈ He1 to

(evc(e1) ⊗ idZe2
)(idc(e1)∗ ⊗ f ⊗ idc(e1))c̃oevc(e1) ∈ He2 .

The projective limit of this system of isomorphisms H(E) = lim←−He is a k-module
depending only on E. It is equipped with isomorphisms {H(E) → He}e∈E , called
the cone isomorphisms.
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An isomorphism of cyclic C-sets φ : E → E′ is a bijection preserving the cyclic
order and commuting with the maps to C and {+,−}. Such a φ induces a k-
isomorphism H(φ) : H(E)→ H(E′) in the obvious way.

The dual of a cyclic C-set E = (E, c, ε) is the cyclic C-set (Eop, c,−ε), where Eop

is E with opposite cyclic order. The pivotality of C determines a k-bilinear pairing
ωE : H(Eop) ⊗ H(E) → k where ⊗ = ⊗k is the tensor product over k. A duality
between cyclic C-sets E and E′ is an isomorphism of cyclic C-sets φ : E′ → Eop.
Such a φ induces a k-bilinear pairing ωE ◦ (H(φ) ⊗ id) : H(E′)⊗H(E)→ k.

5.2. Colored graphs

By a graph, we mean a finite graph without isolated vertices. We allow multiple
edges with the same endpoints and loops (edges with both endpoints in the same
vertex). A graph is oriented, if all its edges are oriented.

Let Σ be an oriented surface. By a graph in Σ, we mean a graph embedded
in Σ. A vertex v of a graph A ⊂ Σ determines a cyclically ordered set Av consist-
ing of the half-edges of A incident to v with cyclic order induced by the opposite
orientation of Σ. If A is oriented, then we have a map εv : Av → {+,−} assign-
ing + to the half-edges oriented towards v and − to the half-edges oriented away
from v.

A C-colored graph in Σ is an oriented graph in Σ whose every edge is labeled
with an object of C called the color of this edge. A vertex v of a C-colored graph
A ⊂ Σ determines a cyclic C-set Av = (Av, cv, εv), where cv assigns to each half-
edge the corresponding color. Set Hv(A) = H(Av) and H(A) =

⊗
v Hv(A), where

v runs over all vertices of A. To stress the role of Σ, we sometimes write Hv(A; Σ)
for Hv(A) and H(A; Σ) for H(A).

Consider now the case Σ = R2 with counterclockwise orientation. Every C-
colored graph A in R2 determines a vector FC(A) ∈ H(A)� = Homk(H(A), k), see
[13]. The idea behind the definition of FC(A) is to deform A in the plane so that
in a neighborhood of every vertex v all half-edges incident to v lie above v with
respect to the second coordinate in the plane. For each v, pick any αv ∈ Hv(A)
and replace v by a box colored with the image of αv under the corresponding cone
isomorphism. This transforms A into a planar diagram formed by colored edges and
colored boxes. Such a diagram determines, through composition and tensor product
of morphisms in C (and the use of the left and right evaluation/co-evaluation mor-
phisms), an element of EndC(�) = k. By linear extension, this procedure defines
a vector FC(A) ∈ H(A)�. The key property of this vector is the independence
from the auxiliary choices. Moreover, both H(A) and FC(A) are preserved under
color-preserving isotopies of A in R2.

For example, if A = S1 ⊂ R2 is the unit circle with one vertex v = (1, 0)
and one edge oriented clockwise and colored with U ∈ C, then Av consists of two
elements labeled by (U, +), (U,−) and H(A) = Hv(A) ∼= HomC(�, U∗⊗U). Here
FC(A)(α) = evUα ∈ EndC(�) = k for all α ∈ H(A).
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If C is pre-fusion, then the k-modules associated in Sec. 5.1 with cyclic C-sets
are free of finite rank and the pairings defined at the end of that section are
non-degenerate (cf. [13, Lemmas 2.3 and 4.1(a)]). Note also that every C-colored
graph A in an oriented surface Σ determines a C-colored graph Aop in −Σ obtained
by reversing orientation in Σ and in all edges of A while keeping the colors of the
edges. The cyclic C-sets determined by a vertex v of A and Aop are dual. If C is
pre-fusion, then Hv(Aop;−Σ) = Hv(A; Σ)� and H(Aop;−Σ) = H(A; Σ)�.

5.3. The spherical case

If C is spherical, then the invariant FC of C-colored graphs in R2 generalizes to
C-colored graphs in the 2-sphere S2 = R2 ∪ {∞} (the orientation of S2 extends
the counterclockwise orientation in R2). Indeed, pushing a C-colored graph A ⊂ S2

away from ∞, we obtain a C-colored graph A0 in R2. The sphericity of C ensures
that

FC(A) = FC(A0) ∈ H(A0)� = H(A)�

is a well-defined isotopy invariant of A. We state a few simple properties of FC .

(i) (Naturality) If a C-colored graph A′ ⊂ S2 is obtained from a C-colored graph
A ⊂ S2 through the replacement of the color U of an edge by an isomor-
phic object U ′, then any isomorphism φ : U→U ′ induces an isomorphism
φ̂ : H(A)→ H(A′) in the obvious way and φ̂�(FC(A′)) = FC(A).

(ii) If an edge e of a C-colored graph A ⊂ S2 is colored by � and the endpoints
of e are also endpoints of other edges of A, then FC(A) = FC(A\Int(e)).

(iii) If a C-colored graph A′ ⊂ S2 is obtained from a C-colored graph A ⊂ S2

through the replacement of the color U of an edge e by U∗ and the reversion
of the orientation of e, then there is an isomorphism H(A)→ H(A′) such that
the dual isomorphism carries FC(A′) to FC(A).

(iv) We have H(A � A′) = H(A) ⊗H(A′) and FC(A � A′) = FC(A) ⊗ FC(A′) for
any disjoint C-colored graphs A, A′ ⊂ S2.

6. Skeletons and Maps

We recall the notions of stratified 2-polyhedra and skeletons of 3-manifolds following
[13, Sec. 6]. Then we explain how to encode maps from closed 3-manifolds to X =
K(G, 1) in terms of labelings of skeletons.

6.1. Stratified 2-polyhedra

By an arc in a topological space P , we mean the image of a path α : [0, 1] → P

which is an embedding except that possibly α(0) = α(1) (i.e. arcs may be loops.)
The points α(0), α(1) are the endpoints and the set α((0, 1)) is the interior of
the arc. By a 2-polyhedron, we mean a compact topological space that can be
triangulated using only simplices of dimensions 0, 1 and 2. For a 2-polyhedron P ,
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denote by Int(P ) the subspace of P consisting of all points having a neighborhood
homeomorphic to R2. Clearly, Int(P ) is an (open) 2-manifold.

Consider a 2-polyhedron P endowed with a finite set of arcs E such that

(a) different arcs in E may meet only at their endpoints;
(b) P\⋃e∈E e ⊂ Int(P );
(c) P\⋃e∈E e is dense in P .

The arcs of E are called edges of P and their endpoints are called vertices of P .
The vertices and edges of P form a graph P (1) =

⋃
e∈E e. Cutting P along P (1),

we obtain a compact surface P̃ with interior P\P (1). The polyhedron P can be
recovered by gluing P̃ to P (1) along a map p :∂P̃ → P (1). Condition (c) ensures the
surjectivity of p. We call the pair (P, E) (or, shorter, P ) a stratified 2-polyhedron if
the set p−1(the set of vertices of P ) is finite and each component of the complement
of this set in ∂P̃ is mapped homeomorphically onto the interior of an edge of P .

For a stratified 2-polyhedron P , the connected components of P̃ are called
regions of P . The set Reg(P ) of the regions of P is finite. For a vertex x of P ,
a branch of P at x is a germ at x of a region of P adjacent to x. The set of branches
of P at x is finite and nonempty. The branches of P at x bijectively correspond to the
elements of the set p−1(x), where p : ∂P̃ → P (1) is the map above. Similarly, a branch
of P at an edge e of P is a germ at e of a region of P adjacent to e. The set of branches
of P at e is denoted Pe. This set is finite and nonempty. There is a natural bijection
between Pe and the set of connected components of p−1(interior of e). The number
of elements of Pe is the valence of e. The edges of P of valence 1 and their vertices
form a graph called the boundary of P and denoted ∂P . We say that P is orientable
(respectively, oriented) if all regions of P are orientable (respectively, oriented).

6.2. Skeletons of 3-manifolds

Let M be a closed oriented 3-dimensional manifold. A skeleton of M is an oriented
stratified 2-polyhedron P ⊂ M such that ∂P = ∅ and M\P is a disjoint union of
open 3-balls. The components of M\P are called P -balls. An example of a skeleton
of M is provided by the (oriented) 2-skeleton t(2) of a triangulation t of M , where
the edges of t(2) are the edges of t.

We now analyze regular neighborhoods of edges and vertices of a skeleton P ⊂
M . Pick an edge e of P and orient it in an arbitrary way. The orientations of e

and M determine a positive direction on a small loop in M\e encircling e so that the
linking number of this loop with e is +1. This direction induces a cyclic order on the
set Pe of branches of P at e. For a branch b ∈ Pe, set εe(b) = + if the orientation of
e is compatible with the orientation of b induced by that of the ambient region of P

and set εe(b) = − otherwise. This gives a map εe : Pe → {+,−}. When orientation
of e is reversed, the cyclic order on Pe is reversed and εe is multiplied by −.

Any vertex v of P has a closed ball neighborhood Bv ⊂ M such that Γv =
P ∩ ∂Bv is a nonempty graph and P ∩ Bv is the cone over Γv. The vertices of Γv
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are the intersections of ∂Bv with the half-edges of P incident to v. Similarly, each
edge α of Γv is the intersection of ∂Bv with a branch bα of P at v. We endow α with
orientation induced by that of bα restricted to bα\Int(Bv). We endow ∂Bv ≈ S2

with orientation induced by that of M restricted to M\Int(Bv). In this way, Γv

becomes an oriented graph in the oriented 2-sphere ∂Bv. The pair (∂Bv, Γv) is the
link of v in (M, P ). It is well-defined up to orientation preserving homeomorphism.
Note that the condition ∂P = ∅ implies that every vertex of Γv is incident to at
least two half-edges of Γv.

6.3. G-labelings

Let P be a skeleton of a closed oriented 3-dimensional manifold M . A G-labeling
of P is a map � : Reg(P ) → G such that for every edge e of P the labels of the
adjacent branches b1, . . . , bn of P , enumerated in the cyclic order determined by an
orientation of e, satisfy the following product condition:

n∏
i=1

�(bi)εe(bi) = 1, (6.1)

where the map εe : Pe → {+,−} is determined by the same orientation of e. Note
that if (6.1) holds for one orientation of e, then it holds also for the opposite
orientation.

The G-labelings of P determine homotopy classes of maps M → X = K(G, 1)
as follows. Pick a point, called the center in every P -ball (i.e. in every component
of M\P ). Each region r of Reg(P ) is adjacent to two (possibly coinciding) P -balls.
Pick an arc αr in M whose endpoints are the centers of these balls and whose
interior meets P transversely in a single point lying in r. We choose the arcs {αr}r
so that they meet only in the endpoints and orient them so that the intersection
number αr · r = r · αr is +1 for all r.

Lemma 6.1. For each G-labeling � of P there is a map f� : M → X carrying the
centers of the P -balls to the base point x ∈ X and carrying αr to a loop in X
representing �(r) ∈ G = π1(X, x) for all r ∈ Reg(P ). The homotopy class of f�

depends only on P and �. Any map M → X is homotopic to f� for some G-coloring
� of P .

Proof. Consider first the case where all regions of P are disks. Then P determines
a dual CW-decomposition P ∗ of M , whose 0-cells are the centers of the P -balls,
the 1-cells are the arcs {αr}r, the 2-cells are meridional disks of the edges of P (1),
and the 3-cells are ball neighborhoods in M of the vertices of P . Consider a map
from the 1-skeleton of P ∗ to X carrying all 0-cells to x and carrying each αr to
a loop in X representing �(r). The product condition (6.1) ensures that this map
extends to the 2-skeleton of P ∗. The equality π2(X) = 0 ensures that there is a
further extension to a map f� : M → X. The independence of f� of the choice of
{αr}r follows from the fact that any two such systems of arcs are homotopic in M
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relative to the centers of the P -balls. The independence of the choice of the centers
and the last claim of the lemma are straightforward.

In the general case, each region r of P is a disk with holes and may be collapsed
onto a wedge of circles Wr ⊂ r\∂r based at the point αr ∩ r. Let Sr be obtained
from Wr× [−1, 1] by contracting the sets Wr×{−1} and Wr×{1} into points called
the vertices of Sr. (If the two P -balls adjacent to r are equal, then we identify the
two vertices of Sr.) We embed Sr into M as a union of two cones with base Wr and
with the cone points in the centers of the P -balls adjacent to r. We can assume that
αr ⊂ Sr and that Sr does not meet Sr′ for r �= r′ except possibly in the vertices.
Then the pair (M,

⋃
r Sr) has a relative CW-decomposition whose only cells are

meridional disks of the edges of P and ball neighborhoods in M of the vertices of
P . The projection Wr× [−1, 1]→ [−1, 1] induces a retraction Sr → αr. Composing
with loops αr → X representing �(r) we obtain a map

⋃
r Sr → X carrying the

centers of the P -balls to x and carrying each αr to a loop in X representing �(r).
The rest of the proof goes as in the previous paragraph. To prove the last claim of
the lemma it is useful to note that the inclusion Wr →M is null-homotopic for all
r ∈ Reg(P ).

The maps from the set π0(M\P ) of P -balls to G form a group with respect to
pointwise multiplication. This group is called the gauge group of P and denoted
by GP . The group GP acts (on the left) on the set of G-labelings of P : for λ ∈ GP ,
a G-labeling � : Reg(P )→ G, and a region r of P ,

(λ�)(r) = λ(r−)�(r)λ(r+)−1

where r± are the P -balls (possibly coinciding) adjacent to r and indexed so that
αr(0) ∈ r− and αr(1) ∈ r+. It is easy to see that λ� is a G-labeling of P determining
the same homotopy class of maps M → X as �. Moreover, two G-labelings of P

determine the same homotopy class of maps M → X if and only if these G-labelings
belong to the same GP -orbit.

6.4. G-skeletons

A G-skeleton of a G-manifold M is a pair (a skeleton P of M , a G-labeling of P

representing the given homotopy class of maps M → X). For brevity, such a pair
will be often denoted by the same letter P as the underlying skeleton. Lemma 6.1
shows that any skeleton of M extends to a G-skeleton.

7. State-Sum Invariants of Closed G-Manifolds

7.1. The state-sum invariant

Fix a spherical G-fusion category C such that dim(C1) ∈ k is invertible in the ground
ring k. For any closed G-manifold M , we define a topological invariant |M |C ∈ k of
M . This invariant is obtained as a state-sum on a G-skeleton P = (P, �) of M as
follows. Pick a representative set I =

∐
g∈G Ig of simple objects of C. Let Col(P )
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be the set of maps c : Reg(P ) → I such that c(r) ∈ I�(r) for all regions r of P .
For c ∈ Col(P ) and an oriented edge e of P , we have a k-module Hc(e) = H(Pe),
where Pe is the set of branches of P at e turned into a cyclic C-set as follows: the
cyclic order and the map to {±} are as in Sec. 6.2 and the C-color of a branch b ∈ Pe

is the value of c on the region of P containing b. If eop is the same edge with opposite
orientation, then Peop = (Pe)op. This induces a duality between the modules Hc(e),
Hc(eop) and a contraction homomorphism ∗e : Hc(e)� ⊗Hc(eop)� → k.

By Sec. 6.2, the link of a vertex v ∈ P is an oriented graph Γv ⊂ ∂Bv ≈ S2.
Given c ∈ Col(P ), we transform Γv into a C-colored graph by coloring each edge of
Γv with the value of c on the region of P containing this edge. Section 5.3 yields a
tensor FC(Γv) ∈ H(Γv)∗. By definition, H(Γv) =

⊗
e Hc(e), where e runs over all

edges of P incident to v and oriented away from v (an edge with both endpoints
in v appears in this tensor product twice with opposite orientations). The tensor
product

⊗
v FC(Γv) over all vertices v of P is a vector in

⊗
e Hc(e)�, where e runs

over all oriented edges of P . Set ∗P =
⊗

e ∗e :
⊗

e Hc(e)� → k.

Theorem 7.1. Set

|M |C = (dim(C1))−|P | ∑
c∈Col(P )

 ∏
r∈Reg(P )

(dim c(r))χ(r)

 ∗P (
⊗

v

FC(Γv)) ∈ k,

(7.1)

where |P | is the number of P -balls and χ is the Euler characteristic. Then |M |C is
a topological invariant of the G-manifold M independent of the choice of I and P .

This theorem generalizes [13, Theorems 5.1 and 6.1] which produce a 3-manifold
invariant | · |D from any spherical fusion category D whose dimension is invertible
in the ground ring (the case G = {1}).

We illustrate Theorem 7.1 with two examples. First, if the given homotopy class
of maps M → X includes the constant map, then |M |C = |M |C1 . This follows from
the definitions because the constant map is represented by the constant labeling
1 ∈ G. In particular, |S3|C = |S3|C1 = (dim(C1))−1. Secondly, |(S1 × S2, f)|C = 1
for any map f :S1 × S2 → X. Indeed, pick a point s ∈ S1 and a circle L ⊂ S2.
The set P = ({s} × S2) ∪ (S1 × L) is a skeleton of S1 × S2 with one edge {s} × L

and three regions. We orient the two disk regions of P lying in S2 counterclockwise
and orient the annulus region of P in an arbitrary way. We label the annulus region
with 1 ∈ G and label both disk regions with an element g of G represented (up to
conjugation and inversion) by the restriction of f to S1 × {pt}. This G-labeling of
P represents f . Formula (7.1) gives

|(S1 × S2, f)|C
= (dim(C1))−2

∑
j∈I1,k,l∈Ig

dim(k) dim(l)rankkHomC(�, j ⊗ k ⊗ j∗ ⊗ l∗).

The right-hand side is equal to 1 as easily follows from Lemma 4.1.
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Fig. 1. Local moves on skeletons.

Theorem 7.1 will be proved at the end of the section. We first recall the moves
on skeletons introduced in [13] and lift them to G-skeletons.

7.2. Moves on skeletons

Let M be a closed oriented 3-dimensional manifold. We consider four moves T1−T4

on a skeleton P ⊂ M transforming it into a new skeleton P ′ of M , see Fig. 1.
The “phantom edge move” T1 keeps P as a polyhedron and adds one new edge
connecting distinct vertices of P ; this edge is an arc in P meeting P (1) solely at the
endpoints and has valence 2 in P ′. The “contraction move” T2 collapses into a point
an edge e of P . This move is allowed only when the endpoints of e are distinct and
at least one of them is the endpoint of some other edge. The “percolation move” T3

pushes a branch b of P through a vertex v of P . The branch b is pushed across a
small disk D lying in another branch of P at v so that D∩P (1) = ∂D∩P (1) = {v}
and both these branches are adjacent to the same component of M\P . The disk
D becomes a region of the resulting skeleton P ′; all other regions of P ′ correspond
bijectively to the regions of P in the obvious way. The “bubble move” T4 adds
to P an embedded disk D+ ⊂ M such that D+ ∩ P = ∂D+ ⊂ P\P (1), the circle
∂D+ bounds a disk D− in P\P (1), and the 2-sphere D+ ∪D− bounds a ball in M

meeting P precisely at D−. A point of the circle ∂D+ is chosen as a vertex and the
circle itself is viewed as an edge of the resulting skeleton P ′. The disks D+ and D−
become regions of P ′; all other regions of P ′ correspond bijectively to the regions
of P .

In the pictures of T1−T4 and in similar pictures below we distinguish the “small”
regions entirely contained in the 3-ball where the move proceeds and the “big”
regions not entirely contained in the 3-ball where the move proceeds. The moves
T1, T2 have no small regions, T3 creates one small region D, and T4 creates two small
regions D+ and D−. In the definition of T1 − T4 we use the following orientation
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convention: orientations of the big regions are preserved under the move while
orientations of the small regions may be arbitrary.

The moves T1 − T4 have obvious inverses. The move T−1
1 deletes a 2-valent

edge e with distinct endpoints; this move is allowed only when both endpoints of e

are endpoints of some other edges and the orientations of the two regions adjacent
to e are compatible.

The moves T1 − T4 lift to G-labelings of skeletons of M by requiring that the
labels of all big regions are preserved under the moves. We impose no conditions
on the labels of the small regions except the product condition (6.1) which must
hold both before and after the move. The labelings transform in a unique way
under T±1

1 , T±1
2 , T±1

3 , T−1
4 . Under T4, the label of D+ may be an arbitrary element

of G and the label of D− is then determined uniquely. If M is a G-manifold, then
each of these moves transforms a G-skeleton of M into a G-skeleton of M . These
transformations of G-skeletons are denoted by the same symbols T±1

1 − T±1
4 and

called primary moves. Label-preserving ambient isotopies of G-skeletons in M are
also viewed as primary moves.

Lemma 7.2. Any two G-skeletons of a closed G-manifold M can be related by a
finite sequence of primary moves.

Proof. We first define several further moves on G-skeletons of M . In these def-
initions, we apply the same orientation and labeling conventions as above. For
any non-negative integers m, n with m + n ≥ 1, we define a move T m,n on G-
skeletons, see Fig. 2. The move T m,n destroys max(m − 1, 0) small regions and
creates max(n− 1, 0) small regions. The labelings transform in a unique way under
T m,n. For n = 0, this move is allowed only when the orientations of the top and
bottom regions on the left are compatible. It is shown in [13] that T m,n is a com-
position of primary moves (and the same argument works in the G-labeled case).
The move inverse to T m,n is T n,m.

In particular, the moves T 2,0 and T 0,2 push a branch of a G-skeleton P across
a segment of P (1) containing a vertex of valence 2. One can consider similar moves
T̃ 2,0 and T̃ 0,2 pushing a branch of P across a segment of P (1) containing no vertices.
These moves decrease/increase the number of vertices of the skeleton by 2. The
moves T̃ 2,0 and T̃ 0,2 may be expanded as compositions of primary moves. Indeed,
applying T−1

2 , we can transform any point of P (1) into a vertex (keeping P and
P (1)) and then use T 2,0 and T 0,2.

Fig. 2. The move T m,n on G-skeletons.
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Fig. 3. A modified bubble moves on G-skeletons.

We need the modified version of the bubble move shown in Fig. 3. It is easy to
show that this move is a composition of primary moves (cf. [13, Sec. 7.2]).

We now prove the following special case of the lemma.

Claim 1. Let P ⊂M be a G-skeleton of M and r ∈ Reg(P ). Let P− be the same
G-skeleton with both the orientation and the label of r inverted. Then there is a
finite sequence of primary moves transforming P into P− (we write P � P−).

Proof. It is enough to prove this claim in the case where r is a disk. Indeed, if r

is not a disk, then we can use T1 to add new edges to P lying in r and splitting r

into disks. Consecutively reversing the orientation and the labels of these disks and
then removing the newly added edges by T−1

1 we obtain P−. Therefore if our claim
holds for disk regions of G-skeletons, then it also holds for r.

A similar argument shows that it is enough to consider the case where r satis-
fies the following condition: (∗) the restriction of the gluing map ∂P̃ → P (1) (see
Sec. 6.1) to ∂r is injective and all edges of r (i.e. all edges of P adjacent to r) have
valence ≥3. Indeed, adding a bubble on each edge of r as in Fig. 3 and then pushing
these bubbles along the edges of r and further across the vertices, we transform r

into a smaller region r0 ⊂ r satisfying (∗). Reversing the orientation and the label
of r0 and then removing the newly added bubbles we obtain P−. Therefore if our
claim holds for r0, then it holds for r.

Let now r be a disk region of P satisfying (∗) and let f ∈G be the label of r. Since
M and r are oriented, we may speak about positive and negative normal vectors
on r. Let r− ⊂ M\r be a 2-disk obtained by pushing r in the positive normal
direction so that ∂r sweeps a narrow annulus A ⊂ P − Int(r). It is understood that
∂A = ∂r � ∂r− and ∂r− = r− ∩ P . Then P̂ = P ∪ r− is a skeleton of M where the
regions of P̂ contained in P receive the induced orientation and the orientation of
r− is opposite to that of r. Every region R of P̂ distinct from r, r− and not lying
in A is contained in a unique region of P . We take the label of the latter region
as the label of R. We endow r, r− with labels h, h− ∈ G, respectively, such that
hh−1

− = f . The labels of the regions of P̂ lying in A are determined uniquely by the
product condition. This turns P̂ into a G-skeleton of M . We say that P̂ is obtained
by doubling r. We can transform P̂ into P by moves of type T m,n, T̃ 0,2, T̃ 2,0 pushing
∂r− inside r and an inverse bubble move eliminating the bubble resulting from r−.
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A similar elimination of r transforms P̂ into P−. Therefore P and P− are related
by primary moves. This completes the proof of our claim.

We can now finish the proof of Lemma 7.2. By [13, Lemma 7.1], any two skeletons
of M can be related by a finite sequence of primary moves. This lifts to a sequence of
primary moves on G-skeletons. Therefore we need only to prove that if P1 = (P, �1)
and P2 = (P, �2) are two G-skeletons of M with the same underlying skeleton P ,
then there is a sequence of primary moves P1 � P2.

By Sec. 6.3, the G-labelings �1 and �2 of P lie in the same GP -orbit, where
GP = Map(π0(M\P ), G) is the gauge group of P . This group is generated by the
maps λg,b : π0(M\P ) → G, with g ∈ G and b a P -ball, where λg,b carries b to g

and carries all other P -balls to 1. To prove Lemma 7.2, it is enough to produce for
any G-labeling � of P , any g ∈ G, and any P -ball b, a sequence of primary moves
(P, �)� (P, �g,b = λg,b�).

Consider the bubble move (P, �) �→ (P ′, �′) attaching a small disk inside b to a
region of P adjacent to b. Under this move the ball b splits into two balls: the small
one (the bubble) and the complementary one, b′. The same bubble move transforms
(P, �g,b) into (P ′, �′g,b′). Therefore if there are primary moves transforming (P ′, �′)
into (P ′, �′g,b′), then there are primary moves transforming (P, �) into (P, �g,b). Simi-
lar arguments work for the modified bubble move shown in Fig. 3 and for the moves
T m,n. Applying such moves inside b, we can replace P and b with another pair still
denoted P , b such that the new P -ball b has one additional property: its closure b

is a closed embedded 3-ball in M with interior b. Then each region of P is adjacent
to b on one side or not at all.

Suppose there is a region r0 of P adjacent to b such that the positive nor-
mal vectors on r0 look inside b. Consider the G-skeleton (P−, �−) obtained from
(P, �) by inverting the orientation and the label of r0. By the claim above, there are
sequences of primary moves (P, �)� (P−, �−) and (P, �g,b)� (P−, (�g,b)−). Observe
that (�g,b)− = (�−)g,b. Therefore if there is a sequence of primary moves (P−, �−)�
(P−, (�−)g,b), then there is a sequence of primary moves (P, �)� (P, �g,b). Contin-
uing by induction, we can reduce ourselves to the case where the orientation of all
regions of P lying in the 2-sphere ∂b is induced by that of M restricted to b.

We now produce a sequence of primary moves (P, �) � (P, �g,b). Pick a region
r0 of P adjacent to b. We first apply a bubble move (P, �) �→ (P ′, �′) which adds to
P a 2-disk D+ ⊂ b such that the circle ∂D+ lies in r0 and bounds a 2-disk D− ⊂ r0.
We endow D− with the orientation induced by that of r0 and orient D+ so that
∂D+ = ∂D− in the category of oriented manifolds. We label D− with g−1�(r0)
and D+ with g (the orientations and the labels of all “big” regions of P ′ are the
same as in P ). Next, we isotop the disk D+ in b so that it sweeps b almost entirely
while its boundary slides along ∂b. We arrange that in the terminal position, D′

+, of
the moving disk its boundary circle lies in r0\D− and bounds there a 2-disk. This
isotopy of D+ transforms the G-skeleton (P ′, �′) into a new G-skeleton (P ′′, �′′) via
a sequence of moves T m,n, T̃ 2,0 and T̃ 0,2. Under these moves, all regions of the

1250094-20



2nd Reading

July 20, 2012 9:9 WSPC/S0129-167X 133-IJM 1250094

On 3-Dimensional Homotopy Quantum Field Theory, I

intermediate skeletons lying in ∂b are provided with orientation induced by that of
M restricted to b. This ensures that there are no orientation obstructions to the
moves T 2,0 and T̃ 2,0 that may appear in our sequence. Finally, the inverse bubble
move, removing D′

+, transforms (P ′′, �′′) into (P, �g,b).

7.3. Proof of Theorem 7.1

The state-sum |M |C does not depend on the choice of the representative set I

by the naturality of FC and of the contraction maps. Lemma 7.2 shows that to
prove the rest of the theorem, we need only to prove that |M |C is preserved under
the primary moves P �→ P ′. This follows from the “local invariance” which says
that the contribution of any c ∈ Col(P ) to the state-sum is equal to the sum of the
contributions of all c′ ∈ Col(P ′) equal to c on all big regions. For the primary moves
T1, T2, T3, this local invariance was proved in [13, Sec. 7.5]. For the bubble move
T4, the local invariance follows from Lemma 4.1 where U is the value of c on the
region of P where the bubble is attached, V = �, and k, l are the values of c′ on the
disks D+, D− created by the move. The factor dim(U) dim(C1) is compensated by
the change in the number of components of M\P and in the Euler characteristic.
We use here the equality ∗e(FC(Γv)) = N�

U⊗k⊗l, where e and v are respectively the
edge and the vertex forming the circle ∂D+ = ∂D−.

7.4. Remark

The right-hand side of formula (7.1) is the product of (dim(C1))−|P | and a certain
sum which we denote ΣC(P ). The definition of ΣC(P ) ∈ k does not use the assump-
tion that dim(C1) is invertible in k and applies to an arbitrary spherical G-fusion
category C. This allows us to generalize the invariant |M |C of a closed G-manifold M

to any such C. We use the theory of spines, see [9]. By a spine of M , we mean an
oriented stratified 2-polyhedron P ⊂ M such that P has at least 2 vertices, P is
locally homeomorphic to the cone over the 1-skeleton of a tetrahedron, and M\P
is an open ball. By [9], M has a spine P and any two spines of M can be related by
the moves T 1,2, T 2,1 in the class of spines. The arguments above imply that ΣC(P )
is preserved under these moves. Therefore ‖M‖C = ΣC(P ) is a topological invariant
of M . If dim(C1) is invertible, then ‖M‖C = dim(C1)|M |C .

8. The State-Sum HQFT

In generalization of the state-sum invariant introduced in the previous section, we
derive from any spherical G-fusion category C such that dim(C1) ∈ k is invertible
an HQFT | · |C with target X = K(G, 1).

8.1. Skeletons of G-surfaces

Let Σ be a pointed closed oriented surface. Recall that each component of Σ has a
base point and Σ• is the set of the base points. A skeleton of Σ is an oriented graph
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A ⊂ Σ such that all components of Σ\A are open disks, all vertices of A have valence
≥2, and A ∩ Σ• = ∅. For example, the vertices and the edges of a triangulation
of Σ (with an arbitrary orientation of the edges) form a skeleton provided the base
points of Σ lie inside the 2-faces.

A G-labeling � of a skeleton A of Σ is a map from the set of edges of A to G

such that for any vertex v of A, ∏
a∈Av

�(a)εv(a) = 1, (8.1)

where the product is determined by the cyclic order in Av and �(a) ∈ G is the value
of � on the edge of A containing the half-edge a (see Sec. 5.2 for the definition of Av

and εv). A G-labeling � of A determines a homotopy class of maps f� : (Σ, Σ•) →
(X, x) as follows (cf. Sec. 6.3). Pick a central point in each component of Σ\A so that
all base points of Σ are among these centers. Choose oriented arcs in Σ dual to the
edges of A and connecting the central points of the adjacent regions (the interiors
of the arcs must be disjoint and the intersection number of each edge with the dual
arc is +1). The map f� carries all the central points to x and carries the arcs in
question to loops in (X, x) representing the values of � on the corresponding edges.
Formula (8.1) ensures that such a map f� exists. It is clear that the homotopy class
of f� depends only on A and �. We call the pair (A, �) a G-skeleton of the G-surface
(Σ, f�).

An appropriate choice of a G-labeling turns any skeleton of a G-surface into a
G-skeleton of this G-surface.

8.2. Skeletons in dimension 3

We now extend the theory of skeletons of closed G-manifolds to G-manifolds with
boundary. Given a compact oriented 3-manifold M with pointed boundary and
a skeleton A ⊂ ∂M , we define a skeleton of (M, A) to be an oriented stratified
2-polyhedron P ⊂M such that P ∩ ∂M = ∂P and

(i) ∂P = A as graphs, i.e. ∂P and A have the same vertices and edges;
(ii) for every vertex v of A, there is a unique edge ev of P such that v is an endpoint

of ev and ev � ∂M ; the edge ev is not a loop and ev ∩ ∂M = {v};
(iii) every edge a of A is an edge of P of valence 1; the only region Da of P adjacent

to a is a closed 2-disk meeting ∂M precisely along a; the orientation of Da is
compatible with that of a;

(iv) all components of M\P are open or half-open 3-balls.

Note that the boundary disks of the half-open components of M\P are precisely
the components of ∂M\A. Conditions (i)–(iii) imply that the intersection of P with
a tubular neighborhood of ∂M in M is homeomorphic to A× [0, 1]. If an edge e of
P has both endpoints in ∂M , then e ⊂ A is an edge of A.

Let now M = (M, f : (M, (∂M)•)→ (X, x)) be a G-manifold and let A = (A, �)
be a G-skeleton of the G-surface ∂M . Given a skeleton P of (M, A), consider a
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map �̃ : Reg(P ) → G such that Formula (6.1) holds for every edge of P not lying
in A and �̃(Da) = �(a) for every edge a of A. The map �̃ determines a homotopy
class of maps f�̃ : (M, (∂M)•)→ (X, x) as in Sec. 6.3 where all points of (∂M)• are
chosen as the centers of the corresponding components of M\P . We say that �̃ is a
G-labeling of P and (P, �̃) is a G-skeleton of (M, A) if f�̃ = f is the given homotopy
class of maps. It is easy to see that (M, A) has a skeleton (cf. [13, Lemma 8.1]) and
every skeleton of (M, A) has a G-labeling turning it into a G-skeleton.

The primary moves T±1
1 − T±1

4 defined above for closed G-manifolds extend
to G-skeletons of (M, A) in the obvious way. All these moves proceed inside 3-
balls in Int(M) and do not modify the boundary of the skeletons. In particular,
the move T1 adds an edge with both endpoints in Int(M), the move T2 collapses
an edge contained in Int(M), etc. The action of the moves on the G-labelings is
determined by the requirement that the labels of the big regions are preserved under
the moves. As in the case of closed G-manifolds, the labelings transform uniquely
under T±1

1 , T±1
2 , T±1

3 , T−1
4 and non-uniquely under T4, where the label of D+ may be

an arbitrary element of G. These moves as well as label-preserving ambient isotopies
of G-skeletons of (M, A) keeping the boundary pointwise are called primary moves.
All primary moves transform G-skeletons of (M, A) into G-skeletons of (M, A).

Lemma 8.1. Any two G-skeletons of (M, A) can be related by a finite sequence of
primary moves in the class of G-skeletons of (M, A).

Proof. The proof reproduces the proof of Lemma 7.2 with obvious changes. Instead
of [13, Lemma 7.1] we should use [13, Lemma 8.1] which says that any two skeletons
of (M, A) can be related by primary moves in M .

8.3. Invariants of pairs (M, A)

Fix up to the end of Sec. 8 a spherical G-fusion category C over k such that dim(C1)
is invertible in k. We shall derive from C a 3-dimensional HQFT | · |C with target
X = K(G, 1). The construction proceeds in three steps described in this and the
next two sections.

Fix a representative set I =
∐

g∈G Ig of simple objects of C. By an I-coloring of
a G-skeleton (A, �) of a G-surface, we mean a map c from the set of edges of A to
I such that c(a) ∈ I�(a) for all edges a of A. Note that an I-colored G-skeleton is
C-colored in the sense of Sec. 5.2 so that the definitions and notation of that section
apply.

For a G-manifold M and an I-colored G-skeleton A = (A, �, c) of ∂M , we define
a topological invariant |M, A| ∈ k as follows. Pick a G-skeleton P = (P, �̃) of (M, A).
Let Col(P, c) be the set of all maps c̃ : Reg(P ) → I such that c̃(r) ∈ I�̃(r) for all
r ∈ Reg(P ) and c̃(Da) = c(a) for all edges a of A. For every c̃ ∈ Col(P, c) and
every oriented edge e of P , consider the k-module Hc̃(e) = H(Pe), where Pe is the
set of branches of P at e turned into a cyclic C-set as in Sec. 7.1 (with c replaced
by c̃). Let E0 be the set of oriented edges of P with both endpoints in Int(M), and
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let E∂ be the set of edges of P with exactly one endpoint in ∂M oriented towards
this endpoint. Every vertex v of A is incident to a unique edge ev belonging to E∂

and Hc̃(ev) = Hv(Aop;−∂M). Therefore⊗
e∈E∂

Hc̃(e)� =
⊗

v

Hv(Aop;−∂M)� = H(Aop;−∂M)�.

For e ∈ E0, the equality Peop = (Pe)op induces a duality between the modules Hc̃(e),
Hc̃(eop) and a contraction homomorphism Hc̃(e)�⊗Hc̃(eop)� → k. This contraction
does not depend on the orientation of e up to permutation of the factors. Applying
these contractions, we obtain a homomorphism

∗P :
⊗

e∈E0∪E∂

Hc̃(e)� →
⊗
e∈E∂

Hc̃(e)� = H(Aop;−∂M)�.

As in Sec. 6.2, any vertex v of P lying in Int(M) determines an oriented graph Γv

on S2, and c̃ turns Γv into a C-colored graph. Section 5.3 yields a tensor FC(Γv) ∈
Hc̃(Γv)∗. Here Hc̃(Γv) =

⊗
e Hc̃(e), where e runs over all edges of P incident to v

and oriented away from v. The tensor product
⊗

v FC(Γv) over all vertices v of P

lying in Int(M) is a vector in
⊗

e∈E0∪E∂
Hc̃(e)�.

Theorem 8.2. Set

|M, A| = (dim(C1))−|P | ∑
c̃∈Col(P,c)

 ∏
r∈Reg(P )

(dim c̃(r))χ(r)

 ∗P
(⊗

v

FC(Γv)

)
,

where |P | is the number of components of M\P and χ is the Euler characteristic.
Then |M, A| ∈ H(Aop;−∂M)� does not depend on the choice of I and P .

Proof. Since any two G-skeletons of (M, A) are related by primary moves, we need
only to verify the invariance of |M, A| under these moves. This is done exactly as
in the proof of Theorem 7.1.

Though there is a canonical isomorphism H(Aop;−∂M)� � H(A; ∂M) (see
Sec. 5.2), it is convenient to view |M, A| as a vector in H(Aop;−∂M)�.

8.4. Functoriality

Consider a G-manifold M whose boundary is a disjoint union of two G-surfaces Σ0

and Σ1. More precisely, we assume that ∂M = (−Σ0) � Σ1 (as G-surfaces). Given
an I-colored G-skeleton Ai of Σi for i = 0, 1, we form the I-colored G-skeleton
Aop

0 ∪A1 of ∂M . Theorem 8.2 yields a vector

|M, Aop
0 ∪A1| ∈ H(A0 ∪Aop

1 ,−∂M)� = H(A0, Σ0)� ⊗H(Aop
1 ,−Σ1)�.

The canonical isomorphism H(Aop
1 ,−Σ1)� � H(A1, Σ1) induces an isomorphism

Υ :H(A0, Σ0)� ⊗H(Aop
1 ,−Σ1)� → Homk(H(A0, Σ0), H(A1, Σ1)).
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Set

|M, Σ0, A0, Σ1, A1| = (dim(C1))|A1|

dim(A1)
Υ(|M, Aop

0 ∪A1|) : H(A0; Σ0)→ H(A1; Σ1),

where |A1| is the number of components of Σ1\A1 and dim(A1) is the product of the
dimensions of the simple objects of C associated with the edges of A1 by the given
I-coloring of A1. By definition, if Σ1 = ∅, then A1 = ∅, |A1| = 0 and dim(A1) = 1.

Lemma 8.3. Let Mi be a G-manifold with ∂Mi = (−Σi) � Σi+1, where Σi, Σi+1

are G-surfaces and i = 0, 1. Let M be the G-manifold obtained by gluing M0 and
M1 along Σ1 so that ∂M = (−Σ0) � Σ2. For any I-colored G-skeletons A0 ⊂ Σ0,

A2 ⊂ Σ2 and any G-skeleton A1 of Σ1,

|M, Σ0, A0, Σ2, A2| =
∑

c

|M, Σ1, (A1, c), Σ2, A2| ◦ |M, Σ0, A0, Σ1, (A1, c)|,

where c runs over all I-colorings of A1.

Proof. This follows from the definitions since the union of a G-skeleton, P0, of
(M0, A

op
0 ∪ A1) with a G-skeleton, P1, of (M1, A

op
1 ∪ A2) is a G-skeleton, P , of

(M, Aop
0 ∪ A2) and |P | = |P0| + |P1| − |A1|. The term −|A1| explains the need for

the factor (dim(C1))|A1| in the definition of |M, Σ0, A0, Σ1, A1|. Similarly, given a
region r1 of P1 and a region r2 of P2 adjacent to the same edge e of A1, the union
r = r1 ∪ r2 ∪ e is a region of P and χ(r) = χ(r1) + χ(r2)− 1. The term −1 explains
the need for the factor (dim(A1))−1 in the definition of |M, Σ0, A0, Σ1, A1|.

8.5. The HQFT | · |C
For a G-skeleton A of a G-surface Σ, denote by Col(A) the set of all I-colorings
of A. Set

|A; Σ|◦ =
⊕

c∈Col(A)

H((A, c); Σ).

Given a G-cobordism (M, h : (−Σ0)�Σ1 � ∂M) between G-surfaces Σ0 and Σ1, we
now define for any G-skeletons A0 ⊂ Σ0 and A1 ⊂ Σ1 a homomorphism

|M, Σ0, A0, Σ1, A1|◦ : |A0; Σ0|◦ → |A1; Σ1|◦. (8.2)

For i = 0, 1 denote by Σ′
i the G-surface h(Σi) ⊂ ∂M with orientation induced by

the one in Σi. Then A′
i = h(Ai) with the G-labeling induced by that of Ai is a

G-skeleton of Σ′
i. Consider the homomorphism∑

c0∈Col(A′
0)

c1∈Col(A′
1)

|M, Σ′
0, (A

′
0, c0), Σ′

1, (A
′
1, c1)| : |A′

0; Σ
′
0|◦ → |A′

1; Σ
′
1|◦, (8.3)

where

|M, Σ′
0, (A

′
0, c0), Σ′

1, (A
′
1, c1)| : H((A′

0, c0); Σ′
0)→ H((A′

1, c1); Σ′
1).
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Conjugating (8.3) by the obvious isomorphisms {|Ai; Σi|◦ ∼= |A′
i; Σ

′
i|◦}i=0,1 induced

by h, we obtain the homomorphism (8.2). Lemma 8.3 implies that for any G-
cobordisms M0, M1, M as in this lemma and for any G-skeletons {Ai ⊂ Σi}2i=0,

|M, Σ0, A0, Σ2, A2|◦ = |M, Σ1, A1, Σ2, A2|◦ ◦ |M, Σ0, A0, Σ1, A1|◦. (8.4)

These constructions assign a finitely generated free k-module to every G-surface
with distinguished G-skeleton and a homomorphism of these modules to every G-
cobordism whose bases are endowed with G-skeletons. This data satisfies an appro-
priate version of the axioms of an HQFT except one: the homomorphism associated
with the cylinder over a G-surface, generally speaking, is not the identity. There
is a standard procedure which transforms such a “pseudo-HQFT” into a genuine
HQFT and also gets rid of the skeletons. This procedure is described in a similar
situation in [11, Sec. VII.3]; we outline it in our setting.

Observe that if A0, A1 are two G-skeletons of a G-surface Σ, then the cylinder
G-cobordism Σ× [0, 1] gives a homomorphism

p(A0, A1)

= |Σ× [0, 1], Σ× {0}, A0 × {0}, Σ× {1}, A1 × {1}|◦ : |A0; Σ|◦ → |A1; Σ|◦.
Formula (8.4) implies that p(A0, A2) = p(A1, A2) p(A0, A1) for any G-skeletons A0,
A1, A2 of Σ. Taking A0 = A1 = A2 we obtain that p(A0, A0) is a projector onto
a direct summand |A0; Σ| of |A0; Σ|◦. Moreover, p(A0, A1) maps |A0; Σ| isomorphi-
cally onto |A1; Σ|. The finitely generated projective k-modules {|A; Σ|}A, where A

runs over all G-skeletons of Σ, and the homomorphisms {p(A0, A1)}A0,A1 form a
projective system. The projective limit of this system is a k-module independent
of the choice of a G-skeleton of Σ, and we denote it by |Σ|C . For each G-skeleton
A of Σ, we have a “cone isomorphism” |A; Σ| ∼= |Σ|C . By convention, the empty
surface ∅ has a unique (empty) skeleton and |∅|C = k.

Any G-cobordism (M, Σ0, Σ1) splits as a product of a G-cobordism with a
G-cylinder over Σ1. Using this splitting and Formula (8.4), we obtain that the
homomorphism (8.3) carries |Σ0|C ∼= |A0; Σ0| ⊂ |A0; Σ0|◦ into |Σ1|C ∼= |A1; Σ1| ⊂
|A1; Σ1|◦ for any G-skeletons A0, A1 of Σ0, Σ1, respectively. This gives a homo-
morphism |M, Σ0, Σ1|C : |Σ0|C→|Σ1|C independent of the choice of A0 and A1.
Moreover, two G-cobordisms representing the same morphism ϕ : Σ0→Σ1 in CobG

3

give rise to the same homomorphism |ϕ|C : |Σ0|C→|Σ1|C . By construction, |idΣ|C =
id|Σ|C . The assignment Σ �→ |Σ|C , ϕ �→ |ϕ|C defines a functor | · |C : CobG

3 → vectk.
The results above imply the following theorem.

Theorem 8.4. The functor | · |C is a 3-dimensional HQFT with target X.

The HQFT | · |C is called the state-sum HQFT derived from C. Considered up to
isomorphism, the HQFT | · |C does not depend on the choice of the representative set
I of simple objects of C. For a closed G-manifold M , the scalar |M |C ∈ k produced
by this HQFT is precisely the invariant of Sec. 7.
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8.6. Example

By [12, Sec. I.2.1], every θ ∈ H3(G, k∗) = H3(X; k∗) defines a 3-dimensional
HQFT τθ with target X, called a primitive cohomological HQFT. In particular,
τθ(Σ) ∼= k for any G-surface Σ and τθ(M, g) = g∗(θ)([M ]) for any closed G-
manifold (M, g : M → X), where [M ] is the fundamental class of M . On the other
hand, the spherical G-fusion category vectθ

G of Example 4.3 defines a state-sum
HQFT | · |vectθ

G
with target X. It can be shown that these HQFTs are isomorphic:

τθ ∼= | · |vectθ
G
. This shows that the HQFT τθ may be fully computed via a state-sum

on G-skeletons.

Appendix. Push-Forwards of Categories and HQFTs

Let φ : H → G be a group epimorphism with finite kernel. Every H-category C =⊕
h∈H Ch determines a G-category φ∗(C) =

⊕
g∈G φ∗(C)g called the push-forward

of C. By definition, φ∗(C) = C as pivotal categories and φ∗(C)g =
⊕

h∈φ−1(g) Ch for
all g ∈ G. If C is H-fusion, then φ∗(C) is G-fusion and dim(φ∗(C)1) = γ dim(C1)
where γ is the order of Ker(φ). If C is spherical, then so is φ∗(C).

Suppose that C is a spherical H-fusion category and γ dim(C1) ∈ k∗. Then C
and φ∗(C) determine HQFTs | · |C and | · |φ∗(C) with targets Y = K(H, 1) and X =
K(G, 1) respectively. One can directly compute | · |φ∗(C) from | · |C in terms of the
map φ̃ :Y → X inducing φ in π1. In particular, for any G-surface (Σ, f : Σ → X)
and for any closed connected G-manifold (M, g : M → X),

|Σ, f |φ∗(C) =
⊕

ef∈[Σ,Y],eφ ef=f

|Σ, f̃ |C and |M, g|φ∗(C) = γ−1
∑

eg∈[M,Y],eφeg=g

|M, g̃|C ,

where [Σ,Y] (respectively, [M,Y]) denotes the set of homotopy classes of maps
Σ → Y (respectively, M → Y). It is understood that the maps carry the set of
base points of Σ (respectively, a distinguished point of M) to the base point of Y
and the homotopies are constant on this set. The sums above are finite because
Ker(φ) is finite. Similar formulas hold for G-cobordisms.

We point out a special case of this construction. Any spherical fusion category
C can be viewed as a spherical Γ-fusion category where Γ is the graduator of C, see
Sec. 4.4. Denote the resulting spherical Γ-fusion category by C̃. Clearly, the group
Γ is finite and C = φ∗(C̃) for the trivial homomorphism φ : Γ→ {1}. If dim(C) ∈ k∗,
then C gives rise to a state-sum TQFT | · |C and C̃ gives rise to a state-sum HQFT
| · |eC with target K(Γ, 1). For any closed connected oriented surface Σ and any closed
connected oriented 3-manifold M ,

|Σ|C =
⊕

f :π1(Σ)→Γ

|Σ, f |eC and |M |C = |Γ|−1
∑

g:π1(M)→Γ

|M, g|eC .

For more on this, see [10].
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