
HOPF CROSSED MODULE (CO)ALGEBRAS
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Abstract. Given a crossed module χ, we introduce Hopf χ-(co)algebras which
generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as
Hopf algebras in some symmetric monoidal category. We prove that their
categories of representations are monoidal and χ-graded (meaning that both
objects and morphisms have degrees which are related via χ).
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1. Introduction

Hopf algebras, such as quantum groups, are fundamental objects in the field of
quantum algebra and quantum topology. In particular, Hopf algebras and their cat-
egories of representations are very useful in the construction of quantum invariants
of knots and 3-manifolds (see for instance [Jo, RT, TV, Ko, Ku, He, LMO]).

There are various generalizations of Hopf algebras. A particular generalization
is given by so-called Hopf group-coalgebras introduced by Turaev for topological
purposes: given a (discrete) group G, Hopf G-coalgebras and their categories of
representations (which are G-graded monoidal categories) are used to define quan-
tum invariants of principal G-bundles over 3-manifolds (see [Tu]). On the algebraic
side, the second author generalized to Hopf group-coalgebras most of the classical
results for Hopf algebras (see [Vi]), and Caenepeel and De Lombaerde showed that
Hopf group-coalgebras are Hopf algebra objects in a certain symmetric monoidal
category (see [CD]).

In this paper, we introduce and study Hopf crossed module-coalgebras which are
extensions of Hopf group-coalgebras. Recall from homotopical algebra that crossed
modules are a convenient way of encoding (strict) 2-groups. Explicitly, a crossed
module is a group homomorphism χ : E → H together with an action of H on E
such that χ is H-equivariant and satisfies the Peiffer identity (see Section 4.1).
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Given a crossed module χ : E → H , a Hopf χ-coalgebra is a Hopf H-coalgebra
endowed with a χ-action (see Section 7.2). More explicitly, a Hopf χ-coalgebra
(over a commutative ring k) is a family A = {Ax}x∈H of k-algebras endowed with
a comultiplication ∆ = {∆x,y : Axy → Ax ⊗ Ay}x,y∈H, a counit ε : A1 → k, an
antipode S = {Sx : Ax−1 → Ax}x∈H , and a χ-action consisting of a family of
algebra isomorphisms

φ = {φx,e : Ax → Aχ(e)x}(x,e)∈H×E .

These data should verify some compatibility conditions generalizing the axioms of
a Hopf algebra and of an action of a group. There are two particular cases. First,
if H is a group, then the trivial map 1 → H is a crossed module and a Hopf
(1 → H)-coalgebra is a Hopf H-coalgebra. Second, if E is an abelian group, then
the map E → 1 is a crossed module and a Hopf (E → 1)-coalgebra is a Hopf algebra
endowed with an action of E by algebra and bicomodule automorphisms.

Our main motivation for introducing Hopf χ-coalgebras is to produce instances of
monoidal categories which are χ-graded (in the sense of [SV]). In such a category,
not only the objects have a degree in H , but also the morphisms have a degree
in E, and these two degrees are related by the crossed module homomorphism χ.
Actually, χ-graded monoidal categories are useful for topological purposes: it is
shown in [SV] that any χ-graded χ-fusion category gives rise to a state sum invariant
of 3-manifolds endowed with a homotopy class of maps to the classifying space Bχ
of χ (which is a homotopy 2-type) and, more generally, to a 3-dimensional homotopy
quantum field theory with target Bχ.

The first main result of the paper is that the category Modχ(A) of modules
over a Hopf χ-coalgebra A is a χ-graded monoidal category with internal Homs
(see Theorem 8.1). We also study its full subcategory modχ(A) whose objects
have their underlying module projective of finite rank. We prove that the pivotal
structures on modχ(A) are in bijective correspondence with the pivotal elements
of A (see Corollary 8.2), and we provide sufficient conditions on A for modχ(A) to
be a χ-fusion category (see Theorem 8.3).

Note that the notion of a Hopf χ-coalgebra is not self-dual: the dual notion is that
of a Hopf χ-algebra (see Section 7.8) and the category Comodχ(A) of comodules
over a Hopf χ-algebra A is a closed χ-graded monoidal category (see Section 8.8).

Next, we introduce the notion of a Hopf χ-module over a Hopf χ-coalgebra and
prove a structure theorem for them (see Theorem 9.1). When the ground ring is
a field and the Hopf χ-coalgebra is of finite type, we derive from this structure
theorem the existence and uniqueness of χ-integrals (see Theorem 9.2). These
generalize the well known corresponding results for Hopf algebras.

Finally, we interpret Hopf crossed module-(co)algebras in any symmetric monoi-
dal category S as Hopf algebra objects in some symmetric monoidal category asso-
ciated with S (see Theorems 10.1 and 10.2). In particular, the case where S is the
category Modk of k-modules corresponds to the Hopf crossed module-(co)algebras
over k (considered above). This is built on the fact that crossed modules are group
objects in the category of small categories (see [BS]) and generalizes the above cited
work of Caenepeel and De Lombaerde.

The paper is organized as follows. In Section 2, we review monoidal categories
and the associated graphical calculus. In Section 3, we discuss the notions of cate-
gorical (co)algebras, Hopf algebras, and (co)modules. We recall crossed modules
in Section 4 and crossed module graded categories in Section 5. In Section 6, we
discuss Hopf group-coalgebras and their categories of representations. In Section 7,
we introduce Hopf crossed module-(co)algebras. Section 8 is devoted to the study of
their categories of representations. In Section 9, we introduce and characterise Hopf
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crossed module-modules and study integrals of Hopf crossed module-coalgebras. Fi-
nally, in Section 10, we interpret Hopf crossed module-(co)algebras as Hopf algebras
in some symmetric monoidal category.

Throughout the paper, we fix a nonzero commutative ring k. The tensor product
over k is denoted ⊗k or more simply ⊗ if there is no confusion.

2. Categorical preliminaries

2.1. Conventions on monoidal categories. For the basics on monoidal cate-
gories, we refer for example to [ML, EGNO, TVi]. We will suppress in our formulas
the associativity and unitality constraints of monoidal categories. This does not
lead to ambiguity because by Mac Lane’s coherence theorem, all legitimate ways
of inserting these constraints give the same result. For any objects X1, ..., Xn with
n ≥ 2, we set

X1 ⊗X2 ⊗ · · · ⊗Xn = (...((X1 ⊗X2)⊗X3)⊗ · · · ⊗Xn−1)⊗Xn

and similarly for morphisms.

2.2. Braided and symmetric categories. A braiding on a monoidal category
B = (B,⊗, 1) is a natural isomorphism τ = {τX,Y : X ⊗ Y → Y ⊗ X}X,Y∈B such
that for all objects X,Y, Z ∈ B,

τX,Y ⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z).

A braided category is a monoidal category endowed with a braiding.
A braiding on a monoidal category B is symmetric if τY,XτX,Y = idX⊗Y for all

X,Y ∈ B. A symmetry is a symmetric braiding. A symmetric monoidal category
is a monoidal category endowed with a symmetry.

2.3. Cartesian monoidal categories. A cartesian monoidal category is a monoi-
dal category whose monoidal structure is given by the category-theoretic product
(and so whose unit object is a terminal object). Such a category is then symmetric,
with symmetry given by the canonical flip maps.

Any category with finite products can be considered as a cartesian monoidal
category (as long as we have a specified product for each pair of objects). In
particular, the category Set of sets and maps, and the category Cat of small
categories and functors, endowed with their canonical category-theoretic product,
are symmetric monoidal cartesian categories.

For any object X of a cartesian monoidal category, there is a unique morphism
∆X : X → X ⊗X , called the diagonal map, such that ∆X composed with the first
or second projection is the identity and, since the unit object is a terminal object,
there is a unique morphism εX : X → 1, called the augmentation.

2.4. Rigid categories. A duality in a monoidal category C is a quadruple (X,Y, e, d),
where X , Y are objects of C, e : X ⊗ Y → 1 (the evaluation) and d : 1 → Y ⊗X
(the coevaluation) are morphisms in C, such that

(e⊗ idX)(idX ⊗ d) = idX and (idY ⊗ e)(d⊗ idY ) = idY .

Then (X, e, d) is a left dual of Y and (Y, e, d) is a right dual of X .
Left and right duals, if they exist, are essentially unique: if (Y, e, d) and (Y ′, e′, d′)

are right duals of some objectX , then there exists a unique isomorphism u : Y → Y ′

such that e′ = e(idX ⊗ u−1) and d′ = (u⊗ idX)d.
A monoidal category is left rigid (respectively, right rigid) if every object admits

a left dual (respectively, a right dual). A rigid category is a monoidal category
which is both left rigid and right rigid.
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Subsequently, when dealing with rigid categories, we shall always assume tacitly
that for each objectX , a left dual (∨X, evX , coevX) and a right dual (X∨, ẽvX , c̃oevX)
has been chosen. Such a choice defines a left dual functor ∨?: Crev → C and a right
dual functor ?∨ : Crev → C, where Crev = (Cop,⊗op, 1) is the opposite category to C
with opposite monoidal structure. In particular, the left and right duals of any
morphism f : X → Y in C are defined by

∨f = (evY ⊗ id∨X)(id∨Y ⊗ f ⊗ id∨X)(id∨Y ⊗ coevX) : ∨Y → ∨X,

f∨ = (idX∨ ⊗ ẽvY )(idX∨ ⊗ f ⊗ idY ∨)(c̃oevX ⊗ idY ∨) : Y ∨ → X∨.

The left and right dual functors are monoidal. Note that the actual choice of left
and right duals is innocuous in the sense that different choices of left (respectively,
right) duals define canonically monoidally isomorphic left (respectively, right) dual
functors.

2.5. Closed monoidal categories. A monoidal category C is left closed if for any
object X of C, the endofunctor ? ⊗ X has a right adjoint [X, ?]l, with adjunction
unit and counit:

evXY : [X,Y ]l ⊗X → Y and coevXY : Y → [X,Y ⊗X ]l,

called respectively the left evaluation and the left coevaluation. Then [X,Y ]l is
called the left internal Hom from X to Y . The left internal Homs give rise to a
functor [−,−]l : Cop × C → C.

Similarly, a monoidal category C is right closed if for any object X of C, the
endofunctor X⊗? has a right adjoint [X, ?]r, with adjunction unit and counit:

ẽvXY : X ⊗ [X,Y ]r → Y and c̃oevXY : Y → [X,X ⊗ Y ]r,

called respectively the right evaluation and the right coevaluation. Then [X,Y ]r is
called the right internal Hom from X to Y . The right internal Homs give rise to a
functor [−,−]r : Cop × C → C.

A monoidal category is closed if it is both left and right closed. For example, the
category Modk of k-modules and k-linear homomorphisms is closed: the internal
Homs between k-modules M and N are [M,N ]l = [M,N ]r = Homk(M,N) with
the standard (co)evaluations.

Any rigid monoidal category is closed: the internal Homs are [X,Y ]l = Y ⊗ ∨X
and [X,Y ]r = X∨ ⊗ Y with (co)evaluations

evXY = idY ⊗ evX , coevXY = idY ⊗ coevX ,

ẽvXY = ẽvX ⊗ idY , c̃oevXY = c̃oevX ⊗ idY .

2.6. Pivotal categories. A pivotal category is a rigid category C endowed with a
monoidal isomorphism between the left and the right dual functors. By modifying
the right duals of objects using this monoidal isomorphism, we may assume it to
be the identity without loss of generality. In other words, for each object X of C,
we have a dual object X∗ and four morphisms

evX : X∗ ⊗X → 1, coevX : 1 → X ⊗X∗,

ẽvX : X ⊗X∗ → 1, c̃oevX : 1 → X∗ ⊗X,

such that (X∗, evX , coevX) is a left dual for X , (X∗, ẽvX , c̃oevX) is a right dual
for X , and the induced left and right dual functors coincide as monoidal functors.

For example, any left rigid symmetric monoidal category has a canonical struc-
ture of a pivotal category, for which the right (co)evaluations are given by the left
ones (pre)composed with the symmetry. In particular, the full subcategory of Modk
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consisting of projective k-modules of finite rank has a canonical structure of a piv-
otal category: the dual of projective k-moduleM of finite rank isM∗ = Homk(M, k)
with the standard (co)evaluations.

2.7. Penrose graphical calculus. Morphisms in a monoidal category may be rep-
resented by planar diagrams to be read from bottom to top. We discuss here the
basics of this Penrose graphical calculus (see [JS] or [TVi] for a detailed treatment).
The diagrams are made up of arcs colored by objects and of boxes colored by mor-
phisms. The arcs connect the boxes and have no intersections or self-intersections.
The identity idX of an object X , a morphism f : X → Y , and the composition of
two morphisms f : X → Y and g : Y → Z are represented as follows:

idX =

X

, f =

X

Y

f , and gf =

X

Y

f

g

Z

.

The monoidal product of two morphisms f : X → Y and g : U → V is represented
by juxtaposition:

f ⊗ g =

X

f

Y

U

g

V

.

We can also use boxes with several strands attached to their horizontal sides. For
example, a morphism f : X ⊗ Y → A⊗B⊗C may be represented in various ways,
such as

X

f

Y

A B C

or

X ⊗ Y

f

A B ⊗ C

or

X

f

Y

A⊗B C

.

Here, in accordance with the conventions of Section 2.1, we ignore here the associa-
tivity constraint between the objects A⊗B ⊗C = (A⊗B)⊗C and A⊗ (B ⊗C).
A box whose lower/upper side has no attached strands represents a morphism with
source/target 1. For example, morphisms α : 1 → 1, β : 1 → X , γ : X → 1 may be
represented by the diagrams

α ,
X

β ,

X

γ .

Every diagram which is colored as above determines a morphism obtained as
follows. First slice the diagram into horizontal strips so that each strip is made of
juxtaposition of vertical segments or boxes. Then, for each strip, take the monoidal
product of the morphisms associated to the vertical segments or boxes. Finally,
compose the resulting morphisms proceeding from the bottom to the top. For
example, given morphisms f : Y → Z, g : B ⊗Z → 1, h : X → A⊗B, the diagram

g

fh

X

XZ

A

B

Y

represents the morphism

(idA ⊗ g ⊗ idX)(h⊗ f ⊗ idX) =
(
(idA ⊗ g)(h⊗ f)

)
⊗ idX

from X ⊗ Y ⊗X to A⊗X .
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The functoriality of the monoidal product implies that the morphism associated
to a colored diagram is independent of the way of cutting it into horizontal strips.
It also implies that we can push boxes lying on the same horizontal level up or
down without changing the morphism represented by the diagram. For example,
for all morphisms f : X → Y and g : U → V in S, we have:

X

f

Y

U

g

V

=

X

f

Y

U

g

V

=

X

f

Y

U

g

V

which graphically expresses the formulas

f ⊗ g = (idY ⊗ g)(f ⊗ idU ) = (f ⊗ idV )(idX ⊗ g).

Here and in the sequel, the equality sign between the diagrams means the equality
of the corresponding morphisms.

The braiding τ of a braided category, and its inverse, are depicted as

τX,Y =
X

X Y

Y
and τ−1

Y,X =
X

X Y

Y
.

The axioms of a braiding are depicted as follows: for all objects X,Y, Z,

X ⊗ Y

X ⊗ Y Z

Z
=

X Y

X Y Z

Z
and

X

X Y ⊗ Z

Y ⊗ Z
=

Y Z

Y Z X

X

.

The naturality of τ ensures that we can push boxes across a strand without changing
the morphism represented by the diagram: for any morphism f ,

f
=

f
and

f
=

f
.

The above graphical calculus may be enhanced for a pivotal category by orienting
all arcs in the diagrams and depicting the (co)evaluations as

evX = X , ẽvX = X , coevX = X , c̃oevX = X .

Here, an arc colored with an object X and oriented downward (resp., upward)
contributes X (resp., X∗) to the source/target of morphisms. For example, a
morphism f : X∗ ⊗ Y → A⊗B∗ ⊗ C may be represented as

X

f

Y

A B C

.

In particular, the identity of the dual X∗ of any object X is represented as

idX∗ =
X∗

=
X

.

The duality identities are graphically expressed as

XXX

= = and

XXX

= = .

In a pivotal category, the morphism represented by a diagram is preserved under
ambient isotopies of the diagram keeping fixed the bottom and top endpoints.
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3. Categorical Hopf algebras

In this section, we review the categorical version of the notions of a Hopf algebra
and its modules.

3.1. Categorical algebras. Let C be a monoidal category. An algebra in C is an
object A of C endowed with morphisms m : A⊗A→ A (the product) and u : 1 → A
(the unit) such that

m(m⊗ idA) = m(idA ⊗m) and m(idA ⊗ u) = idA = m(u ⊗ idA).

We depict the product and the unit as

m =

A

A

A

and u =

A

.

The axioms above have the following graphical interpretation:

A A A

A

=

A A A

A

and

A

A

=

A

A

=

A

A

.

Note that algebras in C are also called monoids in C in the literature.

3.2. Categorical coalgebras. A coalgebra in a monoidal category C is an algebra
in the opposite category Cop = (Cop,⊗, 1). In other words, a coalgebra in C is
an object A of C endowed with morphisms ∆: A → A ⊗ A (the coproduct) and
ε : A→ 1 (the counit) such that

(∆⊗ idA)∆ = (idA ⊗∆)∆ and (idA ⊗ ε)∆ = idA = (ε⊗ idA)∆.

We depict the coproduct and the counit as

∆ =

A A

A

and ε =

A

.

The axioms above are depicted as
A A A

A

=

A A A

A

and

A

A

=

A

A

=

A

A

.

For example, in a cartesian monoidal category (see Section 2.3), any object is a
coalgebra with coproduct being the diagonal map and counit being the augmenta-
tion. In fact, any coalgebra in a cartesian monoidal category is of this form.

3.3. Categorical bialgebras. To define bialgebras in a monoidal category, we
need compatibility conditions between product and coproduct, and the formula-
tion of one of the conditions requires a substitute for the flip map which can be
provided by a braiding. A bialgebra in a braided category B is an object A of B
endowed with an algebra structure (m,u) and a coalgebra structure (∆, ε) in B
satisfying the following conditions (expressing that ∆ and ε are algebra morphisms
or, equivalently, that m and u are coalgebra morphisms):

∆m = (m⊗m)(idA ⊗ τA,A ⊗ idA)(∆⊗∆), ∆u = u⊗ u,

εm = ε⊗ ε, εu = id1,

where τ is the braiding of B. Pictorially,
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AA

AA

=

AA

AA

,

A A

=

AA

,

A A

=

AA

, A = ∅.

3.4. Categorical Hopf algebras. Let B be a braided category. An antipode for
a bialgebra A = (A,m, u,∆, ε) in B is a morphism S : A→ A such that

m(S ⊗ idA)∆ = uε = m(idA ⊗ S)∆.

This axiom is depicted as

A

A

=

A

A

=

A

A

where S =

A

A

.

If it exists, an antipode is unique and is anti-multiplicative and anti-comultiplicative:

Sm = m(S ⊗ S)τA,A, Su = u, ∆S = τA,A(S ⊗ S)∆, εS = ε.

Pictorially,

A

AA

=

A

AA

,

A

=

A

,

A

AA

=

A

AA

,

A

=

A

.

When the antipode S is invertible, we depict its inverse S−1 : A→ A as

S−1 =

A

A

, so that

A

A

=

A

A

=

A

A

.

A Hopf algebra in B is a bialgebra in B which admits an invertible antipode. Note
that the notion of a Hopf algebra is self-dual: (A,m, u,∆, ε, S) is a Hopf algebra
in B if and only if (A,∆, ε,m, u, S) is a Hopf algebra in the opposite category Bop.

A grouplike element of Hopf algebra A in B is a morphism G : 1 → A such that

∆G = G⊗G and εG = id1.

Such a G is invertible in the monoid (HomB(1, A), ∗, u), where α ∗ β = m(α ⊗ β),
and its inverse, denoted by G−1, is also a grouplike element of A and is computed
by G−1 = SG = S−1G. In particular, the set of grouplike elements of A is a group
(with product ∗ and unit u).

3.5. Examples. 1. Hopf algebras in the symmetric monoidal category of k-mod-
ules and k-linear homomorphisms are the usual Hopf k-algebras.

2. Hopf algebras in the symmetric monoidal category of super k-modules and
grading-preserving k-linear homomorphisms are the usual super Hopf k-algebras.

3. Any group object in a cartesian monoidal category becomes a Hopf algebra,
with its canonical coalgebra structure (see Section 3.2) and with antipode given by
the group inversion. This induces a bijective correspondence between group objects
and Hopf algebras in a cartesian monoidal category. For example, Hopf algebras
in Set are groups. More generally, Hopf algebras in Cat are crossed modules, as
detailed in Section 4.3.
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3.6. Modules in categories. Let (A,m, u) be an algebra in a monoidal cate-
gory C. A left A-module (in C) is a pair (M, r), where M is an object of C and
r : A⊗M →M is a morphism in C, such that

r(m ⊗ idM ) = r(idA ⊗ r) and r(u ⊗ idM ) = idM .

Graphically, these conditions are depicted as

AA

M

M

=

A A

M

M

and

M

M

=

M

M

, where r =

A M

M

.

One can similarly introduce right A-modules, but we will not use them. From now
on, by an A-module, we mean a left A-module.

An A-linear morphism between two A-modules (M, r) and (N, s) is a morphism
f : M → N in C such that fr = s(idA ⊗ f), that is, pictorially,

A M

N

f
=

A M

N

f
.

We let ModC(A) be the category of A-modules and A-linear morphisms, with
composition inherited from C. The forgetful functor ModC(A) → C carries any
A-module (M, r) to M and any A-linear morphism to itself.

If A = (A,m, u,∆, ε) is a bialgebra in a braided category B, then the category
ModB(A) of A-modules has a canonical structure of a monoidal category. Its unit
object is the pair (1, ε). Its monoidal product is given on the objects by

(M, r)⊗ (N, s) = (M ⊗N, t)

where

t = (r ⊗ s)(idA ⊗ τA,M ⊗ idN )(∆⊗ idM⊗N ) =

M

M

N

N

A

and on the morphisms by the monoidal product in C. Note that the forgetful functor
ModB(A) → B is strict monoidal.

Assume that B is a closed braided category. Then a bialgebra A in B is a Hopf
algebra if and only if the monoidal category ModB(A) is closed and the forgetful
functor ModB(A) → B preserves the internal Homs. (This follows from Theorem 3.6
and Remark 5.6 of [BLV].) If such is the case, then the left and right internal Homs
between A-modules (M, r) and (N, s) are

[(M, r), (N, s)]l =
(
[M,N ]l, [idM ,Θl]

lcoevMA⊗[M,N ]l

)
,

[(M, r), (N, s)]r =
(
[M,N ]r, [idM ,Θr]

r c̃oevMA⊗[M,N ]r

)
,

with (co)evaluations inherited from B, where

Θl =

evMN

[M,N ]l M

N

A

and Θr =

ẽvMN

[M,N ]rM

N

A

.
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Assume that B is a rigid braided category. Then a bialgebra A in B is a Hopf
algebra if and only if the monoidal category ModB(A) is rigid. (This follows from
Theorem 3.8 and Example 3.10 of [BV].) If such is the case, then the left and right
duals of an A-module (M, r) are

∨(M, r) = (∨M, ◦r) and (M, r)∨ = (M∨, r◦)

where

◦r =

evM

coevM
∨M

∨M

A

and r◦ =

ẽvM

c̃oevM

M∨

M∨A

,

with (co)evaluations inherited from B:

ev(M,r) = evM , coev(M,r) = coevM ,

ẽv(M,r) = ẽvM , c̃oev(M,r) = c̃oevM .

Assume that B is a pivotal braided category. The (right) twist of B is the natural
automorphism θ = {θX : X → X}X∈B defined by

θX =
X

= (idX ⊗ ẽvX)(τX,X ⊗ idX∗)(idX ⊗ coevX).

Let A be a Hopf algebra in B. Then the pivotal structures on the monoidal category
ModB(A) are in bijection with the pairs (G, γ), where G is a grouplike element of A
(see Section 3.4) and γ = {γX : X → X}X∈B is a monoidal natural automorphism,
such that the square of the antipode S of A satisfies

S2 = θA ◦AdG ◦ γA where AdG =

A

A

G G−1

.

(This follows from Proposition 7.6 and Example 7.2 of [BV].) The pivotal structure
on ModB(A) associated with such a pair (G, γ) is given for any A-module (M, r) by

(M, r)∗ = (M∗, r†) where r† =

M

M

A

,

with left (co)evaluations given by ev(M,r) = evM and coev(M,r) = coevM , and right
(co)evaluations given by

ẽv(M,r) =

M M

A

G

γM

and c̃oev(M,r) =

MM

A

G−1

γ−1
M

.
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Note that the forgetful functor ModB(A) → B is then pivotal if and only if for all
A-module (M, r),

M

M
A

G

γM

= M .

In particular, if A is involutory in the sense that its antipode S satisfies S2 = θA,
then the monoidal category ModB(A) carries a structure of a pivotal category so
that the forgetful functor ModB(A) → B is pivotal (by taking G = u and γ = idB).

3.7. Comodules in categories. Given a coalgebra A in a monoidal category C
(which is an algebra in the opposite category Cop), we define the category of left
A-comodules in C by setting

ComodC(A) =
(
ModCop(A)

)op
.

In particular its objects are pairs (M, δ), withM an object of C and δ : M → A⊗M
a morphism in C such that

(∆⊗ idM )δ = (idA ⊗ δ)δ and (ε⊗ idM )δ = idM .

We deduce from Section 3.6 that the category ComodC(A) is monoidal when C is
braided and A is a bialgebra, and that ComodC(A) is rigid (resp. closed) when C
is braided rigid (resp. braided closed) and A is a Hopf algebra. Also, if C is pivotal
braided and A is a Hopf algebra, then the pivotal structures on the monoidal
category ComodC(A) are in bijection with the pairs (α, γ), where α : A → 1 is an
algebra morphism and γ = {γX : X → X}X∈B is a monoidal natural automorphism,
such that S2 = θA ◦Adα ◦ γA, where θ is the twist of C and

Adα =

A

A

αα

.

4. Crossed modules

In this section, we quickly review crossed modules and their relationship with
Hopf algebras in the category of small categories.

4.1. Crossed modules. A crossed module is a group homomorphism χ : E → H
together with a left action of H on E (by group automorphisms) denoted

(x, e) ∈ H × E 7→ xe ∈ E

such that χ is equivariant with respect to the conjugation action of H on itself and
satisfies the Peiffer identity, that is, for all x ∈ H and e, f ∈ E,

χ(xe) = xχ(e)x−1 and χ(e)f = efe−1.

These axioms imply that the image Im(χ) is normal inH and that the kernel Ker(χ)
is central in E and is acted on trivially by Im(χ). In particular, Ker(χ) inherits an
action of H/Im(χ) = Coker(χ).

A morphism from a crossed module χ : E → H to a crossed module χ′ : E′ → H ′

is a pair (ψ : E → E′, ϕ : H → H ′) of group homomorphisms such that

χ′
(
ψ(e)

)
= ϕ

(
χ(e)

)
and ψ(xe) =

ϕ(x)
ψ(e)

for all e ∈ E and x ∈ H .
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4.2. Examples. 1. Given any normal subgroup E of a group H , the inclusion
E →֒ H is a crossed module with the conjugation action of H on E.

2. For any group E, the homomorphism E → Aut(E) sending any element of E
to the corresponding inner automorphism is a crossed module.

3. If E is an abelian group, then the trivial map E → 1 is a crossed module.
4. A key geometric example of a crossed module is due to Whitehead: if X is a

topological space, Y is a subspace of X , and y is a point of Y , then the homotopy
boundary map ∂ : π2(X,Y, y) → π1(Y, y), together with the standard action of
π1(Y, y) on π2(X,Y, y), is a crossed module.

4.3. Crossed modules as Hopf algebras. By [BS], crossed modules are group
objects in the category Cat of small categories and functors (endowed with its
canonical cartesian monoidal structure). Also, by the third example in Section 3.5,
there is a bijective correspondence between group objects and Hopf algebras in a
cartesian monoidal category. Consequently, Hopf algebras in Cat are in bijective
correspondence with crossed modules.

Explicitly, the Hopf algebra Gχ = (Gχ,mχ, uχ,∆χ, εχ, Sχ) in Cat associated
with a crossed module χ : E → H is described as follows. The objects of Gχ are the
elements of H . For any objects x, y ∈ H ,

HomGχ
(x, y) = {e ∈ E | y = χ(e)x}.

The composition of morphisms is given by the product of E:
(
y

f
−→ z

)
◦
(
x

e
−→ y

)
=
(
x

fe
−→ z

)
and idx = 1 ∈ E.

Note that Gχ is a groupoid. The product mχ : Gχ × Gχ → Gχ of Gχ is defined on
objects and morphisms by

mχ(x, y) = xy and mχ

(
x

e
−→ y, z

f
−→ t

)
=
(
xz

exf
−−→ yt

)
.

Denote by 1 the trivial category with a single object ∗ and a single morphism id∗.
The unit uχ : 1 → Gχ is defined by

uχ(∗) = 1 ∈ H.

The coproduct ∆χ : Gχ → Gχ × Gχ and counit εχ : Gχ → 1 are the diagonal and
augmentation: for any object x and morphism e,

∆χ(x) = (x, x), ∆χ(e) = (e, e), εχ(x) = ∗, εχ(e) = id∗.

The antipode Sχ : Gχ → Gχ is involutive (S−1
χ = Sχ) and is computed by

Sχ(x) = x−1 and Sχ

(
x

e
−→ y

)
=

(
x−1

x−1
(e−1)

−−−−−−→ y−1

)
.

5. Graded monoidal categories

In this section, we review the notions of a monoidal category graded by a group
or a crossed module. We refer to [SV] for details.

5.1. Linear categories. A category C is k-linear if for all objects X,Y ∈ C, the
set HomC(X,Y ) carries a structure of a left k-module so that the composition of
morphisms is k-bilinear. An object X of a k-linear category C is called a zero object
if idX = 0. A zero object, if it exists, is unique up to isomorphism.

A monoidal category is k-linear if it is k-linear as a category and the monoidal
product of morphisms is k-bilinear.
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5.2. Monoidal categories graded by a group. Let H be a group. An H-graded
monoidal category (over k) is a k-linear monoidal category C = (C,⊗, 1) endowed
with a family {Ch}h∈H of full subcategories such that:

(a) Each object of C is a direct sum of objects in
⋃

h∈H Ch.
(b) For all X ∈ Ch and Y ∈ Ck with h 6= k,

HomC(X,Y ) = 0.

(c) For all X ∈ Ch and Y ∈ Ck, we have: X ⊗ Y ∈ Chk.
(d) 1 ∈ C1.

In this case, we write by abuse1 of notation:

C =
⊕

h∈H

Ch.

The monoidal subcategory C1 is called the neutral component of C. An object X
of C is homogeneous if it is nonzero and X ∈ Ch for some h ∈ H . Such an h is then
uniquely determined by X , denoted by |X |, and called the degree of X .

5.3. Hom-graded categories. Let E be a group with unit 1. An E-Hom-graded
category (over k) is a category enriched over the monoidal category of E-graded
k-modules and k-linear grading-preserving homomorphisms. Explicitly, this is a
k-linear category C such that:

(a) The Hom-sets in C are E-graded k-modules: for all objects X,Y ∈ C,

HomC(X,Y ) =
⊕

e∈E

Home
C(X,Y ).

(b) The composition in C is multiplicative with respect to the degree: for

all e, f ∈ E and X,Y, Z ∈ C, it sends Homf
C(Y, Z) × Home

C(X,Y ) into

Homfe
C (X,Z).

(c) The identities have trivial degree: for all X ∈ C,

idX ∈ End1C(X) = Hom1
C(X,X).

Let C be an E-Hom-graded category. A morphism α : X → Y in C is homoge-
neous of degree e ∈ E if α ∈ Home

C(X,Y ). Note that if α is nonzero, then such an
e ∈ E is unique, is called the degree of α, and is denoted e = |α|. The objects of C
together with the homogenous morphisms of degree 1 form a k-linear subcategory
of C called the 1-subcategory of C and denoted C1.

Given e ∈ E, by an e-isomorphism we mean an isomorphism which is homoge-
neous of degree e. We say that an object X is e-isomorphic to an object Y if there
is an e-isomorphism X → Y .

Given e ∈ E, an object D of C is an e-direct sum of a finite family (Xa)a∈A of
objects of C if there is a family (pa, qa)a∈A of morphisms such that for all a, b ∈ A,
pa : D → Xa is homogeneous of degree e−1, qa : Xa → D is homogeneous of degree e,
paqb = δa,bidXa

, and idD =
∑

a∈A qapa. Such an e-direct sum D, if it exists, is
unique up to a 1-isomorphism and is denoted by

D =

e⊕

a∈A

Xa.

1This is a genuine direct sum when C is additive and each Ch contains a zero object.
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Note that for any finite families (Xa)a∈A and (Yb)b∈B of objects of C and for any
d, e, f ∈ E, there are k-linear isomorphisms

(1) Homd
C

(
e⊕

a∈A

Xa,

f⊕

b∈B

Yb

)
∼=
⊕

a∈A
b∈B

Homf−1de
C

(
Xa, Yb

)
.

By definition, a direct sum of an empty family of objects of a k-linear category C
is a zero object of C, that is, an object 0 of C such that EndC(0) = 0.

An E-Hom-graded category C is E-additive if any finite (possibly empty) family
of objects of C has an e-direct sum in C for all e ∈ E.

5.4. Monoidal categories graded by a crossed module. Let χ : E → H be a
crossed module. A χ-graded monoidal category (over k), or shorter a χ-category, is
a k-linear monoidal category C = (C,⊗, 1) such that:

(a) The k-linear category C is E-Hom-graded (see Section 5.3).
(b) The associativity constraints (X⊗Y )⊗Z ∼= X⊗ (Y ⊗Z) and the unitality

constraints X ⊗ 1 ∼= X ∼= 1⊗X of C are all homogenous of degree 1 ∈ E.
(c) The 1-subcategory C1 of C (endowed with the monoidal structure induced

by C) is H-graded (see Section 5.2).

These data should satisfy two conditions relating the degree of objects and mor-
phisms. To express them, we say that an object X of C is homogeneous if it is
homogeneous in C1 (see Section 5.2). Recall that the degree of a homogeneous
object X is denoted by |X | ∈ H and that the degree of a nonzero homogeneous
morphism α is denoted by |α| ∈ E. The two conditions are:

(d) For all homogenous objects X,Y and e ∈ E such that |Y | 6= χ(e)|X |,

Home
C(X,Y ) = 0.

(e) The monoidal product α ⊗ β of any two nonzero homogeneous morphisms
α, β is a homogeneous morphism of degree

|α⊗ β| = |α||s(α)||β|,

whenever the source s(α) of α is a homogeneous object. In other words,
for any objects X,Y, Z, T with X homogeneous and for any morphisms

α ∈ Home
C(X,Y ), β ∈ Homf

C(Z, T ) with e, f ∈ E, we have:

α⊗ β ∈ Home|X|f
C (X ⊗ Z, Y ⊗ T ).

Observe that this definition of a χ-category is equivalent to the definition given
in [SV] (by taking Chom to be the class of homogenous objects of C and the degree
map | · | : Chom → H to be the degree of homogeneous objects).

Note that the convention of Section 2.1 remains valid since Axiom (b) implies
that the suppression of the associativity and unitality constraints does not change
the degree of morphisms. Also, it follows from the axioms of an H-graded category
that each object of C is a 1-direct sum of a finite family of homogeneous objects.
In particular, the Hom-sets in C are fully determined by the Hom-sets between
homogeneous objects. Axiom (d) implies that for any homogenous objects X,Y ,

HomC(X,Y ) =
⊕

e∈χ−1(|Y ||X|−1)

Home
C(X,Y ) and EndC(X) =

⊕

e∈Ker(χ)

EndeC(X).

In particular HomC(X,Y ) = 0 whenever |Y ||X |−1 6∈ Im(χ). Also, if α : X → Y is
a nonzero homogeneous morphism between homogeneous objects, then

|Y | = χ(|α|) |X |.

In particular, 1-isomorphic homogenous objects have the same degree.
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A χ-category C is closed if it is closed as a monoidal category (see Section 2.5)
and all (co)evaluations are homogenous of degree 1 ∈ E. Note that a χ-category C
is closed if and only if its 1-subcategory C1 is closed.

A χ-category C is rigid if it is rigid as a monoidal category (see Section 2.4) and
all (co)evaluations are homogenous of degree 1 ∈ E. Note that a χ-category C is
rigid if and only if its 1-subcategory C1 is rigid.

A χ-category C is pivotal if it is endowed with a pivotal structure (see Section 2.6)
such that the dualX∗ of any homogenous objectX is a homogenous object of degree
|X∗| = |X |−1 and all (co)evaluations are homogenous of degree 1 ∈ E. Note that
a χ-category C is pivotal if and only if its 1-subcategory C1 is pivotal.

5.5. Example. The linearization kGχ of the groupoid Gχ associated with a crossed
module χ : E → H (see Section 4.3) is a χ-graded monoidal category. The objects
of kGχ are the elements of H . Each x ∈ H is homogeneous with degree |x| = x.
For any x, y ∈ H and e ∈ E,

Home
kGχ

(x, y) =

{
ke if y = χ(e)x,
0 otherwise.

The composition of morphisms is induced by the product of E. The monoidal
product of kGχ is the linear extension of the product of the groupoid Gχ:

x⊗ y = xy and
(
x

e
−→ y

)
⊗
(
z

f
−→ t

)
=
(
xz

exf
−−→ yt

)
.

The χ-category Gχ is pivotal. Its pivotal structures are parameterized by the group
homomorphisms d : H → k

∗. Given such a d, the dual of an object x ∈ H is
x∗ = x−1 with left and right (co)evaluations given by

evx = 1, coevx = 1, ẽvx = d(x)1, c̃oevx = d(x)−11,

where 1 is the unit element of E.

5.6. Particular cases. 1. Given a group H , the trivial map 1 → H is a crossed
module and the notion of a (1 → H)-category agrees with that of an H-graded
monoidal category.

2. Given an abelian group E, the trivial map E → 1 is a crossed module and
the notion of an (E → 1)-category agrees with that of a k-linear monoidal category
such that the Hom-sets are E-graded k-modules, the composition and monoidal
product of morphisms are E-multiplicative (i.e., multiplicative with respect to the
degree of morphisms), and the identities and monoidal constraints are of degree
1 ∈ E. In other words, (E → 1)-categories are monoidal categories enriched over
the symmetric category of E-graded k-modules.

6. Hopf group-coalgebras and their modules

Throughout this section, H denotes a group with neutral element 1. We re-
view the definitions and basic properties of Hopf H-coalgebras and their modules
(referring to [Vi] for details).

6.1. Group-coalgebras. An H-coalgebra (over k) is a family A = {Ax}x∈H of
k-modules endowed with a family ∆ = {∆x,y : Axy → Ax ⊗ Ay}x,y∈H of k-linear
homomorphisms (the coproduct) and a k-linear homomorphism ε : A1 → k (the
counit) which are coassociative and counital in the sense that for all x, y, z ∈ H ,

(∆x,y ⊗ idAz
)∆xy,z = (idAx

⊗∆y,z)∆x,yz

and
(idAx

⊗ ε)∆x,1 = idAx
= (ε⊗ idAx

)∆1,x.

Note that (A1,∆1,1, ε) is a coalgebra (over k) in the usual sense.
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To any H-coalgebra A = ({Ax}x∈H ,∆, ε) and any k-algebra B, one associates
the H-graded k-algebra

Conv(A,B) =
⊕

x∈H

Homk(Ax, B),

called the convolution algebra, whose unit is ε1B and whose product is defined by

f ∗ g = m(f ⊗ g)∆x,y ∈ Homk(Axy, B)

for all f ∈ Homk(Ax, B) and g ∈ Homk(Ay, B), where m and 1B are the product
and unit of B.

6.2. Group-bicoalgebras. An H-bicoalgebra (over k) is an H-coalgebra (over k)
A = ({Ax}x∈H ,∆, ε) such that each Ax is endowed with a structure of a k-algebra
so that ε and ∆x,y are algebra homomorphisms for all x, y ∈ H , that is,

∆x,y µxy = (µx ⊗ µy)(idAx
⊗ σAy,Ax

⊗ idAy
)(∆x,y ⊗∆x,y), εµ1 = ε⊗ ε,

∆x,y(1xy) = 1x ⊗ 1y, ε(11) = 1k,

where µx : Ax ⊗ Ax → Ax and 1x ∈ Ax denote the product and the unit element
of Ax. Here and below, for k-modules M and N , the flip σM,N : M ⊗N → N ⊗M
is defined by σM,N (u⊗ v) = v ⊗ u for all u ∈M and v ∈ N .

6.3. Antipodes. An antipode for an H-bicoalgebra A = ({Ax}x∈H ,∆, ε) is a fam-
ily S = {Sx : Ax−1 → Ax}x∈H of k-linear homomorphisms such that for all x ∈ H ,

µx(Sx ⊗ idAx
)∆x−1,x = ηxε = µx(idAx

⊗ Sx)∆x,x−1

where µx and ηx = (1k ∈ k 7→ 1x ∈ Ax) are the product and the unit map of Ax.
This axiom means that for any x ∈ H , the homomorphism Sx is the inverse of idAx

in the convolution algebra Conv(A,Ax). An antipode S = {Sx}x∈H is bijective
if Sx is bijective for all x ∈ H .

If it exists, an antipode is unique. Also, it is anti-multiplicative: for all x ∈ H ,

Sxµx−1 = µxσAx,Ax
(Sx ⊗ Sx) and Sx(1x−1) = 1x,

and anti-comultiplicative: for all x, y ∈ H ,

∆x,ySxy = (Sx ⊗ Sy)σA
y−1 ,Ax−1∆y−1,x−1 and εS1 = ε.

6.4. Hopf group-coalgebras. A Hopf H-coalgebra is an H-bicoalgebra endowed
with a bijective antipode. When H = 1, one recovers the usual notion of a Hopf
algebra. In particular, if A is a Hopf H-coalgebra, then A1 is a Hopf algebra.

The product µx, unit map ηx, coproduct ∆x,y, counit ε, antipode Sx and its
inverse S−1

x of a Hopf H-coalgebra A = {Ax}x∈H are depicted as follows:

µx =
x x

x

ηx = x ∆x,y =
x y

xy

ε =
1

Sx =
x

x−1

S−1
x =

x−1

x

.

Here the colors x, y ∈ H are abbreviations for Ax and Ay. The axioms of a Hopf
H-coalgebra are then easily depicted in a manner similar to that of Sections 3.1-3.4.

An H-grouplike element of a Hopf H-coalgebra A is a family G = (Gx)x∈H with
Gx ∈ Ax such that for all x, y ∈ H ,

∆x,y(Gxy) = Gx ⊗Gy and ǫ(G1) = 1k.

Note that each Gx is then invertible in Ax with inverse

G−1
x = Sx(Gx−1) = S−1

x−1(Gx−1),

where S = {Sx}x∈H is the antipode of A. The set GH(A) of H-grouplike elements
of A is thus a group for the pointwise product.
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6.5. Modules over Hopf group-coalgebras. Any H-bicoalgebra A = {Ax}x∈H

(over k) yields the H-graded k-linear monoidal category ModH(A) of A-modules
and A-linear morphisms defined as follows.

A (left) A-module is an H-graded k-module

M =
⊕

x∈H

Mx

such that each Mx is endowed with a structure of a (left) module over the k-alge-
bra Ax.

An (H,A)-linear morphism between two A-modules M,N is a k-linear homo-
morphism α : M → N such that:

(a) The map α preserves the H-grading: α(Mx) ⊂ Nx for all x ∈ H .
(b) For all x ∈ H , the map m ∈Mx 7→ α(m) ∈ Nx is Ax- linear.

We let ModH(A) be the category of A-modules and (H,A)-linear morphisms,
with composition induced in the obvious way from the set-theoretical composition.
The monoidal product of two A-modules M and N is the A-module

M ⊗N =
⊕

x∈H

(M ⊗N)x where (M ⊗N)x =
⊕

y,z∈H
yz=x

My ⊗Nz

is endowed with the Ax-action defined on My ⊗Nz by

My

My

Nz

Nz

x

y

z .

The monoidal product of (H,A)-linear morphisms is their tensor product over k.
The unit object 1 is k concentrated in degree 1 ∈ H with action given by the
counit ε : A1 → k. The monoidal constraints of ModH(A) are inherited from the
category of k-modules. Then ModH(A) is a k-linear monoidal category. Note that
the forgetful functor ModH(A) → Modk is strict monoidal.

For any x ∈ H , by viewing any Ax-module as an A-module concentrated in
degree x, the category Modk(Ax) = ModModk

(Ax) of Ax-modules (see Section 3.6)
is a full subcategory of ModH(A). Then the category ModH(A) is H-graded by the
family {Modk(Ax)}x∈H :

ModH(A) =
⊕

x∈H

Modk(Ax)

In particular, the homogenous objects of ModH(A) are the nonzero Ax-modules
where x runs over H . Note that ModH(A) is additive: any finite direct sum of
A-modules always exists (it is induced in the obvious way from the direct sums
in Modk). Furthermore ModH(A) is abelian (with kernels and cokernels induced in
the obvious way from those in Modk).

Let modH(A) be the full subcategory of ModH(A) consisting of the A-modules
whose underlying k-module is projective of finite rank. Then modH(A) is a k-linear
monoidal subcategory of ModH(A). It is additive and H-graded:

modH(A) =
⊕

x∈H

modk(Ax).

where modk(Ax) is the full subcategory of Modk(Ax) consisting of the Ax-modules
whose underlying k-module is projective of finite rank.

If A is a Hopf H-coalgebra, then the monoidal category ModH(A) is closed (so
that the forgetful functor ModH(A) → Modk preserves the internal Homs) and the
monoidal category modH(A) is rigid. The formulas for the internal Homs and the
duals of objects are similar (with obvious changes) to those given in Section 3.6.
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Assume that A is a Hopf H-coalgebra. A pivotal element for A is an H-grouplike
element G = (Gx)x∈H of A (see Section 6.4) such that for all x ∈ H and a ∈ Ax,

SxSx−1(a) = GxaG
−1
x .

Then pivotal structures on modH(A) are in bijective correspondence with pivotal
elements of A. The pivotal structure on modH(A) associated with a pivotal element
G = (Gx)x∈H is given as follows: the dual of an object (M, r) ∈ modk(Ax) is
the object (M, r)∗ = (M∗, r†) ∈ modk(Ax−1), where M∗ = Homk(M, k) and the
action r† is given as in Section 3.6: for all a ∈ Ax−1 , ϕ ∈M∗, and m ∈M ,

r†(a⊗ ϕ)(m) = ϕ
(
Sx(a)m

)
.

The associated (co)evaluations are given, for all ϕ ∈M∗, m ∈M , by

ev(M,r)(ϕ⊗m) = ϕ(m), ẽvM (m⊗ ϕ) = ϕ(Gxm),

coev(M,r)(1k) =
∑

i

bi ⊗ b∗i , c̃oev(M,r)(1k) =
∑

i

b∗i ⊗G−1
x bi,

where (bi)i is any basis of M and (b∗i )i is the dual basis of M∗.

6.6. Example. Consider the trivial Hopf H-coalgebra kH = {(kH)x = k}x∈H

whose structural morphisms are given for all x, y ∈ H by

∆x,y(1k) = 1k ⊗ 1k, ε = idk, Sx = idk.

Then the closed H-graded monoidal category ModH(kH) is nothing but the cate-
gory of H-graded k-modules and k-linear grading-preserving homomorphisms.

6.7. Remark. A homomorphism from an H-bicoalgebra A = {Ax}x∈H to an
H- bicoalgebra B = {Bx}x∈H is a family f = {fx : Ax → Bx}x∈H of algebra
homomorphisms compatible with the coproducts and counits of A and B in the
following sense: for all x, y ∈ H ,

∆B
x,yfxy = (fx ⊗ fy)∆

A
x,y and εBf1 = εA.

Note that if A and B are Hopf H-coalgebras, then any H-bicoalgebra homomor-
phism f : A → B preserves the antipodes of A and B, that is, SB

x fx−1 = fxS
A
x for

all x ∈ H .
It is not difficult to check that any H-bicoalgebra homomorphism f : A → B

induces an H-graded functor f∗ : ModH(B) → ModH(A) that is, a strong monoidal
k-linear functor that preserves the H-grading of objects. Moreover, if A and B are
Hopf H-coalgebras, then the functor f∗ is closed, that is, it preserves the internal
Homs. Also, if A and B are Hopf H-coalgebras endowed with pivotal elements,
then any H-bicoalgebra homomorphism f : A→ B preserving the pivotal elements
of A and B (that is, fx(G

A
x ) = GB

x for all x ∈ H) induces a pivotal H-graded
functor f∗ : modH(B) → modH(A).

7. Hopf crossed module-coalgebras

Throughout this section, χ : E → H is a crossed module. We introduce the
notions of χ-bicoalgebras and Hopf χ-coalgebras. The main motivation is that
their categories of representations (introduced in Section 8) are χ-graded monoidal
categories.
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7.1. Crossed module-actions. A χ-action on an H-bicoalgebra A = {Ax}x∈H

is a family

φ = {φx,e : Ax → Aχ(e)x}(x,e)∈H×E

of k-algebra homomorphisms such that for all x, y ∈ H and e, f ∈ E,

φx,1 = idAx
,(2)

φχ(e)x,f φx,e = φx,fe,(3)

(φx,e ⊗ φy,f )∆x,y = ∆χ(e)x,χ(f)y φxy,exf .(4)

Note the indices in Axiom (4) are coherent since the equivariance of χ (see Sec-
tion 4.1) implies that χ

(
exf
)
xy = χ(e)xχ(f)y. Also, it follows directly from (2)

and (3) that each φx,e is an isomorphism and

φ−1
x,e = φχ(e)x,e−1 .

A χ-action is trivial if φx,e = idAx
(and so Aχ(e)x = Ax) for all x ∈ H and e ∈ E.

We depict the χ-action φx,e : Ax → Aχ(e)x by a strand with a dot labeled with e
(on the left or on the right) as follows:

φx,e =

x

χ(e)x

e or φx,e =

x

χ(e)x

e .

Axioms (2)-(4) are depicted as

x

x

1 =

x

,

x

χ(e)x

χ(f)χ(e)x

f

e
=

x

χ(fe)x

fe ,

xy

χ(f)yχ(e)x

x y

fe
=

xy

χ
(
exf
)
xy

χ(f)yχ(e)x

exf

.

The fact that φx,e is an algebra homomorphism is depicted as

x

x

χ(e)x

x

e
=

x

e

χ(e)x

χ(e)x

x

χ(e)x

e
and

x

χ(e)x

e =

χ(e)x

.

7.2. Hopf crossed module-coalgebras. A χ-bicoalgebra (over k) is an H-bicoal-
gebra (over k) endowed with a χ-action.

A Hopf χ-coalgebra (over k) is a Hopf H-coalgebra (over k) endowed with a
χ-action. Equivalently, a Hopf χ-coalgebra is a χ-bicoalgebra whose underlying
H-bicoalgebra has a bijective antipode.

In Section 10, we prove that Hopf crossed module-coalgebras may be seen as
Hopf algebras in some symmetric monoidal category (see Corollary 10.3). In the
next lemma, we show that the antipode of a Hopf χ-coalgebra is compatible with
the χ-action.

Lemma 7.1. Let A = {Ax}x∈H be a Hopf χ-coalgebra, with antipode S = {Sx}x∈H

and χ-action φ = {φx,e}(x,e)∈H×E. Then

φx,e Sx = Sχ(e)x φ
x−1,

x−1
(e−1)

for all x ∈ H and e ∈ E.

Proof. Axiom (4) and the multiplicativity of φ−1
x,e = φχ(e)x,e−1 imply that

φ−1
x,e Sχ(e)x φ

x−1,
x−1

(e−1)
: Ax−1 → Ax

is inverse to idAx
in the convolution algebra Conv(A,Ax), and so is equal to Sx. �
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Graphically, the compatibility of the antipode with the χ-action (see Lemma 7.1)
is depicted as

e
χ(e)x

x

x−1

=
x−1

(e−1)

χ(e)x

x−1

x−1χ(e−1) .

7.3. Particular cases. 1. Given a group H , the trivial map 1 → H is a crossed
module and it follows from (2) that any (1 → H)-action for an H-bicoalgebra is
trivial. Consequently, the notion of a Hopf (1 → H)-coalgebra agrees with that of
a Hopf H-coalgebra.

2. Given an abelian group E, the trivial map E → 1 is a crossed module and the
notion of a Hopf (E → 1)-coalgebra agrees with that of a Hopf algebra A endowed
with an action of E by algebra and bicomodule automorphisms, that is, with a
group homomorphism φ : E → Autk(A) such that for all e ∈ E,

• φe is an algebra automorphism of A,
• φe is a bicomodule automorphism of A:

∆φe = (φe ⊗ idA)∆ = (idA ⊗ φe)∆.

Here Autk(A) denotes the group of k-linear automorphisms of A and ∆ is the
coproduct of A.

7.4. Example. Let ω : E ×G→ k
∗ be a bicharacter, where E is an abelian group

and G is a group. Recall that the group algebra k[G] is a Hopf algebra with copro-
duct ∆, counit ε, and antipode S defined by ∆(g) = g⊗g, ε(g) = 1k, and S(g) = g−1

for all g ∈ G. Consider the group homomorphism φ : E → Autk(k[G]) defined by
φe(g) = ω(e, g)g for all e ∈ E and g ∈ G. Then k[G] is a Hopf (E → 1)-coalgebra
with (E → 1)-action φ, which we denote by k

ω[G].

7.5. Example. Let χ : E → H be a crossed module, A be a Hopf k-algebra, and
ρ : H → AutAlg(A) be a group homomorphism, where AutAlg(A) is the group of
algebra automorphisms of A. Let δ, ε, and s be the coproduct, counit, and antipode
of A, respectively. For any x ∈ H , set Ax = A as a k-algebra. Then the family
Aρ

χ = {Ax}x∈H is a Hopf χ-coalgebra with counit ε : A1 → k and with coproduct,
antipode, and χ-action respectively defined by:

∆ = {∆x,y = (ρx ⊗ ρy)δρ(xy)−1 : Axy → Ax ⊗Ay}x,y∈H,

S = {Sx = ρxsρx : Ax−1 → Ax}x∈H ,

φ =
{
φx,e = ρχ(e) : Ax → Aχ(e)x

}
(x,e)∈H×E

,

where ρz denotes the image of z ∈ H under ρ.

7.6. Example. Hopf χ-coalgebras with trivial χ-action are in bijective correspon-
dence with Hopf π-coalgebras, where π = Coker(χ) = H/Im(χ) is the so-called
fundamental group of χ. Indeed, let B = {Bg}g∈π be a Hopf π-coalgebra. Denote
by p : H → π the canonical projection. For any x ∈ H , set Ax = Bp(x) as a k-al-
gebra. For any x, y ∈ H , set ∆x,y = δp(x),p(y) and Sx = sp(x), where δ and s are
the coproduct and antipode of B. Then the family A = {Ax}x∈H , endowed with
the coproduct ∆, the same counit of B, and the antipode S, is a Hopf χ-coalgebra
with trivial χ-action.

Conversely, let A = {Ax}x∈H be a Hopf χ-coalgebra with trivial χ-action. Pick
a set-theoretical section q : π → H of the canonical projection p : H → π, meaning
that pq = idπ . Note that the triviality of the χ-action implies that Ax = Ay for all
x, y ∈ H such that p(x) = p(y). For any α, β ∈ π, set Bα = Aq(α) as a k-algebra,
δα,β = ∆q(α),q(β), and sα = Sq(α), where ∆ and S are the coproduct and antipode
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of A. Then the family B = {Bα}α∈π, endowed with the coproduct δ, the same
counit of A, and the antipode s, is a Hopf π-coalgebra. Note that B does not
depend on the choice of the section q because the χ-action of A is trivial.

7.7. Grouplike elements. By an H-grouplike element of a Hopf χ-coalgebra, we
mean an H-grouplike element of its underlying Hopf H-coalgebra (see Section 6.4).
As in Section 6.4, we denote by GH(A) the group of H-grouplike elements of A.

A χ-grouplike element of a Hopf χ-coalgebra A is an H-grouplike element G =
(Gx)x∈H of A which is χ-equivariant in the sense that for all x ∈ H and e ∈ E,

φx,e(Gx) = Gχ(e)x.

The set Gχ(A) of χ-grouplike elements of A is a subgroup of GH(A). Note that it
may be a strict subgroup. For example, for the Hopf (E → 1)-coalgebra k

ω[G] of
Example 7.4, we have:

G1

(
k
ω[G]

)
= G and GE→1

(
k
ω[G]

)
= {g ∈ G |ω(e, g) = 1k for all e ∈ E}.

The next lemma describes the behaviour of the χ-action onH-grouplike elements.

Lemma 7.2. Let A be a Hopf χ-coalgebra. Then the map

GH(A) × E → k
∗, (G, e) 7→ 〈G, e〉 = ε

(
φχ(e−1),e(Gχ(e−1))

)

is a bicharacter such that for all G ∈ GH(A) and (x, e) ∈ H × E,

φx,e(Gx) = 〈G, e〉Gχ(e)x.

Here, ε is the counit and φ is the χ-action of A.

It follows directly from Lemma 7.2 that an H-grouplike element G of A is a
χ-grouplike element if and only if 〈G, e〉 = 1 for all e ∈ E.

Proof. For all G ∈ GH(A) and (x, e) ∈ H × E, we have:

φx,e(Gx)
(i)
= (ε⊗ idAχ(e)x

)∆1,χ(e)x φx,e(Gx)

(ii)
= (εφχ(e−1),e ⊗ φχ(e)x,1)∆χ(e−1),χ(e)x(Gx)

(iii)
= ε

(
φχ(e−1),e(Gχ(e−1))

)
φχ(e)x,1(Gχ(e)x)

(iv)
= 〈G, e〉Gχ(e)x.

Here (i) follows the counitality of the coproduct, (ii) from (4), (iii) from the fact
that G isH-grouplike, and (iv) from (2) and the definition of 〈G, e〉. The multiplica-
tivity of the map (G, e) 7→ 〈G, e〉 in the variable G follows from the multiplicativity
of the counit and of the maps φχ(e−1),e. Its multiplicativity in the variable e follows
from (4). Hence this map is indeed a bicharacter GH(A)× E → k

∗. �

7.8. The dual notion: Hopf crossed module-algebras. The notion of a Hopf
χ-coalgebra is not self dual. Its dual notion is that of a Hopf χ-algebra defined as
follows. Recall that a k-algebra A is H-graded if it is endowed with a direct sum
decomposition A =

⊕
x∈H Ax such that 1A ∈ A1 and AxAy ⊂ Axy for all x, y ∈ H .

An H-bialgebra (over k) is an H-graded k-algebra A =
⊕

x∈H Ax such that each
Ax is endowed with a structure of a k-coalgebra so that the unit map η : k → A
(defined by η(1k) = 1A) and the restricted products µx,y : Ax ⊗ Ay → Axy are
coalgebra homomorphisms for all x, y ∈ H , that is,

∆xy µx,y = (µx,y ⊗ µx,y)(idAx
⊗ σAx,Ay

⊗ idAy
)(∆x ⊗∆y), εxyµx,y = εx ⊗ εy,

∆1(1A) = 1A ⊗ 1A, ε1(1A) = 1k,

where ∆x : Ax → Ax⊗Ax and εx : Ax → k denote the coproduct and counit of Ax,
and σAx,Ay

is the usual flip.
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A Hopf H-algebra is an H-bialgebra A =
⊕

x∈H Ax endowed with a bijective
antipode, that is, a family S = {Sx : Ax → Ax−1}x∈H of k-linear isomorphisms
such that for all x ∈ H ,

µx−1,x(Sx ⊗ idAx
)∆x = εx 1A = µx,x−1(idAx

⊗ Sx)∆x.

A χ-action on a H-bialgebra A =
⊕

x∈H Ax is a family

φ = {φx,e : Ax → Aχ(e)x}x∈H,e∈E

of k-coalgebra homomorphisms such that for all x, y ∈ H and e, f ∈ E,

• φx,1 = idAx
,

• φχ(e)x,f φx,e = φx,fe,
• µχ(e)x,χ(f)y (φx,e ⊗ φy,f ) = φxy,exf µx,y.

Note that each φx,e is then an isomorphism and φ−1
x,e = φχ(e)x,e−1 .

A χ-bialgebra is an H-bialgebra endowed with a χ-action. A Hopf χ-algebra is
a Hopf H-algebra endowed with a χ-action.

A Hopf χ-(co)algebra A is of finite type if for all x ∈ H , the k-module Ax is
projective of finite rank.

The dual of a Hopf χ-algebra of finite type is a Hopf χ-coalgebra (of finite type).
More explicitly, let A =

⊕
x∈H Ax be a Hopf χ-algebra of finite type. For any

k-module M , set M∗ = Homk(M, k). Then the dual A∗ = {A∗
x}x∈H of A is a

Hopf χ-coalgebra. Its coproduct ∆x,y : A
∗
xy → A∗

x⊗A∗
y is induced by the transpose

of the restricted product Ax ⊗ Ay → Axy and the canonical k-linear isomorphism
(Ax ⊗ Ay)

∗ ∼= A∗
x ⊗ A∗

y. The algebra structure of A∗
x is induced in the standard

way by the coalgebra structure of Ax. The antipode and χ-action of A∗ are the
transpose of those of A.

Conversely, the dual A∗ =
⊕

x∈H A∗
x of a Hopf χ-coalgebra A = {Ax}x∈H of

finite type is a Hopf χ-algebra (with transposed structural morphisms).

8. Categories of representations of Hopf crossed module-coalgebras

Throughout this section, χ : E → H is a crossed module and A = {Ax}x∈H

is a χ-bicoalgebra (over k). We associate to A two categories of representations
Modχ(A) and modχ(A) which are χ-graded categories (in the sense of Section 5.4).

8.1. Modules over χ-bicoalgebras. A (left) A-module is a module over the
H- bicoalgebra underlying A, that is, an H-graded k-module

M =
⊕

x∈H

Mx

such that each Mx is endowed with a structure of an Ax-module (see Section 6.5).
A (χ,A)-linear morphism between two A-modules M and N is a k-linear homo-

morphism α : M → N such that:

(a) For all x ∈ H ,

α(Mx) ⊂
⊕

e∈E

Nχ(e)x.

(b) For all x ∈ H and e ∈ E, the k-linear homomorphism αx,e : Mx → Nχ(e)x

induced by α (restriction to Mx followed by projection to Nχ(e)x) is an
Ax-linear morphism

αx,e : Mx → φ∗x,e(Nχ(e)x),

where the Ax-module φ∗x,e(Nχ(e)x) is the pullback of the Aχ(e)x-module
Nχ(e)x along the algebra isomorphism φx,e : Ax → Aχ(e)x given by the
χ- action of A. Graphically, the Ax-linearity of αx,e depicts as:
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x Mx

Mx

Nχ(e)x

αx,e

=

x

χ(e)x

e

Mx

Nχ(e)x

Nχ(e)x

αx,e

.

8.2. The categories of representations. We let Modχ(A) be the category of
A-modules and (χ,A)-linear morphisms, with composition induced in the obvious
way from the set-theoretical composition. The category Modχ(A) is k-linear (as a
subcategory of Modk). For any two A-modules M and N , we endow the k-module
HomModχ(A)(M,N) with a structure of an E-graded k-module by setting:

HomModχ(A)(M,N) =
⊕

e∈E

Home
Modχ(A)(M,N)

where Home
Modχ(A)(M,N) is the set of (χ,A)-linear morphisms α : M → N such

that for all x ∈ E,

α(Mx) ⊂ Nχ(e)x.

The axioms (2) and (3) of a χ- action imply that Modχ(A) is E-Hom-graded. Also,
since the (χ,A)-linear morphisms of degree 1 are nothing but the (H,A)-linear
morphisms, the 1-subcategory of Modχ(A) is

Modχ(A)
1 = ModH(A),

where ModH(A) is the category of modules over the H-bicoalgebra underlying A
(see Section 6.5). Note that for all A-modules M,N and e ∈ E,

Home
Modχ(A)(M,N) = HomModH(A)

(
M,φ∗e(N)

)
,

where φ∗e(N) is the A-module defined by

φ∗e(N) =
⊕

x∈H

φ∗e(N)x with φ∗e(N)x = φ∗x,e(Nχ(e)x) ∈ Modk(Ax).

The category Modχ(A) is monoidal: the monoidal product of two A-modules, the
unit object, and the monoidal constraints of Modχ(A) are those of ModH(A), and
the monoidal product of two (χ,A)-linear morphisms is their tensor product over k.

Theorem 8.1. The category Modχ(A) is a χ-graded monoidal category which is
E-additive (see Section 5.3) and abelian. Moreover, if A is a Hopf χ-coalgebra,
then Modχ(A) is closed.

Proof. By the above, the categoryModχ(A) is E-Hom-graded and its 1-subcategory
is Modχ(A)

1 = ModH(A). In particular, Modχ(A)
1 is H-graded (see Section 6.5).

The fact that the tensor product over k of two (χ,A)-linear morphisms is a (χ,A)-
linear morphism follows from (4). This implies that the above definitions do define
a monoidal structure on Modχ(A).

To prove that Modχ(A) is E-additive, first remark that finite 1-direct sums of
A-modules exist in Modχ(A) (since ModH(A) is additive by Section 6.5). Then,
for any e ∈ E, the e-direct sum of a finite family (Mλ)λ∈Λ of A-modules exists in
Modχ(A) and is computed by

e⊕

λ∈Λ

Mλ =

1⊕

λ∈Λ

φ∗e−1(Mλ).

The fact that Modχ(A) is abelian is proved as in the classical case by noticing
that the kernels and cokernels in Modχ(A) are induced in the obvious way from
those in Modk.
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Finally, if A is a Hopf χ-coalgebra, then Modχ(A) is closed since its 1-subcategory
Modχ(A)

1 = ModH(A) is closed (see Section 6.5). �

Let modχ(A) be the full subcategory of Modχ(A) consisting of the A-modules
whose underlying k-module is projective of finite rank. By a pivotal element of a
Hopf χ-coalgebra, we mean a pivotal element of its underlying Hopf H-coalgebra
(see Section 6.5).

Corollary 8.2. The category modχ(A) is an E-additive χ-graded monoidal cate-
gory. Moreover, if A is a Hopf χ-coalgebra, then modχ(A) is rigid and the pivotal
structures on modχ(A) are in bijective correspondence with the pivotal elements
of A.

Note as above that the 1-subcategory of modχ(A) is

modχ(A)
1 = modH(A),

where modH(A) is the H-graded monoidal category associated with the Hopf
H- coalgebra underlying A (see Section 6.5).

Proof. The first assertion follows from the fact that the monoidal structure of
Modχ(A) restricts to modχ(A). Assume A is a Hopf χ-coalgebra. Then modχ(A)
is rigid since its 1-subcategory modχ(A)

1 = modH(A) is rigid (see Section 6.5).
Also, the pivotal structures on modχ(A) are in bijective correspondence with the
pivotal structures on modχ(A)

1, and so in bijective correspondence with the pivotal
elements of A (see Section 6.5). �

8.3. Remark. A homomorphism from a χ-bicoalgebra A to a χ-bicoalgebra B is
an H-bicoalgebra homomorphism f : A→ B (see Remark 6.7) which is compatible
with the χ-actions of A and B in the following sense: for all (x, e) ∈ H × E,

φBx,efx = fχ(e)xφ
A
x,e.

It not difficult to check that such a homomorphism f : A → B induces χ-graded
functors f∗ : Modχ(B) → Modχ(A) and f∗ : modχ(B) → modχ(A). Here, by a
χ- graded functor between χ-graded monoidal categories, we mean a strong monoidal
k-linear functor that preserves the H-grading of objects and the E-grading of mor-
phisms.

8.4. Example. Consider the trivial Hopf χ-coalgebra kχ = {(kχ)x = k}x∈H whose
structural morphisms are given for all x, y ∈ H and e ∈ E by

∆x,y(1k) = 1k ⊗ 1k, ε = idk, Sx = idk, φx,e = idk.

By Theorem 8.1, the category Modχ(kχ) is an E-additive closed χ-graded monoidal
category. Its objects are the H-graded k-modulesM =

⊕
x∈H Mx and its Hom-sets

are computed by

Home
Modχ(kχ)(M,N) =

⊕

x∈H

Homk(Mx, Nχ(e)x).

The composition is induced from the set-theoretical composition. The monoidal
product of objects is that of H-graded modules, the monoidal product of mor-
phisms is their tensor product over k, and the monoidal constraints are inherited
from the category of k-modules. Note that the 1-subcategory of Modχ(kχ) is the
category of H-graded k-modules and k-linear grading-preserving homomorphisms
(see Example 6.6). Also, the χ-category kGχ from Example 5.5 is isomorphic to
the full subcategory of Modχ(kχ) whose set of objects is {kx}x∈H , where kx is k

concentrated in degree x.
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8.5. Example. Consider the Hopf (E → 1)-coalgebra k
ω[G] from Example 7.4,

where E is an abelian group, G is a group, and ω : E×G→ k
∗ is a bicharacter. By

Theorem 8.1, the category Cω = Mod(E→1)(k
ω [G]) is an E-additive closed (E → 1)-

graded monoidal category. Its objects are the k-linear representations of G. For
any representations M,N of G and any e ∈ E, the k-module Home

Cω
(M,N) is the

set of k-linear maps α : M → N such that for all g ∈ G and m ∈M ,

α(g ·m) = ω(e, g)
(
g · α(m)

)
.

The composition in Cω is induced from the set-theoretical composition and the
monoidal product in Cω is the usual tensor product of representations of G. Note
that these are E-multiplicative as expected (see Section 5.6).

8.6. Example. Consider the Hopf χ-coalgebra Aρ
χ from Example 7.5, where A is a

Hopf algebra and ρ : H → AutAlg(A) is a group homomorphism. By Theorem 8.1,
the category Modχ(A

ρ
χ) is an E-additive closed χ-graded monoidal category. Its

objects are the H-graded A-modules, that is, the A-modules M endowed with an
H-grading M =

⊕
x∈H Mx so that a ·Mx ⊂ Mx for all a ∈ A and x ∈ H . The

Hom-sets are given by

Home
Modχ(kχ)(M,N) =

⊕

x∈H

HomModk(A)

(
Mx, ρ

∗
χ(e)(Nχ(e)x)

)
.

The composition is induced from the set-theoretical composition. The monoidal
product is induced from the usual monoidal product of A-modules (using the co-
product of A) and of H-graded k-modules. Note that when A = k we recover
Example 8.4 (since ρ becomes trivial and k

ρ
χ = kχ as Hopf χ-coalgebras).

8.7. χ-fusion categories from Hopf χ-coalgebras. We first recall the definition
of a χ-fusion category from [SV]. By a simple object of a k-linear category, we mean
an object whose set of endomorphisms is a free k-module of rank 1. Note that if C
is a χ-category over k, then a simple object of the 1-subcategory C1 of C is nothing
but an object i of C such that End1C(i) = k idi.

A χ-fusion category (over k) is a rigid χ-category C (over k) such that:

(a) The 1-subcategory C1 of C is H-fusion, that is:
• HomC1(i, j) = 0 whenever i, j are non-isomorphic simple objects of C1,
• each object of C1 is a (finite) direct sum of simple objects of C1,
• the unit object 1 is a simple object of C1,
• for any h ∈ H , there are at least one and only finitely many (up to
isomorphism in C1) homogeneous simple objects of C1 with degree h.

(b) For any e ∈ E, each object of C is an e-direct sum of a finite family of
simple objects of C1.

For example, the χ-category kGχ from Example 5.5 is χ-fusion.
Clearly, the Hom-sets in a χ-fusion category are free k-modules of finite rank.

Note that a χ-fusion category C may not be semisimple (as a k-linear category) while
its 1-subcategory C1 always is. Indeed, a simple object i of C1 is not necessarily
simple in C: it may happen that EndeC(i) 6= 0 for some e ∈ E \ {1} (as for example
in kGχ when Ker(χ) is nontrivial).

Theorem 8.3. Let A = {Ax}x∈H be a Hopf χ-coalgebra over an algebraically closed
field k such that the k-algebra A1 is semisimple and for all x ∈ H, the k-algebra Ax

is nonzero and finite dimensional. Then the category modχ(A) from Corollary 8.2
is χ-fusion.

Proof. By [Vi, Lemma 5.1] applied to the HopfH-coalgebra underlyingA, we obtain
that for all x ∈ H , the k-algebra Ax is semisimple, and so the category of finite
dimensional Ax-modules is semisimple. Note that all the irreducible Ax-modules
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are simple objects in the above sense because k is an algebraically closed field, and
there are at least one and only finitely many of them (up to isomorphism) since Ax

is nonzero and finite dimensional. Also the unit object (which is k with A1-action
given by the counit) is an irreducible Ax-module. Then modχ(A)

1 = modH(A) is
H-fusion.

It remains to verify Axiom (b). Let e ∈ E and X be an object of modχ(A). Since
modχ(A)

1 is H-fusion, the object X is a 1-direct sum of a finite family (iλ)λ∈Λ of
homogeneous simple objects of modχ(A)

1. It follows from the definition of modχ(A)
that if i is a homogeneous simple object of modχ(A)

1, then (φχ(e−1)|i|,e)
∗(i) is a

homogeneous simple object of modχ(A)
1 which is e-isomorphic to i. Consequently,

the object X is the e-direct sum of the finite family
(
(φχ(e−1)|iλ|,e)

∗(iλ)
)
λ∈Λ

of

homogeneous simple objects of modχ(A)
1. �

8.8. Representations of Hopf χ-algebras. Recall from Section 7.8 the notions
of a χ-bialgebra and of a Hopf χ-algebra. Any χ-bialgebra A =

⊕
x∈H Ax (over k)

yields an E-additive abelian χ-graded monoidal category Comodχ(A). The con-
struction of Comodχ(A) is dual to that given in Section 8.2 and we only give here
a brief description of it.

The objects of Comodχ(A) are the (left) A-comodules, that is, the H- graded
k-module M =

⊕
x∈H Mx such that each Mx is endowed with a structure of a

(left) Ax- comodule. An A-comodule M is homogeneous of degree x ∈ H if it is
nonzero and concentrated in degree x (that is, M = Mx). The monoidal product
of A-comodules is induced by the usual tensor product of H-graded k-modules and
the product µ = {µx,y : Ax ⊗Ay → Axy}x,y∈H of A.

For all M,N ∈ Comodχ(A) and e ∈ E, the k-module Home
Comodχ(A)(M,N) is

the set of k-linear homomorphisms α : M → N such that for all x ∈ H ,

(a) α(Mx) ⊂ Nχ(e)x,
(b) the map (φx,e)∗(Mx) → Nχ(e)x induced by α is Aχ(e)x-colinear, where φ is

the χ-action of A.

The composition is induced in the obvious way from the set-theoretical composition.
The monoidal product of morphisms is their tensor product over k. The monoidal
constraints of Comodχ(A) are induced (in the obvious way) from those of Modk.

Similarly, the full subcategory comodχ(A) of Comodχ(A) consisting of the A- co-
modules whose underlying k-module is projective of finite rank is an E-additive
χ-graded monoidal category.

Dually to Theorem 8.1 and Corollary 8.2, if A is a Hopf χ-algebra, then the
χ-category Comodχ(A) is closed and the χ-category comodχ(A) is rigid. Also, the
dual A∗ = {A∗

x}x∈H of a Hopf χ-algebra A of finite type is a Hopf χ-coalgebra
(see Section 7.8) and the χ-graded monoidal categories modχ(A

∗) and comodχ(A)
are isomorphic. Conversely, the dual A∗ =

⊕
x∈H A∗

x of a Hopf χ-coalgebra A =
{Ax}x∈H of finite type is a Hopf χ-algebra and the χ-graded monoidal categories
comodχ(A

∗) and modχ(A) are isomorphic.

9. Hopf crossed module-modules and integrals

Throughout this section, χ : E → H is a crossed module and A = {Ax}x∈H is
a Hopf χ-coalgebra (over k). We introduce Hopf χ-modules over A and prove a
structure theorem for them. Next we use this theorem to prove the existence and
uniqueness of χ-integrals for A.
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9.1. Hopf χ-modules. A (left-left) Hopf χ-module over the Hopf χ-coalgebra A
is a family M = {Mx}x∈H of k-modules endowed with three families

r = {rx : Ax ⊗Mx → Mx}x∈H ,

ρ = {ρx,y : Mxy → Ax ⊗My}x,y∈H,

ψ = {ψx,e : Mx →Mχ(e)x}(x,e)∈H×E ,

of k-linear homomorphisms such that:

(a) For all x ∈ H , the pair (Mx, rx) is a (left) Ax-module.
(b) The pair (M,ρ) is a (left) A-comodule, that is, for all x, y, z ∈ H ,

(∆x,y ⊗ idMz
)ρxy,z = (idAx

⊗ ρy,z)ρx,yz and (ε⊗ idMx
)ρ1,x = idMx

.

(c) The action r and coaction ρ intertwine as follows: for all x, y ∈ H ,

ρx,yrxy = (µx ⊗ ry)(idAx
⊗ σAy,Ax

⊗ idMy
)(∆x,y ⊗ ρx,y).

(d) For all x, y ∈ H and e, f ∈ E,

ψx,1 = idMx
, ψe,xrx = rχ(e)x(φx,e ⊗ ψx,e),

ψx,fe = ψχ(e)x,f ψx,e, (φx,e ⊗ ψy,f )ρx,y = ρχ(e)x,χ(f)y ψxy,exf .

Here µ = {µx}x∈H , ∆ = {∆x,y}x,y∈H, ε, and φ = {φx,e}(x,e)∈H×E are the product,
coproduct, counit, and χ-action of A, respectively. Note that

⊕
x∈H Mx is then an

A-module in the sense of Sections 6.5 and 8.1.

9.2. Morphisms of Hopf χ-modules. Consider two Hopf χ-modulesM = (M, r, ρ, ψ)
and M ′ = (M ′, r′, ρ′, ψ′) over A. A morphism of Hopf χ-modules from M to M ′ is
a family θ = {θx : Mx → M ′

x}x∈H of k-linear homomorphisms such that each θx is
Ax-linear, θ is a morphism of A-comodules, and θ is a χ- equivariant:

r′x(idAx
⊗ θx) = θxrx, (idAx

⊗ θy)ρx,y = ρ′x,yθxy, θχ(e)xψx,e = ψ′
x,eθx

for all x, y ∈ H and e ∈ E.
Clearly the composition (componentwise) of two morphisms of Hopf χ-modules

is a morphism of Hopf χ-modules.

9.3. Modules of coinvariants. The module of coinvariants of a Hopf χ-module
M = (M, r, ρ, ψ) over A is the k-submodule M coA of

∏
x∈H Mx consisting of the

elements m = (mx)x∈H such that for all x, y ∈ H and e ∈ E,

ρx,y(mxy) = 1x ⊗my and ψx,e(mx) = mχ(e)x,

where 1x is the unit element of Ax.
Any morphism of Hopf χ-modules θ : M →M ′ induces a k-linear homomorphism

θcoA : M coA → (M ′)coA defined by

θcoA
(
(mx)x∈H

)
=
(
θx(mx)

)
x∈H

.

9.4. Trivial Hopf χ-modules. Let V be a k-module. Then
(
{Ax ⊗ V }x∈H , {µx ⊗ idV }x∈H , {∆x,y ⊗ idV }x,y∈H , {φx,e ⊗ idV }(x,e)∈H×E

)

is a Hopf χ-module over A, denoted A⊗ V . Its module of coinvariants is

(A⊗ V )coA = {(1x ⊗ v)x∈H | v ∈ V }.

Note that the assignment v 7→ (1x⊗v)x∈H is a k-linear isomorphism V ∼= (A⊗V )coA

with inverse (mx)x∈H 7→ (ε⊗ idV )(m1).
Clearly, if α : V → W is a k-linear homomorphism, then {idAx

⊗ α}x∈H is a
morphism of Hopf χ-modules from A⊗ V to A⊗W .
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9.5. Structure of Hopf χ-modules. Let Modk be the category of k-modules and
k-linear homomorphisms. Denote by A

AH the category of Hopf χ-modules over A
and their morphisms. The trivial Hopf χ-modules (see Section 9.4) and the modules
of coinvariants (see Section 9.3) induce the following functors:

A⊗?: Modk → A
AH and ?coA : A

AH → Modk.

Theorem 9.1. The functors A⊗? and ?coA are equivalences and are quasi-inverse
of each other. In particular, any Hopf χ-module M over A is isomorphic to the
trivial Hopf χ-module A⊗M coA.

Proof. It follows from the definitions that ?coA is right adjoint to A⊗? with unit
ηV : V → (A⊗ V )coA and counit ǫM = {ǫxM : Ax ⊗M coA →Mx}x∈H given by

ηV (v) = (1x ⊗ v)x∈H and ǫxM
(
a⊗ (my)y∈H

)
= rx(a⊗mx).

By Section 9.4, the unit η is an isomorphism. Let us prove that the counit ǫ is
also an isomorphism. Let M be any Hopf χ-module over A. To prove that ǫM is
an isomorphism of Hopf χ-modules from A ⊗M coA to M , we exhibit its inverse:
defining π : M1 →M coA as

π(m) =
(
rx(Sx ⊗ idMx

)ρx−1,x(m)
)
x∈H

,

where S = {Sx}x∈H is the antipode of A, it follows from the definitions that

νM = {νxM = (idAx
⊗ π)ρx,1 : Mx → Ax ⊗M coA}x∈H

is the inverse of ǫM . �

9.6. Integrals. A left (respectively, right) χ-integral for A is a family of k-linear
forms λ = (λx : Ax → k)x∈H such that for all x, y ∈ H and e ∈ E,

• (idAx
⊗ λy)∆x,y = ηxλxy (respectively, (λx ⊗ idAy

)∆x,y = ηyλxy),
• λχ(e)xφx,e = λx.

Here {ηx : k → Ax}x∈H , ∆ = {∆x,y}x,y∈H , and φ = {φx,e}(x,e)∈H×E are the unit
maps, coproduct, and χ-action of A.

We denote by Il
A (respectively, Ir

A) the set of left (respectively, right) χ-integrals
forA. The sets Il

A and Ir
A are k-modules (as submodules of the k-module

∏
x∈H A∗

x).
They are isomorphic: it follows from the properties of the antipode S of A (see Sec-
tion 6.3 and Lemma 7.1) that the map

Il
A → Ir

A, λ = (λx)x∈H 7→ λS = (λSx = λx−1Sx−1)x∈H

is a k-linear isomorphism.
Note that a χ-integral for A is in particular an H-integral (in the sense of [Vi])

for the Hopf H-coalgebra underlying A. (An H-integral for a Hopf H-coalgebra
verifies only the first of the above two axioms of a χ-integral.) Consequently, by
[Vi, Lemma 3.1], if a left or right χ-integral λ = (λx)x∈H for A is non-zero, then
λx 6= 0 for all x ∈ H such that Ax 6= 0, and in particular λ1 6= 0.

9.7. Existence and uniqueness of χ-integrals. It is known (see [Sw]) that the
space of left (respectively, right) integrals for a finite dimensional Hopf algebra over
a field is one dimensional. We generalize this result to Hopf χ-coalgebras:

Theorem 9.2. Assume that k is a field and that A is a Hopf χ-coalgebra (over k)
of finite type (that is, each Ax is finite dimensional). Then the spaces Il

A and Ir
A

are both one dimensional.

Proof. For any x, y ∈ H and e ∈ E, set Mx = A∗
x−1 = Homk(Ax−1 , k) and define

the k-linear homomorphisms

rx : Ax ⊗Mx →Mx, ρx,y : Mxy → Ax ⊗My, ψx,e : Mx →Mχ(e)x
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by

rx =

x

x−1

x−1

ρx,y =

x y−1

(xy)−1

ψx,e =

x−1

(χ(e)x)−1

x−1

e .

Here we use the convention of Section 2.7 for oriented arcs, a color z ∈ H is an
abbreviation for Az (as in Section 6.4), and the dot represents the χ-action of A
(see Section 7.1). It follows from the axioms of a Hopf χ-coalgebra and Lemma 7.1
that

M =
(
M = {Mx}x∈H , r = {rx}x∈H , ρ = {ρx,y}x,y∈H, ψ = {ψx,e}(x,e)∈H×E

)

is a Hopf χ-module over A. Then, by Theorem 9.1, M is isomorphic to the trivial
Hopf χ-module A ⊗M coA. Now it follows from the definitions of ρ, ψ, and of a
right χ-integral that the map

Ir
A → M coA, λ = (λx)x∈H 7→ λco = (λx−1)x∈H

is a k-linear isomorphism. Thus M is isomorphic to the trivial Hopf χ-module
A⊗ Ir

A. In particular the k-vector spaces M1 and A1 ⊗ Ir
A are isomorphic and so

dim(M1) = dim(A1 ⊗ Ir
A) = dim(A1) dim(Ir

A).

Now dim(M1) = dim(A1) (since M1 = A∗
1 and A1 is finite dimensional) and

dim(A1) 6= 0 (since A1 6= 0 because ε(11) = 1k 6= 0). Consequently dim(Ir
A) = 1.

Using that Il
A is isomorphic to Ir

A (see Section 9.6), we get that dim(Il
A) = 1. �

9.8. The distinguished χ-grouplike element. As in Theorem 9.2, we assume
in this subsection that k is a field and that A is a Hopf χ-coalgebra (over k) of
finite type.

Corollary 9.3. There exists a unique χ-grouplike element g = (gx)x∈H of A such
that (idAx

⊗ λy)∆x,y = gxλxy for any right χ-integral λ of A and all x, y ∈ H.

Proof. First notice that the space Ir
A of right χ-integrals for A coincide with the

space of right H-integrals for the Hopf H-coalgebra underlying A because both are
one dimensional (by Theorem 9.2 and [Vi, Theorem 3.6]) and any right χ-integral is
a rightH-integral. Then, by [Vi, Lemma 4.1], there is a unique H-grouplike element
g = (gx)x∈H of A satisfying the condition of the corollary. Now it follows from the
properties of the χ-action φ of A that

(
φχ(e)x,e−1 (gχ(e)x)

)
x∈H

is also an H-grouplike
element of A satisfying the condition of the lemma. Then the uniqueness of such an
H-grouplike element implies that φχ(e)x,e−1(gχ(e)x) = gx, and so gχ(e)x = φx,e(gx),
for all x ∈ H and e ∈ E. Hence g is a χ-grouplike element. �

The χ-grouplike element g = (gx)x∈H of Corollary 9.3 is called the distinguished
χ-grouplike element of A. Note that g1 is the (usual) distinguished grouplike ele-
ment of the Hopf algebra A1. Also g is the distinguished H-grouplike element of
the Hopf H-coalgebra underlying A (see [Vi, Section 4]).

10. Hopf crossed module-(co)algebras as Hopf algebras

Throughout this section, we let S = (S,⊗, 1) be a symmetric monoidal category.
We first define Hopf crossed module-(co)algebras in S and then interpret them
as Hopf algebras in some symmetric monoidal category associated with S. As a
corollary, when S is the category of k-modules, we obtain that the Hopf crossed
module-(co)algebras over k considered above are Hopf algebras in some symmetric
monoidal category.
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10.1. Hopf crossed module-(co)algebra in symmetric monoidal categories.
Let χ : E → H be a crossed module. The notion of a Hopf χ-(co)algebra in S can
be defined in the exact same way as in Sections 7.2 and 7.8 by replacing k-modules
with objects of S and k-linear homomorphisms with morphisms in S.

Explicitly, a Hopf χ-coalgebra in S is a family A = {Ax}x∈H of algebras in S
endowed with a coproduct, a counit, an antipode, and a χ-action which are respec-
tively:

• a family ∆ = {∆x,y : Axy → Ax ⊗Ay}x,y∈H of algebra morphisms in S,
• an algebra morphism ε : A1 → 1 in S,
• a family S = {Sx : Ax−1 → Ax}x∈H of isomorphisms in S,
• a family φ = {φx,e : Ax → Aχ(e)x}(x,e)∈H×E of algebra isomorphisms in S.

These data should satisfy the following axioms: the coproduct must be coassociative
and counital as in Section 6.1, the antipode must satisfy the axiom of Section 6.3,
and the χ-action must satisfy the axioms (2)-(4) of Section 7.1.

Similarly, a Hopf χ-algebra in S is a family A = {Ax}x∈H of coalgebras in S
endowed with a product, a unit, an antipode, and a χ-action which are respectively:

• a family µ = {µx,y : Ax ⊗Ay → Axy}x,y∈H of coalgebra morphisms in S,
• a coalgebra morphism η : 1 → A1 in S,
• a family S = {Sx : Ax → Ax−1}x∈H of isomorphisms in S,
• a family φ = {φx,e : Ax → Aχ(e)x}(x,e)∈H×E of coalgebra isomorphisms
in S,

and which satisfy the axioms given in Section 7.8.
Note that these notions are dual to each other: Hopf χ-algebras in S bijectively

correspond to Hopf χ-coalgebras in the opposite category Sop = (Sop,⊗, 1) by
exchanging the product and the coproduct and by replacing the χ-action φ with
φ−1 = {φ−1

x,e = φχ(e)x,e−1}(x,e)∈H×E.
For example, let Modk be the symmetric monoidal category of k-modules and

k-linear homomorphisms. Then the Hopf χ-coalgebras over k (as defined in Sec-
tion 7.2) are exactly the Hopf χ-coalgebras in Modk. Likewise, the Hopf χ-algebras
over k (as defined in Section 7.8) are exactly the Hopf χ-algebras in Modk and also
correspond to the Hopf χ-coalgebras in (Modk)

op.

10.2. The category E(S). We associate to S a symmetric monoidal category E(S)
defined as follows.

The objects of E(S) are the pairs (C, F ) where C is a small category and F : C → S
is a functor. A morphism from an object (C, F ) to an object (D, G) is a pair (Γ, γ)
where Γ: D → C is a functor and γ = {γY : FΓ(Y ) → G(Y )}Y ∈D is a natural
transformation (from FΓ to G). The composition of (Γ, γ) : (C, F ) → (D, G) with
(Λ, λ) : (D, G) → (K, H) is defined by

(Λ, λ) ◦ (Γ, γ) = (ΓΛ, λγΛ) where λγΛ = {λZ ◦ γΛ(Z)}Z∈K.

The identity of (C, F ) is (1C, idF ) where 1C : C → C is the identity functor and
idF = {idF (X)}X∈C. The monoidal product of two objects (C, F ) and (D, G) is
defined by

(C, F )⊠ (D, G) =
(
C × D, F ⊗G = ⊗ ◦ (F ×G) : C × D → S

)
.

The monoidal product of a morphism (Γ, γ) : (C, F ) → (C′, F ′) with a morphism
(Λ, λ) : (D, G) → (D′, G′) is defined by

(Γ, γ)⊠ (Λ, λ) =
(
Γ× Λ, γ ⊗ λ = {γX ⊗ λY }(X,Y )∈C′×D′

)
.

This yields a functor ⊠ : E(S) × E(S) → E(S). Set I = (1, 1), where 1 is the
trivial category with a single object ∗ and a single morphism id∗, and the functor
1 : 1 → S is defined by 1(∗) = 1. Then E(S) = (E(S),⊠, I) is a monoidal category
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(with the obvious monoidal constraints) and is symmetric with symmetry induced
(in the obvious way) from the symmetries of Cat (see Section 2.3) and S.

Note that the forgetful functor U : E(S) → Catop, defined by U(C, F ) = C and
U(Γ, γ) = Γ, is strict monoidal and symmetric.

10.3. Hopf algebras in E(S). In the next theorem, we characterize Hopf crossed
module-coalgebras in S as Hopf algebras in E(S).

Theorem 10.1. Hopf algebras in E(S) are in bijective correspondence with pairs
(χ,A) where χ is a crossed module and A is a Hopf χ-coalgebra in S.

Proof. Let (C, F ) be a Hopf algebra in the category E(S). Then C = U(C, F ) is a
Hopf algebra in Catop. By Section 4.3 and since Hopf algebras in Catop coincide
with Hopf algebras inCat (by exchanging product and coproduct), there is a unique
crossed module χ : E → H such that C = (Gχ,∆χ, εχ,mχ, uχ, Sχ) as Hopf algebras
in Catop. The functor F : Gχ → S gives rise to the family A = {Ax = F (x)}x∈H

of objects in S and to the family

φ =
{
φx,e = F

(
x

e
−→ χ(e)x

)
: Ax → Aχ(e)x

}
(x,e)∈H×E

of morphisms in S. The functoriality of F amounts to Axioms (2) and (3). The
product of the Hopf algebra (C, F ) is (∆χ, µ) where µ = {µx : Ax⊗Ax → Ax}x∈H is
a natural transformation from (F ⊗F )∆χ to F . The unit of (C, F ) is (εχ, η) where
η = {ηx : 1 → Ax}x∈H is a natural transformation from 1εχ to F . The coproduct
of (C, F ) is (mχ,∆) where ∆ = {∆x,y : Axy → Ax ⊗k Ay}x,y∈H is a natural trans-
formation from Fmχ to F ⊗ F . The counit of (C, F ) is (uχ, ε) where ε is a natural
transformation from Fuχ to 1, that is, a morphism ε : A1 → 1 in S. The antipode
of (C, F ) is (Sχ, S) where S = {Sx : Ax−1 → Ax}x∈H is a natural transformation
from FSχ to F . The associativity and unitality of the product of (C, F ) gives that
each Ax is an algebra in S with unit ηx. The naturality of the product and the
unit of (C, F ) give that each φx,e is an algebra morphism. The coassociativity and
counitality of the coproduct of (C, F ) gives that ∆ is coassociative and counital.
The naturality of the coproduct of (C, F ) amounts to Axiom (4). The naturality
of the counit is automatic. The fact that (C, F ) is a bialgebra in E(S) implies
that each ∆x,y and ε are algebra morphisms. The fact that (Sχ, S) is an invert-
ible antipode for (C, F ) implies that the Sx are invertible and satisfy the axiom of
Section 6.3. (Note that the naturality of the antipode of (C, F ) amounts to the
property of Lemma 7.1 extended to Hopf χ-coalgebras in S, and so can be deduced
from the other axioms.) Then A is a Hopf χ-coalgebra in S.

Conversely, any Hopf χ-coalgebra A = {Ax}x∈H in S with χ-action φ gives rise
to a Hopf algebra (Gχ, FA) in E(S), where the functor FA : Gχ → Modk is defined by

FA(x) = Ax and FA

(
x

e
−→ χ(e)x

)
= φx,e, with (co)product, (co)unit, and antipode

derived from those of A as above. �

10.4. Hopf algebras in F(S). We associate to S another symmetric monoidal
category F(S) defined as follows.

Objects of F(S) are pairs (C, F ) where C is a small category and F : C → S is
a functor. A morphism from (C, F ) to (D, G) is a pair (Γ, γ) where Γ: C → D is a
functor and γ is a natural transformation from F toGΓ. The composition, monoidal
product, and symmetry of F(S) are defined in a way similar to E(S). Explicitly,
the composition of (Γ, γ) : (C, F ) → (D, G) with (Λ, λ) : (D, G) → (K, H) is

(Λ, λ) ◦ (Γ, γ) = (ΛΓ, λΓγ) where λΓγ = {λΓ(X) ◦ γX}X∈C.
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The identity of (C, F ) is (1C , idF ). The monoidal product of two objects (C, F ) and
(D, G) is defined by

(C, F )⊠ (D, G) =
(
C × D, F ⊗G = ⊗ ◦ (F ×G) : C × D → S

)
.

The monoidal product of a morphism (Γ, γ) : (C, F ) → (C′, F ′) with a morphism
(Λ, λ) : (D, G) → (D′, G′) is defined by

(Γ, γ)⊠ (Λ, λ) =
(
Γ× Λ, γ ⊗ λ = {γX ⊗ λY }(X,Y )∈C×D

)
.

The unit object of F(S) is I = (1, 1), see Section 10.2. The monoidal constraints
and symmetry of F(S) are induced (in the obvious way) from those of Cat and S.
In particular, the forgetful functor U : E(S) → Cat, defined by U(C, F ) = C and
U(Γ, γ) = Γ, is strict monoidal and symmetric.

Theorem 10.2. Hopf algebras in F(S) are in bijective correspondence with pairs
(χ,A) where χ is a crossed module and A is a Hopf χ-algebra in S.

Proof. Recall that Cop denotes the category opposite to a category C. The opposite
of a functor F : C → D is the functor F op : Cop → Dop acting as F on objects and
morphisms. The opposite of a natural transformation α from a functor F : C → D
to a functor G : C → D is the natural transformation αop from F op : Cop → Dop to
Gop : Cop → Dop defined by αop

X = αX for all X ∈ Ob(Cop) = Ob(C).
Observe that the assignments (C, F ) 7→ (Cop, F op) and (Γ, γ) 7→ (Γop, γop) induce

a symmetric strict monoidal isomorphism F(S) ∼= (E(Sop))op. Consequently, Hopf
algebras in F(S) are in bijective correspondence with Hopf algebras in (E(Sop))op,
and so with Hopf algebras in E(Sop) (by exchanging product and coproduct), and
so with pairs (χ,A) where χ is a crossed module and A is a Hopf χ-coalgebra in Sop

(by Theorem 10.1). We conclude using that Hopf χ-coalgebras in Sop bijectively
correspond to Hopf χ-algebras in the opposite category S. �

10.5. The case of Hopf crossed module-(co)algebras over k. Applying The-
orem 10.1 to the symmetric monoidal category Modk of k-modules and k-linear
homomorphisms, we obtain the following characterization Hopf crossed module-
coalgebras over k as Hopf algebras:

Corollary 10.3. Hopf algebras in E(Modk) are in bijective correspondence with
pairs (χ,A) where χ is a crossed module and A is a Hopf χ-coalgebra over k.

Similarly, applying Theorem 10.2 to Modk, we obtain the following characteri-
zation Hopf crossed module-algebras over k as Hopf algebras:

Corollary 10.4. Hopf algebras in F(Modk) are in bijective correspondence with
pairs (χ,A) where χ is a crossed module and A is a Hopf χ-algebra over k.

Recall that if H is a group, then the trivial map 1 → H is a crossed module
and the notion of a Hopf (1 → H)-(co)algebra over k corresponds to that of a Hopf
H-(co)algebra over k. Let Ed(Modk) and Fd(Modk) be the symmetric monoidal
full subcategories of E(Modk) and F(Modk) consisting of the objects (C, F ) with C
a discrete small category (that is, a set). By restricting the correspondences of
Corollaries 10.3 and 10.4 to these subcategories, we recover the following charac-
terizations given in [CD]: Hopf algebras in Ed(Modk) (respectively, in Fd(Modk))
are in bijective correspondence with pairs (H,A) where H is a group and A is a
Hopf H-coalgebra over k (respectively, a Hopf H-algebra over k).
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[SV] Sözer, K., Virelizier, A., Monoidal categories graded by crossed modules and 3-

dimensional HQFTs, Adv. in Math. 428 (2023), 109155.
[Sw] Sweedler, M.E., Integrals for Hopf algebras, Annals of Math. 89 (1969), 323–335.
[Tu] Turaev, V., Homotopy Quantum Field Theory, EMS Tracts in Math. 10, European Math.

Soc. Publ. House, Zürich 2010.
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