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Introduction

My work concerns quantum topology. Quantum Topology has its inception in
the discovery by Jones (1984) of a new polynomial invariant of knots and links.
This invariant was rapidly connected with quantum groups, introduced by Drinfeld
and Jimbo (1985), and methods in statistical mechanics. This was followed by
Witten’s introduction of methods of quantum field theory into the subject and the
formulation by Witten and Atiyah (1988) of the concept of topological quantum
field theories (TQFTs).

Two fundamental constructions of 3-dimensional TQFTs, which give rise in par-
ticular to scalar invariants of closed 3-manifolds, are due to Reshetikhin-Turaev
[RT] and Turaev-Viro [TV]. The RT-construction is widely viewed as a mathemat-
ical realization of Witten’s Chern-Simons TQFT, see [Wi]. The TV-construction is
closely related to the Ponzano-Regge state sum model for 3-dimensional quantum
gravity, see [Ca]. How these two constructions are related? Before addressing this
question, let us briefly recall the definitions of the RT and TV invariants.

The Turaev-Viro approach uses as the main algebraic ingredient spherical fusion
categories. A fusion category is a monoidal category with compatible left and right
dualities such that all objects are direct sums of simple objects and the number of
isomorphism classes of simple objects is finite. The condition of sphericity says that
the left and right dimensions of all objects are equal. The form of the TV-construc-
tion widely viewed as the most general is due to Barrett and Westbury [BW1] who
derived a topological invariant |M |C of an arbitrary closed oriented 3-manifold M
from a spherical fusion category C with invertible dimension. The definition of |M |C
goes by considering a certain state sum on a triangulation of M and proving that
this sum depends only on M and not on the choice of triangulation. The key alge-
braic ingredients of the state sum are the so-called 6j-symbols associated with C.

The Reshetikhin-Turaev approach uses as the main algebraic ingredient modular
categories, see [Tu1]. A modular category is a spherical fusion category endowed
with braiding satisfying a non-degeneracy condition (invertibility of the S-matrix).
The RT-construction associates with every closed oriented 3-manifold M a numer-
ical invariant τB(M) from a modular category B. The definition of τB(M) consists
in presenting M by surgery along a framed link in the 3-sphere and then taking a
certain linear combination of colorings of this link by simple objects of B.

The first connections between the Reshetikhin-Turaev and Turaev-Viro construc-
tions were established by Walker [Wa] and Turaev [Tu1]: if B is a modular category,
then it is also a spherical category with invertible dimension and the Reshetikhin-
Turaev and Turaev-Viro invariants are related by:

(1) |M |B = τB(M) τB(−M)

for every oriented closed 3-manifold M , where −M is the 3-manifold M with op-

posite orientation. If B is a unitary modular category, then τB(−M) = τB(M) and
so |M |B = |τB(M)|2.

But in general a spherical category need not to be braided and so cannot be used
as input to define the Reshetikhin-Turaev invariant. However, for every monoidal
category C, Joyal and Street [JS] and Drinfeld (unpublished, see Majid [Ma1])
defined a braided monoidal category Z(C) called the center of C. A fundamental
theorem of Müger [Mü2] says that the center of a non-zero dimensional spherical
fusion category C over an algebraically closed field is modular. Combining with
the results mentioned above, we observe that such a C gives rise to two 3-manifold
invariants: |M |C and τZ(C)(M). In 1995, Turaev conjectured that these invariants
are equal, i.e., for any closed oriented 3-manifold M ,

(2) |M |C = τZ(C)(M).
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The conjecture (2) was previously known to be true in several special cases:
when C is modular [Tu1, Wa], when C is the category of bimodules associated
with a subfactor [KSW], and when C is the category of representations of a finite
group. Note that for a modular category B, Formula (1) can indeed be derived
from Formula (2) since the category Z(B) is then braided equivalent to the Deligne
tensor product B ⊠ B, where B is the mirror of B, and therefore Formula (2) can
be rewritten as |M |B = τB⊠B(M) = τB(M) τB(M) = τB(M) τB(−M).

The connecting thread of my research in recent years was the proof of the con-
jecture (2). In this survey, we present a proof of this conjecture and the tools we
developed to this end, in particular the theory of Hopf monads. Most of the achieve-
ments were done in collaboration with Alain Bruguières [6, 8, 9, 10] or Vladimir
Turaev [12].

Formula (2) relates two categorical approaches to 3-manifold invariants through
the categorical center. This relationship sheds new light on both approaches and
shows, in particular, that the Reshetikhin-Turaev construction is more general than
the Turaev-Viro state sum construction.

My work on the subject, which is going to be described in more detail below,
can be roughly summarized as follows:

1) Kirby elements, Hopf diagrams, and quantum invariants [6, 7]
Given a spherical fusion category C, how can we compute τZ(C)(M)? Using the al-
gorithm given by Reshetikhin and Turaev is not a practicable approach here, as that
would require a description of the simple objects of Z(C) in terms of those of C, and
no such description is available in general. What we need is a different algorithm
for computing τZ(C)(M), which one should be able to perform inside C, without
reference to the simple objects of Z(C). Let B be a (non-necessarily semisimple)
ribbon category B admitting a coend C, which is a Hopf algebra in B (see [Ma2]).
We define in [7] the notion of Kirby elements of B by means of the structural mor-
phisms of C. To each Kirby element α is associated a topological invariant τB(M ;α)
of closed oriented 3-manifolds M . This construction is made effective by encoding
certain tangles by means of Hopf diagrams [6], from which the invariants τB(M ;α)
can be expressed in terms of certain structural morphisms of the coend C. If C ad-
mits a two-sided integral Λ, then Λ is a Kirby element and τB(M ; Λ) is equals to the
Lyubashenko invariant [Lyu2], and to the Reshetikhin-Turaev invariant τB(M) if B
is moreover B is semisimple. Hence, when C is a spherical fusion category, we may
compute τZ(C)(M) provided we can describe explicitly the structural morphisms
of the coend of Z(C). In other words, we need an algebraic interpretation of the
center construction. This motivated the introduction of the notion of Hopf monads.

2) Hopf monads and categorical centers [8, 10, 11]
Recall that a monad T on a category C is a monoid in the monoidal category of
endofunctors of C. Then one defines a category CT of T -modules in C. Following
Moerdijk [Mo], a bimonad on a monoidal category C is a monad T on C which is
comonoidal: it comes with some coproduct and counit making CT monoidal and
the forgetful functor UT : CT → C strict monoidal. There is no straightforward
generalization of the notion of antipode to the monoidal setting. When C is an
autonomous category (that is, a monoidal category whose objects have duals), ac-
cording to Tannaka theory, one expects that a bimonad T be Hopf if and only
if CT is autonomous. This turns out to be equivalent to the existence of a unary
antipode. That is the definition of a Hopf monad we gave in [8]. For example, any
comonoidal adjunction between autonomous categories gives rise to a Hopf monad.
This definition of Hopf monad is satisfactory for applications to quantum topology,
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as the categories involved are autonomous, but it has some drawbacks for other
applications: for instance, it doesn’t encompass infinite-dimensional Hopf algebras
since the category of vector spaces of arbitrary dimension is not autonomous. That
is why, in [11], we generalize the above definition: a Hopf monad on an arbitrary
monoidal category C is a bimonad on C whose fusion operators are invertible. Hopf
monads generalize Hopf algebras to arbitrary monoidal categories. On a monoidal
category with internal Homs, a Hopf monad is a bimonad admitting a binary an-
tipode. For example, Hopf algebroids are linear Hopf monads on a category of
bimodules admitting a right adjoint. It turns out that certain classical results on
Hopf algebras extend naturally to Hopf monads, such as Maschke’s semisimplicity
criterion and Sweedler’s theorem on the structure of Hopf modules. Also the no-
tion of Hopf monad is suitable for Tannaka reconstruction: for example, any finite
tensor category is the category of finite-dimensional modules over a Hopf algebroid.

The whole point of introducing Hopf monads is that they provide an algebraic in-
terpretation of the center construction, see [10]. The center Z(C) of an autonomous
category C is monadic over C (if certain coends exist in C). Its monad Z is a quasi-
triangular Hopf monad on C and Z(C) is isomorphic to the braided category CZ of
Z-modules. More generally, let T be a Hopf monad on an autonomous category C.
We construct a Hopf monad ZT on C, the centralizer of T , and a canonical dis-
tributive law Ω: TZT → ZTT . By Beck’s theory, this has two consequences. On
one hand, the composition DT = ZT ◦Ω T is a quasitriangular Hopf monad on C,
called the double of T , and Z(CT ) ≃ CDT as braided categories. As an illustration,
this allows us to define the double of any Hopf algebra in a braided autonomous
category, generalizing (but not straightforwardly) the Drinfeld double of finite di-
mensional Hopf algebras. On the other hand, the canonical distributive law Ω also
lifts ZT to a Hopf monad Z̃Ω

T on CT , which describes the coend of CT . For T = Z,
this gives an explicit description of the Hopf algebra structure of the coend of Z(C)
in terms of the structural morphisms of C. Such a description is useful in quantum
topology, especially when C is a spherical fusion category, as Z(C) is then modular.

3) On two approaches to 3-dimensional TQFTs [12]
We show that the conjecture (2) is true: the Turaev-Viro and Reshetikhin-Turaev
invariants are related via the categorical center, i.e., if C is non-zero dimensional
spherical fusion category over an algebraically closed field, then |M |C = τZ(C)(M)
for any closed oriented 3-manifold M . As a corollary, by the results above, we get
that the state sum |M |C can be efficiently computed in terms of Hopf diagrams and
the structural morphisms of the coend of Z(C).

Our proof is based on topological quantum field theory (TQFT). For a modular
category B, the Reshetikhin-Turaev invariant τB(M) extends to a 3-dimensional
TQFT τB derived from B, see [RT, Tu1]. For a spherical fusion category C with
invertible dimension, we extend the state sum invariant |M |C to a 3-dimensional
TQFT |.|C which we define in terms of state sums on skeletons of 3-manifolds. It
is crucial for the proof of Formula (2) that we allow non-generic skeletons, i.e.,
skeletons with edges incident to ≥ 4 regions. In particular, we give a new state sum
on any triangulation t of a closed oriented 3-manifold M , different from the one in
[TV, BW1]. In the latter, the labels are attributed to the edges and the Boltzmann
weights are the 6j-symbols computed in the tetrahedra; in the former, the labels
are attributed to the faces and the Boltzmann weights are computed in the vertices
by means of an invariant of C- colored graphs in the sphere. (It is non-obvious but
true that these two state sums are equal.) Our main result in [12] is that for any
non-zero dimensional spherical fusion category C over an algebraically closed field,
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the TQFTs |.|C and τZ(C) are isomorphic:

|Σ|C ≃ τZ(C)(Σ) and |M |C ≃ τZ(C)(M)

for any closed oriented surface Σ and any oriented 3-cobordism M . The proof
involves a detailed study of transformations of skeletons of 3-manifolds and the
computation of the coend of Z(C) provided by the theory of Hopf monads.

This survey is organized as follows. Section 1 deals with preliminaries on cat-
egories. In Section 2, we define and study Kirby elements and Hopf diagrams.
Section 3 is devoted to the theory of Hopf monads. In Section 4, we prove the
conjecture (2). Section 5 deals with some of my other works and the perspectives.

I was partially supported by the ANR grant GESAQ.
Throughout the survey, the symbol k denotes a commutative ring.
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1. Preliminaries on categories

In this section, we recall some basic definitions on categories. Most of the mate-
rial of this section is classical. We refer to [Mac, Kas, Tu1] for details.

1.1. Autonomous categories. Monoidal categories are assumed to be strict. Let
C be a monoidal category, with monoidal product ⊗ and unit object 1. Recall that
a duality in C is a quadruple (X,Y, e, d), where X , Y are objects of C, e : X⊗Y → 1

(the evaluation) and c : 1 → Y ⊗ X (the coevaluation) are morphisms in C, such
that:

(e⊗ idX)(idX ⊗ c) = idX and (idY ⊗ e)(c⊗ idY ) = idY .

Then (X, e, c) is a left dual of Y , and (Y, e, c) is a right dual of X .
If D = (X,Y, e, d) and D′ = (X ′, Y ′, e′, d′) are two dualities, two morphisms

f : X → X ′ and g : Y ′ → Y are in duality with respect to D and D′ if

e′(f ⊗ idY ′) = e(idX ⊗ g)
(
or, equivalently, (idY ′ ⊗ f)d = (g ⊗ idX)d′

)
.

In that case we write f = ∨gD,D′ and g = f∨
D,D′ , or simply f = ∨g and g = f∨.

Note that this defines a bijection between HomC(X,X ′) and HomC(Y
′, Y ).

Left and right duals, if they exist, are essentially unique: if (Y, e, d) and (Y ′, e′, d′)
are right duals of some objectX , then there exists a unique isomorphism u : Y → Y ′

such that e′ = e(idX ⊗ u−1) and d′ = (u⊗ idX)d.
A left autonomous category is a monoidal category for which every object X

admits a left dual (∨X, evX , coevX). Likewise, a right autonomous category is a
monoidal category for which every object X admits a right dual (X∨, ẽvX , c̃oevX).

Assume C is a left autonomous category and, for each object X , pick a left dual
(X∗, evX , coevX). This data defines a strong monoidal functor ?∗ : Cop,⊗op → C,
where Cop,⊗op is the opposite category to C with opposite monoidal structure. This
monoidal functor is called the left dual functor. Notice that the actual choice of left
duals is innocuous in the sense that different choices of left duals define canonically
isomorphic left dual functors.

Likewise one defines the strong monoidal right dual functor ?∨ : Cop,⊗op → C
associated with a right autonomous category C.

An autonomous (or rigid) category is a monoidal category which is left and right
autonomous.

Subsequently, when dealing with left or right autonomous categories, we shall
always assume tacitly that left duals or right duals have been chosen. Moreover, in
formulae, we will often abstain (by abuse) from writing down the following canonical
isomorphisms:

∨
(X∨) ∼= X,

∨
(X ⊗ Y ) ∼= ∨Y ⊗ ∨X, ∨

1 ∼= 1,

(∨X)
∨ ∼= X, (X ⊗ Y )

∨ ∼= Y ∨ ⊗X∨, 1
∨ ∼= 1.

1.2. Pivotal categories. A pivotal (or sovereign) category is a left autonomous
category endowed with pivotal structure, that is, a strong monoidal natural transfor-
mation φX : X → ∨∨X . Such a transformation is then an isomorphism. A sovereign
category C is autonomous: for each object X of C, set:

ẽvX = ev∨X(φX ⊗ id∨X) : X ⊗ ∨X → 1,

c̃oevX = (id∨X ⊗ φ−1
X )coev∨X : 1 → ∨X ⊗X.

Then (∨X, ẽvX , c̃oevX) is a right dual of X . Moreover the right dual functor ?∨

defined by this choice of right duals coincides with the left dual functor ∨? as a
strong monoidal functor. We denote the functor ∨? = ?∨ by ?∗ and call it the dual
functor. In particular, in a pivotal category, X∗ = ∨X = X∨ and f∗ = ∨f = f∨ for
any object X and any morphism f .



6

1.3. Traces and dimensions. For an endomorphism f of an object X of a pivotal
category C, one defines the left and right traces trl(f), trr(f) ∈ EndC(1) by

trl(f) = evX(idX∗ ⊗ f)c̃oevX and trr(f) = ẽvX(f ⊗ idX∗)coevX .

Both traces are symmetric: trl(gh) = trl(hg) and trr(gh) = trr(hg) for any mor-
phisms g : X → Y and h : Y → X in C. Also trl(f) = trr(f

∗) = trl(f
∗∗) for any

endomorphism f of an object (and similarly with l, r exchanged). If

(3) α⊗ idX = idX ⊗ α for all α ∈ EndC(1) and X ∈ Ob(C),

then the traces trl, trr are⊗-multiplicative: trl(f⊗g) = trl(f) trl(g) and trr(f⊗g) =
trr(f) trr(g) for all endomorphisms f, g of objects of C.

The left and right dimensions of X ∈ Ob(C) are defined by diml(X) = trl(idX)
and dimr(X) = trr(idX). Clearly, diml(X) = dimr(X

∗) = diml(X
∗∗) (and sim-

ilarly with l, r exchanged). Note that isomorphic objects have the same dimen-
sions and diml(1) = dimr(1) = id1. If C satisfies (3), then left and right dimen-
sions are ⊗-multiplicative: diml(X ⊗ Y ) = diml(X) diml(Y ) and dimr(X ⊗ Y ) =
dimr(X) dimr(Y ) for any X,Y ∈ Ob(C).

1.4. Penrose graphical calculus. We represent morphisms in a category C by
plane diagrams to be read from the bottom to the top. The diagrams are made of
oriented arcs colored by objects of C and of boxes colored by morphisms of C. The
arcs connect the boxes and have no mutual intersections or self-intersections. The
identity idX of X ∈ Ob(C), a morphism f : X → Y , and the composition of two
morphisms f : X → Y and g : Y → Z are represented as follows:

idX =
X

, f =
X

Y

f , and gf =

X

Y

f

g

Z

.

If C is monoidal, then the monoidal product of two morphisms f : X → Y and
g : U → V is represented by juxtaposition:

f ⊗ g =
X

f

Y

U

g

V

.

In a pivotal category, if an arc colored by X is oriented upwards, then the corre-
sponding object in the source/target of morphisms is X∗. For example, idX∗ and
a morphism f : X∗ ⊗ Y → U ⊗ V ∗ ⊗W may be depicted as:

idX∗ =
X

=
X∗

and f =
X

f

Y

U V W

.

The duality morphisms are depicted as follows:

evX = X , coevX = X , ẽvX = X , c̃oevX = X .

The dual of a morphism f : X → Y and the traces of a morphism g : X → X can
be depicted as follows:

f∗ =
X

f

Y

=
X

f

Y

and trl(g) =
X

g , trr(g) =
X

g .

If C is pivotal, then the morphisms represented by the diagrams are invariant under
isotopies of the diagrams in the plane keeping fixed the bottom and top endpoints.
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1.5. Linear categories. A monoidal k-category is a monoidal category C such
that its hom-sets are (left) k-modules, the composition and monoidal product of
morphisms are k-bilinear, and EndC(1) is a free k-module of rank one. Then the
map k → EndC(1), k 7→ k id1 is a k-algebra isomorphism. It is used to identify
EndC(1) = k.

A pivotal k-category satisfies (3). Therefore the traces trl, trr and the dimensions
diml, dimr in such a category are ⊗-multiplicative. Clearly, trl, trr are k-linear.

1.6. Spherical categories. A spherical category is a pivotal category whose left
and right traces are equal, i.e., trl(g) = trr(g) for every endomorphism g of an
object. Then trl(g) and trr(g) are denoted tr(g) and called the trace of g. In
particular, the left and right dimensions of an object X are equal, denoted dim(X),
and called the dimension of X .

For spherical categories, the corresponding Penrose graphical calculus has the
following property: the morphisms represented by diagrams are invariant under
isotopies of diagrams in the 2-sphere S2 = R2 ∪ {∞}, i.e., are preserved under
isotopies pushing arcs of the diagrams across ∞. For example, the diagrams above
representing trl(g) and trr(g) are related by such an isotopy. The condition trl(g) =
trr(g) for all g is therefore necessary (and in fact sufficient) to ensure this property.

1.7. Braided categories. A braiding in a monoidal category B is a natural iso-
morphism τ = {τX,Y : X ⊗ Y → Y ⊗X}X,Y ∈Ob(B) such that

τX,Y ⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z).

These conditions imply that τX,1 = τ1,X = idX for all X ∈ Ob(B).
A monoidal category endowed with a braiding is said to be braided. The braiding

and its inverse are depicted as follows

τX,Y =
X

X

Y

Y

and τ−1
Y,X =

X

X

Y

Y

.

A braided category satisfies (3) and so any braided pivotal category has ⊗-
multiplicative left and right traces and dimensions.

For any object X of a braided pivotal category B, one defines a morphism

θX =
X

X

= (idX ⊗ ẽvX)(τX,X ⊗ idX∗)(idX ⊗ coevX) : X → X.

This morphism, called the twist, is invertible and

θ−1
X =

X

X

= (evX ⊗ idX)(idX∗ ⊗ τX,X)(c̃oevX ⊗ idX) : X → X.

Note that θ1 = id1, θX⊗Y = (θX ⊗ θY )τY,XτX,Y for any X,Y ∈ Ob(B). The twist
is natural: θY f = fθX for any morphism f : X → Y in B.

1.8. Ribbon categories. A ribbon category is a braided pivotal category B whose
twist is self-dual, i.e., (θX)∗ = θX∗ for all X ∈ Ob(B). This is equivalent to the
equality of morphisms

X

X

=
X

X

for any X ∈ Ob(B). In a ribbon category, for any X ∈ Ob(B),

θ−1
X =

X

X

=
X

X

.
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A ribbon category B is spherical and gives rise to topological invariants of links
in S3. Namely, every B-colored framed oriented link L ⊂ S3 determines an endo-
morphism of the unit object FB(L) ∈ End(1) which turns out to be a topological
invariant of L. Here L is B-colored if every component of L is endowed with an
object of B (called the color of this component). The definition of FB(L) goes by
an application of the Penrose calculus to a diagram of L; a new feature is that with
the positive and negative crossings of the diagram one associates the braiding and
its inverse, respectively. For more on this, see [Tu1].

1.9. Fusion categories. An object X of a monoidal k-category C is simple if
EndC(X) is a free k-module of rank 1. Equivalently, X is simple if the k-homo-
morphism k → EndC(X), k 7→ k idX is an isomorphism. By the definition of a
monoidal k-category, the unit object 1 is simple.

A pre-fusion category (over k) is a pivotal k-category C such that

(a) Any finite family of objects of C has a direct sum in C;
(b) Each object of C is a finite direct sum of simple objects;
(c) For any non-isomorphic simple objects i, j of C, we have HomC(i, j) = 0.

Conditions (b) and (c) imply that all the Hom spaces in C are free k-modules of
finite rank. The multiplicity of a simple object i in any X ∈ Ob(C) is the integer

N i
X = rankk HomC(X, i) = rankk HomC(i,X) ≥ 0.

This integer depends only on the isomorphism classes of i and X .
A set I of simple objects of a pre-fusion category C is representative if 1 ∈ I and

every simple object of C is isomorphic to a unique element of I. Condition (b) above
implies that for such I and any X ∈ Ob(C), there is a finite family of morphisms
(pα : X → iα, qα : iα → X)α∈Λ in C such that

idX =
∑

α∈Λ

qαpα, iα ∈ I, and pαqβ = δα,β idiα for all α, β ∈ Λ,

where δα,β is the Kronecker symbol. Such a family (pα, qα)α∈Λ is called an I-par-
tition of X . For i ∈ I, set Λi = Λi

X = {α ∈ Λ | iα = i}. Then (pα : X → i)α∈Λi

is a basis of HomC(X, i) and (qα : i → X)α∈Λi is a basis of HomC(i,X). Therefore
#Λi = N i

X , #Λ =
∑

i∈I N
i
X , and dim(X) =

∑
i∈I dim(i)N i

X .
In a pre-fusion category C, the left and right dimensions of any simple object

of C are invertible in k. Furthermore C is spherical if and only if diml(i) = dimr(i)
for any simple object i of C.

By a fusion category, we mean a pre-fusion category C such that the set of
isomorphism classes of simple objects of C is finite. A standard example of a fusion
category is the category of finite rank representations (over k) of a finite group whose
order is relatively prime to the characteristic of k. The category of representations
of an involutory finite dimensional Hopf algebra over a field of characteristic zero
is a fusion category. For more examples, see [ENO].

The dimension of a fusion category C is

dim(C) =
∑

i∈I

diml(i) dimr(i) ∈ k.

By [ENO], if k is an algebraically closed field of characteristic zero, then dim(C) 6= 0.
For spherical C, we have dim(C) =

∑
i∈I(dim(i))2.

Let B be a ribbon fusion category. Note that for any simple object i of B, the
twist θi : i → i is multiplication by an invertible scalar vi ∈ k. We set

(4) ∆± =
∑

i∈I

v±1
i (dim(i))2 ∈ k,

where I is a representative set of simple objects of B.
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1.10. Modular categories. A modular category (over k) is a ribbon fusion cate-
gory B (over k) such that the matrix S = [tr(τj,iτi,j)]i,j∈I is invertible, where I is
a representative set of simple objects of B and τ is the braiding of B. The matrix
S is called the S-matrix of B.

If B is a modular category, then its dimension dim(B) and the scalar ∆± defined
in (4) are invertible and satisfy ∆+∆− = dim(B), see [Tu1].

We say that a modular category B is anomaly free if ∆+ = ∆−.

1.11. The center of a monoidal category. Let C be a monoidal category. A
half braiding of C is a pair (A, σ), where A ∈ Ob(C) and

σ = {σX : A⊗X → X ⊗A}X∈Ob(C)

is a natural isomorphism such that

σX⊗Y = (idX ⊗ σY )(σX ⊗ idY )

for all X,Y ∈ Ob(C). This condition implies that σ1 = idA.
The center of C is the braided category Z(C) defined as follows. The objects

of Z(C) are half braidings of C. A morphism (A, σ) → (A′, σ′) in Z(C) is a morphism
f : A → A′ in C such that (idX ⊗ f)σX = σ′

X(f ⊗ idX) for all X ∈ Ob(C). The unit
object of Z(C) is 1Z(C) = (1, {idX}X∈Ob(C)) and the monoidal product is

(A, σ) ⊗ (B, ρ) =
(
A⊗B, (σ ⊗ idB)(idA ⊗ ρ)

)
.

The braiding τ in Z(C) is defined by

τ(A,σ),(B,ρ) = σB : (A, σ) ⊗ (B, ρ) → (B, ρ)⊗ (A, σ).

There is a forgetful functor Z(C) → C assigning to every half braiding (A, σ) the
underlying object A and acting in the obvious way on the morphisms. This is a
strict monoidal functor.

If C is a monoidal k-category, then so Z(C) and the forgetful functor is k-linear.
Observe that EndZ(C)(1Z(C)) = EndC(1) = k.

If C is pivotal, then so is Z(C) with (A, σ)∗ = (A∗, σ†), where

σ†
X =

A

A

X

X

σX∗ : A∗ ⊗X → X ⊗A∗,

and ev(A,σ) = evA, coev(A,σ) = coevA, ẽv(A,σ) = ẽvA, c̃oev(A,σ) = c̃oevA. The (left
and right) traces of morphisms and dimensions of objects in Z(C) are the same as
in C. If C is spherical, then so is Z(C).

1.12. The center of a fusion category. The center Z(C) of a spherical fusion
category C over k is a ribbon k-category.

Theorem 1.1 ([Mü2, Theorem 1.2, Proposition 5.18]). Let C be a spherical fusion
category over an algebraically closed field such that dim C 6= 0. Then Z(C) is an
anomaly free modular category with ∆+ = ∆− = dim(C).

Note that dim
(
Z(C)

)
= ∆+∆− = (dim(C))2.
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2. Kirby elements, Hopf diagrams, and quantum in-

variants

In this section, we review a general construction of quantum 3-manifolds invari-
ants (based on surgical presentation of 3-manifolds) and a method for computing
them via Hopf diagrams. We refer to [6, 7] for details.

2.1. Coends. Let C and D be categories. Denote by Cop the category opposite to C
(obtained from C by reversing all the arrows). A dinatural transformation from a
functor F : Cop × C → D to an object D of D is a family

d = {dX : F (X,X) → D}X∈Ob(C)

of morphisms in D such that dXF (f, idX) = dY F (idY , f) for every morphism
f : X → Y in C. The composition of such a d with a morphism ϕ : D → D′ in
D is the dinatural transformation ϕ ◦ d = {ϕ ◦ dX : F (X,X) → D′}X∈Ob(C) from
F to D′. A coend of F is a pair (C, ρ) consisting in an object C of D and a dinat-
ural transformation ρ from F to C satisfying the following universality condition:
every dinatural transformation d from F to an object of D is the composition of
ρ with a morphism in D and the latter morphism is uniquely determined by d. If
F has a coend (C, ρ), then it is unique (up to unique isomorphism). One writes

C =
∫X∈C

F (X,X). For more on coends, see [Mac].
For example, let C be a fusion category and I be a (finite) representative set

of simple objects of C. If D is a k-category which admits finite direct sums, then
any k-linear functor F : Cop × C → D has a coend (C, ρ). Here C = ⊕i∈IF (i, i)
and ρ = {ρX : F (X,X) → C}X∈Ob(C) is computed by ρX =

∑
α F (qαX , pαX), where

(pαX , qαX)α is any I-partition of X . An arbitrary dinatural transformation d from F
to an object D of D is the composition of ρ with

∑
i∈I di : C → D.

2.2. Coends of autonomous categories. Let C be an autonomous category. If

it exists, the coend C =
∫X∈C ∨X ⊗X of the functor Cop × C → C defined by the

formula (X,Y ) 7→ ∨X ⊗ Y is called the coend of C.
Let C be a pivotal category which admits a coend C. The left and right di-

mensions of C do not depend on the choice of the pivotal structure on C. If they
coincide (for instance when C is a spherical category or C is a fusion category), they
are called the dimension of C and denoted dim(C).

For example, a fusion category C has a coend C =
⊕

i∈I i
∗ ⊗ i, where I is a

representative set of simple objects of C. We have diml(C) = dimr(C). Therefore
dim(C) =

∑
i∈I diml(i) dimr(i), recovering the definition given in Section 1.9.

2.3. Forms associated with ribbon string links. Throughout the rest of the
section, the symbol B denotes a ribbon category admitting a coend C. Denote the
universal dinatural transformation of C by ρ = {ρX : X∗ ⊗X → C}X∈Ob(B). For
any X ∈ Ob(B), set

δX = iY

X

X C

= (idX ⊗ ρX)(coevX ⊗ idX) : X → X ⊗ C, depicted as
X

X C
.

Using the general theory of coends (see [Mac]), we have the following universal
property: for any natural transformation

ξ = {ξX1,...,Xn
: X1 ⊗ · · · ⊗Xn → X1 ⊗ · · · ⊗Xn ⊗M}X1,...,Xn∈Ob(B)
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where M is an object of B, there exists a unique morphism r : C⊗n → M such that:

(5)

X1

X1

Xn

Xn

M

C

C

r
=

X1

X1

Xn

Xn M

ξX1,...,Xn

for all objects X1, . . . , Xn of B.
Now let T be a ribbon n-string link with n a non-negative integer. Recall T is a

ribbon (n, n)-tangle consisting of n arc components, without any closed component,
such that the k-th arc (1 ≤ k ≤ n) joins the k-th bottom endpoint to the k-th top
endpoint. We orient T from top to bottom. By Penrose calculus, coloring the n
components of T with objects X1, . . . , Xn of B yields a morphism

TX1,··· ,Xn
=

X1 Xn

: X1 ⊗ · · · ⊗Xn → X1 ⊗ · · · ⊗Xn.

Following Lyubashenko [Lyu1], since TX1,··· ,Xn
is natural in each variable Xk, there

exists a unique morphism: φT : C⊗n → 1 such that, for any X1, . . . , Xn ∈ Ob(B),

(6) TX1,··· ,Xn
=

X1

X1

Xn

Xn

C

C

φT

.

Two natural questions arise in this context:

• How to evaluate the forms φT to get invariants of framed links and, further,
of 3-manifolds?

• How to compute the forms φT which are defined by universal property?

We address the first question by introducing Kirby elements (see Sections 2.4
and 2.5) and the second one by introducing Hopf diagrams (see Section 2.8).

2.4. Kirby elements and quantum invariants. Let L be a framed link in S3

with n components. There always exists a (non-unique) ribbon n-string link T such
that L is isotopic to the closure of T , that is,

L ∼ T .

For α ∈ HomB(1, C), set

τB(L;α) = φT ◦ α⊗n ∈ EndB(1),

where φT : C⊗n → 1 is defined as in (6).
Let us define a Kirby element of B to be a morphism α ∈ HomB(1, C) such that,

for any framed link L, τB(L;α) is well-defined and invariant under isotopies and
2-handle slides of L.

A Kirby element α of B is said to be normalizable if τB(©+1;α) and τB(©−1;α)
are invertible in the commutative monoid EndB(1), where ©±1 denotes the unknot
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with framing ±1. Using the universal property (5), define the morphisms θ+C : C →
1 and θ−C : C → 1 by:

C

X

X

θ+C
=

X

and
C

X

X

θ−C
=

X

.

If α is a Kirby element of B, then τB(©±1;α) = θ±Cα and so α is normalizable if

and only if θ±Cα are invertible in EndB(1).
Let M be a closed oriented 3-manifold. Present M by surgery on S3 along a

framed link L (see [Li]). An immediate consequence of the Kirby theorem [Ki] is
that if α is a normalizable Kirby element of B, then

(7) τB(M ;α) = (θ+Cα)
b−(L)−nL (θ−Cα)

−b−(L) τB(L;α) ∈ EndB(1)

is topological invariant ofM , where nL is the number of components of L and b−(L)
is the number of negative eigenvalues of the linking matrix of L. This invariant is
multiplicative with respect to the connected sum. We have: τB(S

3;α) = 1.
Note that if α is a normalizable Kirby element and k is an automorphism of 1,

then αk is also a normalizable Kirby element. The normalization of the invariant
τB(M ;α) has been chosen so that τB(M ;αk) = τB(M ;α).

Determining all Kirby elements of B seems hopeless. In the next section, we
define a class of Kirby elements of B, called algebraic Kirby elements, character-
ized in purely algebraic terms (using the Hopf algebra structure of the coend C).
This class is sufficiently large to contain the Kirby elements corresponding to the
Reshetikhin-Turaev invariants [RT, Tu1], Lyubashenko invariant [Lyu2], and the
Hennings-Kauffman-Radford invariant [He, KR] when these are well-defined. Note
that there exist normalizable algebraic Kirby elements which give rise to new 3-man-
ifolds invariants, i.e., to invariants different from those above (see Section 2.7 below).

2.5. Algebraic Kirby elements. Recall that a Hopf algebra in a braided category
with braiding τ is an objet A of the category endowed with a productm : A⊗A → A,
a unit u : 1 → A, a coproduct ∆: A → A⊗A, a counit ε : A → 1, and an antipode
S : A → A, which are morphism in the category such that (A,m, u) is an algebra,
(A,∆, ε) is a coalgebra, and

∆m = (m⊗m)(idA ⊗ τA,A ⊗ idA)(∆⊗∆), ∆u = u⊗ u,

εm = ε⊗ ε, εu = id1,

m(S ⊗ idA)∆ = uε = m(idA ⊗ S)∆.

We assume also that Hopf algebras have invertible antipode.
The coend C of the category B is a Hopf algebra in B, see [Ma2, Lyu1]. Its

product mC : C ⊗ C → C, unit uC : 1 → C, coproduct ∆C : C → C ⊗ C, counit
εC : C → 1, antipode SC : C → C, and inverse of the antipode S−1

C : C → C are
defined in Figure 1 by using the universal property (5).

Theorem 2.1 ([7, Theorem 2.5]). Any morphism α : 1 → C in B such that:

SCα = α and (mC ⊗ idC)(idC ⊗∆C)(α⊗ α) = α⊗ α

is a Kirby element of B.

Morphisms α : 1 → C satisfying the conditions of Theorem 2.1 are called alge-
braic Kirby elements of B. For instance, the unit uC of C is a normalizable algebraic
Kirby element (its associated 3-manifolds invariant τB(M ;uC) is the trivial one).

A more interesting example of an algebraic Kirby element is an SC -invariant
integral Λ of the Hopf algebra C, i.e., a morphism Λ: 1 → C such that SC(Λ) = Λ
and mC(Λ ⊗ idC) = Λ εC = mC(idC ⊗ Λ). For the existence of such integrals,
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C

C

C

X

X

Y

Y

mC
=

CX ⊗ Y

X ⊗ Y

, uC = δ1 =
C1

1

,

C

C

X

X

C

∆C =

CX

X

C

,
C

X

X

εC
= X,

C

CX

X

SC =

CX

X

,

C

CX

X

S−1
C =

C

X

X

.

Figure 1. Structural morphisms of the coend

we refer to [BKLT]. If Λ is normalizable, then the associated invariant is the
Lyubashenko’s one [Lyu2], up to a different normalization.

Remark 2.2. When B is a ribbon k-category admitting a coend C, we can relax
the definition of an algebraic Kirby element by considering morphisms α : 1 → C
in B such that SCα− α ∈ NeglB(1, C) and

(mC ⊗ idC)(idC ⊗∆C)(α⊗ α) − α⊗ α ∈ NeglB(1, C ⊗ C),

where NeglB(X,Y ) denotes the k-subspace of HomB(X,Y ) formed by morphisms
f : X → Y which are negligible, that is, such that tr(gf) = 0 for all g ∈ HomB(Y,X).
Such morphisms α : 1 → C are indeed Kirby elements (see [7, Theorem 2.5]). For
more on this and the related semisimplification process, we refer to [7].

In the next two sections, we focus on the case of ribbon fusion categories and of
categories of representations of finite dimensional ribbon Hopf algebras.

2.6. The case of a fusion category. In this section, we assume that B is a
ribbon fusion category over k. Recall that B admits a coend C =

⊕
i∈I i

∗ ⊗ i, see
Section 1.9. Let I be a (finite) representative set of simple objects of B and set

ΛB =
∑

i∈I

dim(i) c̃oevi : 1 →
⊕

i∈I

i∗ ⊗ i = C.

If B is modular, then ΛB is a is an SC-invariant integral of C and so is an algebraic
Kirby element (giving thus the Lyubashenko and Reshetikhin-Turaev invariants
defined with B). In general ΛB is not a two-sided integral of B. Nevertheless:

Theorem 2.3 ([7, Theorem 3.4]). ΛB is an algebraic Kirby element of B.

In some particular cases, all algebraic Kirby elements of B are of this form:

Corollary 2.4 ([7, Corollary 3.8]). If either

(i) the category B is Picard (X∗ ⊗X ∼= 1 for every simple object X of B);
(ii) k = R or C and the quantum dimensions of the simple objects are positive;

then every algebraic Kirby elements of B is of the form ΛD for some full ribbon
fusion subcategory D of B.

The algebraic Kirby element ΛB is normalizable if and only if the scalars ∆±

defined in (4) are invertible. In that case, by Section 2.4, we get a 3-manifold
invariant τB(M ; ΛB).
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If B is modular and dim(B) has a square rootD in k, then ΛB is normalizable and
τB(M ; ΛB) corresponds to the Reshetikhin-Turaev invariant τB(M). More precisely,
for any closed oriented 3-manifold M ,

(8) τB(M) = D−1
( D

∆−

)b1(M)

τB(M ; ΛB),

where b1(M) is the first Betti number of M .
When B is not modular, and even when dim(B) = 0, the invariant τB(M ; ΛB)

may be still defined (see Section 3.18 below for an example).

2.7. The case of a category of representations. In this section k is a field.
Let H be a finite dimensional Hopf k-algebra, with coproduct ∆, counit ε, and
antipode S. Recall that a left integral for H is an element Λ ∈ H such that
xΛ = ε(x)Λ for every x ∈ H . A right integral for H∗ is an element λ ∈ H∗

such that λ(x(1))x(2) = λ(x) 1 for all x ∈ H , where ∆(x) = x(1) ⊗ x(2). By the
uniqueness of integrals (since H is finite dimensional), there exists a unique algebra
map ν : H → k such that Λx = ν(x)Λ for any x ∈ H . The form ν is called the
distinguished grouplike element ofH∗. The Hopf algebraH is said to be unimodular
if its integrals are two sided, that is, if ν = ε.

Denote by modH the ribbon k-category of finite dimensional left H-modules.
The coend of modH is C = H∗ = Homk(H, k) endowed with the coadjoint action ⊲
defined by (h ⊲ f)(x) = f(S(h(1))xh(2)) for f ∈ H∗ and h, x ∈ H .

Let H be a finite-dimensional ribbon Hopf k-algebra with R-matrix R ∈ H ⊗H
and twist θ ∈ H . Let λ ∈ H∗ be a non-zero right integral for H∗ and ν be the
distinguished grouplike element of H∗. Denote by ↼ the right H∗-action on H
defined by x ↼ f = f(x(1))x(2) for f ∈ H∗. The element hν = (idH ⊗ ν)(R) ∈ H
is a grouplike element of H . Consider the set AK(H) made of elements z ∈ H
satisfying:

(i) (x ↼ ν)z = zx for every x ∈ H ;
(ii) (S(z) ↼ ν)hν = z;
(iii) λ(zx(1))zx(2) = λ(zx)z for every x ∈ H .

The k-linear map φ : H → Homk(k, H
∗), defined by φz(1k)(x) = λ(zx) for z, x ∈ H ,

is a k-linear isomorphism. It induces a k-linear isomorphism between the vector
spaces L(H) = {z ∈ H | z satisfies (i)} and HommodH

(k, C).

Theorem 2.5 ([7, Theorem 4.7]). The set of algebraic Kirby elements of modH is
{φz | z ∈ AK(H)}. Furthermore, for z ∈ AK(H), the Kirby element φz of modH
is normalizable if and only if λ(zθ) 6= 0 6= λ(zθ−1).

The Hopf algebra H is unimodular if and only if 1 ∈ AK(H), see [7, Corol-
lary 4.8]. Furthermore, if H is unimodular and λ(θ) 6= 0 6= λ(θ−1), then the Kirby
element φ1 = λ is normalizable and the corresponding 3-manifolds invariant is
the Hennings-Kauffman-Radford invariant defined with the opposite ribbon Hopf
algebra Hop to H (see [7, Corollary 4.16]).

In [7, Section 5], by studying in detail an example of a finite dimension ribbon
Hopf algebra H , we show that there exist Kirby elements of modH leading to
3-manifolds invariants which do not correspond to the Lyubashenko invariant nor
the Hennings-Kauffman-Radford. These invariants also do not correspond to the
Reshetikhin-Turaev invariants defined with the full ribbon fusion subcategories of
the semisimple quotient of modH . This means that this method allows to define
new 3-manifolds invariants (which are ‘non-semisimple’).

2.8. Hopf diagrams. For a precise treatment of the theory of Hopf diagrams, we
refer to [6]. Note that Habiro, shortly after us, had similar results in [Hab].
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A Hopf diagram is a planar diagram, with inputs but no output (diagrams are
read from bottom to top), obtained by stacking the following generators:

∆ = , ε = , ω+ = , ω− = ,

θ+ = , θ− = , S = , S−1 = ,

τ = , τ−1 = .

For example, the following diagrams are Hopf diagrams:

A Hopf diagram

with 1 input

A Hopf diagram

with 2 inputs

Hopf diagrams are submitted to the relations of Figure 2, plus relations express-
ing that τ is an invertible QYBE solution which is natural with respect to the
other generators. In particular, the relations of Figure 2 say that ∆ behaves as a
coproduct with counit ε, S behaves as an antipode, ω± behaves as a Hopf pairing,
and θ± behaves as a twist form. The last two relations of Figure 2 are nothing but
the Markov relations for pure braids.

Hopf diagrams form a category Diag. Objects of Diag are the non-negative inte-
gers. For two non-negative integers m and n, the set HomDiag(m,n) of morphisms
from m to n in Diag is the empty set if m 6= n and is the set of Hopf diagrams with
m inputs (up to their relations) if m = n. The composition of two Hopf diagrams
D and D′ (with the same number of inputs) is defined as:

D D′

◦ =

D D′

.

The identity of n is the Hopf diagram obtained by juxtaposing n copies of ε. The
category Diag is a monoidal category: m⊗n = m+n on objects and the monoidal
product D ⊗D′ of two Hopf diagrams D and D′ is the Hopf diagram obtained by
juxtaposing D on the left of D′.

Let us denote by RSL the category of ribbon string links. The objects of RSL
are the non-negative integers. For two non-negative integers m and n, the set
HomRSL(m,n) of morphisms from m to n in RSL is the empty set if m 6= n and
is the set of (isotopy classes) of ribbon n-string links (see Section 2.3) if m = n.
The composition T ′ ◦ T of two ribbon n-string links is given by stacking T ′ on the
top of T . Identities are the trivial string links. Note that the category RSL is a
monoidal category: m⊗n = m+ n on objects and the monoidal product T ⊗ T ′ of
two ribbon string links T and T ′ is the ribbon string link obtained by juxtaposing
T on the left of T ′.

Hopf diagrams give a ‘Hopf algebraic’ description of ribbon string links. Indeed,
any Hopf diagram D with n inputs gives rise to a ribbon n-string link Φ(D) in
the following way: using the rules of Figure 3, we obtain a ribbon n-handle hD,
that is, a ribbon (2n, 0)-tangle consisting of n arc components, without any closed
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Figure 2. Relations on Hopf diagrams

component, such that the k-th arc joins the (2k−1)-th and 2k-th bottom endpoints.
Then, by rotating hD, we get a ribbon n-string link Φ(D):

D Hopf diagram  
hD

 Φ(D) =

h
D .

For example:

D =  hD =  Φ(D) = ∼ .

This leads to a functor Φ: Diag → RSL, defined on objects by n 7→ Φ(n) = n
and on morphisms by D 7→ Φ(D).
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Figure 3. Rules for transforming Hopf diagrams to tangles

Theorem 2.6 ([6, Theorem 4.5]). Φ: Diag → RSL is a well-defined monoidal
functor and there exists (constructive proof) a monoidal functor Ψ: RSL → Diag
which satisfies Φ ◦Ψ = 1RSL.

Note that by ‘constructing proof’ we mean there is an explicit algorithm that
associates to a ribbon string T a Hopf diagram Ψ(T ) such that Φ

(
Ψ(T )

)
= T ,

see [6]. The key point is that such a functor Ψ exists thanks to the relations we
put on Hopf diagrams.

2.9. Computing quantum invariants from Hopf diagrams. Let now B be a
ribbon category which admits a coend C. Let us answer to the second question
of Section 2.3: given a ribbon n-string link T , how to compute the morphism
φT : C⊗n → 1 which is defined in (6) by universal property?

Recall C is a Hopf algebra in B (see Section 2.5) and denote its coproduct, counit,
and antipode by ∆C , εC , and SC respectively. The twist of B and its inverse are
encoded by morphisms θ±C : C → 1, see Section 2.4. Furthermore, the morphism
ωC : C ⊗ C → 1, defined by

(9)

C

C

Y

Y

X

X

ωC =

YX

,

is a Hopf pairing for C. Finally, we set ω+
C = ωC(S

−1
C ⊗ idC) and ω−

C = ωC . Denote
by {τX,Y : X ⊗ Y → Y ⊗X}X,Y∈Ob(C) the braiding of B.

Theorem 2.7 ([6, Theorem 5.1]). Let T be a ribbon n-string link. Let D be any
Hopf diagram (with n entries) which encodes T , that is, such that Φ(D) = T (re-
call there is an algorithm producing such a Hopf diagram). Then the morphism
φT : C⊗n → 1 defined by T is given by replacing in D the Hopf diagrams generators
∆, ε, ω±, θ±, S

±1, and τ±1 by the morphisms ∆C , εC, ω
±
C , θ

±
C , S

±1
C , and τ±1

C,C

respectively.

Remark that the product and unit of the Hopf algebra C are not needed to
represent Hopf diagrams.

A consequence of Theorem 2.7 is that, given a normalizable Kirby element α of B,
the 3-manifold invariant τB(M ;α) is computed using only the Kirby element α and
some structural morphisms of the Hopf algebra C.

2.10. Summary. Let us summarize the above universal construction of quantum
invariants, starting from a ribbon category B which admits a coend C. Pick a
normalizable Kirby element α of B, for example an algebraic Kirby element (recall
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that algebraic Kirby elements can be found by solving some purely algebraic sys-
tem, see Section 2.5). It gives rise to the invariant τB(M ;α) of 3-manifolds (see
Section 2.4). Let M be a closed oriented 3-manifold. Present M by surgery along
a framed link L in S3, which can be viewed as the closure of a ribbon n-string link
T where n is the number of components of L. Encode the string link T by a Hopf
diagram D (there is an algorithm producing such a Hopf diagram):

M ≃ S3
L, L ∼ T with T = 7→D = .

The morphism φT : C⊗n → 1 associated to T can be computed by replacing the
generators of D by the corresponding structural morphisms of the coend C. Then
evaluate φT with the Kirby element α and normalize to get the invariant:

τB(M ;α) =
α

θ+C

b−(L)− n

α

θ−C
−b−(L)

ω−
C ω+

C

SC τC,C

∆C∆C

αα

,

that is,

τB(M ;α) = (θ+Cα)
b−(L)−n (θ+Cα)

−b−(L) (ω−
C ⊗ ω+

C )(SC ⊗ τC,C ⊗ idC)(∆Cα⊗∆Cα).

For example, we get

τB(S
1 × S2;α) = (θ+Cα)

−1 εCα and τB(P;α) = (θ+Cα)
−1 (ω+

C∆C ⊗ θ−C )∆Cα,

where P is the Poincaré sphere (which is obtained by surgery along the right-handed
trefoil with framing +1).

In particular, to compute such quantum invariants defined from the center Z(C)
of a spherical fusion category C, one needs to give an explicit description of the struc-
tural morphism of the coend of Z(C) in terms of the category C (see Section 3.18
below). Providing such a description was our original motivation for introducing
Hopf monads.
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3. Hopf monads and categorical centers

In this section, we review the theory of Hopf monads we introduced in [8, 10, 11].

3.1. Monads an their modules. Any category C gives rise to a category End (C)
whose objects are functors C → C and whose morphisms are natural transformations
of such functors. The category End (C) is a (strict) monoidal category with tensor
product being composition of functors and unit object being the identity functor
1C : C → C. A monad on C is a monoid in the category End (C), that is, a triple
(T, µ, η) consisting of a functor T : C → C and two natural transformations

µ = {µX : T 2(X) → T (X)}X∈Ob(C) and η = {ηX : X → T (X)}X∈Ob(C),

called the product and the unit of T , such that for all X ∈ Ob(C),

µXT (µX) = µXµT (X) and µXηT (X) = idT (X) = µXT (ηX).

For example, the identity functor 1C : C → C is a monad on C (with identity as
product and unit), called the trivial monad.

Given a monad T on C, a T -module in C is a pair (M, r) where M ∈ Ob(C) and
r : T (M) → M is a morphism in C such that rT (r) = rµM and rηM = idM . A
morphism from a T -module (M, r) to a T -module (N, s) is a morphism f : M → N
in C such that fr = sT (f). This defines the category CT of T -modules in C, with
composition induced by that in C. We denote by UT the forgetful functor CT → C,
defined by UT (M, r) = M and UT (f) = f .

3.2. Bimonads. To define bimonads (introduced by Moerdijk [Mo]), we recall the
notion of a comonoidal functor. A functor F : C → D between monoidal categories
is comonoidal if it is endowed with a morphism F0 : F (1) → 1 and a natural
transformation

F2 = {F2(X,Y ) : F (X ⊗ Y ) → F (X)⊗ F (Y )}X,Y ∈Ob(C)

which are coassociative and counitary, i.e., for all X,Y, Z ∈ Ob(C),

(idF (X) ⊗ F2(Y, Z))F2(X,Y ⊗ Z) = (F2(X,Y )⊗ idF (Z))F2(X ⊗ Y, Z)

and

(idF (X) ⊗ F0)F2(X, 1) = idF (X) = (F0 ⊗ idF (X))F2(1, X).

A natural transformation ϕ = {ϕX : F (X) → G(X)}X∈Ob(C) between comonoidal
functors is comonoidal if G0ϕ1 = F0 and G2(X,Y )ϕX⊗Y = (ϕX ⊗ ϕY )F2(X,Y )
for all X,Y ∈ Ob(C).

Let C be a monoidal category. A bimonad on C is a monad (T, µ, η) on C such
that the underlying functor T : C → C and the natural transformations µ and η are
comonoidal. For a bimonad T on C, the category CT of T -modules has a monoidal
structure with unit object (1, T0) and monoidal product

(M, r) ⊗ (N, s) =
(
M ⊗N, (r ⊗ s)T2(M,N)

)
.

Note that the forgetful functor UT : CT → C is strict monoidal.

3.3. Hopf monads. Let C be a monoidal category. The left fusion operator and
the right fusion operator of a bimonad T on C are the natural transformations

H l = {H l : T (X ⊗ T (Y )) → T (X)⊗ T (Y )}X,Y ∈Ob(C)

and

Hr = {Hr : T (T (X)⊗ Y ) → T (X)⊗ T (Y )}X,Y ∈Ob(C)

defined by

H l
X,Y = (idT (X) ⊗ µY )T2(X,T (Y )) and Hr

X,Y = (µX ⊗ idT (Y ))T2(T (X), Y ).
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We define a Hopf monad on C to be a bimonad on C whose both left and right
fusion operators are isomorphisms (see [11, Section 2]). Hopf monads on C form a
category HopfMon(C), morphisms of Hopf monads being comonoidal morphisms of
monads. The trivial Hopf monad 1C is an initial object of HopfMon(C).

3.4. Hopf monads and Hopf algebras. In this section, we characterize Hopf
monads which are representable by Hopf algebras.

Let C be a monoidal category. Any Hopf algebra (A, σ) in the center Z(C) of C
gives rise to a Hopf monad A⊗σ?, defined as follows. As an endofunctor of C,
(A⊗σ?)(X) = A⊗X and (A⊗σ?)(f) = idA ⊗ f for any object X and morphism f
in C. The product µ, unit η, and comonoidal structure of A⊗σ? are defined by

µX = m⊗ idX , ηX = u⊗ idX ,

(A⊗σ?)2(X,Y ) = (idA ⊗ σX ⊗ idY )(∆⊗ idX⊗Y ), (A⊗σ?)0 = ε,

forX,Y ∈ Ob(C), wherem, u, ∆, and ε are the product, unit, coproduct, and counit
of (A, σ), respectively. The axioms of a Hopf algebra (see Section 2.5) ensures that
A⊗σ? is a Hopf monad (invertibility of the fusion operators comes from the axioms
of the antipode). We say that a Hopf monad is representable if it is isomorphic to
A⊗σ? for some Hopf algebra (A, σ) in Z(C).

A Hopf monad T on C is augmented if it is endowed with an augmentation, that
is, a Hopf monad morphism e : T → 1C . Augmented Hopf monads on C form a
category HopfMon(C)/1C, whose objects are augmented Hopf monads on C, and
morphisms between two augmented Hopf monads (T, e) and (T ′, e′) are morphisms
of Hopf monads f : T → T ′ such that e′f = e. For example, the Hopf monad A⊗σ?
associated with a Hopf algebra (A, σ) in Z(C) is augmented with augmentation ε⊗?
defined by (ε⊗?)X = ε⊗ idX for X ∈ Ob(C).

Denote by HopfAlg(Z(C)) the category of Hopf algebra in Z(C). The above
construction defines a functor

R : HopfAlg(Z(C)) → HopfMon(C)/1C

which associates to each Hopf algebra (A, σ) in Z(C) the augmented Hopf monad
(A⊗σ?, ε⊗?) and to each morphism of Hopf algebra f the Hopf monad morphism
{f ⊗ idX}X∈Ob(C).

Theorem 3.1 ([11, Theorem 5.7]). The functor R is an equivalence of categories.

In other words, representable Hopf monads are nothing but augmented Hopf
monads. In [9, Remark 9.2] we give an example of a Hopf monad which is not
representable.

Let B be a braided category with braiding τ . A Hopf algebra A in B gives rise to
a Hopf algebra (A, τA,−) in Z(B) and so to a Hopf monad A⊗τA,−

? on B, denoted
by A⊗?. Hopf monads on B which are representable by Hopf algebras in B are
characterized as follows:

Corollary 3.2 ([11, Theorem 5.7]). Let T be a Hopf monad on a braided category
B. Then T is isomorphic to the Hopf monad A⊗? for some Hopf algebra A in B
if and only if it is endowed with an augmentation e : T → 1C compatible with the
braiding τ of B in the following sense:

(eX ⊗ idT (1))T2(X, 1) = (eX ⊗ idT (1))τT (1),T (X)T2(1, X)

for any X ∈ Ob(B).
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3.5. Hopf monads on closed monoidal categories. In this section, we char-
acterize Hopf monads on closed monoidal categories in terms of the existence of
binary antipodes.

Let C be a monoidal category. For X,Y ∈ Ob(C), a left internal Hom from X to
Y is an object [X,Y ]l ∈ Ob(C) endowed with a morphism evXY : [X,Y ]l ⊗X → Y
such that, for each Z ∈ Ob(C), the mapping

{
HomC(Z, [X,Y ]l) → HomC(Z ⊗X,Y )

f 7→ evXY (f ⊗ idX)

is a bijection. If a left internal Hom from X to Y exists, it is unique up to unique
isomorphism. A monoidal category C is left closed if left internal Homs exist in C.
This is equivalent to saying that, for every X ∈ Ob(C), the endofunctor ? ⊗ X
admits a right adjoint [X, ?]l, with adjunction morphisms:

evXY : [X,Y ]l ⊗X → Y and coevXY : Y → [X,Y ⊗X ]l,

called respectively the left evaluation and the left coevaluation.
One defines similarly right internal Homs and right closed monoidal categories.

A monoidal category C is right closed if and only if, for every X ∈ Ob(C), the
endofunctor X⊗? has a right adjoint [X, ?]r, with adjunction morphisms:

ẽvXY : X ⊗ [X,Y ]r → Y and c̃oev
X
Y : Y → [X,X ⊗ Y ]l,

called respectively the right evaluation and the right coevaluation.
A closed monoidal category is a monoidal category which is both left and right

closed.
Let T be a bimonad on C. If C is left closed, a binary left antipode for T is a

natural transformation s
l = {slX,Y : T [T (X), Y ]l → [X,T (Y )]l}X,Y ∈Ob(C) satisfying

the following two axioms:

T
(
evXY ([ηX , Y ]l ⊗ idX)

)
= evTX

TY (slTX,Y T [µX , Y ]l ⊗ idTX)T2([TX, Y ]l, X),

[X, idTY ⊗ ηX ]lcoevXTY = [X, (idTY ⊗ µX)T2(Y, TX)]lslX,Y⊗TXT (coevTX
Y ),

for all X,Y ∈ Ob(C).
Similarly if C is right closed, a binary right antipode for T is a natural transfor-

mation s
r = {srX,Y : T [T (X), Y ]r → [X,T (Y )]r}X,Y ∈Ob(C) satisfying:

T
(
ẽvXY (idX ⊗ [ηX , Y ]r)

)
= ẽvTX

TY (idTX ⊗ srTX,Y T [µX , Y ]r)T2(X, [TX, Y ]r),

[X, ηX ⊗ idTY ]
r c̃oev

X
TY = [X, (µX ⊗ idTY )T2(TX, Y )]rsrX,TX⊗Y T (c̃oev

TX
Y ),

for all X,Y ∈ Ob(C).

Theorem 3.3 ([11, Theorem 3.6]). Let T be a bimonad on a closed monoidal
category C. The following assertions are equivalent:

(i) The bimonad T is a Hopf monad on C;
(ii) The bimonad T admits left and right binary antipodes;
(iii) The monoidal category CT is closed and the forgetful functor UT preserves

left and right internal Homs.

If the equivalent conditions of Theorem 3.3 are satisfied, then left and right
internal Homs for any two T -modules (M, r) and (N, t) are given by

[(M, r), (N, t)]l =
(
[M,N ]l, [M, t]lslM,NT [r,N ]l

)
,

[(M, r), (N, t)]r =
(
[M,N ]r, [M, t]rsrM,NT [r,N ]r

)
.

In addition to characterizing Hopf monads on closed monoidal categories, the
left and right antipodes, when they exist, are unique and well-behaved with respect
to the bimonad structure (see [11, Proposition 3.8]).
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3.6. Hopf monads on autonomous categories. In this section, we characterize
Hopf monads on autonomous categories in terms of the existence of unary antipodes,
recovering the first definition of Hopf monad we gave in [8].

If T is a bimonad on a left autonomous category C, a left (unary) antipode for T
is a natural transformation sl = {slX : T (

∨
T (X)) → ∨X}X∈Ob(C) satisfying:

T0T (evX)T (∨ηX ⊗ idX) = evT (X)

(
slT (X)T (

∨µX)⊗ idT (X)

)
T2(

∨T (X), X),

(ηX ⊗ id∨X)coevXT0 = (µX ⊗ slX)T2(T (X), ∨T (X))T (coevT (X)),

for all X ∈ Ob(C).
Similarly if T is a bimonad on a right autonomous category C, a right (unary)

antipode for T is a natural transformation sr = {srX : T ((TX)
∨
) → X∨}X∈Ob(C)

satisfying:

T0T (ẽvX)T (idX ⊗ η∨X) = ẽvT (X)

(
idT (X) ⊗ srT (X)T (µ

∨
X)
)
T2(X,T (X)∨),

(idX∨ ⊗ ηX)c̃oevXT0 = (srX ⊗ µX)T2(T (X)∨, T (X))T (c̃oevT (X)),

for all X ∈ Ob(C).
For example, if (A, σ) is a Hopf algebra in the center Z(C) of an autonomous

category C, then the Hopf monad A⊗σ? (see Section 3.4) admits left and right
antipodes given by

slX = (id∨X ⊗ evA)τA,∨X⊗∨A(S ⊗ id∨X⊗∨A),

srX = (idX∨ ⊗ ẽvA)(τA,X∨ ⊗ id∨A)(S
−1 ⊗ idX∨⊗A∨),

for all X ∈ Ob(C).
An autonomous category C is closed: for X,Y ∈ Ob(C), [X,Y ]l = Y ⊗ ∨X

is a left internal Hom from X to Y , with left evaluation evXY = idY ⊗ evX , and
[X,Y ]r = X∨ ⊗ Y is a right internal Hom from X to Y , with right evaluation

ẽvXY = ẽvX ⊗ idY . By [11, Theorem 3.10], the existence of a left (resp. right)
unary antipode for a bimonad T on an autonomous category C is equivalent to the
existence of a left (resp. right) binary antipode for T . If such is the case, antipodes
are related by

s
l
X,Y = (idT (X) ⊗ slY )T2(X, ∨T (Y )), slX = (T0 ⊗ id∨X)slX,1,

s
r
X,Y = (srY ⊗ idT (X))T2(

∨T (Y ), X), srX = (id∨X ⊗ T0)s
r
X,1,

for any X,Y ∈ Ob(C).
The following theorem characterizes Hopf monads on autonomous categories.

Theorem 3.4 ([8, Theorem 3.8]). Let C be an autonomous category and T be a
bimonad on C. Then the following assertions are equivalent:

(i) The bimonad T is a Hopf monad;
(ii) The bimonad T admits left and right antipodes;
(iii) The monoidal category CT is autonomous.

If the equivalent conditions of Theorem 3.4 are satisfied, the left and right duals
of any T -module (M, r) are given by

∨
(M, r) = (∨M, slMT (∨r)) and (M, r)∨ =

(M∨, srMT (r∨)).

3.7. Hopf monads and adjunctions. Let (F : C → D, U : D → C) be an adjunc-
tion, with unit η : 1C → UF and counit ε : FU → 1D. Then T = UF is a monad
with product µ = U(εF ) and unit η. For example, if (T, µ, η) is a monad on a cat-
egory C, then the forgetful functor UT : CT → C admits a left adjoint FT : C → CT ,
defined by FT (X) = (T (X), µX) for any object X of C and FT (f) = T (f) for any
morphism f of C, and T is the monad of the adjunction (FT , UT ). See [Mac] for
details.
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Let (F : C → D, U : D → C) be an adjunction between monoidal categories. De-
note its unit by η : 1C → UF and its counit by ε : FU → 1D. We say that (F,U) is
comonoidal if F,U are comonoidal functors and η, ε are comonoidal natural trans-
formations. In fact, (F,U) is a comonoidal if and only if U is strong monoidal. The
monad T = UF of a comonoidal adjunction (F,U) is a bimonad. For example, the
adjunction (FT , UT ) of a bimonad T is comonoidal (because UT is strong monoidal)
and its associated bimonad is T .

A comonoidal adjunction (F : C → D, U : D → C) is said to be a Hopf adjunction
if the natural transformations

H
l = {Hl

c,d = (F (c)⊗ εd)F2(c, U(d)) : F (c⊗ U(d)) → F (c)⊗ d}c∈Ob(C),d∈Ob(D),

H
r = {Hr

d,c = (εd ⊗ F (c))F2(U(d), c) : F (U(d)⊗ c) → d⊗ F (c)}c∈Ob(C),d∈Ob(D),

are invertible, where η and ε are the unit and counit of the adjunction. The monad
T = UF of a Hopf adjunction (F,U) is Hopf monad. On the other hand:

Theorem 3.5 ([11, Theorem 2.15]). Let T be a bimonad on a monoidal category C.
Then T is a Hopf monad if and only if the comonoidal adjunction (FT , UT ) is a
Hopf adjunction.

Comonoidal adjunctions between autonomous categories give examples of Hopf
monads:

Theorem 3.6 ([8, Theorem 3.8]). Let (F,U) be a comonoidal adjunction between
autonomous categories. Then T = UF is a Hopf monad on C.

3.8. Properties of Hopf monads. Many fundamental results of the theory of
Hopf algebras remain true for Hopf monads. For example, we extend the decompo-
sition theorem of Hopf modules (see [8, Theorem 4.5] and [11, Theorem 6.11]), the
Maschke criterium of semisimplicity (see [8, Theorem 6.5]), the existence of integral
(see [8, Theorem 5.3]). In Section 3.14, we generalize the Drinfeld double of Hopf
algebras to Hopf monads.

3.9. Hopf algebroids and abelian tensor categories. Let k be a commuta-
tive ring and R be a k-algebra. Denote by RModR the category of R- bimodules.
In [Sz], Szlachányi shows that left bialgebroids with base R (also called Takeuchi
×R-bialgebras) are in 1-1 correspondence with k- linear bimonads on RModR ad-
mitting a right adjoint. Let us define a Hopf bialgebroid to be a left bialgebroid
whose associated bimonad on RModR is a Hopf monad. (This definition turns out
to be equivalent to that given by Schauenburg in [Sc].) Since the monoidal category

RModR is closed, we obtain from Section 3.5 a notion a left and right antipode for
Hopf bialgebroids, see [11, Section 7].

The notion of Hopf algebroid is suitable for Tannaka reconstruction theory. Re-
call that a tensor category over k is an abelian autonomous k-category. We say
that a monoidal k-category is finite if it is k-linearly equivalent to the category of
finite-dimensional left modules over some finite-dimensional k-algebra.

Theorem 3.7 ([11, Theorem 7.6]). Let C be a finite tensor category over a field k.
Then C is equivalent, as a tensor category, to the category of modules over a finite-
dimensional left Hopf algebroid over k.

3.10. Quasitriangular Hopf monads. Let T be a bimonad on an monoidal cat-
egory C. An R-matrix for T is a natural transformation

R = {RX,Y : X ⊗ Y → T (Y )⊗ T (X)}X,Y∈Ob(C)
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satisfying:

(µY ⊗ µX)RT (X),T (Y )T2(X,Y ) = (µY ⊗ µX)T2(T (Y ), T (X))T (RX,Y ),

(idT (Z) ⊗ T2(X,Y ))RX⊗Y,Z

= (µZ ⊗ idT (X)⊗T (Y ))(RX,T (Z) ⊗ idT (Y ))(idX ⊗RY,Z),

(T2(Y, Z)⊗ idT (X))RX,Y ⊗Z

= (idT (Y )⊗T (Z) ⊗ µX)(idT (Y ) ⊗RT (X),Z)(RX,Y ⊗ idZ),

for all X,Y, Z ∈ Ob(C). An R-matrix for T satisfies some QYB equation, see [8].
If T is a Hopf monad on an autonomous category C, then an R-matrix R for T is

invertible with respect to some convolution product and yields a braiding τ on CT

as follows:

τ(M,r),(N,s) = (s⊗ t)RM,N : (M, r) ⊗ (N, s) → (N, s)⊗ (M, r)

for any T -modules (M, r) and (N, s). This assignment gives a 1-1 correspondence
between R-matrices for T and braidings on CT . See [8, Section 8.2] for details.

3.11. Distributive laws. Let (P,m, u) and (T, µ, η) be monads on a category C.
Following Beck [Be], a distributive law of T over P is a natural transformation
Ω = {ΩX : TP (X) → PT (X)}X∈Ob(C) satisfying

ΩXT (mX) = mT (X)P (ΩX)ΩP (X); ΩXT (uX) = uT (X);

ΩXµP (X) = P (µX)ΩT (X)T (ΩX); ΩXηP (X) = P (ηX);

for all X ∈ Ob(C). These axioms ensure that the functor PT : C → C is a monad
on C with product p and unit e given by

pX = mT (X)P
2(µX)P (ΩT (X)) and eX = uT (X)ηX for any X ∈ Ob(C).

The monad (PT, p, e) is denoted by P ◦Ω T . A distributive law Ω of T over P also

defines a lift of P to a monad (P̃ , m̃, ũ) on the category CT by

P̃ (M, r) =
(
P (M), P (r)ΩM

)
, m̃(M,r) = mM , ũ(M,r) = uM ,

and the categories (CT )P̃ and CP◦ΩT are isomorphic.
If P and T are Hopf monads on a monoidal category C and Ω is comonoidal,

then P ◦Ω T is a Hopf monad on C, P̃ is a Hopf monad on CT , and (CT )P̃ ≃ CP◦ΩT

as monoidal categories (see [11, Corollary 4.7]). If C is furthermore autonomous,
then Ω is invertible (see [10, Proposition 4.12]).

3.12. The centralizer of a Hopf monad. Let C be an autonomous category. A
functor T : C → C is centralizable if for every object X of C, the functor Cop×C → C
carrying any pair (Y1, Y2) to

∨T (Y1)⊗X ⊗ Y2 has a coend

ZT (X) =

∫ Y ∈C
∨T (Y )⊗X ⊗ Y.

The correspondence X 7→ ZT (X) extends to a functor ZT : C → C, called the
centralizer of T , so that the associated universal dinatural transformation

(10) iX,Y : ∨T (Y )⊗X ⊗ Y → ZT (X)

is natural in X and dinatural in Y . For X,Y ∈ Ob(C), set

(11) ∂X,Y = (idT (Y ) ⊗ iX,Y )(coevT (X) ⊗ idX⊗Y ) : X ⊗ Y → T (Y )⊗ ZT (X).

We depict ∂X,Y as:

∂X,Y =

Y

T (Y ) ZT (X)

X

.
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T (Y1) T (Y2)

Y1 Y2X

ZT (X)

mX

=

T (Y1) T (Y2)

X Y1 ⊗ Y2

ZT (X)

T2(Y1, Y2)
, u =

X

ZT (X)

T0

,

ZT (X1) ZT (X2)

Y

T (Y )

X1 ⊗X2

(ZT )2(X1, X2)
=

ZT (X1) ZT (X2)

Y

T (Y )

X1 X2

µX

,

T (Y )

Y

(ZT )0
=

T (Y )

Y

ηY ,

T (Y )

∨ZT (X) Y

∨X

Sl
X

=

T (Y )

∨ZT (X) Y

∨X

srY ,

T (Y )

ZT (X)∨ Y

X∨

Sr
X

=

T (Y )

ZT (X)∨ Y

X∨

slY
.

Figure 4. Structural morphisms of ZT

Assume now that T is a Hopf monad on C, with product µ, unit η, left antipode sl,
and right antipode sr. By the factorization properties of coends, there exist unique
natural transformations

m : Z2
T → ZT , (ZT )2 : ZT⊗ → ZT ⊗ ZT , u : 1C → ZT ,

Sl : ZT (
∨ZT ) →

∨1C , Sr : ZT (ZT
∨) → 1∨C

and a unique morphism (ZT )0 : ZT (1) → 1 such that the equalities of Figure 4 hold
for all X,Y,X1, X2, Y1, Y2 ∈ Ob(C).

Theorem 3.8 ([10, Theorem 5.6]). The centralizer ZT of T is a Hopf monad on C,
with product m, unit u, comonoidal structure

(
(ZT )2, (ZT )0

)
, left antipode Sl, and

right antipode Sr.

3.13. The canonical distributive law. Let T be a centralizable Hopf monad
on an autonomous category C and ZT be its centralizer with associated universal
dinatural transformation i as in (10). Since a Hopf monad preserves colimits and
so coends (see [8, Remark 3.13]), for any X ∈ Ob(C), the dinatural transformation

{T (iX,Y ) : T
(
∨T (Y )⊗X ⊗ Y

)
→ TZT (X)}Y∈Ob(C)

is universal. Therefore there exists a unique morphism ΩT
X : TZT (X) → ZTT (X)

such that, for any Y ∈ Ob(C),

ΩT
XT (iX,Y ) = iT (X),T (Y )

(
∨µY s

l
T (Y )T (

∨µY )⊗ T2(X,Y )
)
T2(

∨T (Y ), X ⊗ Y ),

where µ and sl are the product and the left antipode of T .

Theorem 3.9 ([10, Theorem 6.1]). ΩT = {ΩT
X : TZT (X) → ZTT (X)}X∈Ob(C) is

an invertible comonoidal distributive law.

We call ΩT the canonical distributive law of T over ZT . By Section 3.11, such a
law allows to compose ZT with T , giving the double of T (see Section 3.14 below),
and to lift the monad ZT to CT , leading to a description of the coend of CT (see
Section 3.15 below).
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3.14. The double of a Hopf monad. Let T be a centralizable Hopf monad on an
autonomous category C, ZT be its centralizer, and ΩT be the canonical distributive
law of T over ZT . By Section 3.11, DT = ZT ◦ΩT T is a Hopf monad on C. Let η
and u be the units of T and ZT respectively. For X,Y ∈ Ob(C), set

RX,Y =
(
uT (Y ) ⊗ ZT (ηX)

)
∂X,Y : X ⊗ Y → DT (Y )⊗DT (X),

where ∂X,Y is defined as in (11).

Theorem 3.10 ([10, Theorem 6.4]). R = {RX,Y }X,Y ∈Ob(C) is an R-matrix for the
Hopf monad DT .

The quasitriangular Hopf monad DT is called the double of T . This terminology
is justified by the fact that the braided categories Z(CT ) and CDT are equivalent.
More precisely, let U : Z(CT ) → C be the (strict monoidal) forgetful functor defined
by U

(
(M, r), σ

)
= M and U(f) = f , and ΦT : CDT → Z(CT ) be the functor

defined by ΦT (M, r) =
(
(M, ruT (M)), σ

)
, with σ(N,s) = (s ⊗ rZT (ηM ))∂M,N , and

ΦT (f) = f . Then:

Theorem 3.11 ([10, Theorem 6.5]). The functor ΦT : CDT → Z(CT ) is a strict
monoidal isomorphism of braided categories such that the following triangle of
monoidal functors commutes:

CDT
ΦT

//

UDT ""❉
❉❉

❉❉
❉❉

�

Z(CT )

U||③③
③③
③③

C

In particular, if C is an autonomous category such that the trivial Hopf monad
1C is centralizable, then the centralizer Z = Z1C of 1C coincides with the double
of 1C and, by applying the results above to T = 1C, we obtain that Z is a quasitri-
angular Hopf monad on C and Φ = Φ1C : C

Z → Z(C) is an isomorphism of braided
categories.

3.15. The coend of a category of modules. Let T be a centralizable Hopf
monad on an autonomous category C, ZT be its centralizer, and ΩT be the canonical

distributive law of T over ZT . By Section 3.11, Z̃T = Z̃ΩT

T is Hopf monad which

is a lift of the Hopf monad ZT to CT . Recall that Z̃T (M, r) = (ZT (M), ZT (r)Ω
T
M )

and Z̃T (f) = ZT (f). For any T -modules (M, r) and (N, s), set

ι(M,r),(N,s) = iM,N(∨s⊗ idM⊗N ) :
∨
(N, s)⊗ (M, r)⊗ (N, s) → Z̃T (M, r),

where i is the universal dinatural transformation associated with ZT as in (10).

Theorem 3.12 ([10, Theorem 6.5]). Z̃T is the centralizer of the trivial Hopf
monad 1CT , with universal dinatural transformation ι.

By the definition of a centralizer, Z̃T (1, T0) =
(
ZT (1), ZT (T0)Ω

T
1

)
is the coend

of CT . It is a coalgebra in CT , with coproduct and counit given by

∆ = (ZT )2(1, 1) : ZT (1) → ZT (1) ⊗ ZT (1) and ε = (ZT )0 : ZT (1) → 1.

Assume now that T is furthermore quasitriangular, with R-matrix R, so that the
autonomous category CT is braided. The coend Z̃T (1, T0) of CT becomes a Hopf
algebra in CT (see Section 2.5) endowed with a Hopf pairing (see Section 2.9). Its
unit is u = i1,1

∨T0 : 1 → ZT (1) and its product m, antipode S, and Hopf pairing
ω are defined by the equalities of Figure 5, where iY = i1,Y for Y ∈ Ob(C). This
gives an explicit description of the structural morphisms of the coend of CT .
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m(iX ⊗ iY ) =

X YT (X) T (Y )

T2(T (X), Y )

∂1,T (X)⊗Yµ∗
Xsl

T (X)T (µ
∗
X)

T2(T
∗(X), X)

ZT (1)

RT∗(X)⊗X,T∗(Y )

slT (Y )T (µ
∗
Y )

,

SiY =

YT (Y )

∂1,T∗(Y )

α

ZT (1)

RZT (1),Y

sl
T (Y )T (µ

∗
Y )

, ω(iX ⊗ iY ) =

X YT (X) T (Y )

RX,T∗(Y )

RT (T∗(Y )),T (X)

µX slY µT∗(Y )

.

Figure 5. Hopf algebra structure of the coend of CT

3.16. The case of Hopf algebras. Let B be a braided autonomous category
which admits a coend C and A be a Hopf algebra in B. Then the Hopf monad A⊗?
on B (see Section 3.4) is centralizable and we have:

ZA⊗? =
∨A⊗ C⊗? and DA⊗? = A⊗ ∨A⊗ C⊗?.

These Hopf monads are representable in B (see Corollary 3.2). Hence we get that
Z(A) = ∨A⊗C and D(A) = A⊗∨A⊗C are Hopf algebras in B. Furthermore D(A)
is quasitriangular, meaning that there exists a R-matrix

R : C ⊗ C → D(A)⊗D(A)

verifying axioms generalizing (but not straightforwardly) the usual ones (when B =
vectk, we have: C = k and R ∈ D(A)⊗D(A)). This R-matrix makes the category
repB(D(A)) of left D(A)-modules (in B) braided in such a way that

Z(repB(A)) ≃ repB(D(A))

as braided categories. This generalizes the Drinfeld double of Hopf algebras over k
to Hopf algebras in braided categories. We refer to [9, Section 8] for details.

3.17. The case of fusion categories. We apply the computations of the previous
sections to a fusion category C over k. Given a simple object i of C, the i-isotypical
component X(i) of an objectX is the largest direct factor ofX isomorphic to a direct
sum of copies of i. The actual number of copies of i is N i

X = rankk HomC(i,X).

An i-decomposition of X is an explicit direct sum decomposition of X(i) into copies
of i, that is, a family (pα : X → i, qα : i → X)α∈A of pairs of morphisms in C such
that pα qβ = δα,β idi for all α, β ∈ A and the set the set A has N i

X elements. Then
the tensor ∑

α∈A

pα ⊗k qα ∈ HomC(X, i)⊗k HomC(i,X)
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does not depend on the choice of the i-decomposition (pα, qα)α∈A of X . Conse-
quently, a sum of the type

∑

α∈A

pα qα

X

X

i

i

,

where (pα, qα)α∈A is an i-decomposition of an object X and the gray area does not
involve α, represents a morphism in C which is independent of the choice of the
i-decomposition. We depict it as

(12)

X

X

i

i

,

where the two curvilinear boxes should be shaded with the same color. If several
such pairs of boxes appear in a picture, they must have different colors. We will
also depict

i X

X i

as

X

Xi

i

.

Tensor products of objects may be depicted as bunches of strands. For example,

X∗ ⊗ Y ⊗ Z∗

i

=

Y ZX

i

and
X∗ ⊗ Y ⊗ Z∗

i

=

Y ZX

i

where the equality sign means that the pictures represent the same morphism of C.
Fix a representative set I of simple objects of C. Any k-linear functor T : C → C

is centralizable, and its centralizer ZT : C → C is given, for all X ∈ Ob(C), by

(13) ZT (X) =
⊕

i∈I

T (i)∗ ⊗X ⊗ i.

The associated universal dinatural transformation is, or all X,Y ∈ Ob(C),

ρX,Y =
∑

α∈ΛY

T (qαY )
∗ ⊗ idX ⊗ pαY : T (Y )∗ ⊗X ⊗ Y → ZT (X),

where (pβY , q
β
Y )β is any I-partition of Y .

The trivial Hopf monad 1C, being k-linear, is centralizable and its centralizer
Z = Z1C : C → C is the Hopf monad given by Formula (13) for T = 1C, that is,

Z(X) =
⊕

i∈I

i∗ ⊗X ⊗ i.

The structural morphisms of Z are computed in Figure 6, see [9, Section 9]. (The
dotted lines in the figure represent id1 and can be removed without changing the
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Z2(X,Y ) =
∑

i∈I i i
i

X Y

: Z(X ⊗ Y ) → Z(X)⊗ Z(Y ),

Z0 =
∑

i∈I

i : Z(1) → 1,

µX =
∑

i,j,k∈I
i ij j

kk

X : Z2(X) → Z(X),

ηX =
X

: X → X = 1∗ ⊗X ⊗ 1 →֒ Z(X),

slX = srX =
∑

i,j∈I i i∗ jj

X
: Z(Z(X)∗) → X∗,

RX,Y =
∑

i∈I

ii

X Y

Y

: X ⊗ Y → Z(Y )⊗ Z(X).

Figure 6. Structural morphisms of Z

morphisms; we depicted them in order to remember which factor of Z(X) is con-
cerned.)

Being k-linear, the Hopf monad Z is centralizable and its centralizer ZZ : C → C
is given by Formula (13) for T = Z, that is,

ZZ(X) =
⊕

j∈I

Z(j)∗ ⊗X ⊗ j ≃
⊕

i,j∈I

i∗ ⊗ j∗ ⊗ i⊗X ⊗ j.

Therefore, by Section 3.15, the category CZ admits a coend. Now Z(C) ≃ CZ by
Theorem 3.11 (applied with T = 1C). Hence Z(C) admits a coend (C, σ). We have:

C = ZZ(1) =
⊕

i,j∈I

i∗ ⊗ j∗ ⊗ i⊗ j,

and σ = {σX : C ⊗X → X ⊗ C}X∈Ob(C) is given by

(14) σY =
∑

i,j,k,ℓ,n∈I

ii jj

k kℓ ℓ

n n nnn

X

X

for any X ∈ Ob(C). Recall from Section 2.5, that the coend (C, σ) of Z(C) is a
Hopf algebra in Z(C). By Section 3.15, its structural morphisms can be expressed
using only the category C. Those needed to represent Hopf diagrams are depicted
in Figure 7, together with τ(C,σ),(C,σ) = σC depicted above.

Set

Λ =
∑

i∈I

dim(i) coevi : 1 →
⊕

i∈I

i∗ ⊗ i =
⊕

i∈I

1
∗ ⊗ i∗ ⊗ 1 ⊗ i →֒ C.

Theorem 3.13 ([13]). The morphism Λ: 1 → C is a S(C,σ)-invariant integral of
the coend (C, σ) of Z(C).
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∆(C,σ) =
∑

i,j,k,ℓ,n∈I

ii j

j j

j

k

kk

kℓ ℓn n

ε(C,σ) =
∑

j∈I

j

S(C,σ) =
∑

i,j,k,ℓ,n∈I i

ii

i

jj j

j j j

k k ℓℓ

ω(C,σ) =
∑

i,j,k,ℓ∈I

i

i
i

i j j k

k

k

k ℓℓ

θ+(C,σ) =
∑

i∈I
i i

θ−(C,σ) =
∑

i∈I

i i

Figure 7. Structural morphisms of the coend of Z(C)

From Theorem 3.13 we deduce that the Hopf pairing ω(C,σ) associated with
(C, σ) as in (9) is non-degenerate (see [13]). We recover from this fact that if k is
an algebraically closed field and dim(C) 6= 0, then Z(C) is modular. This gives an
alternative proof of Müger’s Theorem 1.1.

3.18. Computing τZ(C)(M
3) from C. Let C be a spherical fusion category over

the commutative ring k. The integral Λ of the coend (C, σ) of Z(C) given by
Theorem 3.13 is a normalizable algebraic Kirby element such that θ+CΛ = 1k and

θ−CΛ = 1k. Since we have an explicit description of the structural morphisms of
(C, σ) (see Section 3.17), we have a way to compute the 3-manifolds invariant
τZ(C)(M ; Λ) through Hopf diagrams (see Section 2.10). For example, we get

τZ(C)(S
2 × S1; Λ) = dim(C).

The invariant τZ(C)(M ; Λ) is well-defined even if dim C is not invertible. When
dim(C) is invertible and k is an algebraic closed field (so that Z(C) is a modu-
lar fusion category, see Theorem 1.1), the invariant τZ(C)(M ; Λ) is equal to the
Reshetikhin-Turaev invariant τZ(C)(M) (up to a different normalization, see Sec-
tion 2.6). Hence we get a way to compute τZ(C)(M) in terms of the structural
morphisms of C (note that one cannot use the original algorithm of Reshetikhin-
Turaev since the simple objects of Z(C) are unknown in general).

In the next section, we compare the Reshetikhin-Turaev invariant τZ(C)(M) de-
fined with Z(C) and the Turaev-Viro invariant |M |C defined with C: we show that
τZ(C)(M) = |M |C for any closed oriented 3-manifold M . As a corollary, the above
method for computing τZ(C)(M) in terms of Hopf diagrams and the structural mor-
phisms of the coend (C, σ) gives rise to an alternative and efficient way to compute
the sate-sum invariant |M |C .
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4. On two approaches to 3-dimensional TQFTs

Our main goal in this section is to prove the conjecture (2) stated in the intro-
duction, that is, to relate the Reshetikhin-Turaev invariant with the Turaev-Viro
invariant through the categorical center. Given a spherical fusion category C with
invertible dimension, we first define a new state sum on (non-generic) skeletons
of 3-manifolds by means of an invariant of C-colored graphs in the sphere. The
3-manifolds invariant |M |C we obtain in this way is equal to the Turaev-Viro in-
variant, as revisited by Barrett and Westbury. Then we extend this invariant to a
TQFT | · |C and show, when the ground ring k is an algebraically closed field, that
the state sum TQFT | · |C is isomorphic to the Reshetikhin-Turaev TQFT τZ(C)

defined with the center Z(C) of C. We refer to [12] for details.

4.1. Symmetrized multiplicity modules. Let C be a pivotal k-category. A
cyclic C- set is a totally cyclically ordered finite set whose elements are labeled by
objects of C and by signs in {+,−}. To any cyclic C- set E we associate a k-module
H(E) defined as follows. Let e1 < e2 < · · · < en < e1 be the elements of E ordered
via the given cyclic order (here n = #E is the number of elements of E). Denote
by Xi ∈ Ob(C) the color of ei and by εi the sign of ei. Let Yi = Xi if εi = + and
Yi = X∗

i if εi = −. Set Hei = HomC(1, Yi ⊗ · · · ⊗ Yn ⊗ Y1 ⊗ · · ·Yi−1). We identify
the k-modules He1 , . . . , Hen via the isomorphisms

α ∈ Hei 7→

Yi

α

Yi+1 ⊗ · · · ⊗ Yn ⊗ Y1 ⊗ · · ·Yi−1

∈ Hei+1 ,

which form a projective system. The projective limit of this system is a k-module
H(E) which comes with a system of isomorphisms τ = {τe : H(E) → He}e∈E called
its universal cone.

A duality between two cyclic C- sets E and E′ is a bijection E → E′ reversing the
cyclic order, preserving the colors, and reversing the signs. Such a duality induces
a k-linear pairing H(E)⊗k H(E′) → k, defined as the map

α⊗ β ∈ HomC(1, Y
∗ ⊗X)⊗HomC(1, X

∗ ⊗ Y ) 7→ X Y

α β

∈ EndC(1) = k.

When the category C is fusion, this pairing is non-degenerate. In this case, the dual
of the inverse of the pairing is a k-homomorphism H(E)⋆ ⊗H(E′)⋆ → k called the
contraction, where H(E)⋆ = Homk(H(E), k). For more details, see [12, Section 2].

4.2. Colored graphs in surfaces. By a graph, we mean a finite graph without
isolated vertices. Every edge of a graph connects two (possibly coinciding) vertices.
We allow multiple edges with the same endpoints. A C-colored graph in Σ is a
graph embedded in Σ such that each edge is oriented and endowed with an object
of C called the color of the edge. Given two C-colored graphs G and G′ in Σ, an
isotopy of G into G′ is an isotopy of G into G′ in the class of C-colored graphs in Σ
preserving the vertices, the edges, and the orientation and the color of the edges.

Let G be a C-colored graph in Σ. A vertex v of G determines a cyclic C- set Ev

as follows: Ev is the set of half-edges of G incident to v with cyclic order induced
by the opposite orientation of Σ; each half-edge e is endowed with the color of
the edge and with the sign + if e is oriented towards v and − otherwise. Set
Hv(G) = H(Ev) and H(G) = ⊗v Hv(G), where v runs over all vertices of G and
⊗ = ⊗k is the tensor product over k. To stress the role of Σ, we shall sometimes
write Hv(G; Σ) for Hv(G) and H(G; Σ) for H(G).
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Denote by −Σ the surface Σ with opposite orientation. A C-colored graph G
in Σ determines a C-colored graph Gop in −Σ obtained by reversing orientation in
all edges of G and in Σ while keeping the colors of the edges. The cyclic C-sets
determined by a vertex v of G and Gop are dual. In particular, when C is fusion,
we can conclude that Hv(G

op;−Σ)⋆ ≃ Hv(G; Σ).

4.3. Invariants of colored graphs in the sphere. Let C be a spherical k-cat-
egory. We orient the 2-sphere S2 = R2 ∪ {∞} in such a way it extends the coun-
terclockwise orientation in R2. Let G be a C- colored graph in S2. Pushing, if
necessary, G away from ∞, we can assume that G lies in R

2. For each vertex v
of G, we choose a half-edge ev incident to v and isotope G near v so that the half-
edges incident to v lie above v with respect to the second coordinate on R2 and ev
is the leftmost of them. Pick any αv ∈ Hv(G) and replace v by a box colored with
τvev (αv), where τv is the universal cone of Hv(G) (see Section 4.1):

ev

v

ev

v
τvev (αv) .

This transforms G into a planar diagram which determines, by the Penrose calcu-
lus, an element of EndC(1) = k denoted FC(G)(⊗vαv). By linear extension, this
procedure defines a vector FC(G) ∈ H(G)⋆ = Homk(H(G), k).

Proposition 4.1 ([12, Section 3]). The vector FC(G) ∈ H(G)⋆ is a well-defined
isotopy invariant of a C-colored graph G in S2.

For example, consider for i, j, k, l,m, n ∈ Ob(C) the following C-colored graph
in S2:

Γ =
i

jk

l
m

n

.

HereH(Γ) is the tensor product of four modules isomorphic to HomC(1,m⊗i∗⊗n∗),
HomC(1, j ⊗ i ⊗ k∗), HomC(1, n ⊗ j∗ ⊗ l∗), and HomC(1, l ⊗ k ⊗m∗). The vector
FC(Γ) ∈ H(Γ)⋆ and similar vectors associated with other orientations of the edges
of Γ form a family of 26 = 64 tensors called 6j-symbols associated with i, j, k, l,m, n.
For more on this, see [12, Appendix].

The invariant FC has several properties (see [12]). In particular, if C is a spherical
fusion category and I is a representative set of simple objects of C, then:

(a) For any i, j ∈ I,

FC




i

j


 = δi,j(dim(i))−1

FC


i


⊗ FC


 i


 .

(b) FC





 =

∑

i∈I

dim(i) ∗u,v FC


 i

u
v


 .
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(c) FC





 = ∗u,v FC


 u

v


 .

In (a) and (c) the empty rectangles stand for pieces of C-colored graphs sitting inside
the rectangles. The same C-colored graphs appear on both sides of the equalities.
In (b) and (c), the duality between the cyclic C- sets Eu and Ev associated with the
vertices u and v is induced by the symmetry with respect to a horizontal line and
gives rise to the contraction map ∗u,v : Hu(G)∗⊗Hv(G)∗ = H(Eu)

∗⊗H(Ev)
∗ → k,

see Section 4.1.

4.4. Skeletons of 3-manifolds. By a 2-polyhedron, we mean a compact topolog-
ical space that can be triangulated using only simplices of dimension ≤ 2. For a
2-polyhedron P , denote by Int(P ) the subspace of P consisting of all points having
a neighborhood homeomorphic to R2. Clearly, Int(P ) is an (open) 2-manifold with-
out boundary. By an arc in P , we mean the image of a path α : [0, 1] → P which
is an embedding except that possibly α(0) = α(1). (Thus, arcs may be loops.)

To work with polyhedra, we will use the language of stratifications as follows.
Consider a 2-polyhedron P endowed with a finite set of arcs E such that

(a) different arcs in E may meet only at their endpoints;
(b) P \ ∪e∈E e ⊂ Int(P ) and P \ ∪e∈E e is dense in P .

The arcs of E are called edges of P and their endpoints are called vertices of P .
The vertices and edges of P form a graph P (1) = ∪e∈E e. Since all vertices of P
are endpoints of the edges, P (1) has no isolated vertices. Cutting P along P (1),

we obtain a compact surface P̃ with interior P \ P (1). The polyhedron P can be

recovered by gluing P̃ to P (1) along a map p : ∂P̃ → P (1). Condition (b) ensures the
surjectivity of p. We call the pair (P,E) (or, shorter, P ) a stratified 2-polyhedron if
the set p−1(the set of vertices ofP ) is finite and each component of the complement

of this set in ∂P̃ is mapped homeomorphically onto the interior of an edge of P .
A 2-polyhedron P can be stratified if and only if Int(P ) is dense in P . For such

a P , the edges of any triangulation form a stratification. Another example: a closed
surface with an empty set of edges is a stratified 2-polyhedron.

For a stratified 2-polyhedron P , the connected components of P̃ are called regions
of P . Clearly, the set Reg(P ) of the regions of P is finite. For a vertex x of P , a
branch of P at x is a germ at x of a region of P adjacent to x. The set of branches
of P at x is finite and non-empty. Similarly, for an edge e of P , a branch of P
at e is a germ at e of a region of P adjacent to e. The set of branches of P at e is
denoted Pe. This set is finite and non-empty. The number of elements of Pe is the
valence of e. The edges of P of valence 1 and their vertices form a graph called the
boundary of P and denoted ∂P . We say that P is orientable (resp. oriented) if all
regions of P are orientable (resp. oriented).

A skeleton of a closed 3-manifoldM is an oriented stratified 2-polyhedron P ⊂ M
such that ∂P = ∅ and M \ P is a disjoint union of open 3-balls. An example of
a skeleton of M is provided by the (oriented) 2-skeleton t(2) of a triangulation t
of M , where the edges of t(2) are the edges of t.

We define four moves T1, . . . , T4 on a skeleton P of M transforming P into a new
skeleton of M , see Figure 8. The “phantom edge move” T1 keeps P as a polyhedron
and adds one new edge connecting distinct vertices of P (this edge is an arc in P
meeting P (1) solely at its endpoints and has the valence 2). The “contraction
move” T2 collapses into a point an edge e of P with distinct endpoints. This move
is allowed only when at least one endpoint of e is the endpoint of some other edge.
The “percolation move” T3 pushes a branch b of P through a vertex x of P . The
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T1 T2

T3

T4

Figure 8. Local moves on skeletons

branch b is pushed across a small disk D lying in another branch of P at x so that
D ∩ P (1) = ∂D ∩ P (1) = {x} and both these branches are adjacent to the same
component of M \P . The “bubble move” T4 adds to P an embedded disk D+ ⊂ M
such that D+∩P = ∂D+ ⊂ P \P (1), the circle ∂D+ bounds a disk D− in P \P (1),
and the 2-sphere D+ ∪ D− bounds a ball in M meeting P precisely along D−. A
point of the circle ∂D+ is chosen as a vertex and the circle itself is viewed as an
edge of the resulting skeleton. The orientation of the skeletons produced by the
moves T1, . . . , T4 on P is induced by the orientation of P except for the small disk
regions created by T3, T4 whose orientation is chosen arbitrarily.

The moves T1, . . . , T4 have obvious inverses. The move T−1
1 deletes a 2-valent

edge e with distinct endpoints; this move is allowed only when both endpoints
of e are endpoints of some other edges and the orientations on both sides of e are
compatible. We call the moves T1, . . . , T4 and their inverses primary moves. In the
sequel, we tacitly assume the right to use ambient isotopies of skeletons in M . In
other words, ambient isotopies are treated as primary moves.

Theorem 4.2 ([12, Section 7]). Any two skeletons of M can be related by primary
moves.

We prove Theorem 4.2 by showing that any skeleton of M can be transformed
via the primary moves into a so called special skeleton, and then using the theory
of special skeletons due to Casler, Matveev, and Piergallini.

4.5. State sums on skeletons of 3-manifolds. Let C be a spherical fusion cate-
gory over k whose dimension is invertible in k. Fix a (finite) representative set I of
simple objects of C. For each closed oriented 3-manifold M , we define a topological
invariant |M |C ∈ k.

Pick a skeleton P of M and a map c : Reg(P ) → I. For each oriented edge e
of P , we define a k-module Hc(e) as follows. The orientations of e and M determine
a positive direction on a small loop in M encircling e; this direction determines a
cyclic order on the set Pe of all branches of P at e. To each branch b ∈ Pe we assign
the object c(r) ∈ I (where r is the region of P containing b) and a sign equal to + if
the orientations of b and e are compatible and to − otherwise. (The orientations of b
and e are compatible if each pair (a tangent vector directed outward b at a point of e,
a positive tangent vector of e) is positively oriented in b.) In this way, Pe becomes a
cyclic C- set. Set Hc(e) = H(Pe). If e

op is the same edge with opposite orientation,
then Peop and Pe are in duality. This induces a duality between the modules Hc(e),
Hc(e

op) and a contraction ∗e : Hc(e
op)⋆ ⊗Hc(e)

⋆ → k, see Section 4.1. Note that
the contractions ∗e and ∗eop are equal up to permutation of the tensor factors.
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Figure 9. The graph Γx ⊂ S2 associated with a vertex x

Any vertex x of a skeleton P ⊂ M has a closed ball neighborhood Bx ⊂ M such
that Γx = P ∩ ∂Bx is a finite non-empty graph and P ∩ Bx is the cone over Γx.
The vertices of Γx are the intersections of ∂Bx with the half-edges of P incident
to x; the edges of Γx are the intersections of ∂Bx with the branches of P at x. We
color every edge α of Γx with c(rα) ∈ I, where rα is the region of P containing
the branch b such that α = b ∩ ∂Bx, and endow α with the orientation induced
by that of rα \ Int(Bx). We identify ∂Bx with the standard 2-sphere S2 via an
orientation preserving homeomorphism, where the orientation of ∂Bx is induced by
that of M restricted to M \ Int(Bx). In this way, Γx becomes a C-colored graph
in S2. Section 4.3 yields a tensor FC(Γx) ∈ Hc(Γx)

∗. See Figure 9 for an example.
By definition, Hc(Γx) = ⊗eHc(e), where e runs over all edges of P incident to x
and oriented away from x (an edge with both endpoints in x appears in this tensor
product twice with opposite orientations). The tensor product ⊗x FC(Γx) over all
vertices x of P is a vector in ⊗eHc(e)

⋆, where e runs over all oriented edges of P .
Set ∗P = ⊗e ∗e : ⊗e Hc(e)

⋆ → k and

(15) |M |C = (dim(C))−|P |
∑

c


 ∏

r∈Reg(P )

(dim c(r))χ(r)


 ∗P (⊗x FC(Γx)) ∈ k,

where |P | is the number of components of M \P , c runs over all maps Reg(P ) → I,
and χ(r) is the Euler characteristic of r.

Theorem 4.3. [12, Section 5] |M |C is a topological invariant of M . This invariant
does not depend on the choice of I.

We prove Theorem 4.3 by showing that this construction in independent of the
choice of skeleton P of M : we verify that the right hand side of (15) remains un-
changed when applying a primary move (see Theorem 4.2), thanks to the properties
of the invariant FC of C- colored graphs in S2 (see Section 4.3).

The state sum invariant |M |C generalizes the state sums of Turaev-Viro [TV]
and Barrett-Westbury [BW1]. Indeed, when P is the oriented 2-skeleton of the
cellular subdivision of M dual to a triangulation t of M , and the orientation of P
is induced by that of M and a total order on the set of vertices of t, Formula (15)
is equivalent to the state sum on t given in [BW1]. In particular |M |C is equal to
Turaev-Viro-Barrett-Westbury invariant.
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It is clear from the definitions that |M ∐ N |C = |M |C |N |C for any oriented
closed 3-manifolds M,N . One can show that | − M |C = |M |Cop , where −M is
M with opposite orientation and Cop is the category opposite to C. We have:
|S3|C = (dim(C))−1 and |S1 × S2|C = 1.

Previous work done on an extension of the 3-manifolds invariant | · |C to a TQFT
was little conclusive. The original paper of Turaev and Viro produced a TQFT
associated with the categories of representations of Uq(sl2(C)) at roots of unity.
This was generalized to modular categories in [Tu1]. It was natural to expect a
further generalization to spherical fusion categories in spirit of the Barrett-Westbury
construction [BW1]. However, Barrett and Westbury did not construct a TQFT
(though they claimed that it was feasible under additional assumptions on the
category). Subsequent papers on this subject have left this question open. The
reason may lie in technical difficulties encountered in this direction. In Section 4.9,
we extend the invariant |M |C to a TQFT. This extension is based on a skeleton
presentation of 3-manifolds with boundary.

4.6. Skeletons in the relative case. Let M be a compact 3-manifold (with
boundary). Let G be an oriented graph in ∂M such that all vertices of G have
valence ≥ 2. (A graph is oriented, if all its edges are oriented.) A skeleton of the
pair (M,G) is an oriented stratified 2-polyhedron P ⊂ M such that

(i) P ∩ ∂M = ∂P = G;
(ii) every vertex v of G is an endpoint of a unique edge dv of P not contained

in ∂M ; moreover, dv ∩ ∂M = {v} and dv is not a loop;
(iii) every edge a of G is an edge of P of valence 1; the only region Da of P

adjacent to a is a closed 2-disk, Da ∩ ∂M = a, and the orientation of Da is
compatible with that of a (see Section 4.5 for compatibility of orientations);

(iv) M \ P is a disjoint union of a finite collection of open 3-balls and a 3-
manifold homeomorphic to (∂M \ G) × [0, 1) through a homeomorphism
extending the identity map ∂(M \ P ) = ∂M \G = (∂M \G)× {0}.

Conditions (i)–(iii) imply that in a neighborhood of ∂M , a skeleton of (M,G)
is a copy of G × [0, 1]. The primary moves T±1

1 , . . . , T±1
4 on skeletons of closed

3-manifolds extend to skeletons P of (M,G) in the obvious way. These moves keep
∂P = G and preserve the skeletons in a neighborhood of their boundary G. In
particular, the move T1 adds an edge with both endpoints in Int(M), the move T2

collapses an edge contained in Int(M), etc. Ambient isotopies of skeletons in M
keeping the boundary pointwise are also viewed as primary moves.

Every pair (a compact orientable 3-manifold M , an oriented graph G in ∂M
such that all vertices of G have valence ≥ 2) has a skeleton. Theorem 4.2 has the
following relative version:

Theorem 4.4 ([12, Section 8]). Any two skeletons of (M,G) can be related by
primary moves in M .

4.7. Invariants of I-colored graphs. Fix up to the end of Section 4.9 a spherical
fusion category C over k such that dim(C) is invertible in k. Fix a representative
set I of simple objects of C. We shall derive from C and I a 3-dimensional TQFT.

By an I-colored graph in a surface, we mean a C-colored graph such that the
colors of all edges belong to I and all vertices have valence ≥ 2. For any compact
oriented 3-manifold M and any I-colored graph G in ∂M , we define a topological
invariant |M,G| ∈ k as follows. Pick a skeleton P ⊂ M of the pair (M,G). Pick a
map c : Reg(P ) → I extending the coloring of G in the sense that for every edge a
of G, the value of c on the region of P adjacent to a is the C-color of a. For every
oriented edge e of P , consider the k-module Hc(e) = H(Pe), where Pe is the set
of branches of P at e turned into a cyclic C- set as in Section 4.5. Let E0 be the
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set of oriented edges of P with both endpoints in Int(M), and let E∂ be the set
of edges of P with exactly one endpoint in ∂M oriented towards this endpoint.
Note that every vertex v of G is incident to a unique edge ev belonging to E∂ and
Hc(ev) = Hv(G

op;−∂M), where the orientation of ∂M is induced by that of M .
Therefore

⊗e∈E∂
Hc(e)

⋆ = ⊗v Hv(G
op;−∂M)⋆ = H(Gop;−∂M)⋆.

For e ∈ E0, the equality Peop = (Pe)
op induces a duality between the modules

Hc(e), Hc(e
op) and a contraction Hc(e)

⋆ ⊗ Hc(e
op)⋆ → k. This contraction does

not depend on the orientation of e up to permutation of the factors. Applying these
contractions, we obtain a homomorphism

∗P : ⊗e∈E0∪E∂
Hc(e)

⋆ −→ ⊗e∈E∂
Hc(e)

⋆ = H(Gop;−∂M)⋆.

As in Section 4.5, any vertex x of P lying in Int(M) determines an oriented graph Γx

in S2, and the mapping c turns Γx into a C-colored graph. Section 4.3 yields a
tensor FC(Γx) ∈ Hc(Γx)

∗. Here Hc(Γx) = ⊗eHc(e), where e runs over all edges
of P incident to x and oriented away from x. The tensor product ⊗x FC(Γx) over
all vertices x of P lying in Int(M) is a vector in ⊗e∈E0∪E∂

Hc(e)
⋆. Set

|M,G| = (dim(C))−|P |
∑

c


 ∏

r∈Reg(P )

(dim c(r))χ(r)


 ∗P (⊗x FC(Γx)),

where |P | is the number of components of M \P , c runs over all maps Reg(P ) → I
extending the coloring of G, and χ is the Euler characteristic.

Theorem 4.5 ([12, Section 9]). |M,G| ∈ H(Gop;−∂M)⋆ is a topological invariant
of the pair (M,G).

Though there is a canonical isomorphism H(Gop;−∂M)⋆ ≃ H(G; ∂M) (see Sec-
tion 4.2), we view |M,G| as an element of H(Gop;−∂M)⋆.

We prove Theorem 4.5 by showing that the sum defining |M,G| does not depend
on the choice of P : it remains unchanged when applying a primary move to P (see
Theorem 4.4).

Taking G = ∅, the scalar topological invariant |M |C = |M, ∅| ∈ H(∅)⋆ = k of
M is equal to the invariant |M |C of Theorem 4.3. In Section 4.9, we use |M,G| to
extend |M |C to a TQFT.

4.8. Preliminaries on TQFTs. For convenience of the reader, we outline a defi-
nition of a 3-dimensional Topological Quantum Field Theory (TQFT) referring for
details to [At]. We first define a category Cob3 as follows. Objects of Cob3 are
closed oriented surfaces. A morphism Σ0 → Σ1 in Cob3 is represented by a pair
(M,h), whereM is a compact oriented 3-manifold and h is an orientation-preserving
homeomorphism (−Σ0) ⊔ Σ1 ≃ ∂M . Two such pairs (M,h : (−Σ0) ⊔ Σ1 → ∂M)
and (M ′, h′ : (−Σ0) ⊔ Σ1 → ∂M ′) represent the same morphism Σ0 → Σ1 if there
is an orientation-preserving homeomorphism F : M → M ′ such that h′ = Fh. The
identity morphism of a surface Σ is represented by the cylinder Σ × [0, 1] with
the product orientation and the tautological identification of the boundary with
(−Σ)⊔Σ. Composition of morphisms in Cob3 is defined as follows: the composition
of morphisms (M0, h0) : Σ0 → Σ1 and (M1, h1) : Σ1 → Σ2 is represented by the pair
(M,h), where M is the result of gluing M0 to M1 along h1h

−1
0 : h0(Σ1) → h1(Σ1)

and h = h0|Σ0 ⊔ h1|Σ2 : (−Σ0) ⊔ Σ2 ≃ ∂M . The category Cob3 is a symmetric
monoidal category with tensor product given by disjoint union. The unit object of
Cob3 is the empty surface ∅ (which by convention has a unique orientation).

A 3-dimensional TQFT is a symmetric monoidal functor Z : Cob3 → vectk,
where vectk is the category of finitely generated projective k-modules . In particular,
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Z(∅) = k, Z(Σ ⊔ Σ′) = Z(Σ) ⊗ Z(Σ′) for any closed oriented surfaces Σ,Σ′, and
similarly for morphisms.

Each compact oriented 3-manifold M determines two morphisms ∅ → ∂M and
−∂M → ∅ in Cob3. The associated homomorphisms Z(∅) = k → Z(∂M) and
Z(−∂M) → Z(∅) = k are denoted Z(M, ∅, ∂M) and Z(M,−∂M, ∅), respectively.
If ∂M = ∅, then Z(M, ∅, ∂M) = Z(M,−∂M, ∅) : k → k is multiplication by an
element of k denoted Z(M).

An isomorphism of 3-dimensional TQFTs Z1 → Z2 is a natural monoidal iso-
morphism of functors. In particular, if two TQFTs Z1, Z2 are isomorphic, then
Z1(M) = Z2(M) for any closed oriented 3-manifold M .

4.9. The state sum TQFT. By a 3-cobordism we mean a triple (M,Σ0,Σ1),
where M is a compact oriented 3-manifold and Σ0,Σ1 are disjoint closed oriented
surfaces contained in ∂M such that ∂M = (−Σ0) ⊔ Σ1 in the category of oriented
manifolds. Note that the pair (M, id∂M ) represents a morphism in Cob3.

Consider a 3-cobordism (M,Σ0,Σ1) and an I-colored graph Gi ⊂ Σi for i = 0, 1.
Theorem 4.5 yields a vector

|M,Gop
0 ∪G1| ∈ H(G0 ∪Gop

1 ,−∂M)⋆ = H(G0,Σ0)
⋆ ⊗H(Gop

1 ,−Σ1)
⋆.

The isomorphism H(Gop
1 ,−Σ1)

⋆ ≃ H(G1,Σ1) given in Section 4.2 induces an iso-
morphism Υ: H(G0,Σ0)

⋆ ⊗H(Gop
1 ,−Σ1)

⋆ → Homk

(
H(G0,Σ0), H(G1,Σ1)

)
. Set

|M,Σ0, G0,Σ1, G1| =
(dim(C))|G1|

dim(G1)
Υ
(
|M,Gop

0 ∪G1|
)
: H(G0; Σ0) → H(G1; Σ1),

where for an I-colored graph G in a surface Σ, the symbol |G| denotes the number
of components of Σ \G and dim(G) denotes the product of the dimensions of the
objects of C associated with the edges of G.

By skeleton of a closed surface Σ we mean an oriented graph G ⊂ Σ such that
all vertices of G have valence ≥ 2 and all components of Σ \G are open disks. For
example, the vertices and the edges of a triangulation t of Σ (with an arbitrary
orientation of the edges) form a skeleton of Σ.

For a skeleton G of a closed oriented surface Σ, denote by col(G) the set of all
maps from the set of edges of G to I and set |G; Σ|◦ = ⊕c∈col(G)H((G, c); Σ). Given
a 3-cobordism (M,Σ0,Σ1), we define for any skeletons G0 ⊂ Σ0 and G1 ⊂ Σ1 a
homomorphism |M,Σ0, G0,Σ1, G1|◦ : |G0; Σ0|◦ → |G1; Σ1|◦ by

(16) |M,Σ0, G0,Σ1, G1|
◦ =

∑

c0∈col(G0)
c1∈col(G1)

|M,Σ0, (G0, c0),Σ1, (G1, c1)|.

If (M0,Σ0,Σ1), (M1,Σ1,Σ2) are two 3-cobordisms and (M,Σ0,Σ2) is the 3-
cobordism obtained by gluing M0 and M1 along Σ1, and if Gi is skeleton of Σi with
i = 0, 1, 2, then

(17) |M,Σ0, G0,Σ2, G2|
◦ = |M,Σ1, G1,Σ2, G2|

◦ ◦ |M,Σ0, G0,Σ1, G1|
◦.

The constructions above assign a finitely generated free module to every closed
oriented surface with distinguished skeleton and a homomorphism of these modules
to every 3-cobordism whose bases are endowed with skeletons. This data satisfies
the axioms of a TQFT except one: the homomorphism associated with the cylinder
over a surface, generally speaking, is not the identity. There is a standard procedure
which transforms such a “pseudo-TQFT” into a genuine TQFT and gets rid of the
skeletons of surfaces at the same time. The idea is that if G0, G1 are two skeletons
of a closed oriented surface Σ, then the cylinder cobordism M = Σ× [0, 1] gives a
homomorphism

p(G0, G1) = |M,Σ× {0}, G0 × {0},Σ× {1}, G1 × {1}|◦ : |G0; Σ|
◦ → |G1; Σ|

◦ .
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Formula (17) implies that p(G0, G2) = p(G1, G2) p(G0, G1) for any skeletons G0,
G1, G2 of Σ. Taking G0 = G1 = G2 we obtain that p(G0, G0) is a projector onto a
direct summand |G0; Σ| of |G0; Σ|◦. Moreover, p(G0, G1) maps |G0; Σ| isomorphi-
cally onto |G1; Σ|. The finitely generated projective k-modules {|G; Σ|}G, where
G runs over all skeletons of Σ, and the homomorphisms {p(G0, G1)}G0,G1 form a
projective system. The projective limit of this system, denoted |Σ|C , is a k-module
independent of the choice of a skeleton of Σ. For each skeleton G of Σ, we have a
“cone isomorphism” of k-modules |G; Σ| ∼= |Σ|C . For example, we have: |S2|C ≃ k.
By convention, the empty surface ∅ has a unique (empty) skeleton and |∅|C = k.

Any 3-cobordism (M,Σ0,Σ1) splits as a product of a 3-cobordism with a cylin-
der over Σ1. Using this splitting and Formula (17), we obtain that the homomor-
phism (16) carries |Σ0|C ∼= |G0; Σ0| ⊂ |G0; Σ0|

◦ into |Σ1|C ∼= |G1; Σ1| ⊂ |G1; Σ1|
◦

for any skeletons G0, G1 of Σ0,Σ1, respectively. This gives a homomorphism

|M,Σ0,Σ1|C : |Σ0|C → |Σ1|C

independent of the choice of G0, G1.
An orientation preserving homeomorphism of closed oriented surfaces f : Σ → Σ′

induces an isomorphism |f |C : |Σ|C → |Σ′|C as follows. Pick a skeleton G of Σ. Then
G′ = f(G) is a skeleton of Σ′, and |f |C is the composition of the isomorphisms

|Σ|C ∼= |G; Σ| ∼= |G′; Σ′| ∼= |Σ′|C .

Here the first and the third isomorphisms are the cone isomorphisms and the middle
isomorphism is induced by the homeomorphism of pairs f : (Σ, G) → (Σ′, G′). The
homeomorphism |f |C does not depend on the choice of G.

Finally let ϕ : Σ0 → Σ1 be a morphism in Cob3. Represent ϕ by a pair (M,h)
where h is an orientation-preserving homeomorphism (−Σ0) ⊔ Σ1 ≃ ∂M . For
i = 0, 1 denote by Σ′

i the surface h(Σi) ⊂ ∂M with orientation induced by the one
in Σi. The 3-cobordism (M,Σ′

0,Σ
′
1) yields a homomorphism |M,Σ′

0,Σ
′
1|C : |Σ

′
0|C →

|Σ′
1|C . The homeomorphism h : Σi → Σ′

i induces an isomorphism |Σi|C ∼= |Σ′
i|C for

i = 0, 1. Composing these three homomorphisms we obtain the homomorphism
|ϕ|C : |Σ0|C → |Σ1|C . This homomorphism does not depend on the choice of the
representative pair (M,h).

Theorem 4.6 ([12, Section 9]). Let C be a spherical fusion category with invertible
dimension. Then | · |C is a 3-dimensional TQFT.

Considered up to isomorphism, the TQFT | · |C does not depend on the choice
of the representative set I of simple objects of C. For any closed oriented 3-mani-
fold M , the invariant |M |C ∈ k produced by this TQFT coincides with the invariant
of Section 4.5.

4.10. Comparison of the RT and TV invariants. The Reshetikhin-Turaev
construction (see [RT, Tu1]) derives from any modular category B over k equipped
with a distinguished square root of dim(B) a 3-dimensional “extended TQFT” τB.
The latter is a functor from a certain extension of the category Cob3 to vectk;
the extension in question is formed by surfaces with a Lagrangian subspace in the
real 1-homology. For an anomaly free B (see Section 1.10), we take the element
∆ = ∆± ∈ k as the distinguished square root of dim(B). The corresponding
extended TQFT τB does not involve Lagrangian spaces and is a TQFT in the sense
of Section 4.8.

We recall the definition of τB(M) ∈ k for a closed oriented 3-manifold M and
anomaly free B. Pick a representative set J of simple objects of B. Present M by
surgery on S3 along a framed link L = L1∪· · ·∪LN . Denote col(L) the set of maps
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{1, . . . , N} → J and, for λ ∈ col(L), denote Lλ the framed link L whose component
Lq is oriented in an arbitrary way and colored by λ(q) for all q = 1, ..., N . Then

(18) τB(M) = ∆−N−1
∑

λ∈col(L)

(
N∏

q=1

dim
(
λ(q)

)
)
FB(Lλ)

where FB is the invariant of B-colored framed oriented links in S3 discussed in
Section 1.8. Recall that Hopf diagrams provide an alternative way for computing
τB(M) in terms of the coend of B (see Section 2).

In particular, we can apply these results to the anomaly free modular cate-
gory B = Z(C) provided by Theorem 1.1. In the following theorem, we prove
a conjecture, formulated by Turaev in 1995, relating the Reshetikhin-Turaev and
Turaev-Viro invariants via the categorical center.

Theorem 4.7 ([12, Theorem 11.1]). Let C be a spherical fusion category over an
algebraically closed field such that dim C 6= 0. Then |M |C = τZ(C)(M) for any closed
oriented 3-manifold M .

This equality extends to an isomorphism of TQFTs as follows.

Theorem 4.8 ([12, Theorem 11.2]). Under the conditions of Theorem 4.7, the
TQFTs | · |C and τZ(C) are isomorphic.

We present the ideas of the proof of Theorems 4.7 and 4.8 in Section 4.11.
Let us give some corollaries of these theorems. From Theorem 4.7 and the results

of Sections 2 and 3, we obtain an alternative and efficient method for computing
the state sum |M |C in terms of Hopf diagrams and the structural morphisms of the
coend of Z(C), see Section 3.18 for more details.

Also Theorem 4.7 allows us to clarify relationships between invariants of 3-man-
ifolds derived from involutory Hopf algebras. Let H be a finite-dimensional invo-
lutory Hopf algebra over an algebraically closed field k such that the characteristic
of k does not divide dim(H). By a well-known theorem of Radford, H is semisim-
ple, so that the category of finite-dimensional left H-modules Hmod is a spherical
fusion category. The category of finite-dimensional left D(H)-modules D(H)mod,
where D(H) is the Drinfeld double of H , is a modular category (see [EG, Mü2]).
Denote by KuH the Kuperberg invariant of 3-manifolds [Ku] derived from H and
by HKRD(H) the Hennings-Kauffman-Radford invariant of 3-manifolds [He, KR]
derived from D(H).

Corollary 4.9. For any closed oriented 3-manifold M ,

τ
D(H)mod(M) = |M |

Hmod = (dim(H))−1 KuH(M) = (dim(H))−1 HKRD(H)(M).

We say that two fusion categories are equivalent if their centers are braided
equivalent. For example, two fusion categories weakly Morita equivalent in the
sense of Müger [Mü1] are equivalent in our sense. Theorem 4.8 implies:

Corollary 4.10. Equivalent spherical fusion categories of non-zero dimension over
an algebraically closed field give rise to isomorphic TQFTs.

A unitary fusion category is a fusion category C over C endowed with an Her-
mitian structure {f ∈ HomC(X,Y ) → f̄ ∈ HomC(Y,X)}X,Y∈Ob(C) such that

tr(f f̄) > 0 for any non-zero morphism f in C.

Corollary 4.11. The TQFT | · |C associated with a unitary fusion category C is

unitary in the sense of [Tu1, Chapter III]. In particular | − M |C = |M |C for any
closed oriented 3-manifold M .
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From Corollary 4.11, Theorem 4.8, and [Tu1, Theorem 11.5], we deduce that if C
is a unitary fusion category, then

||M |C | ≤ (dim(C))g(M)−1

for any closed oriented 3-manifold M , where g(M) is the Heegaard genus of M .

4.11. Sketch of proof of Theorems 4.7 and 4.8. The proofs of Theorems 4.7
and 4.8 are based on the following key lemma:

Lemma 4.12. Let C be a spherical fusion category over a commutative ring k such
that dim(C) is invertible in k. Then for any closed connected oriented surface Σ of
genus g ≥ 0, the k-module |Σ|C is isomorphic to HomZ(C)(1Z(C), (C, σ)

⊗g), where
(C, σ) is the coend of Z(C).

The technical proof of Lemma 4.12 involves two main ingredients: firstly the
fact that we allow non-generic skeletons (i.e., skeletons with edges incident to ≥ 4
regions, see Section 4.6), which provide us ‘workable’ skeletons of Σ × [0, 1] for
computing the projector whose image is |Σ|C (see Section 4.9), and secondly the
description of the coend (C, σ) of Z(C) in terms of C provided by the theory of Hopf
monads (see Section 3.17).

Assume now that k is an algebraically closed field, so that the category Z(C) is
modular (see Theorem 1.1). Let us outline very roughly the proof of Theorem 4.7,
referring to [12] for details. It proceeds in several steps:

Firstly, we extend the TQFT | · |C to a TQFT based on 3-cobordisms with
Z(C)- colored framed oriented links in their interior. This technical part proceeds
in extending FC to so-called knotted C- colored graphs in S2, which allows define a
state sum on skeleton with Z(C)-colored link diagrams inside. The resulting link
TQFT is also denoted | · |C . This TQFT has the following property: if L is a
Z(C)-colored framed oriented link in S3, then

|S3, L|C = dim(C)−1FZ(C)(L),

where FZ(C) is the invariant of Z(C)-colored framed oriented links in S3 discussed
in Section 1.8.

Secondly, we establish a surgery formula for the value of | · |C on closed oriented
3-manifolds. Let L be a framed oriented link in S3 with N components. For any
y1, . . . , yN ∈ A = |S1 × S1|C , set

|L; y1, . . . , yN |C = |EL,−∂EL, ∅|C ◦ |f |C(y1 ⊗ · · · ⊗ yN ) ∈ k,

where EL is the exterior of L (i.e., the complement in S3 of an open regular neigh-
borhood of L) and f : ∐N

q=1 (S1 × S1)q → −∂EL is an orientation preserving
homeomorphism induced by the framing of L. Set w = |V, ∅, ∂V |C(1k) ∈ A, where
V = −(S1 × D2). Pick an arbitrary basis Y of the vector space A and expand
w =

∑
y∈Y wyy where wy ∈ k. Denote by M the 3-manifold obtained by surgery

on S3 along L. Then, using the axioms of a TQFT, we get:

(19) |M |C =
∑

y1,...,yN∈Y

(
N∏

q=1

wyq

)
|L; y1, . . . , yN |C .

Then pick a representative set J of simple objects of Z(C). For j ∈ J , set yj =
|U j , ∅, ∂U j|C ∈ A, where U j is the solid torus D2 × S1 endowed with the j-colored
framed oriented knot {0}×S1 whose orientation is induced by that of S1 and whose
framing is constant. The modularity of Z(C) and Lemma 4.12 (for Σ = S1 × S1)
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allows to show that Y = (yj)j∈J is a basis of the vector space A = |S1 × S1|C .
Furthermore the vector w expands as

(20) w = (dim(C))−1
∑

j∈J

dim(j) yj .

Finally let M be a closed oriented 3-manifold M presented by surgery along a
framed link L = L1 ∪ · · · ∪ LN ⊂ S3. Orient L arbitrarily. For any j1, ..., jN ∈ J ,
denote by L(j1,...,jN ) the framed oriented link L whose components L1, . . . , LN are
colored with j1, . . . , jN . We have:

|L; j1, . . . , jN |C = |S3, L(j1,...,jN )|C = dim(C)−1FZ(C)(L(j1,...,jN )).

Therefore Formulas (19) and (20) give that:

|M |C =
∑

j1,...,jN∈J

(
N∏

q=1

dim(jq)

dim(C)

)
(dim(C))−1FZ(C)(L(j1,...,jN ))

= (dim(C))−N−1
∑

j1,...,jN∈J

(
N∏

q=1

dim(jq)

)
FZ(C)(L(j1,...,jN ))

= τZ(C)(M),

where the last equality is the definition of τZ(C)(M), see Formula (18).
The proof of Theorem 4.8 goes by extending the TQFT | · |C to a TQFT based on

3-cobordisms with Z(C)- colored ribbon graphs in their interior. The TQFT τZ(C)

also extends to a graph TQFT which is non-degenerate (see [Tu1, Chapter IV]).
From Theorem 4.8 and Lemma 4.12, we show that there is an isomorphism of
TQFTs between | · |C and τZ(C) by using a general criterion: if at least one of two
TQFTs is non-degenerate, the values of these TQFTs on closed 3-manifolds are
equal, and the vector spaces associated by these TQFTs with any closed oriented
surface have equal dimensions, then these TQFTs are isomorphic.
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5. Other works and perspectives

1. In [14], we extend the notion of ambidextrous trace on ideal developed in [GKP]
to the setting of a pivotal category. We show that under some conditions, these
traces lead to invariants of colored spherical graphs and modified 6j-symbols. The
categories involved are non semisimple (simple objects may have zero dimension
and be infinitely many). In [GPT], modified 6j-symbols are used to produce a state
sum invariant of 3-manifolds (in the spirit of Turaev-Viro).

As explained in Section 3, the state sum approach of quantum invariants of
3-manifolds is closely related to the surgical approach (through the categorical cen-
ter). I plan to use the theory of Kirby elements and Hopf diagrams (developed
in Section 2) to have a surgical point of view on the state sum invariants defined
in [GPT].

2. Let G be a group. The notion of (ribbon) Hopf G-coalgebra is the prototype
of the algebraic structure whose category of representation is a (ribbon) G-cat-
egory. Recall that such categories are of special interest to construct invariants
of 3-dimensional G-manifolds and 3-dimensional homotopy quantum field theories
(HQFT) with target K(G, 1), see [Tu2] and [1, 2, 3, 4]. In [5] I give a method
for constructing a quasitriangular Hopf G-coalgebra starting from a Hopf algebra
endowed with an action of a group G by Hopf automorphisms. This leads to non-
trivial examples of quasitriangular and ribbon Hopf group-coalgebras for any finite
group and for infinite groups such as linear groups. In particular, we define the
graded quantum groups.

I project to extend to this ‘G-graded case’ the work presented here as well from
the algebraic point of view (study of graded Hopf monads) as from the topological
point of view (generalization of our results on 3-dimensional TQFTs to 3-dimensions
HQFT with target K(G, 1)).

3. Recall from Section 2 that quantum 3-manifolds invariants defined via surgery
presentation have a ‘universal Hopf algebraic expression’: they may be computed
by evaluating, with a Kirby element, universal forms obtained from Hopf diagrams
and the Hopf algebra structural morphisms of the coend (see Section 2.10). It
would be very interesting to have a similar universal construction for the state
sum invariants. This should go by constructing universal 6j-symbols and, more
generally, a universal invariant of colored graphs in the sphere. I expect to obtain
such an invariant by using centralizers of Hopf monads (see Section 3.12).
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[Mü2] , From subfactors to categories and topology. II. The quantum
double of tensor categories and subfactors, J. Pure Appl. Algebra 180
(2003), 159–219.

[RT] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link
polynomials and quantum groups, Invent. Math. 103 (1991), 547–597.

[Sc] P. Schauenburg, Duals and doubles of quantum groupoids (×R-Hopf
algebras), in “New trends in Hopf algebra theory”, (Proc. of the colloquium
on quantum groups and Hopf algebras, La Falda, Sierras de Cordoba,
Argentina, 1999), AMS Contemporary Mathematics 267 (2000), 273–299.
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