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1. Introduction

Homotopy Quantum Field Theories (HQFTs) were introduced by the first named
author [17] as generalizations of more familiar Topological Quantum Field Theories
(TQFTs) introduced by Schwarz et al. An HQFT produces “quantum” invariants of
manifolds endowed with homotopy classes of maps to a fixed space. Such homotopy
classes represent additional structures on manifolds whose nature depends on the
choice of the target space. We shall focus on HQFTs whose target space is an
Eilenberg-MacLane space K (G, 1) where G is a discrete group (finite or infinite).
The maps to K (G, 1) encode flat principal G-bundles over manifolds. When G = 1,
we recover the usual TQFTs.

The study of TQFTs is primarily motivated by their interest for theoretical
physics, and their main applications outside of pure mathematics lie in physics
and in the theory of quantum computations, see, for example, [4, 21]. The study
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of TQFTs has also found applications in knot theory, low-dimensional topology,
and in the theory of Hopf algebras and monoidal categories. One expects similar
applications for HQFTs.

The construction of Reshetikhin and Turaev [14] derives a 3-dimensional TQFT
from a modular category through a geometric method known as 3-dimensional
surgery. The principle aim of the present paper is to extend this approach to HQF Ts.
Specifically, we show that every G-modular category in the sense of [20] gives rise to
a 3-dimensional HQFT with target K (G, 1). The construction is based on surgery
presentations of 3-manifolds by links in Euclidean 3-space R®, and the resulting
HQFT is called the surgery HQF'T.

An alternative approach to 3-dimensional HQFTs based on the technique of
state sums starts with more general spherical G-graded categories, see [19]. In
a sequel to the present paper, we will relate these approaches via the following
theorem: the state sum HQFT associated with a spherical G-graded category is iso-
morphic to the surgery HQFT associated with the G-center of that category. This
theorem is highly nontrivial already for G =1 (that is, for TQFTs); in this case it
was first established in [18] and slightly later — but independently — in [3, 1, 2].

A surgery construction for HQFTs was first suggested in [17]. However, the class
of G-modular categories studied in [17] is very narrow. For example, the G-center
of a spherical G-graded category only rarely belongs to this class which makes it
inadequate for the above-mentioned theorem. The notion of a G-modular category
used here is more general and does include the G-centers.

A complete picture of a 3-dimensional HQFT involves several other geometric
ingredients. First of all, it proceeds in terms of 3-manifolds carrying a framing or
at least a pp-structure. In this respect, a study of HQFTs is fully parallel to that of
TQFTs. The readers familiar with the role of these tangential structures in TQFTs
will have no difficulty in extending it to HQFTs. To save space, we will not further
discuss this matter here. We also do not attempt to give a formulation of our HQFT
as a 2-functor. While such formulations are now quite standard following the papers
of Lurie, they require additional work which we postpone to another occasion. Note
also that it would be very interesting to extend our results to more general target
spaces; we plan to discuss such extensions elsewhere.

The key ingredient in the definition of the surgery TQFT associated with a
modular category C is a certain functor from the category of C-colored ribbon graphs
in R? x [0,1] to C, see [13-16]. A C-coloring of a ribbon graph labels the edges of
the graph with objects of C and labels the vertices of the graph with morphisms
in C. Note that the vertices of a ribbon graph are rectangles called “coupons”. We
define a version of the functor above for ribbon graphs whose exteriors are equipped
with homotopy classes of maps to K(G,1). Such a homotopy class is determined
by a homomorphism from the fundamental group of the graph exterior to GG, and
we rather work with homomorphisms. In the role of the base point of the graph
exterior we take any point with big second coordinate. In the role of C we take a
G-ribbon G-graded category. A C-coloring attributes an object of C to each path in
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the graph exterior leading from the base point to an edge of the graph. This object
must be preserved under homotopies of the path and must behave in a “controlled”
way under changes of the path. In particular, under multiplication of the path by
a loop at the base point, the object should be modified via an automorphism of C
determined by the element of G represented by the loop. Furthermore, a C-coloring
attributes morphisms in C to paths from the base point to the coupons. Again, a
“controlled” behavior is required.

We define a monoidal category Ge of C-colored ribbon graphs. The objects of
Ge are finite sequences of pairs (an object of C, a sign +). These objects encode
the colors and the orientations of C-colored ribbon graphs near the inputs and
the outputs. The morphisms of G¢ are appropriate equivalence classes of C-colored
ribbon graphs in R? x [0,1] having no circle components. It should be stressed
that the category Ge¢ does not include knots or links. It does include C-colored
string links (and in particular, C-colored braids) which are viewed as ribbon graphs
without coupons.

For any G-ribbon G-graded category C, we define a monoidal functor F¢ :
Ge — C. As in the classical case, the construction of F¢ uses graph diagrams and
Reidemeister moves though, in our setting, the correspondence between graphs and
diagrams becomes quite delicate. For G = 1, the functor F¢ is the restriction of the
functor of [13, 15, 16] to ribbon graphs without circle components.

We then show how to transform links in R? into C-colored ribbon graphs. This
transformation, called “insertion of coupons”, allows us to apply F¢ to links and
leads to the surgery HQF T associated with C.

The paper consists of 14 sections. Sections 2-6 are devoted to algebraic theory
of G-graded, G-ribbon and G-modular monoidal categories. In Secs. 7-13 we define
and study the functor F¢ associated with a G-ribbon category C. In Secs. 14, we
construct the surgery HQFT associated with a G-modular category.

Throughout the paper, we fix a group G (finite or infinite) and a commutative
ring k.

2. Preliminaries on Categories

We recall the basic definitions of the theory of monoidal categories.

2.1. Conventions

The symbol C will denote a monoidal category with unit object 1 = 1. Notation
X € C means that X is an object of C. To simplify the formulas, we will always
pretend that C is strict. Consequently, we omit brackets in the monoidal prod-
ucts and suppress the associativity constraints (X @ V) ® Z =2 X @ (Y ® 2)
and the unitality constraints X ®1 =2 X = 1® X. By the monoidal product
X190Xo® - ®X,, of n > 2 objects Xq,...,X,, €C we mean

(L (X1 @X)®X3) @ ®Xp1) @ Xy,
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2.2. Pivotal categories

A monoidal category C = (C,®, 1) is pivotal (see [11]) if for each object X of C, we
have a dual object X* € C and four morphisms

evy : X*"®X — 1, coevy:1—X®@X",
vy XX —1, coevy :1— X"®X,
such that
(a) for any object X € C,
(idxy ®evy)(coevx ®idy) =idx and (evy ®idx-)(idx+ ®coevy) =idx~,
(evx ®idx)(idx ®coevy) =idx and (idx- ®evy)(coevy ®idx«) =1idx~;
(b) for every morphism f:X — Y in C, the left dual
= (evy ®idx«)(idy~ ® f ®idx«)(idy+ ® coevx) : Y* — X*
is equal to the right dual
ff=(idx- ®eévy)(idx- ® f @idy~)(coevyx ®idy+) : Y — X*;
(¢c) for all X, Y € C, the left monoidal constraint
(evx ®id(y g x)*)(idx* ®evy Qidxgygx)*)(idx*gy* @coevygx): X @Y — (Y @ X)"
is equal to the right monoidal constraint
(id(y @ x)* ® ¥y ) (id(y @ x)* &y ®Vx @idy«)(0ovygx @idx=gy=): X @Y™ = (Y @ X)";
(d) evy = évy : 1* — 1 (or, equivalently, coevy = coevy : 1 — 1%).
In what follows, for a pivotal category C, we will suppress the duality constraints

1* 2 1and X*®Y* = (Y ® X)*. For example, we will write (f ® g)* = ¢* ® f* for
morphisms f, g in C.

2.3. Traces and dimensions

Let C be a pivotal category. For any endomorphism f of an object X € C, one
defines the left and right traces

tr)(f) = evx(idx- ® f)coevy and tr.(f) = évx(f ®idx«)coevx.

Both traces take values in the commutative monoid End¢(1) and are symmetric:
tr;(gh) = try(hg) for any morphisms g : X — Y, h:Y — X in C and similarly for
tr.. Also try/,.(f) = tr,,(f*) for any endomorphism f of an object. The left and
right dimensions of an object X € C are defined by dim;/,.(X) = tr;/,.(idx). Clearly,
dim; /,.(X) = dim,.;;(X™) for all X.
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2.4. Momnoidal functors

Let C and D be monoidal categories. A monoidal functor from C to D is a triple
(F, F5, Fy), where F' : C — D is a functor,

B ={R(X,Y):F(X)®F(Y)— F(X®Y)}x yvec

is a natural transformation from F' ® F' to F'®, and Fy : 1p — F(1¢) is a morphism
in D, such that the diagrams

idpx)®@F2(Y,Z)

FX)oFY)® F(2) FX)oFY®Z)

Fo(X,Y)®idp(z) l JFg(X,Y@)Z) (1)
FX®Y)® F(2) oY) FX®Y®2Z),
FX) —— 0% pix) @ F(le)
Fo®idp(x) l [dreo LB(XJLC) (2)
F(l¢) ® F(X) e F(X)

commute for all objects X,Y,Z € C (see [9]). Composing monoidal products of
Fy =idp, and Fy, we can define for every integer n > 3, a natural transformation

Fo ={F(X1,...,Xn) : F(X1)® - @ F(X,,) = F(X1® - @ Xp)}x,,. X, ec

For instance, F3(X,Y,Z) = F5(X, Y @ Z)(F1(X) ® F2(Y, Z)). The commutativity
of the diagrams (1) and (2) ensures that F,, does not depend on the way it is built
from F; and F5.

A monoidal functor (F,Fy, Fy) is strong if Fp and Fy are isomorphisms. A
monoidal functor (F, Fy, Fy) is strict if Fo and Fy are identity morphisms.

If F:C — D and G:D— & are two monoidal functors between monoidal cate-
gories, then their composition GF' : C — £ is a monoidal functor with

(GF)o = G(Fy)Gy and (GF)2 ={G(F(X,Y))G2(F(X),F(Y))}x.vec.

Let F:C — D and G : C — D be two monoidal functors. A natural transfor-
mation ¢ = {¢x : F(X) — G(X)}xec from F to G is monoidal if it satisfies

Go=¢1Fo and pxeyFa(X,Y)=G2(X,Y)(px @ ¢y) (3)

for all objects X,Y of C. A monoidal natural isomorphism between F' and G is
a monoidal natural transformation ¢ from F' to G which is an isomorphism in
the sense that each @y is an isomorphism. The inverse ! = {p ' :G(X) —
F(X)}xec is then a monoidal natural transformation from G to F.
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2.5. Pivotal functors

Given a strong monoidal functor F':C — D between pivotal categories, we define
for each X € C a morphism F!(X) : F(X*) — F(X)* by

FUX) = (Fy 'Fevx)Fo(X*, X) ®@idp(x) ) (idpx+) @ coevp(x)).

It is well-known that F! = {F!(X): F(X*) — F(X)*}xec is a monoidal natural
isomorphism which preserves the left duality in the sense that for all X € C,

Flevx) = Foevpx)(FH(X) @idpx)) Fo(X*, X) 71, (4)
F(coevy) = Fo(X, X*)(idpx) ® FY(X) " )coevex) Fy . (5)
The monoidality of F! means that (F, ')* = F!(1)F, and for all X,Y € C,
FAXRY)R(Y*, X*) = (X, Y) ) (F(Y)® F/(X)).
Likewise, the morphisms {F"(X): F(X*) — F(X)*}xec, defined by
Fr(X) = (idpx)- © Fy " F(evx)F2(X, X7))(coev p(x) @ idp(x+)),
form a monoidal natural isomorphism F" preserving the right duality: for all X € C,
F(eévx) = Foevpx)(idpx) ® F7 (X)) Fa(X, X*) 71, (6)
F(coevy) = Fo(X*, X)(F"(X) ™' ®@idp(x))coevpx) Fy (7)
One can check that F! and F" are related by
FY(X*)F(¢x) = F'(X) dr(x) (8)
for all X € C where {¢x: X — X**}xec is the pivotal structure in C defined by
dx = (6vx @idx«)(idx ® coevy«): X — X, 9)

The functor F':C — D is said to be pivotal if F'(X) = F"(X) for any X € C.
In this case, F! = F" is denoted by F'.

2.6. Penrose graphical calculus

We will represent morphisms in a category C by plane diagrams to be read from
the bottom to the top. The diagrams are made of oriented arcs colored by objects
of C and of boxes colored by morphisms of C. The arcs connect the boxes and
have no intersections or self-intersections. The identity idx of X € C, a morphism
f:X — Y, and the composition of two morphisms f: X — Y and ¢g:Y — Z are
represented as follows:

Y
idx=vy , f=]|r] and gf=
X X
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If C is monoidal, then the monoidal product of two morphisms f: X — Y and
g:U — V is represented by juxtaposition:

Y 1%
feg=[[] -
X U

If C is pivotal, then we allow arcs directed upwards. Such an arc, colored with X € C,
contributes X* to the source/target of the associated morphism. For example, id x«
and a morphism f: X*®Y — U ® V*® W may be depicted as:

U4V yw

S Tl SR o v
X X

X Y

The duality morphisms are depicted as follows:

eVX:[’\X, (:oeVX:\JX7 &/X:[‘\X, CBFVX:vX.

The dual of a morphism f:X — Y and the traces of a morphism ¢g: X — X can
be depicted as follows:

fr= = and trl(g):X7 trr(g):X.

If C is pivotal, then the morphism represented by a plane diagram is invariant under
isotopies of the diagram in the plane keeping the bottom and top endpoints.

3. G-Graded and G-Crossed Categories
3.1. G-graded categories

A G-graded category is a monoidal category (C,®,1) endowed with a system of
pairwise disjoint full subcategories {Cy }aec such that

(a) all Hom-sets in C are modules over the (fixed) commutative ring k and the
composition and the monoidal product of morphisms are k-bilinear;

(b) 1€Ciandif U €Cy and V € Cg, then U RV € Cop;

(c) it U € Cy and V € Cg with a # 3, then Home (U, V) = 0.

The monoidal category C; corresponding to the neutral element 1 € G is called
the neutral component of C.

An object X of a G-graded category C is homogeneous if X € C, C C for some
a € G. Such an « is then uniquely determined by X and denoted | X]|. It is allowed
for objects X € Co, Y € Cg with o # 3 to be isomorphic. However, in this case, X
and Y are zero objects in the sense that Ende(X) = Ende(Y) = 0.

For example, the category of G-graded k-modules is G-graded, with nonzero
modules of degree o € G as homogeneous objects of degree . Note that a zero
module has no degree; indeed, we do not require all objects to have a degree.
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The definition of G-graded categories given above is more general than the
corresponding definition in [19] where we additionally require the existence of direct
sums and the splitting of arbitrary objects into direct sums of homogeneous objects.
These conditions will not be needed in the present paper.

3.2. G-crossed categories

Given a monoidal category C, denote by Aut(C) the category of strong monoidal
auto-equivalences of C. Its objects are strong monoidal functors C — C that are
k-linear on the Hom-sets and are equivalences of categories. The morphisms in
Aut(C) are monoidal natural isomorphisms. The category Aut(C) has a canonical
structure of a strict monoidal category, in which the monoidal product is the com-
position of monoidal functors and the monoidal unit is the identity endofunctor
lc of C.

Denote by G the category whose objects are elements of the group G' and mor-
phisms are identities. We view G as a strict monoidal category with monoidal
product a ® 3 = Ba for all o, 3 € G.

By a G-crossed category we mean a G-graded category C endowed with a cross-
ing, that is, a strong monoidal functor ¢ : G — Aut(C) such that ¢ (Cg) C Co-144
for all a,8 € G. For each a € G, the crossing ¢ provides a strong monoidal
equivalence ¢, : C — C. By definition, ¢ comes equipped with isomorphisms
(0a)o:1 —= ¢4(1) in C and with natural isomorphisms

(Pa)2 = {(9a)2(X,Y) 1 0a(X) @ pa(Y) = @a(X®Y)}X,Y€C7
p2 = {p2(a, B) = {92, B)x 10app(X) — ppa(X)}xect, sec
wo = {(vo)x: X = p1(X)}xec,

such that (po)1 = (1) and, for all o, 8,7 € G and X,Y,Z € C, the following
diagrams commute:

idg,, (x)®(va)2(Y,2)

@a(X)®<Pa(Y)®@a(Z) @a(X)@)@a(Y@Z)

Jmmx,n@idmm Lwa)g(x,mm (10)

Pa(X ®Y) ® pa(Z) Pa(X QY ®Y)

(Pa)2(XQY,Z)

ide,, (x)®(Pa)o

Pa(X) Pa(X) ® @a(l)
id
wa)o@idmmt o l(%ﬂa)z(xﬂl) (11)
ol a(X (X
Pa(l) @ pa(X) PRNCES Pa(X)

1450027-8
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saz(a,ﬁ)X@W %\,

app(X) ® papp(Y) Ppa(X ®Y)

(12)
(pa)2(pp(X),0s(Y)) p2(a,8) xoy

- X V) —m—= o, XY
Palps(X) ® @a(Y)) —— s Papp(X ©Y)
(‘P a)
e @ﬁa(ﬂ)
(S"a)()\ ]ch(Oé,ﬁ)n (13)
(1 wos(l
#all) — e Persl)

LPO XQY

1(X®Y)
(14)
(p0)x@(p0)y (¢1)2(X,Y)
) @1 (Y

alp2(8:7)x)

Papppy(X) Patpyp(X)
<P2(0tﬁ)%(x)j jsﬂz(aﬁﬁ)x (15)
apy (X (X
¥B SDV( ) 22 (B x B (X)
pa((®o)x)
Pa(X) > pap1(X)
id
(%)%‘(X)j m japz(a,l)x (16)
P10(X) —— = pa(X).

The commutativity of the diagrams (10) and (11) means that (vq, (¢a)2, (¢a)o) is
a monoidal endofunctor of C. The diagrams (12) and (13) indicate that the natural
transformation @q(ca, ) is monoidal. The diagram (14) and the equality (pg)1 =
(1)o indicate that the natural transformation g is monoidal. The diagrams (15)
and (16) indicate that (¢, v2,¢p) is a monoidal functor.

Crossings in G-graded categories were introduced in [17] in the special case

where ¢ and all ¢,’s are strict monoidal functors, that is, all the morphisms

a,B)x, (po)x, (pa)2(X,Y) and (¢a)o are identity morphisms.
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3.3. Example

The following example of a G-crossed category is adapted from [10]. Let 7: H — G
be a group epimorphism. Set K = Ker(p). Let C™ be the category of H-graded
finitely generated projective k-modules M = &pc g M), endowed with a right action
of K such that My -k C M-y, for all h € H and k € K. Since M is finitely
generated, My, = 0 for all but a finite number of h € H. Morphisms in C™ are
H-graded K-equivariant linear maps. The category C™ is monoidal: the monoidal
product of M, N € C™ is the k-module M ® N = M ® N with diagonal action of K
and H-grading (M ® N)j, = ®p,hy=nMp, Qx Np, for h € H. The monoidal unit of
C™ is k in degree 1 € H with trivial action of K. The category C™ is G-graded as
follows: for @ € G, C7 is the full subcategory of all 0 # M € C™ such that M), =0
whenever 7(h) # a.

Any set-theoretic section of 7, i.e. a map s: G — H such that ms = idg defines
a crossing on C™ as follows. For « € G and M € C7, set po(M) = M as a k-
module with H-grading ¢ (M)n = Ma)-1hs(a) for b € H and right K-action
mk = m - s(a)ks(a)~t for m € po(M) and k € K. For a morphism f in C™, set
val(f) = f. This defines a strict monoidal endofunctor ¢, of C™. For «,8 € G
and M € C™, the formulas m +— m - s(3)s(a)s(Ba)~t and m +— m - s(1)~! define
isomorphisms, respectively,

pa(@, B)m : patpp (M) — @pa(M) and  (po)ar: M — 1 (M).

This yields a crossing in C™.

4. Pivotality and the Fusion Algebra
4.1. Pivotality

A G-graded category C is pivotal if the underlying monoidal category of C is pivotal
and for all « € G and X € C, we have X* € C,-1. A crossing ¢ in a pivotal G-
graded category C is pivotal if all the functors {p,:C — C}acq are pivotal (see
Sec. 2.5). Then, we have for each @ € G a monoidal natural isomorphism
Yo = {#a(X):0a(X*) = pa(X) }xec

which preserves both left and right duality.

We shall use the crossing ¢ to define the following transformations of morphisms
in C. Given an isomorphism ¢ : X — ¢, (Y) with X,Y € C and o € G, we let

Y :Y — ¢,-1(X) be the following composition of isomorphisms:

(#0) p2(a” ! 0)y " Po-1(7h)
Y —— 1Y) = pa-1pa(Y) — Pa-1(X).
If C and ¢ are pivotal, we let ¥~ : X* — ¢, (Y™*) be the following composition of
isomorphisms:
(=) L a7 .
Xt ————— (V) ————pa(Y7).

We also sometimes write ¢+ for 1 itself.

1450027-10
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Lemma 4.1. In the above notation, )~ = (E)f (YT — -1 (XF).

Proof. We begin with three observations which are direct consequences of the
definitions given in Sec. 2.5. First, if F':C — D is a pivotal functor between pivotal
categories and f: X — Y is a morphism in C, then

F(f) = FU(X)F(f)F'(Y) (17)

Second, if F':C — D and G: D — & are pivotal functors between pivotal categories,
then for any X € C,

(GP)(X) = G (F(X)G(F' (X)) (18)

Third, if F,G:C — D are pivotal functors between pivotal categories, then any
monoidal natural transformation A = {Ax : F(X) — G(X)} xec is invertible and

M GHX) = FHX)A L (19)
for all X € C. Now,

= 2 s () 0ant (PL(V))p2(0 @)y (20)y-

Qo (X) a1 ()01 (Pa (V) pa1 (Ph(V))p2(a!, @)yt (po)y-
2 () a1 (1) (Pami00) (V)p2(a™ ", @)y (o) -
© o (X) a0 a0, )3 (V) 00y~

(V) — * — * —1\% (Vi) —/\ —
= o1 (X) a1 () 2(a )y ((vo)y )" = (¥)
Here, the equalities (i)-(vi) follow respectively from the definition of =, (17)-(19)

with A = @a(a™!, @), (19) with A = ¢, the definition of (V)

4.2. Example

The G-graded category C™ of Sec. 3.3 associated with a group epimorphism 7: H —
G is pivotal: the dual of M € C™ is the k-module M* = Homy(M,k) with H-
grading (M™*);, = Hom(M},-1,k) for h € H and action of K defined by (f-k)(m) =
f(m-k=Yfork € K, f € M*, m € M. The left and right (co)evaluation morphisms
are the standard ones (i.e. are inherited from the pivotal category of finitely gener-
ated projective k-modules). By Sec. 3.3, any set-theoretic section of w determines

a crossing in C™. It is easy to verify that this crossing is pivotal.

4.3. The fusion algebra

With every G-graded category C over k, one associates a G-graded k-algebra L(C)
called the fusion algebra or the Verlinde algebra of C. Specifically, for each a € G,
set Lo = @x Ende(X) where X runs over all objects of C,. The element of the
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k-module L represented by f € Ende(X) is denoted (X, f) or briefly (f). Let
La be the quotient of L, by all relations of type (X, fg) = (Y, gf) for morphisms
f:Y - X and g: X — Y in C,. We provide the k-module L = ®,ccL, with
multiplication (f) (f’) = (f ® f’). This turns L = L(C) into an associative G-
graded k-algebra with unit (id;). Every homogeneous object X € C determines a
vector (X) = (idx) € L.

If C is crossed, then its crossing ¢ induces a group homomorphism ¢:G —
Aut(L), where Aut(L) denotes the group of algebra automorphisms of L. For a € G,
@q carries any generator (f) to (@a(f)). Clearly, ¢o(Lg) C Lo-184-

If C is pivotal, then L is endowed with a canonical k-linear endomorphism * : L —
L defined by sending a generator (X, f) to the generator (X*, f*). One can prove
that * is an involutive algebra anti-automorphism of L carrying each L, onto L,-1.

If C is crossed and pivotal, and its crossing ¢ is pivotal, then (17) implies that
x: L — L commutes with the crossing: . * = xp, for all a € G.

5. G-Braided and G-Ribbon Categories

Given a G-graded category C, we let Chom = lpeqCq be the full subcategory of
homogeneous objects of C, cf. Sec. 3.1. Note that Cpon is itself a G-graded category
in the sense of Sec. 3.1 such that (Chom)hom = Chom-

5.1. G-braided categories

A G-braided category is a G-crossed category (C, ) endowed with a G-braiding,
that is, a family of isomorphisms

T = {TX,Y XRY — Y®@‘Y|(X)}X€C,Y€Chom
natural in X, Y and such that:

(a) for all X € C and Y, Z € Chom, the following diagram commutes:

TX,Y®Z

XY ®Z Y ®Z®¢yez(X)

Tx,y®idzj ]idy®z®tp2(zl7lyl)x (20)

Y®g0\y|(X)®Z Y®Z®QD\Z|<,0|Y‘(X);

idy®‘r¢‘y‘(x),z

(b) for all X,Y € C and Z € Chom, the following diagram commutes:

TXQY,Z

XY ®Z Z@¢z|(X®Y)

idx®Ty,z

]idz®(¢2|)2(x’y) (21)

X®Z®¢|Z‘(Y)

Z @ @iz1(X) @ 2/ (Y);

Tx,z®id¢lz‘(y)
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(c) foralla € G, X € C and Y € Chom, the following diagram commutes:

0a(X) ® ga(Y) e ea(X®Y)
Toa (X),9a(Y) $alTx,v)
Pa(Y) ® Pa-1]y|apa(X) Ca(Y ® ¢y (X)) (22)
idg o (v) @pa(a ! |Y |a,0) x (Pa)2 (Vg v (X))

oY) ® oy|a(X) ©a(Y) ® paip)y|(X).

id, . (v)®p2 (oY) "

The diagrams (20) and (21) are the analogues of the usual braiding relations
in braided categories while (22) expresses the “invariance” of 7 under ¢. We will
depict the G-braiding 7 and its inverse as follows
Y X X Y

L\ A and Tgﬁc = /L
X \{ Y Y @y (X)

Lemma 5.1. Let (C,p,T) be a G-braided category. Then:

XY =

(a) 7x1 = (po)x for all X € C;

(b) m1,x =idx ® (<P|X\)0 for all X € Chom;

(¢) The G-braiding T satisfies the following quantum Yang—Bazter equation: for all
X el Yelg, ZeC, with 3,7 € G,

ZJ\ oY) tesm(X)  Z (Y)Y es(X)
- AN
X \{Y z X Y\Z

(d) If C is pivotal, then for all X € C and Y € Cz with § € G,

¥ x

(po)x' 2(B7",8)x
1

Txy = .
)[Y\ wp(X) \{ Y wp(X)

Proof. By the naturality of 7 and ¢y, if (a) holds for some X € C, then it holds for
all objects of C isomorphic to X. Since ¢; is an auto-equivalence of C, it is enough
to check (a) for the objects of type p1(X) where X € C. Setting Y = Z =1 in (20)
we obtain 7x 1 = 2(1,1)x7,,(x),27x,2. Multiplying by 7')?’11 and using (16), we
obtain that Ttpl(X),]l = (@2(1, 1)X)_1 = (900)501()()'

Y X Y

1450027-13



Int. J. Math. 2014.25. Downloaded from www.worldscientific.com
by LILLE 1 UNIVERSITY - SCIENCE & on 02/02/15. For personal use only.

V. Turaev & A. Virelizier

Let us prove (b). Since 71,7 is an isomorphism, putting X =Y = 1 in (21) gives
dzge ) = (idz ® (p12))2(1,1)) (11,2 ® id, , (1)) We conclude by composing
on the right with idz @ (¢|z))o, since (¢)z))2(1,1)(idy,, @) ® (P1z))0) = idy,, @)
by (11).

Let us prove (c). The naturality of the G-braiding gives

Ty@ey (X).2(Tx,y ®1dz) = (idz @ o 1z/(Tx,v)) TxoY,2-

We use (21) to expand Txgy,z on the right and Ty g, (x),z on the left. Then we
use (22) to replace on the right ¢|z|(7x,y)(¢|z])2(X,Y) by a composition of four
arrows. This gives a formula equivalent to (c).

We now prove (d). Depicting id; by a dotted line, we obtain

fX y X fX

| eo)x!

|1dY®Y | (¢o %xwﬁ B)x

AR

where the equality (i) is obtained by applying (a), (ii) follows from the naturality
of 7 and (iii) is obtained by applying (20) to Z = Y*. Substituting the resulting
equality in the dotted box below, we obtain

tx Y TX
[ox' e 0x] | [omon 0

e
)

Y ¢ pp(X) Y T es(X)

Similarly,

(v8)5 'eplevx)
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V ‘pd eVX X X
111
Y

where (i) is obtained by applying (a), (ii) follows from the naturality of 7, (iii) follows
from (21) and (iv) is obtained by applying (4) to F' = ¢g. Finally, substituting the
resulting equality in the dotted box below, we obtain

This concludes the proof of the lemma. |

5.2. Twists

Consider a pivotal G-braided category (C, ¢, 7). The twist of C is the family of
morphisms ¢ = {0x : X — ¢|x|(X)}xecyon defined by

@1x1(X)
Ox = (eVX®ide‘(X))(idx*®TX7x)(C/O\e§I)(®idx): d . (23)

bx

The naturality of 7 implies that fx is natural in X. Lemma 5.1(a) implies that
01 = (¢o)1 = (¢1)o-

Lemma 5.2. For any X € C, with o € G, the twist Ox is invertible and

X
0% = (dx ® 6y, () (Tx . (x) @idp, () (i, (x) ® COCV,, (x)) = lb
Pa(X)
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Proof. Denote the right-hand side by ¥ x. First,

1x +X 1x

LPoXsﬂz 704 sﬂoxw ~, |<,90X902 ’a

N

Here, (i) is obtained from the definition of ¥x by applying the first expression
for 771 in Lemma 5.1(d), (ii) and (v) follow from the naturality of 7 and (iii)
from the definition of fx, (iv) is obtained by applying (20) and (vi) follows from
Lemma 5.1(a). Second,
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(i)

Here, (i) and (v) follow from the naturality of 7, (ii) is obtained from the definition
of ¥x by applying the first expression for 77! in Lemma 5.1(d), (iii) follows from
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the naturality of 7 and the equality
Pal(po)x p2(at a)x) = (990);(1(2()%02(0‘»O‘_l)saa(X) (24)

which is a consequence of (15) and (16), (iv) is obtained by applying (20) and (vi)
follows from Lemma 5.1(a). Thus 0 is invertible and 65" = 9x. m|

Lemma 5.3. For any X € C,, Y € Cg with a, 3 € G,

Proof. We have

XoY
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ap(X ®Y) ap(X ®Y)

(99«1/3)2(X7 Y)

(Sory[ﬁ)Z(X) Y)

pa(f.0)x | [e2(8"aB.B)y | pa(Ba)x| [ea(8an. )y |

|

X Y X Y

Here, (i) follows from the definition of Oxgy, (ii) is obtained from (21), (iii) is
obtained by applying (20) twice, (iv) follows from the definition of fx and the
naturality of 7, (v) is obtained by Lemma 5.1(c) and (vi) follows from the definition
of By and the naturality of 7. |

Lemma 5.4. If the crossing ¢ in C is pivotal, then for all a, 8 € G and X € Cq,

0a(0x) = @2(8,0) 5 2B B, B)x by, (x)-

Proof. Set ¢ = gag(ﬁ,a);(lcpg(ﬂ’laﬁ,ﬁ)x. Then
wppal(X)

(9793)2(]]-', Pa (X))

(995)2(17 (Pa(X))

wplevx)
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Here, (i) is obtained by writing
Ox = (eVX ®id¢a(x))(idX* ®7‘X’X)(C/O\(§IX ®idx)
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and applying the monoidality of ¢g, (ii) is obtained by applying (22), (4) and (7)

and (iii) follows from (11). |

5.3. G-ribbon categories

A G-ribbon category is a pivotal G-braided category C such that its crossing ¢
is pivotal and its twist 6 is self-dual in the sense that for all @« € G and all
X €y,

(0x)" = (w0)x (w2(a™, ) ") o1 (PalX))by, (x)-- (25)
The following lemmas yield a useful consequence of self-duality for twists.

Lemma 5.5. If the twist 0 in a pivotal G-braided category C is self-dual, then for
all « € G and X € C,,

Proof. We have

| pala™t, a)x (o) x |

+X X

Here, (i) follows from the pivotality of C, (ii) is obtained from (25) and the definition
of 0, (x), (iii) is obtained by applying the second equality of Lemma 5.1(d) and
(iv) follows from the naturality of 7 and (24).

The proof of the second equality of the lemma uses the first equality and is
similar to the proof of Lemma 5.2. |
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5.4. The category Cq

Given a G-ribbon category (C, o, 7) with twist 6, the category C; is a ribbon category
in the usual sense of the word with braiding

{exy = (idy ® (po) ¥ )Txy : X ®Y — Y®X}X,Yec

and twist {vx = (@0)}19)( X = X}xece
For G = 1, the definitions of G-braided/G-ribbon categories are equivalent to
the standard definitions of braided/ribbon categories.

5.5. Example

Let m: H — G be a group epimorphism and s: G — H be a set-theoretic section
of 7. The associated category C™ is G-crossed by Sec. 3.3 and pivotal with pivotal
crossing by Sec. 4.2. Moreover, C™ is a G-ribbon category with G-braiding 7 defined
as follows: given M € C™ and N € C] with o € G, the G-braiding

TMN:M N — N®pa(M)

carries m ®@n to n® (m-hs(a)~t) form € M, h € 7= *(a) and n € Nj,. For M € CT
with a € G, the (self-dual) twist 057 : M — @ (M) carries m € M, with h € 7= (a)
to m-hs(a)~t. The G-ribbon category C™ was first defined in [10] (in an alternative
form).

It is shown in [20] that the G-ribbon category C™ can be realized as the G-center
of a pivotal G-graded category.

For other examples of G-ribbon categories, see [17, 20].

6. G-Modular Categories
6.1. Pre-fusion and fusion categories

We call an object U of a k-additive category C simple if End¢(U) is a free k-module
of rank 1 (and so has the basis {idy}). It is clear that an object isomorphic to a
simple object is itself simple. If C is pivotal, then the dual of a simple object of C
is simple.

A split semisimple category (over k) is a k-additive category C such that each
object of C is a finite direct sum of simple objects and Home(4,5) = 0 for any
non-isomorphic simple objects i, j of C.

Clearly, the Hom spaces in such a C are free k-modules of finite rank. For X € C
and a simple object ¢ € C, the modules Home (X, 7) and Home (4, X') have same rank
denoted N% and called the multiplicity number. A set I of simple objects of C is
representative if every simple object of C is isomorphic to a unique element of 1.

A pre-fusion category (over k) is a split semisimple k-additive pivotal category C
such that the unit object 1 is simple. In such a category, the map k — End¢ (1), k —
kidy is a k-algebra isomorphism which we use to identify End¢(1) = k. The left
and right dimensions of any simple object of a pre-fusion category are invertible
(see, for example, [18, Lemma 4.1]).
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If I is representative set of simple objects of pre-fusion category C, then for any
object X of C, N =0 for all but a finite number of i € I, and

dimy(X) = dim; ()N, dim.(X) =) dim, (i) Nk. (26)
i€l icl
A fusion category is a pre-fusion category such that the set of isomorphism
classes of simple objects is finite. The dimension dim(C) of a fusion category C is

dim(C Zdlml ) dim,.(7) € k,
el

where [ is a (finite) representative set of simple objects of C. The sum on the
right-hand side does not depend on the choice of I.

6.2. G-fusion categories

In a pre-fusion G-graded category C, every simple object is isomorphic to a simple
object of C4 for a unique g € G. The semisimplicity of C implies that each object
of C is a finite direct sum of homogeneous simple objects. We express it by writing
C = ®4ecCy. Note that each homogeneous object of C of degree g € G is a finite
direct sum of simple objects of the same degree g.

A G-fusion category is a pre-fusion G-graded category C such that the set of
isomorphism classes of simple objects of C, is finite and nonempty for every g € G.
For G = 1, we obtain the notion of a fusion category (see Sec. 6.1). For example,
the category of G-graded free k-modules of finite rank is a G-fusion category with
one (up to isomorphism) simple homogeneous object of degree g € G, namely k in
degree g.

The neutral component C; of a G-fusion category C is a fusion category. A
G-fusion category is a fusion category if and only if G is finite.

The argument in [17, Sec. VIL.1] shows that if C = @4c¢ Cy is a G-fusion cate-
gory, then for all g € G,

Z dimy (7) dim, (4) = dim(Cy), (27)

i€ly

where I, is any representative set of simple objects of C,.

The fusion algebra L of a G-fusion category C (see Sec. 4.3) is a free k-module
with basis ({i))ier, where I is an arbitrary representative set of simple objects of C.
For X € C, the vector (X) € L expands as (X) =Y, Ni ().

6.3. G-modular categories

Any G-ribbon category C is spherical in the sense that the left and right traces of
any endomorphism g in C coincide. We set tr(g) = tr;(g) = tr,(g) and call tr(g) the
trace of g. Consequently, the left and right dimensions of an object X of C coincide.
We set dim(X) = dim;(X) = dim,(X) and call dim(X) the dimension of X.

1450027-21



Int. J. Math. 2014.25. Downloaded from www.worldscientific.com
by LILLE 1 UNIVERSITY - SCIENCE & on 02/02/15. For personal use only.

V. Turaev & A. Virelizier

The neutral component C; of a G-ribbon G-fusion category C is a ribbon fusion
category. Let I; be a (finite) representative set of simple objects of Cy. For i, 5 € I,
set

Sij=tr(cjioc;11®j—1®j) € Ende(l) =Kk,

where ¢; j:i®j — j®i is the braiding in C; (see Sec. 5.4). The matrix S =
[Si.jlijer, does not depend on the choice of I and is called the S-matriz of C.

A G-modular category is a G-ribbon G-fusion category whose S-matrix is invert-
ible (over k). In other words, a G-modular category is a G-ribbon G-fusion category
whose neutral component is modular in the sense of [16].

We shall need several elements of k associated with a G-modular category C.
Since each i € I is a simple object, the twist v;:7 — 7 in C; (see Sec. 5.4) is equal
to v; = v;id; for some v; € k. Since v; is an isomorphism, v; € k*. Set

Ar = v (dim(i))* € k.
i€l
The properties of modular categories imply that AL € k* and AL A_ = dim(Cy),
see [16, Formula I1.2.4.a]. In particular, dim(Cy) is invertible in k. A rank of C is a
square root D € k* of dim(Cy).

6.4. Example

Let C™ be the G-ribbon category associated with a group epimorphism 7: H — G,
see Sec. 5.5. Assume that the group K = Ker 7 is finite and that k is an algebraically
closed field whose characteristic does not divide the order #K of K. Then, by [20],
C™ is a G-modular category and dim(CT) = (#K)2.

More generally, the G-center of a G-fusion category (over an algebraically closed
field) with neutral component of nonzero dimension is a G-modular category, see [20,
Theorem 5.1].

6.5. Remark

If the group G is finite, then there is a close connection between G-braided categories
and braided categories containing the category Rep, (G) of k-representations of G as
a full braided subcategory. Namely, with any G-braided category C one can associate
a braided category C“, called the equivariantization of C, such that C contains
Repy (G). When k is an algebraically closed field of characteristic 0, the map C + C¢
induces an equivalence between the 2-category of G-braided G-fusion categories and
the 2-category of braided fusion categories containing Repy(G), see [5].

7. Colored G-Graphs

From now on, unless explicitly stated to the contrary, the symbol C denotes a pivotal
G-crossed category with pivotal crossing .
In this section, we introduce ribbon graphs in R? and their colorings over C.
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7.1. Ribbon graphs

We recall the notion of a ribbon graph following [16]. A coupon is an oriented
rectangle with a distinguished side called the bottom base; the opposite side is
called the top base. A ribbon graph Q with k > 0 inputs ((r,0,0))*_; and I > 0
outputs ((s,0,1))._; consists of a finite family of coupons, oriented circles, and
oriented segments embedded in R x (—oo, 1] x [0,1]. The circles and the segments
in question are called the circle components and the edges of 2, respectively. The
inputs and outputs of €2 should be among the endpoints of the edges, all the other
endpoints of the edges should lie on the bases of the coupons. Otherwise, the edges,
the circle components, and the coupons of 2 are disjoint. They are also supposed to
carry a framing, i.e. a continuous nonsingular vector field on €2 transversal to 2. It
is required that near the inputs and outputs of €2, the edges are straight segments
parallel to the axis {(0,0)} x R and the framing is given by the vector (0, d, 0) with
small 6 > 0. The orientation of each coupon together with the framing should yield
the negative (left-handed) orientation of R3. Pushing 2 along the framing we obtain
a disjoint copy Q of Q. Pushing an edge/coupon e of  along the framing we obtain
an edge/coupon ¢ of Q. For example, Fig. 1 shows a ribbon graph 2 with 1 coupon,
3 segments, no circle component, 2 inputs, and 1 output. Its framing is indicated
by the small thin arrows (here the framing is equal to (0,0,0) except on the right
bottom segment on which it rotates once around the segment). The copy Qof Qis
depicted darker.

In the pictures, we will use the following conventions: the first axis in R? x [0, 1]
is a horizontal line on the page of the picture directed to the right, the second axis
is orthogonal to the plane of the picture and is directed from the eye of the reader
toward this plane, the third axis is a vertical line on the plane of the picture directed
from the bottom to the top. Note that points with positive second coordinate lie
behind the plane of the picture. The distinguished bases of the coupons in the
pictures are the bottom horizontal sides.

Fig. 1. A ribbon graph Q and its pushed Q along its framing.
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Fig. 2. Homotopic z-pathes.

7.2. Tracks and meridians

Fix a base point z € R x [2,00) x [0, 1]. Given a ribbon graph , we consider its
complement C = (R? x [0,1])\Q in R? x [0, 1]. Observe that z € Cq; we shall write
71(Cq) for m (Cq, z). Pushing Q along the framing we obtain a copy €2 C Cgq of Q.
Each edge/coupon e of 2 determines an edge/coupon ¢ of Q. A path v:10,1] — Cq
from the base point z = v(0) to a point of € is called a z-path for e. By a homotopy of
a z-path v we mean a deformation of v in the class of z-paths in C, fixing v(0) = 2
and keeping (1) on €. For example, the paths v and +" in Fig. 2 are homotopic
z-paths for the top segment of the ribbon graph.

The homotopy classes of z-paths for e are called tracks of e (with respect to z).
Multiplication of loops based at z with z-paths defines a left action of 71(Cq) on
the set of tracks of e. Since ¢ is contractible, this action is transitive and faithful.
The tracks of edges (respectively, coupons) of € are called edge-tracks (respectively,
coupon-tracks) of Q. We do not define tracks for circle components of €.

For a z-path ~ of an edge/coupon e, denote by uy € m(Cq) the (negative)
meridian of e represented by the loop vl.y~!, where [, is a small loop in Cq encir-
cling e with linking number —1:

1 n
e z ~ /.z
gl <--’--> v
E(,
Le €
| 1 m

The meridian p, depends only on the track represented by 7. Clearly, we have
gy = By 31 for any B € m (Co).

7.3. Colorings of graphs

By a G-graph we mean a ribbon graph 2 endowed with a group homomorphism
g:7m1(Cq) — G. For brevity, we shall sometimes write Q for the pair (Q,g).
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A C-pre-coloring or shorter a pre-coloring u of a G-graph (€2, g) comprises two
functions. The first function assigns to every edge-track v of 2 a nonzero object
Uy € Cy(y.) called the color of . The second function assigns to every edge-track
of Q and to every 8 € m;(Cq) an isomorphism

UB,y UBy =7 Pg(p~1) (ur)

so that for all v, we have u1,, = (©0)u, 1ty — @1(uy) and for all 3,6 € m(Cq),
the following diagram commutes:

UBs,~

UBsy Pg(s-1p-1) ()

up 5y 0298 ),9(6 )y (28)

Po(a—1)(Us7)

Pg(p-1) (Usy) Pg(a—1)Pg(6-1)(Uy)-

One can extend this definition by allowing zero objects for colors of tracks.
This however does not lead to interesting invariants of graphs, and we shall not
do it.

A C-coloring or shorter a coloring of a G-graph (€2, g) consists of a pre-coloring u
and a function v assigning to every coupon-track v of {2 a morphism v, in Cy,. ). To
state our requirements on v., we need more terminology. By entries (respectively,
exits) of a coupon @ of €, we mean the endpoints of edges of Q lying on the
bottom (respectively, top) side of @. Let m be the number of entries of Q; the
direction of the bottom side induced by the orientation of () determines an order
in the set of the entries. Let e; be the edge of {2 incident to the i¢th entry where
i =1,...,m. Set ¢; = + if e; is directed out of @ near the ith entry and set
g; = — otherwise. Composing a z-path representing v with a path in Q leading
to the ith entry, we obtain a track ~; of e; depending only on v and ¢. Similarly,
let n be the number of exits of @; the direction of the top side of @} induced by
the opposite orientation of Q) determines an order in the set of the exits. Let e’
be the edge of Q incident to the jth exit where j = 1,...,n. Set &/ = — if eJ
is directed out of @ and &/ = + otherwise. Composing a z-path representing ~y
with a path in Q leading to the jth exit we obtain a well-defined track 77 of .
Clearly,

1 n
Py = iy e s = il s € m(Co).
We require that
(i) for any coupon-track v of Q, we have (in the notation above)
vy € Home (972, u ®§L:1uf;-), (29)
where for an object U of C, we set UT = U and U~ = U*;
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(ii) for any 7 as in (i) and any 8 € m1(Cq), the following diagram commutes:

. ®:,;1u;31'y X (Lpr(,gfl))m
©iL1Ugh, ———= ®OL1Pg(s-1) (U5)) ————= @gp-1) (®721u5))

Yi Vi
VB Pa6—1) (V)
n Ej
n el ®j=1U3 s n j n el
®j:1u57j > ®j:1§0g(,8—1)(u ;) 909(/3_1)(@3':1 u’yj)7

(30)

where uj_ =ugp., ug_ :uf, — pga-1y(ui) is defined in Sec. 4.1, and the nota-
tion (¢q )n is defined in Sec. 2.4. In the case where m =n = 1 and 1 = e = +,
the diagram (30) simplifies to

ug,
UBy1 — Pg(B—1) (u"/l)

UB"/[ j@g(ﬁ—l)(v'y) (31)

’yl
Upyt ——" > 51 (ug)

When m = 0 and/or n = 0, we use in (29) and in similar formulas below the
convention that an empty monoidal product of objects is the unit object.

Any pre-coloring u of a G-graph 2 can be extended to a coloring of §2 as follows:
for each coupon @ of 2 pick a track v of () and a morphism v, as in (29). For all
B € m1(Cq)\{1}, the morphism vg, is determined uniquely from the diagram (30).
One may check that this gives a coloring (u,v) of €.

7.4. The source and the target

Consider a G-graph Q = (€2, g) with £ > 0 inputs and [ > 0 outputs. Forr =1,...,k
consider the path in Cq obtained as the product of the linear paths from the base
point z = (21, 29, 23) to (7, 22,0) and from (r, z2,0) to (r,d,0), where ¢ is a small
positive real number. This product is a z-path of the edge of 2 incident to the rth
input. The corresponding track is denoted v, and called the rth input track of Q2. See
Fig. 3 for an example. Also, we define a sign €, to be 4 if the edge of 2 incident to
the rth input is directed down (into R? x (—o0,0]) and to be — otherwise. Similarly,
for s = 1,...,1, the product of the linear paths from z to (s, z2,1) and from (s, 22, 1)
to (s,0,1) is a z-path of the edge of € incident to the sth output. The corresponding
track is denoted v® and called the sth output track of €. Set ¢® = + if the edge
of  incident to the sth output is directed down (into R? x [0,1]) and set % = —
otherwise. For example, for the ribbon graph of Fig. 3, we have: ey = —, g5 = +
and ! = +.
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1

Fig. 3. Input and output tracks.

Given a pre-coloring u of €2, the sequence ((uy,,€1),. .., (Uy,,€x)) is called the
source of the pre-colored G-graph (€2, u) and the sequence ((u1,e'),..., (u,1,e"))
is called the target of (€2, u). Here, u,, € Cy(,, ) and uys € Cy(, .y for all r,s.
Clearly,

€k — !

1
€1 g g
Hoyy =t By = Hare o P

7.5. Isomorphisms of colorings

Let Q = (9,9) be a G-graph. An isomorphism u =~ u’ of pre-colorings of Q is
a system of isomorphisms f = {f,:u, — ul},, where 7 runs over all edge-
tracks of €, such that for any v and any 8 € m(Cq), the following diagram
commutes:

UB,~

Uy Pg(p-1) (Uy)

fay Sag(gfl)(f'y) (32)

u/
By

Uy Pg(a-1)(uh).
Note that for 8 = 1 the commutativity of (32) follows from the definition of pre-
colorings and the naturality of ¢g.

Isomorphisms of pre-colorings may be used to replace the colors of edges with
isomorphic objects. Specifically, suppose that u is a pre-coloring of 2 and that for
each edge-track 7 of 2 we have an object u’, € Cy(,. ) and an isomorphism f, :u, —
u’,. Then the system {u’}, extends uniquely to a pre-coloring u’ of 2 such that
f={fy}y:u — v is an isomorphism of pre-colorings. Indeed, the morphisms uj
can be uniquely recovered from (32). For example, given u, we can replace the color
of any edge-track 7o via any isomorphism fo:uy, — V € Cy(,, ) keeping the colors
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of all the other edge-tracks. This is achieved by applying the procedure above to
the system u’ =V, f,, = fo and v/, = u,, f, =id for v # 7.

The following lemma shows that to specify a pre-coloring it is essentially enough
to color one track for every edge.

Lemma 7.1. Let E be the set of edges of Q. Pick a track . of e for all e € E.

(i) For any family of nonzero objects {ue € Cy(,u., y}eer, there is a pre-coloring u
of Q such that u,, = u. for alle € E.

(ii) Given pre-colorings u, u' of ), any system of isomorphisms {u,, — u._}eer
extends uniquely to an isomorphism u ~ u’.

Proof. Let us prove (i). For any track v of e € E, there is a unique element of
m1(Cq) denoted ey ~! such that (y.7 ')y = 7e. Set u, = Pg(rey—1)(Ue). For any
0 € m(Cq), consider the isomorphism

029871, 9(Yer ™) e Pa(s—1)Pa(rer—1) (te) = Py(yer—15-1) (te)-

The source and the target of this isomorphism are the objects ¢g3-1)(u,) and
ugy, respectively. Let ug, be the inverse isomorphism wug, — ¢g3-1)(u,). The
commutativity of the diagrams (15) and (16) implies that the functions v — wu,
and (v, #) — ug, form a pre-coloring of €.

Clearly, u~, =¢1(ue) is isomorphic to u. for all e € E. Replacing the col-
ors inductively as described before the lemma, we can ensure that u,, = u. for
all e.

Let us prove (ii). Fix a system of isomorphisms { fe:u,, — u/_}ecp. Consider
an isomorphism f:u — v such that f, = f. for all e € E. Replacing v and /8
in (32) by 7. and vy, !, respectively, we obtain that for any track v of an edge
ec F,

fﬁf = (U:/,Ygl,%)_lSOg(’yﬁ’y—l)(fe) U=t o FUy — ui/ (33)

This proves the uniqueness of f = {f,}-. To prove the existence of f, we define each
f+ by (33). The naturality of ¢o implies that f, = f. for all e € E. It remains to
verify the commutativity of the diagram (32) for all 3, . For v =1, the commuta-
tivity of (32) follows from the definition of f,. Any track v of e € E expands as .
with § € m(Cq) and the commutativity of (32) follows from the commutativity
of the cubic diagram in which two horizontal squares are the diagram (28) with
~ replaced by ~. and a similar diagram with u replaced by «/, while the vertical
isomorphisms relating these two squares are induced by f. O

Consider two colorings (u,v) and (u/,v") of Q with the same source and target so
that u., = u/, for all input/output tracks y of Q. By an isomorphism (u,v) ~ (u',v"),
we mean an isomorphism of pre-colorings f:u — u’ such that for any input/output
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track v of Q, we have f, =id:u, — v/, and for any coupon @ of 2 and any track
v of @, the following diagram commutes:

v )
mo, € Bl n e’
Qi=1Uy, @1 Uy

®iL ()

J
&y (i)
Here, we use the notation of Sec. 7.3 and set
£ =iy o and fy = (5)7 e - ()"

Note that if the diagram (34) commutes for one track v of @, then it commutes for
all tracks of Q. This follows from the commutativity of (30).

7.6. Color-equivalence

By a self-homeomorphism of R? x [0,1] we mean a homeomorphism R? x [0,1] —
R? x [0, 1] which is the identity outside a compact subset of R x (—o0,1] x (0,1).
Self-homeomorphisms of R? x [0,1] fix the base point z (for any choice of z as in
Sec. 7.2) and act on colored G-graphs in the obvious way. Two colored G-graphs
related by a self-homeomorphism of R? x [0, 1] are isotopic. It is clear that colored
G-graphs are isotopic if and only if there is a color-preserving deformation of one
into the other in the class of colored G-graphs.

Two colored G-graphs are color-equivalent if they can be obtained from each
other through isotopy and isomorphism of colorings. Color-equivalent colored G-
graphs necessarily have the same source and the same target.

We define a “stable” version of the color-equivalence using the following trans-
formation of colored G-graphs. Pick an edge of a colored G-graph (£, g,u,v) and
insert in this edge a new coupon () with one entry and one exit, see Fig. 4 where the
framing is orthogonal to the plane of the picture and is directed behind the picture.
This gives a ribbon graph ' containing €2 as a subset. The inclusion of the graph
complements i : Co — Cq is a homotopy equivalence. We now derive from the col-
oring (u, v) of (€, g) a coloring (u’,v") of the G-graph ' = (€', gi.. : m (Co) — Q).
Composition with ¢ transforms any edge-track v of Q' into an edge-track iy of §,
and we set u’, = u;,. Similarly, set uj , = u;, ()47 for 3 € m1(Coy). For any track
7 of a coupon of Q" distinct from @, set v, = v;,. For any track v of @, we have

— [2]

Fig. 4. Stabilization.
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iy! = 47y, so that ui{l = u), and we set v/, = id:u), — u/,. We obtain in this way a
colored G-graph Q' with the same source and target as 2. We call this construction
stabilization. Two colored G-graphs are stably color-equivalent if stabilizing them
several times we can obtain color-equivalent colored G-graphs.

7.7. Base points re-examined

The structure of a pre-colored G-graph on a ribbon graph 2 depends on the choice
of a base point z in Z = R x [2,00) x [0,1]. We can transfer this structure along
any path p in Z from z to 2’ € Z. Given a homomorphism ¢:m(Cq,2) — G and
a pre-coloring u of (€, g), we define a homomorphism ¢': 7 (Cq,2’) — G and a
pre-coloring u’ of (Q,¢") by ¢'(3) = g(pBp™"), ul, = uyy, and Uz, = Upsp-1,py fOr
any 3 € m(Cq,2’) and any edge-track v of  with respect to z’. This gives a pre-
colored G-graph (€, ¢, u’), the transfer of (2, g,u) along p. Clearly, transfers along
homotopic paths are equal. Since Z is contractible, we can thus move between base
points in a canonical way. Alternatively, we can consider Z as a “big base point”. As
a consequence, we shall suppress the base point from the notation for pre-colored
G-graphs. Similar remarks apply to colored G-graphs.

8. The Category G¢

In this section, we organize C-colored G-graphs into a monoidal category G = Ge.

8.1. The category G

The objects of G are finite sequences ((Uy,e,))*_; where k > 0,¢, = +, and U, is
a nonzero homogeneous object of C for r = 1,...,k. A morphism ((U,&,))k_, —
((U*,€%))L_, in G is the stable color-equivalence class of a colored G-graph having no
circle components and having the target ((Uy,e,))*_; and the source ((U*,e%))L_;.
We now define composition of morphisms in G. Consider two colored G-graphs (! =
(QF, gt, ut, v?))4=1 2 such that source(Q') = target(Q?) = ((U,,e,))*_,. Stabilizing if
necessary these graphs, we can assume that they have no edges with both endpoints
lying in the set of inputs and outputs. Let ¢! be the embedding of the strip R? x [0, 1]
into itself carrying any point (z1,2,z3) to (1,2, (z3 + 4 — 2t)/3). Then }(Q1)
(respectively, 12(2?)) lies in the upper (respectively, lower) third of the strip. In
the middle third R? x [1/3,2/3] we insert a row of k copies of the graph shown on
the right picture in Fig. 4 (with the orientation of the two edges in the rth copy
reversed to the upward direction whenever ¢, = —). The union, 2, of these k copies
with (1 (Q1)Ui?(Q?) is a ribbon graph without circle components. The van Kampen
theorem implies that there is a unique homomorphism g:m(Cq) — G such that
gt =gt :m(Cqr) — G for t = 1,2. Observe that any coloring (u, v) of the G-graph
Q = (,9) induces a coloring (utt,vi?t) of the G-graph Qf = (Qf, ¢?) for t = 1,2.
We show now that the given colorings of Q' and 2 determine a coloring of Q.
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Lemma 8.1. Let v(r) be the linear path in Cq leading from the base point to the
rth coupon in R? x [1/3,2/3], where r = 1,... k. There is a coloring (u,v) of the
G-graph Q such that

Uy(ry, = Uy(ryr = Up, vy =1d: U = Ur" forr=1,...k, (35)

and (wt,vit) ~ (ut,v?) for t = 1,2. Such a coloring of Q is unique up to isomor-

phism and for this coloring, source(2) = source(Q?), target(Q) = target(Q!).

Proof. For t = 1,2, denote by E* the set of edges of . For every edge e € E? fix
a track v, of e. We assume that if e is incident to an input (respectively, output)
of Qf, then . is the corresponding input (respectively, output) track of ¢. (Here,
we use the assumption that no edge of Q! has both endpoints among inputs and
outputs.) Note that the set of edges of Q can be identified with E' 11 E2.

We first prove the existence of (u,v). For e € E!, the composition (v, is a
track of the edge of Q containing i'(e). Clearly, g(p,t~,) = 9" (i, ). Lemma 7.1(i)
implies that there is a pre-coloring u of (€2, g) such that u,:., :uﬁfc for all e € B!

and t=1,2. The choice of {”ye}e ensures that if e € E' is incident to the rth
input of Q' then w1, =ul =U,, and if e € E? is incident to the rth out-
put of 92, then w,» v —u,y =U,. For t=1,2, consider the pre-coloring u.’ of QF.

By definition, (u'),, =u,,, =uf_ for all e € E'. By Lemma 7.1(ii), there is
an isomorphism of pre-colorings f!:ut® — ! extending the identity morphisms
{id: (ue')y, — ul_}eent. Next, we extend u to a coloring (u,v) of € as follows. Fix
a track v¢ for every coupon Q of Qf with ¢ =1,2. The morphism V.t is uniquely
determined by the condition that the isomorphism of pre—colorings ft carries Uytyg
to vm’ i.e. we have the commutative diagram (34) where u, v’ ,vﬂ{7 f are replaced by
w’, ut vl f*, respectively. This and (35) yield a value of v on one track for each
coupon of Q. The last remark of Sec. 7.3 shows that these values extend to a coloring
(u,v) of Q. Since f*:u’ — u' carries v,+,,, to v,YQ, the last remark of Sec. 7.5 implies
that f! carries vi! to vt. Thus, the coloring (u,v) satisfies all the requirements of
the lemma. The equalities source(§2) = source(2?) and target(§2) = target(Q!) follow
from the definition of (u,v).

Let us prove the uniqueness of (u,v). Suppose that (u,v) and (@,v) are
two colorings of satlsfymg the conditions of the lemma. Pick isomorphisms
Rt (wt,vit) — (uf,v?t) and e (!, vut) — (ut,v') for t=1,2. For e € E* consider
the induced isomorphisms

t

—t
t t t T
By, ttyey, = (ue’)sy, —ul, and by, W, = (W), — us, .

L"Ye L"Ye
Consider the composed isomorphisms
t \-17t L
{He = (th'yc) h’Lt'ye FUty, uLt’)’e}EGEt7 t=1,2-

By Lemma 7.1(ii), this system of isomorphisms extends to an isomorphism of pre-
colorings H :u — u. We claim that H is an isomorphism (@,7) ~ (u,v). Note that
all the input/output tracks of Q belong to the system {7.}., and the values of h!
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and 7' on these tracks are the identity morphisms of the corresponding objects of C.
Therefore, the same is true for H. A similar argument involving the inputs of Q!,
the outputs of 2, and the assumption Uy (r) = Uy (r) = id implies that the values of
H on the coupon-tracks {v(r)}*_; carry @ to v. By the last remark of Sec. 7.5, the
same is true for all coupon-tracks of the k coupons of Q lying in R? x [1/3,2/3].
Finally, the assumption that h' carries vi' to v' and k™ carries Ti' to v! implies
that the values of H on all coupon-tracks of  entirely lying in R? x [2/3,1] carry
7 to v. Using again the last remark of Sec. 7.5, we deduce the same for all coupon-
tracks of the coupons of ) lying in R? x [2/3,1]. The coupons lying in R? x [0,1/3]
are treated similarly. This proves our claim. O

We define composition of the morphisms in G represented by Q!, Q2 to be the
stable color-equivalence class of (2, ¢,u,v). This composition is well-defined and
associative. The identity morphisms are represented by colored G-graphs formed
by oriented vertical segments with constant framing (and no coupons).

8.2. Monoidal product in G

We define a monoidal product in G. The monoidal product of the objects of
G is the juxtaposition of sequences. The unit object is the empty sequence.
To define the monoidal product of morphisms represented by colored G-graphs
(QF = (QF, g%, ul,v?))¢—1,2 we proceed as follows. Positioning a copy of Q! to the
left of a vertical band {*} x R x [0,1] (with * € R) and a copy of Q2 to the right
of this band, and taking the union, we obtain a ribbon graph, 2. The complement
Cq of Q deformation retracts onto the wedge Cq: V Cq2. The van Kampen theo-
rem yields a homomorphism g:7;(Cq) — G whose restriction to m (Cqr) is equal
to g for t = 1,2. An analogue of Lemma 8.1 says that there is a unique (up to
isomorphism) coloring (u,v) of £ whose restriction to Cq: gives a coloring of QF
isomorphic to (uf,v?) for t = 1, 2. The stable color-equivalence class of (£2, g, u,v) is
the monoidal product of the morphisms represented by Q! and Q2. This monoidal
product is well defined and turns G into a strict monoidal category.

8.3. Remarks

(1) The coloring of € provided by Lemma 8.1 is defined only up to isomorphism.
Using the replacement technique of Sec. 7.5, we can find a representative (u,v) in
this isomorphism class such that (ucf, vit) = (ut,v?) for t = 1,2. The values of (u,v)
on the tracks and loops lying in the upper (respectively, lower) third of R? x [0, 1]
are given directly by (u’,v');—1 2. A similar remark applies to the construction of
monoidal product in Sec. 8.2.

(2) A useful class of ribbon graphs without circle components is formed by string
links (which generalize braids). By a k-string link with k > 1 we mean a system of k
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framed oriented segments embedded in R? x [0, 1] and meeting the boundary planes
at the points {(r,0,0), (r,0,1)},=1,.. k. The framing should be given by the vector
(0,0,0) at the endpoints where § is a small positive real number. Such a string
link is a ribbon graph without coupons. All the definitions given above for ribbon
graphs apply to string links. To turn a string link L (equipped with a principal
G-bundle on the exterior) into a C-colored ribbon graph it is enough to color the
input tracks of L with objects of C. This determines a C-coloring of L uniquely up
to color-preserving isomorphism.

9. Colored Diagrams

We introduce colored diagrams which will be used in the next sections to represent
colored ribbon graphs.

9.1. Graph diagrams

A graph diagram is a finite family of embedded coupons, immersed segments, and
immersed circles in R x [0, 1]. The segments and circles are called the 1-strata of
the diagram. We require that

(i) the coupons are oriented counterclockwise, disjoint, and lie in R x (0, 1);

(ii) the l-strata are oriented and have only double transversal crossings in Rx (0, 1)
with over/under-data at all crossings;

(iii) the set of the endpoints of the 1-strata consists of the points ((r,0))k_; (the
inputs) and ((s,1)),_; (the outputs) for some k,l > 0 together with certain
points lying on the distinguished (bottom) sides of the coupons and the oppo-
site (top) sides. The 1-strata do not meet the coupons other than at the end-
points and meet R x {0, 1} orthogonally at the inputs and outputs.

We do not require the sides of the coupons in the diagrams to be parallel to
the horizontal and vertical axes in R%. However, in the pictures below, we will have
only such coupons. By convention, the distinguished sides of the coupons in our
pictures are their bottom horizontal sides.

Each crossing ¢ of a graph diagram D gives rise to two points on the 1-strata
of D: the undercrossing c,, and the overcrossing c.,. The overcrossings lying on a
1-stratum d of D split d into consecutive segments called underpasses. If d contains
no overcrossings (i.e. d is embedded and lies below all the other 1-strata), then by
definition, d has one underpass equal to d.

A crossing ¢ of D determines three underpasses of (1-strata of) D: the underpass
¢ containing the point c,, and two underpasses ¢—, ¢ separated by the point coy.
One of the underpasses ¢—, ¢t is directed toward c,, and the other one is directed
away from c,y. We choose notation so that ¢t is directed toward c,, if the crossing
c is positive and away from c.y if ¢ is negative, see Fig. 5.
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c \ c c / c
C/A c c )>\\ et

Fig. 5. The underpasses associated with a crossing c.

9.2. Colorings of diagrams

A C-pre-coloring or shorter a pre-coloring U of a graph diagram D comprises two
functions. The first function assigns to every underpass p of (a l-stratum of) D
a nonzero homogeneous object U, of C called the color of p. The second function
assigns to every crossing ¢ of D an isomorphism

Ue:Ut — PlU.| (Ue-) (36)

called the color of c¢. The existence of such an isomorphism together with the fact
that the colors are nonzero objects implies that |U.+| = |U|~!U.-||U,| for all c. A
pre-colored diagram D has a source/target defined similarly to the source/target
of a pre-colored ribbon graph but using the orientations and the colors of the
underpasses of D adjacent to the inputs/outputs.

A C-coloring or shorter a coloring of D consists of a pre-coloring U and a function
V' assigning to every coupon () of D a morphism Vi in C satisfying the following
conditions. Let p1, ..., pm be the underpasses of D incident to the bottom side of @
enumerated from the left to the right (i.e. in the order determined by the direction
on 9@ induced by the orientation of Q). Set €; = + if p; is directed out of @ and
e; = — otherwise. Let p!,...,p" be the underpasses of D incident to the top side
of @ enumerated from the left to the right (i.e. in the order determined by the
direction on dQ opposite to the one induced by the orientation of Q). Set &/ = —
if p7 is directed out of @ and &/ = + otherwise. We require that

m n

111w,

i=1

Uyl and Vg € Home (972, U, @7, US)).

i — |
j=1

As above, XT = X and X~ = X* for any X € C. By a C-colored diagram or shorter
a colored diagram, we mean a graph diagram endowed with a C-coloring.

Examples of colored diagrams (and notation for them) are given in Fig. 6. Here,
we mark the overcrossings by dots and indicate the colors of the underpasses and
of the crossings. In the first six diagrams, X,Y, X', Y’ are any homogeneous objects
of C and ¢ is any isomorphism. The seventh diagram is formed by a coupon colored
by a morphism v € Home(®7,US", ?:1(Uj)53) and m + n vertical segments.
The diagrams in Fig. 6 are called elementary diagrams. The elementary diagrams
o4 and o_ should not be confused with the pictures used in Sec. 5 to represent
the G-braiding and its inverse. In the latter, the crossings are not decorated with
isomorphisms.
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Y \ X' wheh | ... | un,em)
P X = oy |(X) v
X \Y (Ul,&‘l) a | (U77175m)
o+ (X, Y, X' ) o_(X,Y,Y' %) D(v)

Fig. 6. Elementary colored diagrams.

An isomorphism U ~ U’ of pre-colorings of D is a system of isomorphisms
f=Afp: Up — Up}p, where p runs over all underpasses of D, such that for any
crossing ¢, the following diagram commutes

Ue
Ut o1, (Ue-)
fﬁl lW\Ugl(fc—) (37)
U, ————— oy (U.-).
Here, |U.| = |U;| because isomorphic nonzero homogeneous objects of C have the

same grading.

Let (U,V) and (U', V') be colorings of D with the same source and target.
Thus, U, = Uz/) for any underpass p of D adjacent to an input or an output of D.
An isomorphism (U, V) — (U',V’) is an isomorphism of pre-colorings f:U — U’
such that for any underpass p adjacent to an input or an output of D, we have
fp = 1d:U, — U, and for any coupon @ of D, the following diagram (in the
notation above) commutes:

Vo

Sl ®7_1US,

Y ®7_1 5 (38)
m ! \E€i V(’/Q n 7 \ed
®i:1(Upi> > ®j:1(Upj) .

By isotopy of a colored diagram, we mean an ambient isotopy of the dia-
gram in R x [0,1] keeping the inputs, the outputs, the orientations of 1-strata,
the over/under-data in the crossings, and all the colors. We call two colored dia-
grams color-equivalent if they may be obtained from each other through isotopy
and isomorphism of colorings. Color-equivalent colored diagrams necessarily have
the same source and the same target.
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9.3. The category D¢

We define a strict monoidal category D = D¢ of C-colored diagrams. This cate-
gory has the same objects as the category Ge from Sec. 8.1. The monoidal prod-
uct of objects and the unit object in D are the same as in Ge. A morphism
(Uryer))k_y — ((U*,e%))L_; in D is a color-equivalence class of C-colored dia-
grams with source ((Uy,&,))F_; and target ((U®,£%))._;. The identity morphism of
an object ((Uy,&,))F_; is represented by the colored diagram formed by k disjoint
vertical segments with source and target ((U,,e,))*_;. The composition of mor-
phisms represented by colored diagrams D, D’ is obtained by gluing D on top of
D’. The monoidal product of the morphisms represented by D, D’ is obtained by
placing D’ to the right of D. All axioms of a strict monoidal category are straightfor-
ward. By abuse of language, we shall make no difference between a colored diagram
and the corresponding morphism in D.

Lemma 9.1. If (C,¢,7) is a pivotal G-braided category, then there is a unique
strong monoidal functor F = (F, Fa,Fo):De — C such that:

e F carries any object (U, e.))*_, of De to @F_,Ugr;

Fo:1 — F(0) =1 is the identity morphism,

for any objects X = ((Uy,e.))r_; and Y = ((Vi, 1s))sy of D, the morphism
Fo (X, V) F(X)@F(Y) = F(XQY) is the canonical isomorphism

Uire - eUHe(Vi"e- - V" 2Ul'e - Ui V" ® - @ VM

determined by the associativity constraints in C;
o F carries elementary diagrams to the following morphisms:

F(Ax)=evx, F(Ax)=é&x, F(Ux)=coevx,

F(Ux)=coevyx, F(D,)=nv,
Flog(X,YV, X' ) = (idy @Y DNrxy: XV - Y@ X/, (39)
Flo (X, Y,V ¥) =13/ x([dx ©@¢): X @Y - Y @ X. (40)

Proof. The uniqueness of F is obvious because all morphisms in D¢ can be
obtained from the elementary diagrams using composition and monoidal product.
The existence of F is a direct consequence of the axioms of a pivotal category, cf.
Secs. 2.2 and 4.1. |

10. Colored Reidemeister Moves
10.1. The mowves

We define local transformations of colored diagrams called colored Reidemeister
moves. These moves preserve a diagram outside a 2-disk and modify the diagram
in the disk as shown in Figs. 7-11. There are four moves of type 1, four moves of
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e (X’ R — X’
¢ ¥
X 4){
¥ X = o x(X) P X = px)(X)
X X X X’
[0} (]
—_— X’) —_ X’
P (0
4 A
¥ X = px|(X)) P X' = px(X)

Fig. 7. Type 1 moves.

type 2, one move of type 3 and four moves of type 4. We now specify the behavior
of colorings under the moves.

Each type 1 or type 2 move creates two new crossings and a new underpass with
endpoints in these crossings. The color of this underpass may be an arbitrary object
of C such that there is an isomorphism 1 as in Figs. 7 and 8. Both new crossings
are colored with the same . Note that under the type 1 moves, | X| = |X’|.

X X Y X Y
/ﬂf
—_ Y< X'
Y
X Y
P X = oy (X)
X
X x( Yy
Y Y = x| (Y) P:Y = x| (Y)

Fig. 8. Type 2 moves.
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AX/HQD‘Y‘(X) A’)}H@|Z|(X)

B: X" — ¢ z(X") B X" — oy (X)

C:Y' = p7(Y)

Fig. 9. Type 3 move.

x| x2|... x» /Z x| x2|... x» z

1,2
v /"-/ ’L;bn U1
e
Yl YZ -l yn > Y'l Y2 Ym
2 R
o | o]

Z Xl X2 Xm Z/ Xl X2 Xm

Fig. 10. The first move of type 4.

vi| vz .. Yy X X = X"
1 X2 - n
X 1[}2" P
—_—
Yo |V X0 = Xo

Fig. 11. The third move of type 4.

The morphisms A, B,C, A’, B in the type 3 move are any isomorphisms in C as
indicated such that the following diagram commutes:

=~ B’ B
(ply/l(X) X" SO\Z|(X/)
lwy/m/) ¢12/(A) (41)
p2(1Y'1121) 2(1Z1,1¥])
Prve1p12)(X) 5 012y (X) = ppyyz1(X) < = 12101 (X).
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The equality |Z||Y'| = |Y||Z] follows from the existence of the isomorphism C' and
the fact that the objects Y, Y are nonzero.

To describe the type 4 moves, we use notation 1) and ¢~ introduced in Sec. 4.1.
Let @ be a coupon of a colored diagram with m entries and n exits. The first type 4
move pushes a Z-colored underpass behind @, see Fig. 10. The color vy of @ is
transformed into v1. There is only one requirement on vy, v; and the isomorphisms
i, 7. Namely, the following diagram should commute:

R b5t , m
®211X5i—1w>®?;1m171> )

vol » eu(v) (42)
R, (¥)*

P (721 Y;)

(®4)n

@n_y (Y9)® 2" pu((X)7) ou (@71 (XT)7).

Here, = |Z| € G and ¢;,¢/ = + are the signs determined by the ith entry and jth
exit of @ as in Sec. 7.3. The second type 4 move is obtained from the previous one
by inverting orientation on the Z-colored underpass (before and after the move)
and replacing j,v;, 17 in (42) by p=! = |Z|~1, 4,147, respectively.

The third type 4 move pushes a branch of the diagram in front of @) keeping the
color v of @, see Fig. 11. There is only one requirement on the isomorphisms ;, Pl
Set y; = |Y;|* € G and 3/ = |Y7|¥" € G for all i, . Suppose first that e; = &/ = +
for all 4,7, i.e. that all the segments adjacent to @@ are directed downwards. We
require that the composition

L 1y em(@"Th Py Pyn—1 (Y™ ?)

Xt ———————— oy (X" 1) S SN gayngoyn—l(Xn 2) -y
(43)

LPy”"'S"?(wl) ©n
v 5 Dyn Pyt (XO) —— Oylyn (XO)
is equal to the composition

wm Pym, (’LZ)m, ) Pym Pypm — (¢m72)

Xy —— 0y (X 1) = 0y Py 1 (Xim—2) > ()
Py Pys (Y1) Pm

. % @ym e Soyl (XO) — Soyl"'ym (XO)'
In the general case, whenever g/ = — (respectively, ¢; = —), one should replace
here 7 by 17 (respectively, replace ¥; by v,). Note that X = X,,,, X = X and
y'---y" =1y1---ym so that the source and target objects of both compositions are

the same.

The fourth type 4 move is obtained from the previous one by inverting orienta-
tion on the long branch (before and after the move). The rest of the notation and
the condition on the ’s are the same.

The moves inverse to the colored Reidemeister moves above are also called
colored Reidemeister moves.
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We shall need one more move on colored diagrams shown in Fig. 4 and called
stabilization. This move inserts a coupon inside a downward-oriented branch of an
underpass. If this underpass is colored with X, then both underpasses adjoint to
the new coupon are colored with X, and the coupon is colored with idx. The rest

of the diagram is preserved including the coloring.

Theorem 10.1. For any G-ribbon category C, the functor F : D¢ — C of Lemma 9.1

1s invariant under the colored Reidemeister moves and under stabilization.

The proof of this theorem is based on the following lemma:

Lemma 10.2. For any G-ribbon category C, the images under F :De — C of the

C-colored diagrams in Fig. 12 are:
F(Te(X, X' 4))) = F(TL(X, X', 4))

F(T-(X, X' ¥)) =

|-

T+(X7X/ﬂ/)): ¢p7
X

¢3X/—>SO\X\(X)

Cy
X
¥ X' — o x)(X)

(X, X',

= 0

F(TL(X, X',4)) = 0}

(here | X| =

(here | X|=|X"]),

o
T(X, X' )= Y

X
P X — px)(X')

b

iy

T (X, X', 1) = v
X

¥ X — px(X7)

X Y

o (X, Y, Y ) = ol (XY, X' Y) =
X Y
w:Y‘)W\X\ Z/JIXHSDM
X Y !

o (X, Y, Y ) = o (XY, X', 1p) =
X}/ \{Y
szﬂ(ple w:XH‘P\Y\

Y’\
\y

w:xﬂam( ")

o (X, Y, X' ) =

Fig. 12.
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F(o/ (X, YV, Y ) =79/ y.(idx- @ ), (47)

_ —
(idy- ®v )7rxy-,
Ty,* (ldX RY~ )

FloL(X, Y, X', ¢ (48)
(49)
(idy ® (™) ")7x- v, (50)
(51)
(52)

F(o" (XY, Y

F(o"

F(o”(X,Y, X',
/

(ldy* ® (w_i)il)TX*’yxw
TY_’l*,X*(idX* ®w_7)

¥))
)
T(X,Y, X))
¥))
F(o"(X,Y,Y' 1))

Proof. Equalities (45) and (46) follow from the expressions for the twist and its
inverse given in (23), Lemmas 5.2 and 5.5. Since o/, (X,Y,Y”, ) is color-equivalent

to
YA X
Wb )
X|Y

we obtain from the definition of F that
f(o‘f‘_(X, Y, Y/, w)) = (evX ® ¢71 ®idx*)(idx* R Ty, x ®idx)(idx*®y ®CO€VX).

Note that (@0);}@2(|X|;|X|_1)Y’§0|X\(a) = ¢_1 by (15) and (16) Now, by the
first equality of Lemma 5.1(d),

Ty xo = (evx ® (po)yrea(1X, X[y @idx-)
o) (ldX* ®T¢‘X‘,1(Y’),X ®idX*)(idX*®Lp‘X‘,1(Y’) ®CO€VX).

Therefore, we obtain (47). Equality (48) is proved similarly. Since ¢/ (X,Y,Y”, 1))
is color-equivalent to

X
\
\wX Y,
we obtain from the definition of F that
F(oL (X, YY", )
= (idyrgx ®@coevy)(idx- @ (idx @™ 1)1y, x @idx)(evx @' @idx«).

Note that qﬁ;l(w’)*gollx‘ (Y"™*) x| (dy+) = ¥~ by (8), where ¢ is the pivotal struc-
ture (9) of C. Now, by the second equality of Lemma 5.1(d),

T;/l*,x = (idyrex ®6V¢\X\(Y’*)(‘P|1X\(Y/*) ®idwx‘(Y’*)))

o (idy/* ® Ty 1+ X ® idtp‘x‘(yl*))(COQVY’* (9 idX@Lp‘X‘(Y/*))
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= (idy/*@)X ® eV<P|x|(Y’*)(90|1X\ (Y/*)QD\XI (py)® id<p|x|(Y/*)))

o (idy/* R Ty’ x ®id¢‘x‘(y/*))(c/(;aly/ ®idx®¢\x\(yl*))'

Therefore, we obtain (49). Equality (50) is proved similarly.
Since /' (X,Y, X’,1)), viewed as a morphism in De, is dual to o (X', Y, X, ),

F(o(X, Y, X',4)) = (txry)* (071 @idy~).
Using (8) and two expressions of (7x/«y)~! given by Lemma 5.1(d), we obtain
(txry)* = (idy= ® (o) xr- 02 (V|75 [Y ) x4 ) Ty (x0)+ (2]y | (X)) T @dy+ ).
Therefore,
]:(ai'(X, Y, XI71/)))
= (idy- ® (o) xr-22([Y [T Y] xr ) Ty (o), v+ 2y (X)) THR T @idy-)
00)xr 2 (Y71 Y )3 ) Ty (x00) = (7 @idy+)
)xr2([Y 5 1Y ) xm@py-1 (7)) 7 v+
= (1dy* ® w__)il)’?’xﬁy*.
This gives (51). Equality (52) is proved similarly. O

(
(
(
(

Proof of Theorem 10.1. We must prove that if two colored diagrams D1, Do are
related by a (colored) Reidemeister move or a stabilization move, then F(D;) =
F(D3). Invariance under stabilization is obvious. Invariance under the Reidemeister
moves of types 1 and 2 is a direct consequence of Lemma 10.2. For example, the
colored diagram T_ (X', X,¢) T (X, X’ %) on the right-hand side of Fig. 7(a) is
carried by F to 05 ¢ ~10x = idx; hence the invariance.

Let us prove the invariance of F under the Reidemeister moves of type 3. The
left-hand side of Fig. 9 is carried by F to

((dz ® C™Y )1y, z ®@idz) (idy ® (idz @ B™)7x/ 2) ((idy ® A7) 7x vy ®idz)
= (idz® cC ' Bil(p\Z\(Ail))(TY,Z ®‘P\Z\@|Y|(X)) (idy ®T‘P|Y\<X)7Z) (TX,Y ®idz).
The right-hand side of Fig. 9 is carried by F to
(idZ ® (idy/ ®B/_1)T)},Y’) ((le ®AI_I)TX7Z ®idy/) (ldy ® (ldX ®C_1)Tyyz)
=(idz®C @B oy (A7) (dg & To | 21(X),0) 2/ (V) (TX,2 ®idy L (v))(idx @ Ty, z).
We conclude using (41) and the quantum Yang-Baxter equality of Lemma 5.1(c).

Consider the first Reidemeister move of type 4 shown in Fig. 10. Using (40) and
(49), we obtain that F carries the colored diagram on the left to

i

f = (id®;};11(Xj)5j ®7'(Txln)e"7z) e (T(_)(ll)gl,z ®id®?:2(yj)s.7’)(idZ ® (@zn:l (1/’1)6 )UO)-
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Now, setting p = |Z]| and using (21), we obtain that
(id®?;f<xf>€j ® T(ximyen 2) 07 © (75 <X1>f ®‘d®":2<Yf>f")
=) oy £ (928 (@)X (X)),

1

Therefore, using (42), we obtain that

1

LX) (@02 () Yuo)

:T(gjji:l(Xj)sJ',Z(idZ®@M(U1)(4pu)m(X1 ... Xsm)(@’?;l %al))

P20 o 025 G (X

= (1 @idz) 7o, e, (idz ® (Pu)m (KT X5 (@1 ¥5))
(vl®ldz)(ld R XE’" Z) - (7, YEl 7 ®@ldgr x =) (idz ® (@12, %))

The latter morphism is the image under F of the colored diagram obtained by the
move. This proves the invariance of F under the first move of type 4. The second
move of type 4 is treated similarly using (47) and (52).

Consider now the third move of type 4 shown in Fig. 11. Using (39) and (48),
we obtain that F carries the diagram on the left to

= (ld no l(YJ)EJ ® (ld Yn)e n Q@ (gn)_l)TXn—l,(yn)s")
O ((ld(Yl (fl)*l)TXo,(Yl)sl ®id®y=2(yj)5j ) (idXo ® U),

where & = ¢ if & = + and ¢ = i otherwise. Set y; = |Y;|® € G and ¢/ =
[Y7|¢" € G for all 4,5 and

p=(yn - py2(€)) 0 o (pyn(€"7h)) 0™
Then using (20), we obtain
9= (id®y:1(y.7’)eﬂ' ®p7) (id®_?;f(w)sf ®Twyn—1---sayl(X"),(Y")E")
0 0 (Tyo vy ®idgy vy ) (idxo @ v)
= (id®y:1(y.7’)ej ®p7190r:1)7X°,®_?:1(Yj)“ (idxo ® )
= (U®P_1@;1)TX°,®§’;1YiEi'
Set

= (@ym T Py (fl)) -0 (@ym(fm—l)) o &m,s
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where & = 1; if &5 = + and & = 1; otherwise. Using the hypothesis ¢,p = @mo
and (20), we obtain

g=(ve Q_l%_nl)TXO,@;;lYfi
= (U® 971) (id®;’;glyf'i ®Twym_1~~wyl(Xo)ﬁ(Ym)EM) (TXO,Yfl ®id®;';2Yfi)
= (v@idx,, ) (idgp e ® (dygm ©6,)7x, vim)

o0.r' 0 ((idel ®§1—1)TX0’Y151 ®id®gzyis,i).
The latter morphism is the image under F of the diagram obtained by the move.
This proves the invariance of F under the third move of type 4. The fourth move
of type 4 is treated similarly using (50) and (51). O

11. The Functor F¢

In this section, we construct a canonical monoidal functor G — C. We begin by
discussing relations between colored ribbon graphs and colored diagrams.

11.1. Presentation of graphs by diagrams

Any graph diagram D represents a ribbon graph 2p in the obvious way. Namely,
we identify R x [0, 1] with Rx {0} x [0, 1] C R? x [0, 1] and slightly push the interiors
of the underpasses of D along the second axis into R x [0,1) x [0, 1] keeping the
rest of D. This transforms the segments, circles and coupons of D into the edges,
circle components and coupons of 2p, respectively. The framing of Qp is given by
the constant vector field (0,4d,0) with small § > 0.

Each underpass p of a segment d of D determines a diagrammatic track -y, of
the edge of 2 = (lp represented by d. The track -, is represented by the linear
path from the base point z € Cq to the point of d C  obtained from an interior
point of p by shifting along the framing vector. By Sec. 7.1, the track +y, determines
a (negative) meridian ., € m1(Cq) which we call the diagrammatic meridian of p
and denote by p,. If the underpass p is adjacent to an input/output of D, then ~,
is the corresponding input/output track of Q. In a similar way, a coupon @ of D
determines the diagrammatic track g of the corresponding coupon of 2 and the
associated diagrammatic meridian j1q = piy, € 71(Ca).

If D has no circle 1-strata, then there is a direct relationship between the color-
ings of D and 2 = Qp. Pick a homomorphism ¢:m (Cq) — G. Each pre-coloring
u of (€, g) induces a pre-coloring U = U(u) of D as follows: for every underpass p
of D, set Uy = u,, € Cy(,,) and for every crossing c of D, set

Ue= Uty * Uet = Uy = Uyt - 77 Pylne) (U’yc—) = @lUgl(Uc*)'

Here, we use the obvious equality v.+ = p, '~ . Similarly, a coloring (u,v) of (2, g)
induces a coloring (U = U(u),V) of D by Vo = v, for any coupon @ of D. We
say that the colored diagram (D, U, V) represents the colored G-graph (€, g, u,v).
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To sum up, the structure (2,g9) of a G-graph on Q = Qp together with a
coloring (u,v) of this G-graph induce a coloring (U, V') of D. The homomorphism
g:m(Cq) — G can be recovered from U by g(u,) = |Up| for any underpass p
of D. Though we shall not need it, note that the coloring (u,v) can be recovered
from (U, V) uniquely up to isomorphism. Thus, the colored G-graph (£, g, u,v) can
be reconstructed from the colored diagram (D, U, V') uniquely up to isomorphism.
Generally speaking, there are colorings of D that do not arise in this way from
colorings of 2. We emphasize that these constructions apply only to diagrams and
ribbon graphs without circle components.

Lemma 11.1. Let Q. be a colored G-graph having no circle components and rep-
resented by a colored diagram D, for r=1,2.

(i) If Q1, Qo are color-equivalent, then there is a finite sequence of colored Reide-
meister mowves, isotopies, and isomorphisms of colorings which transforms Dy
into Do.

(ii) If Q1, Qg are stably color-equivalent, then there is a finite sequence of colored
Reidemeister moves, isotopies, isomorphisms of colorings, stabilizations, and
moves inverse to stabilizations which transforms D1 into Ds.

Proof. Claim (ii) directly follows from Claim (i) and we focus on the latter. Recall
that the color-equivalence of colored G-graphs is generated by isomorphisms of
colorings and isotopies. It is clear that isomorphisms of colorings of graphs induce
isomorphisms of the induced colorings of diagrams. It remains to handle isotopies
of graphs.

The existence of a color-preserving isotopy of €21 into 2o implies the existence
of a color-preserving isotopy of 2 into {25 which keeps all the coupons parallel to
the strip R x {0} x [0,1] (this follows from the surjectivity of the inclusion homo-
morphism 71 (SO(2)) — m1(SO(3))). Projecting such an isotopy into R x [0, 1], we
obtain a finite sequence of colored Reidemeister moves and isotopies transforming
D, into Ds. Note that the type 3 moves determined by various orientations of
the branches may be expanded as compositions of the type 3 move of Fig. 9 and
the type 2 moves, see for instance [12]. Therefore, it is enough to consider only the
type 3 move shown in Fig. 9. We need to prove that the colorings of the diagrams
are transformed as in the definition of the colored Reidemeister moves. This is a
consequence of the following statement.

Claim. A Reidemeister move D — D on (uncolored) graph diagrams without circle
1-strata determines a self-homeomorphism f of R? x [0,1] carrying Q = Qp to
Q= Q5. Given a homomorphism g:7m1(Cq) — G and a coloring (u,v) of (2,g),
we transfer this data along f to obtain a homomorphism g:m1(Cg) — G and a
coloring (,7) of (Q,§). Then the diagrams D and D with the colorings (U, V) and
(U, V) induced from (u,v) and (,7) respectively, are related by the corresponding
colored Reidemeister move.
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In the proof we will use the action of f~! on the tracks: for a track 7 of an
edge/coupon of Q, its pre-image f~1(7) is a track of the corresponding edge/coupon
of . The isomorphism 1 (Cg) — 71(Cq) induced by f~* will be also denoted by
S~ In this notation g = gf~* and %, = w1, for any edge-track v of Q.

Consider the first type 1 move D — D in Fig. 7. Let p be the underpass of D
modified by the move. The corresponding piece of D contains two new crossings ¢, e
and splits into three underpasses ¢~, e~ and ¢ = ¢ = ¢ = e™. Since f (V.- ) = Vp,

Ue- =y = Up=1(y,_) = Uy, = Up.

Similarly, f~1(y.-) =7, and U, = U,. Also,

Ue =Wzt S Upa(urty p=1(y,0) = Upm1(ugt), f1 () = Upgty, . = Ve

Thus, the move (D,U,V) (D,U,V) is as shown in Fig. 7, where X = U,

= (7 = (7 and ¢ = U, = U,. The other type 1 moves are treated sunllarly

A type 2 move D — D creates two new crossings ¢, e such that ¢ = e. The
U-colors in the top and bottom of D coincide because U = U o f~Y, f =id near the
top/bottom, and the U-colors in the top and bottom of D coincide. The equality
U, = U, follows from the formulas . = i, and f~(v.-) = f~(7.-). The latter
holds because either ¢~ = e~ or both tracks f~!(y.-) and f~1(7.-) are equal to
the diagrammatic track of one and the same underpass of D.

Consider a type 3 move D — D. Denote by ¢ the crossing of D colored with C
and by ¢ the crossing of D colored with C’. It is clear that f carries .- and [y,
to v~ and p ,, respectively. Therefore

C'=Us=1u —U.=C.

_ = U ,_ — _ = U, —
N’ygl/’”/(c/)— f I(Nvgl/):f 1(”/(0/)7) N'@l,“fc—

Let p, ¢, be the underpasses of D colored with X, Y, Z, respectively. Thus, X = u,,,
Y =u,, and Z = u,,. Set y=1,, d = u;ql and 3 = u;rl. Then

2(12], 1Y) x 012/(A)B = 02(9(B871), 9071w, 0g(5-1) (6.5 us,5y = Ugs,q

where the last equality follows from the commutativity of the diagram (28) and we
use the formulas |Z| = g(871), |Y| = g(671). Let p/, ¢/," be the underpasses of D
colored with X, Y, Z, respectively. A similar computation gives

p2(IY'],12]) x oy (A)B" = tigrsr

where ' = /17 Lol = '“7 L and 4" = 7. Clearly, f~1(3'8') = 8§ and f~1(v') = 7.
Hence wgs 4+ = ugs, which proves the commutativity of the diagram (41).
Consider now a type 4 move D +— D. Denote by @ the coupon of D subject
to the move and by @ the corresponding coupon of D. We begin with the first
type 4 move. We must prove that the morphisms vy, v1, 1;, 17 determined by the
colorings (u,v) and (@,v) turn (42) into a commutative diagram. Let 3 € 71(Cg)
be the inverse of the diagrammatic (negative) meridian of the Z-colored underpass
of D. Clearly, g(3~') = |Z] = p € G. Let v be the diagrammatic track of Q.
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We shall identify the diagram (42) with the diagram (30) associated with these 3,
~ and the coloring (@,7) of D. For i = 1,...,m, the track v; derived from v as
in Sec. 7.3 is the diagrammatic track of the Y;-colored underpass of D and 5 is
the diagrammatic track of the Xj;-colored underpass of D. Therefore Uy, = Y; and
Ug, = X; for all 4. For j = 1,...,n, the track 7/ derived from v as in Sec. 7.3
is the diagrammatic track of the X7-colored underpass of D and so Uy = X 7 for
all j. To compute ug,; = uf-1(3s), note that f~1(B97) is the diagrammatic track
of the Y/-colored underpass of D. Hence ug,; = Y/ for all j. Thus, the diagrams
(30) and (42) have the same objects. It follows directly from the definitions that
the morphisms are also the same. Now, the commutativity of (30) implies the
commutativity of (42). The second type 4 move is treated similarly using in the
role of 3 € m(Cg) the diagrammatic meridian of the Z-colored underpass (rather
than its inverse as above). One should also use the identity @s-1 5, = w5, which
holds for any ¢ € m(Cq) and any edge-track -y of Q. This identity is a consequence
of the definition of a coloring of €.

Consider the third type 4 move D +— D. We need to prove the equality of the
compositions (43) and (44). Let 77 be the diagrammatic track of the X7-colored
underpass of D for 7 = 0,1,...,n. By the definition of the induced coloring,
X7 =u.; for all j. Note that v =3"17" where § € (Cq) is the diagrammatic
meridian of Q. We claim that the composition (43) is equal to ug-1 ,0: X" —
©qg(3)(X°). Suppose first that e/ = + for all j = 1,...,n. For n = 1 our claim
follows from the definition of 1!'. For n > 2 the claim is deduced by induction
from the commutativity of the diagram (28). The case ¢/ = — can be reduced
to the case ¢/ = + by inverting the orientation of the Y7-colored underpath and
changing its color to (Y7)*. Indeed, under this transformation the color of the
jth crossing ¢ = w1 i : X771 — ¢, (X7) (where y = [YJ]| € G) changes to
Uy i1 : X — @, -1 (X771) and we need only to observe that

o1 = = UT o =i
Uy it = Uy y—tni = Uy=1 55 = PJ.

X, —
©g(u)(Xo) where p € m(Cg) is the diagrammatic meridian of @ and 7o is the

A similar computation shows that the composition (44) is equal to -1 -,

diagrammatic track of the Xy-colored underpass of D. Tt remains to observe that
Xm=X" Xg=X° and

Up=1yg = Uf=1(u=1),f~1(y0) = UB~1,40-

The fourth type 4 move is treated similarly. |

11.2. Functor F¢

For any G-ribbon category C, we define a functor F¢:Ge — C as follows. Consider
the category of colored diagrams D = D¢ and let D be its quotient by the equiva-
lence relation on the set of morphisms generated by the colored Reidemeister moves
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and stabilization. The category D has the same objects as D, and the structure of a
strict monoidal category in D induces a structure of a strict monoidal category in D.
Theorem 10.1 implies that the strong monoidal functor F:D — C of Lemma 9.1
is invariant under the colored Reidemeister moves and stabilization. Therefore, F
induces a strong monoidal functor F:D — C.

Consider the strict monoidal functor P:Ge — D that carries each object to
itself and carries a morphism represented by a colored G-graph into the morphism
represented by a diagram of this graph with induced coloring. Lemma 11.1 implies
that P is well defined. Set

FC:?PZQCHC.

Since P is strict monoidal and F is strong monoidal, their composition F¢ is strong
monoidal. We summarize the relationships between these functors in the following
commutative diagram:

D¢
— F

Ge P\u C
Fe

11.3. Remarks
(1) The category D¢ becomes a pivotal G-graded category by setting

k
U =[]0 and U* = ((Ur, —ex).- ... (U1, —¢1))

r=1
for any object U = ((Uy,¢e1), ..., (Ug,ex)) of D, and

(Ur,e1)  (Uk,er) (Uk,—ex) (Ur,—€1)

evy = s coevy =

~

(Uk, —ex) (U, —€1) (Ur,e1)  (Ur,ex)

(Uk, —ex) (Ur,—e1) (Ur,e1)  (Uk,er)

eNVU = s C/O\e/VU =

(Ur,e1)  (Ukser) (Uk,—ex) (Ur,—¢1)

where the orientation of the arcs is uniquely determined by the signs ¢;.
It is easy to check that the functor 7 = F¢: D¢ — C is grading preserving and
pivotal. We have

‘7:1(((]1?51)7"'7((]”’8”)) :fl(Uﬂdan)@ ®f1(U1761)a
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where

idy: U = U if e; =+,

fl(Ui7€i) = { _
(eVU,i ® ldU:*)(ldUl ®CO€VU1,*) :U; — Ul** ife; = —.
Similarly, using colored G-graphs represented by the diagrams above, one can
turn Ge into a pivotal G-graded category, and then the functor F¢:Ge — C is
grading preserving and pivotal.
(2) Using appropriate colored braids, one can define a G-braiding in G¢ turning
Ge into a G-ribbon category so that the functor Fe preserves both the G-braiding
and the G-twist. We shall not use this G-braiding.

12. Conjugation of Colorings

In this section, we define conjugation of colorings and describe the behavior of the
functor F¢ :Ge — C under conjugation.

12.1. Conjugation of colorings

We can conjugate G-graphs and their colorings by any n € G. For a G-graph
(Q,9), its n-conjugate Q7 = (9, ¢") is the same ribbon graph  endowed with
the homomorphism ¢"” = n~tgn:m(Cq) — G. Given a pre-coloring u of (Q,g),
we define the n-conjugate pre-coloring u” of (§2,g") by ul = @y(uy) € Cyn(,, ) for
any edge-track v of Q. For 3 € m1(Cq), we define the isomorphism ug,V tug, —

©gn(a-1)(ul) as the composition of the isomorphisms

on(up.) ©2(1,9(871))uy
e, = n(sy) — e 051 () —————= @g(a-1yp (1)

(p2(9"(B71)muy) !

= Pngn(p-1)(Uy) Pan(p-1)Pn(Uy) = @gn(a-1)(ull).

Lemma 12.1. u" is a pre-coloring of Q.

Proof. Consider the commutative diagram obtained by setting o = n and X = u,
in (16). Since (¢0)u, = u1,4, we deduce that uy = (00)e, (u,) = (P0)ur-

We now check the commutativity of the diagram (28) where g and u are replaced
by ¢" and u", respectively. It follows from the definitions that

Pgn(a-1) (U Juf 5, = 0gna-1)((92(g" (071 My ) ™H) © gn(a-1)(02(1: 9(671))u,)
0 @gn(a-1)Pn(Usn) © (02(g"(B7)s n)us, )

0 02(1, 9(B7"))us, © Pn(up,sy).
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We rewrite the composition of the three leftmost morphisms in the last row using
twice the naturality of ¢. This gives

pana-— (g ) ouh s =@ ((02(9"(07 1), Muy) 1) 0 @gn(a—1) (02(1,9(67))u,)
0 (229" (671 Mg, 51, (un)) "' © Py(a—1)n (s
0 02(n,9(B™1))us, © Pn(up,sy)
= (a1 ((£2(9"(07)smuy) 1) 0 @gna—1)(p2(n,9(671))us,)

o (209" (B71), Mg 51y w)) " 0 2(0,9(B7 ) 51 )
© Py Pg(p—1)(Us.y) © Pn(Up.sy)-

Using the commutativity of (28) for g, wu, we replace the composition of the two
rightmost morphisms with ¢y, (¢2(g(37), 9(67))u, )™ 0 @y (ugs,). At each of the
next three steps we use (15). First, we replace

021987 o, 51, () © P (#2(9(B71), 9671 ) !
with
(22(g(B )1, 9(0"))uy) " 0 02(n, g(6 871 ))u, -

Next, we replace

(a1 (@200, 9067, ) 0 (92(9" (B Mg, 1 u) ™

o (p2(g(B~ )M, g(6™ "))y )

with (p2(97(871), 9(67)n)w, )" Finally, we replace

Pana-1)((p2(g" (07 1),m)uy) 1) 0 (02(9"(B7), 9(0 M), )
with

(p2(g"(B71), 0" (6™ ))un) ™ 0 (w2(g" (67 671 m)uy)

The resulting expression is nothing but (02(g"(87"),¢"(671))un) ™"

n
Ugs ~ O
It is clear that the source and the target of 2" can be computed from the source
and the target of {2 by applying ¢,, to the objects of C while keeping the signs.
For a coloring (u,v) of (£, g), we define the n-conjugate coloring (u",v") of
(©,¢g™). Here u" is the pre-coloring defined above, and for any coupon-track v of €,
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the morphism v’ is defined as the composition of morphisms

m . ®iP;1 m i (Yn)m m . P (vsy)
@71 (n(ty,))* ———— &2 o (u3) o (®7Ly u5))
o (o) j ®; 0’

(@1 uS)) —— T @y oy (uE)) = @y (g (1))
Here, we use notation of Sec. 7.3 and set
idg, (uy,) 1o (ty,) = opluy,)  if e =+,
90717(7“6%):‘»077(“%) = (pn(uy,))* ife;=—

and similarly

!
-

J id%](uw) 2o (Uys) = op(tys) if &7 =
p =

@%,(ij)xﬂn(uf,j) — (pn(uqy))* ifed = —.

In the case where m = n = 1 and ¢; = €' = +, the definition of vl simplifies to

v = Pn(vy)-

Lemma 12.2. (u",v") is a coloring of Q.

Proof. We need to prove the commutativity of the diagram (30) for all ~, 3. For
simplicity, we restrict ourselves to coupon-tracks v with m =n =1 and e; = ¢! =
+. Then the commutativity of (30) follows from the commutativity of the diagram

(p2)7 !

‘Pn(uﬁm) E—— ‘Pn%pg(ﬁ—l)(um) —Z - ‘Pg(ﬁ—l)n(u“u) —_— @g"(ﬁ—l)@n(u%)

Ug“’l PP yp—1)(vy) Pa(—1yn(V7) Pgn(s—1)(v7)

enlug 1) (p2)~"

n(Uugyr) ——= Pnpg(p-1)(uy1) — Pg(p-1)n(Uy1) ———> ©gn(g-1)Pn(Uy1).
Oa

Isomorphisms of colorings can also be conjugated in the obvious way and yield
isomorphisms of the conjugate colorings.

12.2. Behavior of F = F¢ under conjugation of colorings

Theorem 12.3. Let C be a G-ribbon category, and let 2 be a colored G-graph with
source (ui,€1), ..., (ur,ex) and target (u',eb),..., (ul,e"). Let Q" be the colored G-
graph obtained from Q through conjugation by n € G. Then, the morphism F (")
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1s equal to the following composition

®TP:1 k (en)k k

P (F(S2))
®F_1 (o (up))T ————>=®F_ @y (uir) ——— oy (®p—yusr) —

sred (‘Pn)71 sre® Rsp°® s s
on (@2 (W)T) ———= &l p,(w®)"") ———= &L (g (u))*,

where p, = idy, () if er =+, pr = @y (ur) if €, = — and similarly p* =idy, (e of
e =, p° = py(u) if e* = —.

For k =1 = 0, we obtain F(Q7) = (¢,)5 " ¢4 (F(2))(#y)o. In particular, if the
morphism F(Q) € End¢(1) is a scalar multiple of idg, then F'(27) = F(Q).

Proof. We give the main lines of the proof leaving the details to the reader. First
of all, a coloring (U, V') of an arbitrary graph diagram D determines an n-conjugate
coloring (U", V") of D as follows. For an underpass p of D, set U}) = ¢, (U,). For
a crossing ¢ of D, let U7 be the composition

on(Ues) e2(m|UcDu,

Ucn+ = ‘Pn(Uc+)

onpiu,|(Ue- P10y (Ue-)

(e2(1U2 1w )~

= ¢yuz|(Ue-) Punen(Ue-) = oun (UL).
The coloring V" of the coupons of D is defined similarly to v7 in Sec. 12.1. The
colored diagram (D,U", V") is denoted by D".

We next define the conjugation endofunctor ®, of the category Dc. It trans-
forms an object ((Uy,&,))k_; of D¢ into the object ((¢,(Uy),&r))F_;. A morphism
of D¢ represented by a colored diagram D is transformed into the morphism rep-
resented by D". It is easy to see that @, is a strict monoidal functor. Comparing
the values on the elementary diagrams, one easily observes that for any morphism

F:((Ur,e.))k_ — ((U*,e%))L_; in De, the following diagram commutes:

k ®TP:1 (en)k

®r—1 (09 (Ur)* ————= @1 (g (UF7))

Fo,(f) on(F(f))

@n(®’f:1 Usr)

s s ®5(P5)71 s\e® (@n)l s\e®
1 (0g(U®)T —————=®L_104((U")7) o (®imy (U°)7).
Here p, =idy, (v,) if &r = +, pr = ¢, (Up) if &, = — and similarly p* = idy, () if

e =4, p* =, (U%) if e* = —.

Observe finally that if a colored G-graph 2 is represented by a colored diagram
D, then Q" is represented by D". Now, the claim of the theorem directly follows
from the commutativity of the previous diagram. |
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13. Invariants of Special G-Graphs

In this section, we derive from a G-ribbon category C an invariant of so-called special
colored G-graphs (such graphs possibly have circle components). This construction
will be crucial in the definition of the surgery HQFT.

13.1. Insertion of coupons

The functor F of Lemma 9.1 does not apply to colored G-graphs having circle
components. In particular, this functor does not apply to knots and links. We show
how to transform circle components into graphs with coupons and to derive from
F invariants of some G-links.

Let (I',g:m1(Cr) — G) be a C-colored G-graph with circle components (¢,),.
We transform IT" into a colored G-graph Qr without circle components as follows.
Insert into each circle component ¢, of I' a coupon ), with one input and one
output, see Fig. 13. In this figure, @), is oriented counterclockwise, its bottom base
is the bottom horizontal side, and the framing is given (on the boldface portions)
by the vector field orthogonal to the page of the picture and directed behind the
page. In this way, ¢, is transformed into a union of ), and an oriented segment e,
for all r. These coupons and segments together with I'\U,. ¢, form a ribbon graph

= Qp. Clearly, 71(Cq) = m1(Cr) so that the homomorphism ¢g:m (Cr) — G
induces a homomorphism 7 (Cq) — G also denoted g.

The given coloring of I" determines a coloring of all tracks of 2 except the tracks
of the edges (e, ), and the coupons (@, ),. By colorings of 2 we shall mean only the
colorings extending this “partial coloring”. To color the tracks of (e;), and (@),
fix a z-path v(r) for each @, and set pi, = iy () € 71(Cq). Pushing the endpoint of
~(r) on C~2T toward the top (respectively, bottom) base, we obtain a z-path for e,., cf.
Sec. 7.3. Let 4" and , be the corresponding tracks of e,. Clearly, pyr = b, = pr
and v, = A" where A\, € m(Cq) is the longitude of ¢, determined by ~y(r) and
the orientation and the framing of £,. Given objects (X, € Cy(,,))r, Lemma 7.1
yields an edge-coloring u of € such that w, = X, for all r. Note that u gives
an isomorphism uy—1 _ tuyr — ¢4z, (X;) for all r. We color each coupon-track
7(r) with the composition of a morphism X, — ¢4(x,)(X;) with (uy-1_ )~". By
Sec. 7.3, this extends to a coloring of (2.

~
-
~
-

~
S
QO y
S

Fig. 13. Insertion of a coupon.
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13.2. Special colored G-graphs

We call a colored G-graph (I',g) special if it has no inputs, no outputs, and the
longitudes of all circle components of T' lie in Ker g. An example of a special G-
graph is provided by the trivial G-knot defined as a framed oriented unknot in S3
with trivial homomorphism of the fundamental group of the complement to G. A
more general example is provided by any framed oriented link £ C S3 endowed with
homomorphism 7 (S3\¢) — G carrying the longitudes of all components of ¢ to 1.
We call such links special G-links.

Let (I',g:m(Cr) — G) be a special C-colored G-graph with circle compo-
nents (¢,),-. As in Sec. 13.1, consider an edge-coloring u of Q = (Qr, g) such that
Uy, = X; € Cyy, for all r. Consider the isomorphism uy—1 1ty — @400, (Xr) =
©1(X,). Given morphisms (f, € End¢(X,))"_;, we color each v(r) with the mor-
phism

Uy(r) = (UA;l,»yT)il(QOO)XTfr:u’yr 7 Uyt (53)

This extends uniquely to a coloring (u,v) of Q. The resulting colored G-graph is
denoted Q(X,, fr,v(r)). Different choices of u lead to isomorphic colored G-graphs
so that F(Q(X,, fr,7(r))) € Ende(1) does not depend on the choice of u. The map
(Xoy fr)r = F(QUX,, fr,v(r))) extends by k-linearity to an n-linear form

®"_y Ly(u,y — Ende(1), (54)

where L is defined in Sec. 4.3. Generally speaking, the form (54) depends on the
choice of the tracks (7(r)),.. Before exploring this form note that every coloring (u, v)
of Q = (Qr, g) is obtained as above from a unique family of associated morphisms
(fr € Ende (X)), computed by f, = (@0);{111/\;1,%1)7(7,).

We now study the form (54). We begin with the following lemma.

Lemma 13.1. For any r = 1,...,n and any f., h, € Ende(X,) the morphism
frhr — hyfr € Ende (X)) lies in the annihilator of (54).

Proof. Assume for simplicity that I' = £ is a knot so that » = n = 1; the general
case is similar. Set @ = 7 (Cr) = m(Cq). Let v = (1) be the fixed track of
the coupon @ = @1 of  and let u = puy, € 7 be the associated meridian. We
must prove that F(Q(X, fh,v)) = F(QX,hf,v)) for any object X € Cg4(,) and
any endomorphisms f, h of X. This equality is well-known in the non-crossed case;
the proof goes by replacing the fh-colored coupon with two coupons colored with
f, h, then pushing the h-colored coupon along I' so that it comes on top of the f-
colored coupon and finally replacing the two resulting coupons with an h f-colored
coupon. These operations preserve the invariant F' and yield the required equality.
The crossed case is similar but needs a more careful treatment as follows.

A schematic picture of the colored G-graph Q = Q(X, fh,~) is shown in Fig. 14.
Here, 4! (respectively, 1) is the track of the edge e = e; of 2 obtained by slightly
pushing 7 to the top (respectively, bottom) of Q. We have v = A~1y, where A € &
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Fig. 14. The ribbon graphs  and €'.

is the longitude of I" determined by ~y. By definition, the coloring (u,v) of {2 satisfies
Uy, = X and vy = (ur-1.,,) " (po)x fh: X — Y where Y = u,1 € Cypy)-

We replace the coupon @) with two coupons as in Fig. 14. The resulting ribbon
graph ' has two edges d,d" where d C e. We identify m (Cq/) = 7 in the obvious
way so that ' becomes a G-graph. The track v determines in the obvious way the
tracks p, n of the two coupons of Q' so that p! = n; and p; = 1, n* = 4! (as tracks
of €). The edge-coloring u of €2 induces an edge-coloring of ' as follows. Each track
of d in Cq/ determines a track of e in Cn and keeps its u-color; the same holds for
the isomorphisms determined by pairs (an element of 7, a track of d). We color the
track p* = m; of d’ with X. This data extends to an edge-coloring u’ of 2. Note
that u, = u,, =X and uj, = u,1 =Y. The edge-coloring v’ extends to a coloring
(u',v") of Q' such that v/, = h and v}, = (ux-15,) " (¢o)x f: X — Y. Note for the
record that n' = A\=!p; and ui\,l’pl =Up-1.,:Y = 01(X).

Pushing the upper coupon along d’ and the lower coupon along d, we obtain a
self-homeomorphism j of R? x [0, 1] transforming ' into itself and permuting its
edges and coupons. The homeomorphism j induces the identity automorphism of
7 = m(Cq). Transporting the coloring (u’,v’) of ' along j we obtain a coloring
(u”,v") of Q. Note that j transforms the tracks n,m,n" into the tracks p, p1, pt,
respectively. Therefore “;)/1
Consider the coupon-track ¢ = j(p). Clearly, ¢* = j(p') and ¢(; = j(p1). Thus,
u’C’1 = u;ﬂ =X, u’c’1 = u;,l = X and vé’ = v;, = h. The definition of j implies that
the tracks ¢! and p; of d are equal: ¢! = py.

Next, we contract the edge d’ of Q' to obtain the same G-graph Q as before.
The coloring (u”,v") of ' induces a coloring (,7) of Q such that @,, = u, = X,

11,11

Uy = u%’l and Ty = vyv : X — Uy = u%’l. It follows from the definitions that all

these transformations of {2 preserve the invariant F':

F(Q,u,v) =F(Q,u',v")=F(Q v ") = F(Q,u,0v).

:u’n1 =X, u, =, :Yandv;,’:v;]:XﬁY.

The first equality is obtained by applying the definition of F' to a diagram
representing 2 and chosen so that the diagrammatic track of @ is equal to v (such a
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diagram exists for any ). The third equality is proven similarly. The second equality
holds because the colored G-graphs (2, u/,v") and (', u”,v"”) are isotopic.

To finish the proof, we identify the colored G-graph (Q, @, v) with Q(X, hf,~). It
is enough to show that the endomorphism, x, of X associated with the coupon-track
v of (2,w,7) is equal to hf. By definition,

(@0) Ur—1,4, Uy = (@0) Uy plv;’v;’ = (900) - 1 1”2;“7/7
= (p0)x R —1 v (Ur=1.4,) " (o) x f = (00) x U5 -1 vy (uh—1 )" o) x f,

where the last equality follows from the formulas ¢! = p; and ul .y a =u\_, o=

ux-1,,. Using the equality of coupon-tracks n = A~ I¢ and the definition of a
coloring, we obtain

Ul)ﬁ*l,glvg(ug{fl,gl)_l = ux,17clvg,1<(ux,17cl)_l = Pg() (UZ) = ¢1(h).

Hence z = (g@o))_(l w1(h) (po)x f=hf. =

Lemma 13.1 implies that the n-linear form (54) induces an n-linear form
®:L:1 Lg(,ur) — ]'__‘Dnd(;(]l)7 (55)

where L = L(C) is the fusion algebra of C (see Sec. 4.3). Given a family of vectors
w = (Wa € La)aca, We can evaluate (55) on ®;'_; wy(,, ) This yields an element of
Endc (1) denoted F(T, g,w, (y(7))y)-

We say that w is conjugation invariant if pg(wa) = wgep-1 for all a, 8 € G,
where ¢: G — Aut(L) is defined in Sec. 4.3.

Lemma 13.2. If w is conjugation invariant, then F(T,g,w,(y(r)),) does not
depend on the tracks (y(r)), and F(T,g,w) = F(T,g,w,(y(r))-) is an isotopy
invariant of the special colored G-graph (T, g).

Proof. We need to prove that for any (5, € m1(Cq))r=1,... n,

FT,g,w,(v(r)r) = F(L', g,w, (B-7(7))r)- (56)
Pick any objects (X, € Cy(,,))r and their endomorphisms (f;),. For all r, set
Ve =¢y5-1(Xr) €Cyg, 571 and Jr = -1y(fr) € Ende(Y7).

Consider the colored G-graphs ¥ = Q(X,., f, fy(r)) and \I” = Q(Y,, jr, Bry(r)) with
the same underlying G-graph 2. We construct below an isomorphism of colored
graphs ¥ ~ U’. The existence of such an isomorphism implies that F(¥) = F(?’).
Since this holds for all choices of X, f,, the forms (55) determined by the coupon-
tracks (v(r)), and (8,v(r)), are obtained from each other via the isomorphism

Br=19g(871) " Or=1 Lg(ur) = Or=iLlig(p, 57

By assumption on w, this isomorphism carries ®;_;wy(,,) into ®f:1wg(ﬁrmﬂ;1).
This implies (56).
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Denote the colorings of ¥ and ¥’ by (u, v) and (u’,v’), respectively. By definition
Uy, = Xy and uj =Y, =@, 5-1)(Xy) for all r. The isomorphisms

hg, . = U,y P UGy, — @g(ﬁ;l)(uwr) = u%r%

with » = 1,...,n extend uniquely to an isomorphism of edge-colorings h:u — u/'.
That h transforms v into v’ follows from the fact that h conjugates vg () and
v%r () for all r. To verify this fact, fix » and note that it is enough to show that
hg,~, = Ug, ~, conjugates the morphisms f € Endc(ug,,) and f’ € Endc(uj ., ) =
Endc(Y) associated with vg -y and %r ()7 respectively. By the definition of v/,
we have [/ = j, = @g(ﬁr—l)(fr). The homomorphism f is computed by

f= (‘/’O)Jﬁlw U, AT 871 By UBry (1) (57)

The naturality of ¢¢ yields the commutative diagram

UBy ,yp

Uy Po(s ") (uy,)

(WO)“BTW (Cpo)@g(ﬁr—l)(u'yr) (58)

P1(ug,.,~,.)

p1(up,~,) <P1<Pg(;3;1)(uw)~

-1

Expanding (¢o),,  from this diagram and substituting in (57) we obtain that

ug, ., f = p2(1, 9(5;1))uw #1 (uﬁmw)ugrx:lf}:l,grwvﬂw(r) = Ug At A, UBry(r):

Here, the first equality holds because the inverse of the right vertical arrow in (58)

is ©2(1,9(6;1))u,, and the second equality follows from the commutativity of (28).
Consider now the following commutative diagram of isomorphisms:

F'=¢ 51, (fr)

u T
Ug,yy ——— > @9(5;1)@%)

Py(or) ()

VB,(r) jsag(ﬁrl)(vwr)) ng(ﬁrl)((wo)uw) (59)

: Poorh(Uart )
Ui T () S )

Spg(ﬁ;l)‘ﬁl(uw)-

Here, the left square is the diagram (30) for the rth coupon of € (this coupon
has one entry and one exit so that ® and @5 do not come up). The right square
is commutative by (53). Note that the inverse of the rightmost vertical arrow is
equal to 2(g(6:1), 1)u,, - The commutativity of the diagram (28) implies that the
composition of the isomorphisms in (59), going from the bottom left to the bottom
right and then to the top right is equal to Ug =1 - Therefore,

/
f uﬁr7’)’7‘ = uﬁ,«)\;17’)’rvﬁr7(r) - uﬁrv’)’rf' O

Lemma 13.3. Assume that the unit object 1 is simple and w is conjugation invari-
ant. Then F(T',n~tgn,w) = F(T, g,w) for alln € G.
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Proof. We prove a stronger claim which concerns an arbitrary, not necessarily
conjugation invariant family of vectors w = (wo € La)aec. Consider the family
w" = (W]l € Lq)a defined by wll = ¢, (wya,-1) for all a. We claim that

F(T,n  gn,w", (v(r)r) = F(T,g,w, (7(1))), (60)

where (y(r)), are the coupon-tracks as above. If w is conjugation invariant, then
w' = w and the lemma follows.

To prove (60), consider the G-graphs Q = (Qr,g) and Q7 = (Qr,n"1gn). Let
Yy Xy, fr be as above. The n-conjugation transforms the colored G-graph (Q,u,v) =
Q(X;, fr,y(r)) into a colored G-graph (Q2"7,u",v"). The endomorphism of u? =
©n(uy,.) = (X, associated with (u7,v7) is computed from the definitions to be

-1
(‘PO)% (Xr)uz;l P (Vy(r))

= (0) g xy (P2(Lmx ) T o2, 1), 0n (uyo1, Jen(u s (90)x, fr)

= (90) o x) (P2(L)x,) o2 (n, D x, o0 ((90)x, e (fr) = @y (fr)-

Therefore, (Q7,u?,v7) = Q"(@,(X,), on(fr),v(r)). Since Ende(1) = kidg, the
remark after the statement of Theorem 12.3 implies that

F (on(Xr), on(fr),7(r))) = F(Q7,u",0") = F(,u,v) = F(UXy, fr,7(r)))-
Extending by linearity to the fusion algebra, we obtain (60). |

Lemma 13.4. If w is conjugation invariant and w’, = w,—1 for all a € G, then
F(T,g,w) does not depend on the orientation of the circle components of T .

Proof. This lemma follows from a stronger claim which says that F(Q(X,,
fry7y(r))) is preserved when the orientation of ¢; is reversed and simultaneously
the pair (X;, fi; € End(Xj;)) is replaced with (X, f* € End(X}")) (keeping the rest
of the data). This claim is well-known in the non-crossed setting. The proof in the
crossed setting is left to the reader as an exercise. |

13.3. Remark
The morphism (uy -1 %)*l(gao)xr : X, = u,, — uyr appearing in (53) may be rewrit-
ten as (gao);/lru)\rmr. Indeed,
u)\;l,%(‘»oo);lru/\mv” = (‘PO);}(XT)SOI(u,\;l,%)ukm*ﬂ
= (@o);ll(xr)(%(l, Dy x)Hw0)x, = (90)x, -

These equalities follow respectively from the naturality of (g, the commutativity
of the diagram (28) and the commutativity of the left triangle in (16).
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13.4. The canonical vectors

Consider a G-ribbon G-fusion category C and its fusion algebra L = @nee Lo (see
Sec. 4.3). For a € G, set

wg =Y dim(i)(i) € La,
i€ly
where I, is a representative set of simple objects of C,. The vectors wg do not
depend on the choice of I, and are called the canonical vectors of C. Since the
action of any # € G on C transforms simple objects in C, into simple objects
in Cgop-1 and preserves their dimension, the family we = (w§)acq is conjugation
invariant. Since the duality V' +— V* preserves the dimension and transforms simple
objects in C, into simple objects in C,-1, we have (w§)* = wg_l for all @ € G.

By Lemma 13.2, we determines an isotopy invariant F'(I', g, wc) of a special col-
ored G-graph (I', g). Under the canonical identification Ende(1) =k (see Sec. 6.1),
F(T', g,wc) € k. By Lemmas 13.3 and 13.4, this invariant does not depend on the
orientation of the circle components of I' and is preserved under conjugation of g.

In particular, we can apply these definitions and results to any special colored
G-link (¢, g). For example, let £* C S® be a trivial G-knot with framing +1 (see
Sec. 13.2). Formulas (45) and (46) imply that F(¢*,we) = AL, where the scalars
Ay, A_ are defined in Sec. 6.3.

14. The Surgery HQFT

In this section, we fix a G-modular category C with rank D.

14.1. An invariant of G-manifolds

By a closed connected G-manifold we mean a closed connected oriented 3-
dimensional manifold whose fundamental group is endowed with a conjugacy class
of homomorphisms to G. A closed G-manifold is a disjoint union of a finite num-
ber of closed connected G-manifolds. A homeomorphism of closed G-manifolds is
an orientation preserving homeomorphism whose action in 7 commutes with the
maps to G (up to conjugation).

We derive from C a multiplicative k-valued homeomorphism invariant 7¢
of closed G-manifolds. The multiplicativity of 7¢ means that 7o(M I N) =
Te(M)71c(N) for all closed G-manifolds M, N.

It suffices to define 7¢ for closed connected G-manifolds. Present such a manifold
M as the result of surgery on S% = R3U{oo} along a framed link ¢ C R? x (0, 1) with
#¢ components. Thus, M is obtained by gluing #/¢ solid tori to the exterior Ey of
¢ in S3. Pick a base point z € Ey\{oo} with big second coordinate. Composing the
inclusion map m (Ey, z) — m (M, z) with a homomorphism 71 (M, z) — G in the
given conjugacy class, we obtain a homomorphism g:m (Cy, z) = 71 (Ee, 2) — G.
We orient £ in an arbitrary way. It is clear that the G-link (¢, ¢g) is special in the
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sense of Sec. 13.2. Recall the elements A, A_ € k from Sec. 6.3. By Sec. 13.4, the
family we of canonical vectors of C induces an isotopy invariant F'(¢, g, we) € k. Set

Te(M) = Ai(e)D_”(z)_#é_lF(é,g,wc) c k,

where o(¢) is the signature of the compact oriented 4-manifold By bounded by M
and obtained from the 4-ball B* by attaching 2-handles along tubular neighbor-
hoods of the components of £ in S® = 9B*. Here B, is oriented so that 0B, = M
in the category of oriented manifolds.

Theorem 14.1. 7¢(M) is a homeomorphism invariant of the G-manifold M.

Proof. We should prove that 7¢(M) does not depend on the choices made in
its definition. By Sec. 13.4, F'({, g,w¢) is preserved under conjugation of g and is
independent of the choice of orientation of . Therefore, 7¢ (M) does not depend on
the choice of g in its conjugacy class and on the choice of orientation of /.

To prove the independence of the choice of ¢ we use Kirby’s theory of moves
on links. By [8], any two framed links in S? yielding via surgery homeomorphic 3-
manifolds can be related by certain transformations called Kirby moves. There are
moves of two kinds. The first move adds to a framed link £ C S® a distant unknot ¢+
with framing +1; under this move the 4-manifold By is transformed into B,#CP2.
The second move preserves By and is induced by a sliding of a 2-handle of By
across another 2-handle. We need a more precise version of this theory. Denote the
result of surgery on a framed link ¢ C S® by M,. A surgery presentation of a closed
connected oriented 3-manifold M is a pair (a framed link ¢ C S3, an isotopy class
of orientation preserving homeomorphisms f: M — M,). Note that any framing
preserving isotopy of £ onto itself induces a homeomorphism jg: M, — M,. For
any f: M — M, as above, the pair (¢, jof) is a surgery presentation of M; we say
that it is obtained from (¢, f) by isotopy. The first Kirby move £ + ¢/ = ¢ 11 (*
induces a homeomorphism j; : My — M, which is the identity outside a small 3-ball
containing ¢*. The second Kirby move ¢ — ¢ induces a homeomorphism By — By
which restricts to a homeomorphism of boundaries js : My — M,/. In both cases we
say that the surgery presentation (¢, jif: M — My) (where k = 1,2) is obtained
from (¢, f: M — My) by the kth Kirby move. The arguments in [8], Sec. 2 show that
for any surgery presentations ({1, f1: My — My, ) and (2, fo: My — My,) of closed
connected oriented 3-manifolds My, My and for any isotopy class of orientation
preserving homeomorphisms f: My — M, there is a sequence of Kirby moves and
isotopies transforming (¢1, f1) into (Lo, fof).

The 3-manifold M, obtained by surgery on a special G-link (¢ C S3,g:7m(Cy) —
() is a G-manifold in the obvious way. (Warning: by definition, G-links are oriented
but their orientations play no role in the surgery construction.) A Kirby move on
a special G-link (£, g) yields a special G-link (¢ C S3,¢":m1(Cyr) — G) where ¢’
is the composition of the inclusion homomorphism 71 (Cpr) — w1 (M), the isomor-
phism 71 (My) = 71(My) induced by the homeomorphism j: M, — My as above
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and the homomorphism m (M;) — G induced by g. The results of the previous
paragraph imply that if surgeries on two special G-links in S® yield homeomorphic
G-manifolds, then these G-links can be related by a finite sequence of Kirby moves,
isotopies, and orientation reversions on link components.

It is clear that 7¢(Mp) is invariant under isotopies on ¢. To prove the theorem it
is enough to show that 7¢(My) is invariant under the Kirby moves on £. Under the
first Kirby move £ — ¢/ = ¢ 11 ¢* the meridian of ¢* is contractible in M and the
G-link ¢’ is a disjoint union of £ and the G-unknot ¢* with framing 4-1. Therefore,

F(E/,WC) = F(€i7wc)F(€7 wc) = Ai F(f,wC).

This formula and the equalities #¢' = #(+1,0(¢') = o(¢) £ 1, Ay A_ = D? imply
that Tc(Mz) = Tc(Mg/).

We consider the second Kirby moves in the restricted form studied by Fenn and
Rourke [6]. The Kirby—Fenn—Rourke moves split into positive and negative ones.
It is explained in [14] that (modulo the first Kirby moves) it is enough to consider
only the negative Kirby—Fenn-Rourke moves. Such a move £ — ¢’ replaces a piece
I" of £ lying in a closed 3-ball B3 by another piece I' lying in B and having the
same endpoints. Here, I' = B3N /{ is a system of k > 1 parallel strings with parallel
framings and IV = I'~ Ut, where I'™ is obtained from I" by applying a full left-hand
twist and ¢ is an unknot encircling I" and having the framing —1. (This move £ — ¢’
can be expanded as a composition of k£ Kirby moves of type 2 and a single Kirby
move of type 1.) Note that #¢' = #£+ 1 and o(¢') = o(¢) — 1. We must prove that
F(l',we) = A_F(¢,wc). This will follow from a “local” equality which we now
formulate.

Let T' be a trivial braid on k strings in R? x [0, 1] with constant framing. Let
I"=T"Ut C R? x [0,1] be the framed tangle obtained from I' as above. Fix an
arbitrary orientation of IV and the induced orientation of T'. Let us transform I'’ into
a ribbon graph Q@ = I'" U, by inserting a coupon in ¢ as in Fig. 13. Clearly, Ct =
(R?x[0, 1])—T is obtained from Cp— = (R?x[0,1])—T'~ by surgery on t C Cp-. This
yields inclusions Cq C Crr = Cr-\t C Cr. (The reader uncomfortable with open
manifolds may replace the compliments by exteriors throughout the argument.)
These inclusions induce a bijection g «» ¢’ between homomorphisms g : 7 (Cr) — G
and homomorphisms ¢’ : 71 (Cq) = 71 (Cr/) — G carrying the homotopy class of the
(—1)-longitude of t to 1 € G. Any coloring u of the G-graph (T, g) induces a coloring
u’ of the G-graph (€, ¢’) such that

(a) the values of ' on the edge-tracks of '™ C Q are equal to the values of v on the
corresponding edge-tracks of I' (and the same for the isomorphisms associated
with pairs (a track of I'", an element of m1(Cq));

(b) € is colored as in Sec. 13.2 using the canonical color w = we.

Clearly, the colored G-graphs I' and  have the same source and the same tar-
get. The properties of the functor F':Ge — C imply that to prove the equality
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F(',wec) = A_F({,wc), it is enough to show that for any orientation of IV and
any g, u as above,

F(Q,¢,v)=A_F(,g,u). (61)

Let us prove this formula. Let (Uy,e1),..., (Ug, k) be the source of I'. Using the
standard technique of coupons colored with identity morphisms, we can reduce the
proof of (61) to the case where I' is a single string oriented from top to bottom
and colored with ®*_,Us" € C. Similarly, using a decomposition of this object as
a direct sum of simple objects, we can further reduce ourselves to the case where
the input and the output of T' is a 1-term sequence (V,+) where V is a simple
object of C. Suppose that V' € C, where a € G. By the argument above in this
proof, F(IV,g’,u’) does not change if we invert the orientation of ¢. Therefore, we
can assume that t is oriented so that its linking number with the string I" is equal
to +1. Clearly, F(I', g, u) = idy. Since V is simple,

F(Q,¢,u) = (dim(V))fltr(F(Q, q, u/)) idy .

To establish (61), we need only to prove that tr(F(€,¢,u')) = dim(V)A_. By
construction,

F(Q, 4 ) Z dim(i) F(Dy), (62)

i€l 1

where D; € D¢ is the C-colored diagram of Fig. 15 and I,-: is a representative
set of simple objects of C,-1. Let i € I,-1. From Lemmas 9.1 and 10.2, we obtain
tr(]—'(Dl)) = tr(Ti V) with

Tiv = (9 ® 0y, ) _1(1) va(V) (ldwa(v)®¢) Vo (V (1d ® ).

Using the naturality of 7, Lemma 5.3, and (14), we obtain
-1
Tiv = (0 @00) 70 () ou ) Ton(V)paip 1 ()P @ 9)

= 05y (1)2(5, V) ((0)i ® (w0)v) = gy (v0)iev = vigy,

Fig. 15. The C-colored diagram D;.
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where {vy = (p0)x'0x: X — X}xec, is the (standard) twist of C; (see Sec. 5.4).
Recall that for any simple object X of Cy1, vx = vxidx for some vx € k*. Let I
be a representative set of simple objects of C;. Since i ®@ V' € Cy splits as a (finite)
direct sum of objects of I, there exists a finite family of morphisms (p,:i®V —
lasQa:ta — 1@V )aea such that

id;gv = Z Gapa and peqy = 6qpid;, for all a,b e A.
acA

Then

tr(F(Dy)) = tr(vigy) = tr(vgyidigyv) = Z tr(v;5y Pada)
acA

= Z tr(pav;IQa) = Z Vizltr(paQG) = Z Vijll dim(iq)

acA acA acA

=3 ) ytdim(k) = Y NEyw ! dim(k).
kel acA kel

Finally, using (62) and (26) we obtain
tr(F(Q, g, u’) Z Z dim(4 1@\/% Y dim(k)

i€l 1 k€l

= Z Z dim(i NV®k*Vk dim(k)

kel i€l 1

¥ (Z dim(j)Néw) vt dim(k)
kel

J€la

=Y dim(V @ k*)y; " dim(k)
kel

=Y dim(V)y, ' (dim(k))* = dim(V)A_.
This concludes the proof of Theorem 14.1. O

14.2. Remarks

(1) The 3-sphere S3 has a unique structure of a closed G-manifold. It can be
obtained by the surgery on S along an empty link. Hence, 7¢(S%) = D~

(2) We have 7¢(S1 x S2, f) = 1 for any homomorphism f: 71 (S! x S?) ~ Z — G.
Indeed, the closed G-manifold (S! x S2, f) can be obtained by the surgery on S®
along an unknot ¢ with framing 0 and with homomorphism g:m (Cy) — G carrying
a meridian of £ to a certain aw € G. Then U(E) =0 and by (27),

(8 x S%, f) = D2F((,g,we) =D~* Y (dim(i))*> = D~ dim(C,) =
i€l
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(3) The definition of 7¢(M) can be rewritten in a more symmetric form:
Te(M) = DM TIATTT AT R(, g, we),

where by (M) = #¢ — 04 — o_ is the first Betti number of M and oy (respec-
tively, o_) is the number of positive (respectively, negative) squares in the diagonal
decomposition of the intersection form Hs(By) x Ho(B;) — Z. The invariant

DM (M) = AT ALV F(L, g, we)

does not depend on the choice of D.

(4) The invariant 7¢ (M) can be defined without the invertibility assumption on
the S-matrix of C. It suffices to require the weaker condition AL, A_ € k*. The
invertibility of the S-matrix is needed in order to extend 7¢ to an HQFT in the
next subsection.

(5) Let C be a spherical G-fusion category such that the dimension of the neutral
component is invertible in the ground ring k. In [19], we use state sums on skeletons
of 3-dimensional manifolds to derive from C an invariant |-|¢c € k of closed G-
manifolds. If k is an algebraically closed field, then the G-center Z5(C) of C is a G-
modular category (see [20, Theorem 5.1]) and Theorem 14.1 produces an invariant
Tz (c) of closed G-manifolds. In a sequel to the present paper, we will prove that
Tze(0) = |le-

(6) Suppose that the ground ring k is an algebraically closed field and consider
a group epimorphism 7: H — G with finite kernel K such that #K # 0 in k.
Consider the G-modular category C™ of Sec. 6.4 and set D = #K. Then for any
closed G-manifold M, we have

_ #r. " (fmr)

e (M) 7K

ek,

where
7, : Hom(m (M), H)/H — Hom(m (M), G)/G

is the map induced by 7 and fj; is the conjugacy class of homomorphisms 71 (M) —
G underlying M. This computation of 7¢= (M) results from the description of C™
as a G-center (see Sec. 5.5), the previous remark, and the computations in the
appendix of [19].

14.3. The HQFT

Consider again a G-modular category C with rank D. The invariant 7¢ of closed
G-manifolds extends to a 3-dimensional HQFT with target an Eilenberg-MacLane
space K (G, 1), i.e. to a symmetric monoidal projective functor from the category
of G-surfaces and 3-dimensional G-cobordisms Cob® to vecty. For precise defi-
nitions of G-surfaces, G-cobordisms, and HQFTs, we refer to [19]. The resulting
projective functor Cob® — vecty, is still denoted by 7¢. The construction of 7¢ is
given in [17, Chap. VII] when C belongs to the class of strict G-modular categories
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On 3-dimensional HQFT I

Fig. 16. A skeleton of a genus n surface.

considered there; the same method applies to G-modular categories in the sense
of this paper. The projectivity of 7z may be described more precisely: the homo-
morphism associated with any G-cobordism obtained by gluing two G-cobordisms
is equal to the composition of the corresponding homomorphisms times an integer
power of Ay ATl € k*. If A, = A_, then 7¢ is a functor. If A, # A_, then the
multiplicative ambiguity of 7¢ may be resolved by enriching G-surfaces (and in par-
ticular the bases of G-cobordisms) with Lagrangian subspaces in real 1-dimensional
homology. The projective functor 7¢ lifts to a symmetric monoidal functor from the
category of such enriched G-cobordisms to vecty, cf. [17, Chap. VII].

For completeness, we give an explicit expression for (the isomorphism type of)
the k-module 7¢(X) € vecty associated with a (closed connected) G-surface ¥ of
genus n > 0. Such a surface carries a base point, e, and a homomorphism 71 (3, ) —
G. If n = 0, then 7¢(¥) ~ k. If n > 1, then a skeleton of ¥ is formed by 2n
loops beginning and ending at e as in Fig. 16. Let oy, 01, ...,an, B, € G be the
evaluations of the given homomorphism 71 (2, a) — G on these loops, as indicated
in the figure. Note that H?:l ai_lﬂi_laiﬁi = 1. Given a representative set I cq Zo
of simple objects of C, we have

7c(X) = ®ezp, ... Jnezs, Home (Le, 0o, (J1) @1 @ - @ pa, (Jy) @ ). (63)

This formula directly follows from the definition of 7¢ (%) and allows one to compute
ranky 7¢(X) via a version of the standard Verlinde formula, cf. [17].
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