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Abstract

We study algebraic properties of Hopf group-coalgebras, recently introduced by Turaev. We
show the existence of integrals and traces for such coalgebras, and we generalize the main
properties of quasitriangular and ribbon Hopf algebras to the setting of Hopf group-coalgebras.
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0. Introduction

Recently, Turaev [19] introduced, for a group �, the notion of a modular crossed
�-category and showed that such a category gives rise to a three-dimensional homo-
topy quantum ;eld theory with target space K(�; 1): Examples of �-categories can be
constructed from the so-called Hopf �-coalgebras also introduced in [19].

The notion of a Hopf �-coalgebra generalizes that of a Hopf algebra. Hopf �-
coalgebras are used by the author in [20] to construct Hennings-like (see [4,6]) and
Kuperberg-like (see [7]) invariants of principal �-bundles over link complements and
over 3-manifolds. The aim of the present paper is to lay the algebraic foundations
for [20], speci;cally to establish the existence of integrals and traces for a Hopf
�-coalgebras.

Let us brie?y recall some de;nitions of [19]. Given a (discrete) group �, a Hopf
�-coalgebra is a family H = {H�}�∈� of algebras (over a ;eld —) endowed with a
comultiplication �= {��;� :H�� → H�⊗H�}�;�∈�, a counit 	 :H1 → —, and an antipode
S = {S� :H� → H�−1}�∈� which verify some compatibility conditions. A crossing for
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H is a family of algebra isomorphisms ’= {’� :H� → H���−1}�;�∈� which preserves
the comultiplication and the counit, and which yields an action of � in the sense that
’�’�′ =’��′ . A crossed Hopf �-coalgebra H is quasitriangular (resp. ribbon) when it
is endowed with an R-matrix R= {R�;� ∈H� ⊗H�}�;�∈� (resp. an R-matrix and a twist
= {� ∈H�}�∈�) verifying some axioms which generalize the classical ones given in
[2] (resp. [16]). The case �= 1 is the standard setting of Hopf algebras. When � is
commutative and ’ is trivial, one recovers the de;nition of a quasitriangular or ribbon
�-colored Hopf algebra given by Ohtsuki [12].

Basic notions of the theory of Hopf algebras can be extended to the setting of Hopf
�-coalgebras. In particular, a (right) �-integral for a Hopf �-coalgebra H is a family of
—-forms �= (�� :H� → —)�∈� such that (��⊗idH�)��;� = ���1� for all �; �∈ �. When H
is crossed, a �-trace for H is a family of —-forms tr = (tr� :H� → —)�∈� which veri;es
tr�(xy) = tr�(yx), tr�−1 (S�(x)) = tr�(x), and tr���−1 (’�(x)) = tr�(x) for all �; �∈ � and
x; y∈H�. These notions were introduced in [20] for topological purposes.

In the ;rst part of the paper (Sections 1–5), we mainly focus on Hopf �-coalgebras
of ;nite type, that is Hopf �-coalgebras H = {H�}�∈� with each H� ;nite dimensional.
The ;rst main result is the existence and uniqueness (up to a scalar multiple) of a
�-integral for such a Hopf �-coalgebra. To prove this result, we study rational �-graded
modules, introduce the notion of a Hopf �-comodule, and generalize the fundamental
theorem of Hopf modules (see [9]) to Hopf �-comodules.

As for Hopf algebras, any ;nite type Hopf �-coalgebra contains a distinguished
�-grouplike element. Generalizing [15], we study the relationships between this element,
the antipode, and the �-integrals. As a corollary, we give an upper bound for the order
of S�−1S� whenever �∈ � has a ;nite order.

The notions of semisimplicity and cosemisimplicity can be extended to the setting
of Hopf �-coalgebras. We show that a ;nite type Hopf �-coalgebra H = {H�}�∈� is
semisimple (that is each H� is semisimple) if and only if H1 is semisimple. We de;ne
the cosemisimplicity for �-comodules and �-coalgebras, and we use �-integrals to give
necessary and suGcient criteria for a Hopf �-coalgebra to be cosemisimple.

In the second part of the paper (Sections 6 and 7), we study quasitriangular Hopf
�-coalgebras. The main result is the existence of �-traces for a semisimple (resp.
cosemisimple) ;nite type unimodular ribbon Hopf �-coalgebra. To prove this result,
we generalize the main properties of quasitriangular Hopf algebras (see [3,5,14]). In
particular, we introduce and study the (generalized) Drinfeld elements of a quasitrian-
gular Hopf �-coalgebra H , we compute the distinguished �-grouplike element of H by
using the R-matrix, and we show that the twist of a ribbon Hopf �-coalgebra leads to
a �-grouplike element which implements the square of the antipode by conjugation.

The paper is organized as follows. In Section 1, we review the basic de;nitions
and properties of Hopf �-coalgebras. In Section 2, we discuss the notions of a ra-
tional �-graded module and of a Hopf �-comodule. In Section 3, we use these no-
tions to establish the existence and uniqueness of �-integrals. Section 4 is devoted to
the study of the distinguished �-grouplike element. In Section 5, we discuss the no-
tion of a semisimple (resp. cosemisimple) Hopf �-coalgebra. In Section 6, we study
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crossed, quasitriangular, and ribbon Hopf �-coalgebras. Finally, we construct �-traces in
Section 7.

1. Basic de�nitions

Throughout the paper, we let � be a discrete group (with neutral element 1) and —
be a ;eld (although much of what we do is valid over any commutative ring). We
set —∗ =— \ {0}. All algebras are supposed to be over —, associative, and unitary. The
tensor product ⊗=⊗— is always assumed to be over —. If U and V are —-spaces,
�U;V : U ⊗ V → V ⊗ U will denote the ?ip map de;ned by �U;V (u⊗ v) = v⊗ u.

1.1. �-coalgebras

We recall the de;nition of a �-coalgebra, following [19, Section 11:2]. A �-coalgebra
(over —) is a family C = {C�}�∈� of —-spaces endowed with a family �= {��;� :C�� →
C� ⊗C�}�;�∈� of —-linear maps (the comultiplication) and a —-linear map 	 :C1 → —
(the counit) such that

� is coassociative in the sense that, for any �; �; �∈ �,

(��;� ⊗ idC�)���;� = (idC� ⊗ ��;�)��;��; (1.1)

for all �; �∈ �; (idC� ⊗ 	)��;1 = idC� = (	⊗ idC�)�1; �: (1.2)

Note that (C1; �1;1; 	) is a coalgebra in the usual sense of the word.

Sweedler’s notation. We extend the Sweedler notation for a comultiplication in the
following way: for any �; �∈ � and c∈C��, we write

��;�(c) =
∑
(c)

c(1; �) ⊗ c(2;�) ∈C� ⊗ C�;

or shortly, if we leave the summation implicit, ��;�(c) = c(1; �) ⊗ c(2;�). The coassocia-
tivity axiom (1.1) gives that, for any �; �; �∈ � and c∈C���,

c(1; ��)(1; �) ⊗ c(1; ��)(2;�) ⊗ c(2; �) = c(1; �) ⊗ c(2;��)(1;�) ⊗ c(2;��)(2; �):

This element of C� ⊗ C� ⊗ C� is written as c(1; �) ⊗ c(2;�) ⊗ c(3; �). By iterating the
procedure, we de;ne inductively c(1; �1) ⊗ · · · ⊗ c(n;�n) for any c∈C�1···�n .

1.2. Convolution algebras

Let C = ({C�}; �; 	) be a �-coalgebra and A be an algebra with multiplication m
and unit element 1A. For any f∈Hom—(C�; A) and g∈Hom—(C�; A), we de;ne their
convolution product by

f ∗ g=m(f ⊗ g)��;� ∈Hom—(C��; A):
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Using (1.1) and (1.2), one veri;es that the —-space

Conv(C; A) =
⊕
�∈�

Hom—(C�; A)

endowed with the convolution product ∗ and the unit element 	1A, is a �-graded algebra,
called convolution algebra.

In particular, for A=—, the �-graded algebra Conv(C;—) =
⊕

�∈� C
∗
� is called dual

to C and is denoted by C∗.

1.3. Hopf �-coalgebras

Following [19, Section 11:2], a Hopf �-coalgebra is a �-coalgebra H = ({H�}; �; 	)
endowed with a family S = {S� :H� → H�−1}�∈� of —-linear maps (the antipode) such
that

each H� is an algebra with multiplication m� and unit element 1� ∈H�; (1.3)

	 :H1 → — and ��;� :H�� → H� ⊗ H� (for all �; �∈ �) are algebra

homomorphisms; (1.4)

for any �∈ �; m�(S�−1 ⊗ idH�)��−1 ; � = 	1� =m�(idH� ⊗ S�−1 )��;�−1 : (1.5)

We remark that the notion of a Hopf �-coalgebra is not self-dual and that (H1; m1; 11;
�1;1; 	; S1) is a (classical) Hopf algebra.

The Hopf �-coalgebra H is said to be of 9nite type if, for all �∈ �; H� is ;nite
dimensional (over —). Note that it does not mean that

⊕
�∈� H� is ;nite-dimensional

(unless H� = 0 for all but a ;nite number of �∈ �).
The antipode S = {S�}�∈� of H is said to be bijective if each S� is bijective. Unlike

[19, Section 11:2], we do not suppose that the antipode of a Hopf �-coalgebra H is
bijective. However, we will show that it is bijective whenever H is of ;nite type (see
Corollary 3.7(a)) or quasitriangular (see Lemma 6.5(c)).

A useful remark is that if H = {H�}�∈� is a Hopf �-coalgebra with antipode S =
{S�}�∈�, then axiom (1.5) says that S� is the inverse of idH�−1 in the convolution
algebra Conv(H;H�−1 ) for all �∈ �.

In the next lemma, generalizing [17, Proposition 4:0:1], we show that the antipode
of a Hopf �-coalgebra is anti-multiplicative and anti-comultiplicative.

Lemma 1.1. Let H = ({H�; m�; 1�}; �; 	; S) be a Hopf �-coalgebra. Then
(a) S�(ab) = S�(b)S�(a) for any �∈ � and a; b∈H�;
(b) S�(1�) = 1�−1 for any �∈ �;
(c) ��−1 ; �−1S�� = �H�−1 ;H�−1 (S� ⊗ S�)��;� for any �; �∈ �;
(d) 	S1 = 	.

Proof. The proof is essentially the same as in the Hopf algebra setting. For example,
to show part (c), ;x �; �∈ � and consider the algebra Conv(H;H�−1 ⊗ H�−1 ) with
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convolution product ∗ and unit element e = 	1�−1 ⊗ 1�−1 . Using axioms (1.2), (1.4),
and (1.5), one easily checks that ��−1 ; �−1S��∗��−1 ; �−1 = e and ��−1 ; �−1∗�H�−1 ; H�−1 (S�⊗
S�)��;� = e. Hence we can conclude that ��−1 ; �−1S�� = �H�−1 ;H�−1 (S� ⊗ S�)��;�.

Corollary 1.2. Let H = {H�}�∈� be a Hopf �-coalgebra. Then {�∈ � |H� 
= 0} is a
subgroup of �.

Proof. Set G = {�∈ � |H� 
= 0}. Firstly 11 
= 0 (since 	(11) = 1 
= 0) and so 1∈G. Then
let �; �∈G. Using (1.4), ��;�(1��) = 1� ⊗ 1� 
= 0. Therefore 1�� 
= 0 and so ��∈G.
Finally, let �∈G. By Lemma 1.1(b), S�−1 (1�−1 ) = 1� 
= 0: Thus 1�−1 
= 0 and hence
�−1 ∈G.

1.3.1. Opposite Hopf �-coalgebra
Let H = {H�}�∈� be a Hopf �-coalgebra. Suppose that the antipode S = {S�}�∈� of H

is bijective. For any �∈ �, let H op
� be the opposite algebra to H�. Then H op = {H op

� }�∈�,
endowed with the comultiplication and counit of H and with the antipode
Sop = {Sop

� = S−1
�−1}�∈�; is a Hopf �-coalgebra called opposite to H .

1.3.2. Coopposite Hopf �-coalgebra
Let C = ({C�}; �; 	) be a �-coalgebra. Set

Ccop
� =C�−1 and �cop

�;� = �C�−1 ;C�−1 ��−1 ; �−1 :

Then Ccop = ({Ccop
� }; �cop; 	) is a �-coalgebra, called coopposite to C. If H is a Hopf

�-coalgebra whose antipode S = {S�}�∈� is bijective, then the coopposite �-coalgebra
H cop, where H cop

� =H�−1 as an algebra, is a Hopf �-coalgebra with antipode
Scop = {Scop

� = S−1
� }�∈�.

1.3.3. Opposite and coopposite Hopf �-coalgebra
Let H = ({H�}; �; 	; S) be a Hopf �-coalgebra. Even if the antipode of H is not

bijective, one can always de;ne a Hopf �-coalgebra opposite and coopposite to H by
setting H op;cop

� =H op
�−1 ; �op;cop

�;� =�cop
�;� ; 	op;cop = 	, and Sop;cop

� = S�−1 .

1.3.4. The dual Hopf algebra
Let H = ({H�; m�; 1�}; �; 	; S) be a ;nite type Hopf �-coalgebra. The �-graded alge-

bra H∗ =
⊕

�∈� H
∗
� dual to H (see Section 1.2) inherits a structure of a Hopf algebra

by setting, for all �∈ � and f∈H∗
� ,

�(f) =m∗
�(f)∈ (H� ⊗ H�)∗ ∼= H∗

� ⊗ H∗
� ;

	(f) =f(1�), and S(f) =f ◦ S�−1 . Note that if H� 
= 0 for in;nitely many �∈ �, then
H∗ is in;nite dimensional.
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1.3.5. The case � 9nite
Let us ;rst remark that, when � is a ;nite group, there is a one-to-one correspondence

between (isomorphic classes of) �-coalgebras and (isomorphic classes of) �-graded
coalgebras. Recall that a coalgebra (C; �; 	) is �-graded if C admits a decomposition
as a direct sum of —-spaces C =

⊕
�∈� C� such that, for any �∈ �,

�(C�) ⊂
∑
�� = �

C� ⊗ C� and 	(C�) = 0 if � 
= 1:

Let us denote by p� :C → C� the canonical projection. Then {C�}�∈� is a �-coalgebra
with comultiplication {(p� ⊗p�)�|C��}�;�∈� and counit 	|C1 . Conversely, if C = ({C�};
�; 	) is a �-coalgebra, then C̃ =

⊕
�∈� C� is a �-graded coalgebra with comultiplication

�̃ and counit 	̃ given on the summands by

�̃|C� =
∑
�� = �

��;� and 	̃|C� =

{
	 if �= 1;

0 if � 
= 1:

Let now H = ({H�; m�; 1�}; �; 	; S) be a Hopf �-coalgebra, where � is a ;nite group.
Then the coalgebra (H̃ ; �̃; 	̃), de;ned as above, is a Hopf algebra with multiplication
m̃, unit element 1̃, and antipode S̃ given by

m̃|H�⊗H� =

{
m� if �= �;

0 if � 
= �;
1̃ =

∑
�∈�

1�; and S̃ =
∑
�∈�

S�:

When H is of ;nite type and � is ;nite, the Hopf algebra H∗ (see Section 1.3.4) is
simply the dual Hopf algebra H̃

∗
.

Remark 1.3. When � is ;nite, the structure of �-comodules over a �-coalgebra C
(Theorem 2.2), the existence of �-integrals for a ;nite type Hopf �-coalgebra H
(Theorem 3.6) and their relations with the distinguished �-group-like element (The-
orem 4.2) can be deduced from the classical theory of coalgebras and Hopf algebras
by using C̃ or H̃ (de;ned as in Section 1.3.5). Nevertheless, for the general case,
self-contained proofs must be given.

In general, the results relating to a quasitriangular Hopf �-coalgebra (see Sections 6
and 7) cannot be deduced from the classical theory of quasitriangular Hopf algebras.
Indeed, even if � is ;nite, an R-matrix for a Hopf �-coalgebra H (whose de;nition
involves an action of �, see Section 6.2) does not necessarily lead to a usual R-matrix
for the Hopf algebra H̃ .

2. Modules and comodules

In this section, we introduce and discuss the notions of �-comodules, rational �-graded
modules, and Hopf �-comodules. They are used in Section 3 to show the existence of
integrals.
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2.1. �-comodules

Let C = ({C�}; �; 	) be a �-coalgebra. A right �-comodule over C is a family
M = {M�}�∈� of —-spaces endowed with a family $= {$�;� :M�� → M� ⊗ C�}�;�∈�

of —-linear maps (the structure maps) such that

for any �; �; �∈ �;

($�;� ⊗ idC�)$��;� = (idM� ⊗ ��;�)$�;��; (2.1)

for any �∈ �; (idM� ⊗ 	)$�;1 = idM� : (2.2)

Note that M1 endowed with the structure map $1;1 is a (usual) right comodule over
the coalgebra C1.

If � is ;nite and C̃ =
⊗

�∈� C� is the �-graded coalgebra de;ned as in Section 1.3.5,
then M leads to a �-graded right comodule M̃ =

⊗
�∈� M� over C̃ with comodule map

$̃=
∑

�;�∈� $�;� (see [10]).
A �-subcomodule of M is a family N = {N�}�∈�, where N� is a —-subspace of M�,

such that $�;�(N��) ⊂ N� ⊗ C� for all �; �∈ �. Then N is a right �-comodule over C
with induced structure maps.

A �-comodule morphism between two right �-comodules M and M ′ over C (with
structure maps $ and $′) is a family f = {f� :M� → M ′

�}�∈� of —-linear maps such
that $′

�;�f�� = (f� ⊗ idC�)$�;� for all �; �∈ �.

Sweedler’s notation. We extend the notation of Section 1.1 by setting, for any �; �∈ �
and m∈M��,

$�;�(m) =m(0; �) ⊗ m(1;�) ∈M� ⊗ C�:

Axiom (2.1) gives that, for any �; �; �∈ � and m∈M���,

m(0; ��)(0; �) ⊗ m(0; ��)(1;�) ⊗ m(1; �) =m(0; �) ⊗ m(1;��)(1;�) ⊗ m(1;��)(2; �):

This element of M� ⊗ C� ⊗ C� is written as m(0; �) ⊗ m(1;�) ⊗ m(2; �). By iterating the
procedure, we de;ne inductively m(0; �0) ⊗ m(1; �1) ⊗ · · · ⊗ m(n;�n) for any m∈M�0�1···�n .

Let N = {N�}�∈� be a �-subcomodule of a right �-comodule M = {M�}�∈� over a
�-coalgebra C. One easily checks that M=N = {M�=N�}�∈� is a right �-comodule over
C, with structure maps naturally induced from the structure maps of M . Moreover,
this is the unique structure of a right �-comodule over C on M=N which makes the
canonical projection p= {p� :M� → M�=N�}�∈� a �-comodule morphism.

If f = {f� :M� → M ′
�}�∈� is a �-comodule morphism between two right �-comodules

M and M ′, then ker(f) = {ker(f�)}�∈� is a �-subcomodule of M; f(M) = {f�(M�)}�∈�

is a �-subcomodule of M ′, and the canonical isomorphism Mf = { Mf � :M�=ker(f�) →
f�(M�)}�∈� is a �-comodule isomorphism.
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Example 2.1. Let H be a Hopf �-coalgebra and M = {M�}�∈� be a right �-comodule
over H with structure maps $= {$�;�}�;�∈�. The coinvariants of H on M are the
elements of the —-space{

m= (m�)�∈� ∈
∏
�∈�

M� |$�;�(m��) =m� ⊗ 1� for all �; �∈ �

}
:

For any �∈ �, let M co H
� be the image of the (canonical) projection of this set onto

M�. It is easy to verify that M co H = {M co H
� }�∈� is a right �-subcomodule of M , called

the �-subcomodule of coinvariants.

2.2. Rational �-graded modules

Throughout this subsection, C = ({C�}; �; 	) will denote a �-coalgebra and C∗ =⊗
�∈� C

∗
� its dual �-graded algebra (see Section 1.2). In this subsection we explore the

relationships between right �-comodules over C and �-graded left C∗-modules.
Let M =

⊕
�∈� M� be a �-graded left C∗-module with action  :C∗ ⊗M → M . Set

MM� =M�−1 . For any �; �∈ �, de;ne

$�;� : MM�� → Hom—(C∗
� ; MM�) by $�;�(m)(f) =  (f ⊗ m): (2.3)

There is a natural embedding

MM� ⊗ C� ,→ Hom—(C∗
� ; MM�) m⊗ c �→ (f �→ f(c)m):

Regard this embedding as inclusion, so that MM� ⊗C� ⊂ Hom—(C∗
� ; MM�). The �-graded

left C∗-module M is said to be rational provided $�;�( MM��) ⊂ MM�⊗C� for all �; �∈ �.
In this case, the restriction of $�;� onto MM� ⊗ C� will also be denoted by

$�;� : MM�� → MM� ⊗ C�: (2.4)

The de;nition given here generalizes that of a rational �-graded left module given in
[10] and agrees with it when � is ;nite.

The next theorem generalizes [10, Theorem 6:3; 17, Theorem 2:1:3].

Theorem 2.2. Let C be a �-coalgebra. Then
(a) There is a one-to-one correspondence between (isomorphic classes of) right �-

comodules over C and (isomorphic classes of) rational �-graded left C∗-
modules.

(b) Every graded submodule of a rational �-graded left C∗-module is rational.
(c) Any �-graded left C∗-module L=

⊕
�∈� L� has a unique maximal rational graded

submodule; noted Lrat ; which is equal to the sum of all rational graded sub-
modules of L. Moreover; if $= {$�;�}�;�∈� is de9ned as in (2:3); then (Lrat)� =⋂

�;�∈�
��=�−1

$−1
�;�( ML� ⊗ C�) for any �∈ �.

Before proving the theorem, we needs two lemmas. Recall that a left module M over
a �-graded algebra A=

⊗
�∈� A� is graded if M admits a decomposition as a direct
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sum of —-spaces M =
⊗

�∈� M� such that A�M� ⊂ M�� for all �; �∈ �. A submodule
N of M is graded if N =

⊗
�∈�(N ∩ M�). The quotient M=N is then a left �-graded

A-module by setting (M=N )� = (M� + N )=N for all �∈ �. This is the unique structure
of a �-graded A-module on M=N which makes the canonical projection M → M=N a
graded A-morphism.

Let M = {M�}�∈� be a family of —-spaces and $= {$�;� :M�� → M�⊗C�}�;�∈� be a
family of —-linear maps. Set MM =

⊕
�∈�

MM�, where MM� =M�−1 . Let  $ :C∗ ⊗ MM → MM
be the —-linear map de;ned on the summands by

C∗
� ⊗ MM�

idC∗� ⊗$(��)−1 ;�−−−−−−−→C∗
� ⊗ MM�� ⊗ C�

�C∗� ; MM��
⊗idC�

−→ MM�� ⊗ C∗
� ⊗ C�

id MM��
⊗〈;〉

−−−−→ MM�� ⊗ — ∼= MM��;

where 〈; 〉 denotes the natural pairing between C∗
� and C�.

Lemma 2.3. (M; $) is a right �-comodule over C if and only if ( MM;  $) is a �-graded
left C∗-module.

Proof. Suppose that (M; $) is a right �-comodule over C. Firstly, for any m∈ MM�;
 $(	 ⊗ m) =m(0; �−1)	(m(1;1)) =m, by (2.2). Secondly, for any f∈C∗

� ; g∈C∗
� , and

m∈ MM�,

 $(fg⊗ m) = m(0; (���)−1)fg(m(1; ��))

= m(0; (���)−1)f(m(1; �))g(m(2;�))

=  $(f ⊗ m(0; (��)−1)g(m(1;�)))

=  $(f ⊗  $(g⊗ m)):

Moreover, by construction,  $(C∗
� ⊗ MM�) ⊂ MM�� for any �; �∈ �. Hence ( MM;  $) is a

�-graded left C∗-module.
Conversely, suppose that ( MM;  $) is a left �-graded C∗-module. Axiom (2.2) is

satis;ed since (idM� ⊗ 	)$�;1(m) =  $(	⊗m) =m for all �∈ � and m∈M� = MM�−1 . To
show that axiom (2.1) is satis;ed, let �; �; �∈ � and m∈M���. Set

*= ($�;� ⊗ idC�)$��;�(m) − (idM� ⊗ ��;�)$�;��(m)∈M� ⊗ C� ⊗ C�:

Suppose that * 
= 0. Then there exists F ∈ (M� ⊗ C� ⊗ C�)∗ such that F(*) 
= 0. Now
M∗

� ⊗C∗
� ⊗C∗

� is dense in the linear topological space (M� ⊗C� ⊗C�)∗ endowed with
the (M� ⊗ C� ⊗ C�)-topology (see [1, p. 70]). Thus (M∗

� ⊗ C∗
� ⊗ C∗

� ) ∩ (F + *⊥) 
= ∅,
where *⊥ = {f∈ (M� ⊗ C� ⊗ C�)∗ |f(*) = 0}. Then there exists G ∈M∗

� ⊗ C∗
� ⊗ C∗

�

such that G(*) 
= 0. Now for all f∈M∗
� ; g∈C∗

� , and h∈C∗
� ,

(f ⊗ g⊗ h)($�;� ⊗ idC�)$��;�(m) = f ◦  $(g⊗  p(h⊗ m))

= f ◦  p(gh⊗ m)

= (f ⊗ g⊗ h)(idM� ⊗ ��;�)$�;��(m);
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i.e., (f⊗g⊗h)(*) = 0. Therefore G(*) = 0, which is a contradiction. We conclude that
*= 0 and then ($�;�⊗idC�)$��;� = (idM�⊗��;�)$�;��. Hence (M; $) is a right �-comodule
over C.

Lemma 2.4. Let (M =
⊗

�∈� M�;  ) be a rational �-graded left C∗-module. Then
MM = { MM�}�∈�; endowed with the structure maps $= {$�;�}�;�∈� de9ned by (2:4); is
a right �-comodule over C.

Proof. Let  $ :C∗ ⊗ MMM → MMM be the map de;ned as in Lemma 2.3. It is easy to

verify that ( MMM;  $) = (M;  ). Thus ( MMM;  $) is a �-graded left C∗-module and hence, by
Lemma 2.3, ( MM; $) is a right �-comodule over C.

Proof of Theorem 2.2. Part (a) follows directly from Lemmas 2.3 and 2.4. To show
part (b), let N be a graded submodule of a rational �-graded left C∗-module (M;  ).
Let $�;� : MN�� → Hom—(C∗

� ; MN�) de;ned by $�;�(m)(f) =  (f⊗m). Suppose that there
exist �; �∈ � and n∈ MN�� such that $�;�(n) 
∈ MN� ⊗ C�. Since M is rational, we can
write $�;�(n) =

∑k
i=1 ni ⊗ ci ∈ MM� ⊗C�. Without loss of generality, we can assume that

the ci are —-linearly independent and n1 
∈ MN�. Let f∈C∗
� such that f(c1) = 1 and

f(ci) = 0 for i¿ 2. Now  (f⊗ n) =
∑k

i=1 nif(ci) = n1 
∈ MN� =N�−1 , contradicting the
fact that N is a graded submodule of M . Thus $�;�( MN��) ⊂ MN� ⊗ C� for all �; �∈ �.
Hence N is rational.

Let us show part (c). Denote by · the left action of C∗ on L. Set ML� =L�−1 and
$�;� : ML�� → Hom—(C∗

� ; ML�) given by $�;�(m)(f) =f ·m. Recall ML� ⊗C� can be viewed
as a subspace of Hom—(C∗

� ; ML�) via the embedding ML� ⊗ C� ,→ Hom—(C∗
� ; ML�) given

by m ⊗ c �→ (f �→ f(c)m). De;ne M� =
⋂

��=�−1 $−1
�;�( ML� ⊗ C�) for any �∈ �, and set

M =
⊕

�∈� M�. Fix �; �∈ �; f∈C∗
� , and m∈M�. Let u; v∈ � such that uv= (��)−1.

We can write $u;v�(m) =
∑k

i=1 li ⊗ ci ∈ MLu ⊗ Cv�. Now, for any g∈C∗
v ,

g · (f · m) = (gf) · m=
k∑

i=1

gf(ci)li =
k∑

i=1

g(f(ci(2; �))ci(1; v))li:

Then $u;v(f · m) =
∑k

i=1 li ⊗ f(ci(2; �))ci(1; v) ∈ MLu ⊗ Cv and so f · m∈ $−1
u;v ( MLu ⊗ Cv).

Hence f · m∈⋂
uv=(��)−1 $−1

u;v ( MLu ⊗ Cv) =M��. Therefore M is a graded submodule of
L. Moreover one easily checks at this point that $�;�( MM��) ⊂ MM� ⊗ C� for any �; � in
�. Thus M is rational.

Suppose now that N is another rational graded submodule of L and denoted by
%= {%�;�}�;�∈� its corresponding �-comodule structure maps (see Lemma 2.4). Let
�∈ � and �; �∈ � such that �� = �−1. By the de;nition of $�;� and %�;� and of the
embedding MN� ⊗ C� ⊂ ML� ⊗ C� ⊂ Hom—(C∗

� ; ML�), it follows that $�;�|N = %�;� : MN�� →
MN� ⊗C�. Thus $�;�(N�) = %�;�( MN��) ⊂ MN� ⊗C� ⊂ ML� ⊗C�, and so N� ⊂ $−1

�;�( ML� ⊗C�).

This holds for all �; �∈ � such that �� = �−1. Thus N� ⊂
⋂

��=�−1 $−1
�;�( ML� ⊗ C�) =M�

for any �∈ �. Hence N ⊂ M . Therefore M is the unique maximal rational graded
submodule of L and is the sum of all rational graded submodules of L.
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M�� ⊗ H��
 ��−−−−−→M��

$�;�−−−−−→ M� ⊗ H�

$�; �⊗��; �

� �  �⊗m�

M� ⊗ H� ⊗ H� ⊗ H� −−−−−−−−−→
idM�⊗�H�;H�⊗idH�

M� ⊗ H� ⊗ H� ⊗ H�

Fig. 1. Compatibility of the structure maps of a right Hopf �-comodule.

Remark 2.5. It follows from Lemma 2.4 and Theorem 2.2(c) that a unique “maximal”
right �-comodule (M rat) over a �-coalgebra C can be associated to any �-graded left
C∗-module M .

2.3. Hopf �-comodules

In this subsection, we introduce and discuss the notion of a Hopf �-comodule.
Let H = ({H�; m�; 1�}; �; 	; S) be a Hopf �-coalgebra. A right Hopf �-comodule over

H is a right �-comodule M = {M�}�∈� over H such that

M� is a right H�-module for any �∈ �: (2.5)

Let us denote by  � :M� ⊗ H� → H� the right action of H� on M�

and by $= {$�;�}�;�∈� the �-comodule maps of M: These structures

are required to be compatible in the sense that; for any �; �∈ �; the

diagram of Fig: 1 is commutative: (2.6)

When �= 1, one recovers the de;nition of a Hopf module (see [9]).
Note that axiom (2.6) means that $�;� :M�� → M�⊗H� is H��-linear, where M�⊗H�

is endowed with the right H��-module structure given by

(m⊗ h) · a=  �(m⊗ a(1; �)) ⊗ ha(2;�):

A Hopf �-subcomodule of M is a �-subcomodule N = {N�}�∈� of M such that N�

is a H�-submodule of M� for any �∈ �. Then N is a right Hopf �-comodule over H .
A Hopf �-comodule morphism between two right Hopf �-comodules M and M ′ is

a �-comodule morphism f = {f� :M� → M ′
�}�∈� between M and M ′ such that f� is

H�-linear for any �∈ �.

Example 2.6. Let H = {H�}�∈� be a Hopf �-coalgebra and M = {M�}�∈� be a right
�-comodule over H , with structure maps $= {$�;�}�;�∈�. For any �∈ �, set (M ⊗
H)� =M� ⊗ H�. The multiplication in H� induces a structure of a right H�-module
on (M ⊗ H)� by setting (m⊗ h) / a=m⊗ ha. De;ne the �-comodule structure maps
2�;� : (M ⊗ H)�� → (M ⊗ H)� ⊗ H� by

2�;�(m⊗ h) =m(0; �) ⊗ h(1; �) ⊗ m(1;�)h(2;�):

Here we write as usual $�;�(m) =m(0; �) ⊗m(1;�) and ��;�(h) = h(1; �) ⊗h(2;�). One easily
veri;es that M⊗H = {(M⊗H)�}�∈� is a right Hopf �-comodule over H , called trivial.
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In the next theorem, we show that a Hopf �-comodule can be canonically decom-
posed. This generalizes the fundamental theorem of Hopf modules (see [9, Propo-
sition 1]).

Theorem 2.7. Let H be a Hopf �-coalgebra and M be a right Hopf �-comodule over
H . Consider the �-subcomodule of coinvariants M co H of M (see Example 2:1) and
the trivial right Hopf �-comodule M co H ⊗H (see Example 2:6). Then there exists a
Hopf �-comodule isomorphism M ∼= M co H ⊗ H .

Proof. We will denote by · (resp. /) the right action of H� on M� (resp. on (M co H ⊗
H)�) and by $= {$�;�}�;�∈� (resp. 2= {2�;�}�;�∈�) the �-comodule structure maps
of M (resp. of M co H ⊗ H). For any �∈ �, de;ne P� :M1 → M� by P�(m) =m(0; �) ·
S�−1 (m(1; �−1)). Remark ;rst that, for any m∈M1; (P�(m))�∈� is a coinvariant of H on
M . Indeed, for all �; �∈ �,

$�;�(P��(m))

= $�;�(m(0; ��) · S(��)−1 (m(1; (��)−1)))

= $�;�(m(0; ��)) · ��;�S(��)−1 (m(1; (��)−1)) by (2:6)

=m(0; �) · S�−1 (m(3; �−1)) ⊗ m(1;�)S�−1 (m(2;�−1)) by Lemma 1:1(c)

=m(0; �) · S�−1 (	(m(1;1))m(2; �−1)) ⊗ 1� by (1:5)

=m(0; �) · S�−1 (m(1; �−1)) ⊗ 1� by (1:2)

=P�(m) ⊗ 1�:

For any �∈ �, de;ne f� : (M co H ⊗H)� → M� by f(m⊗h) =m ·h. Then f� is H�-linear
since f�(m⊗h) ·a= (m ·h) ·a=m ·ha=f�((m⊗h)/a) for all m∈M co H

� and h; a∈H�.
Moreover (f� ⊗ idH�)2�;� = $�;�f�� for all �; �∈ �. Indeed let m∈M co H

�� and h∈H��.
By the de;nition of M co H

�� , there exists a coinvariant (m�)�∈� of H on M such that
m=m��. In particular $�;�(m) =m� ⊗ 1�. Thus,

(f� ⊗ idH�)2�;�(m⊗ h) = m� · h(1; �) ⊗ h(2;�)

= $�;�(m) · ��;�(h)

= $�;�(m · h) by (2:6)

= $�;�(f��(m⊗ h)):

Then f = {f�}�∈� :M co H ⊗ H → M is a Hopf �-comodule morphism. To show
that f is an isomorphism, we construct its inverse. For any �∈ �, de;ne g� :M� →
(M co H ⊗H)� by g� = (P�⊗ idH�)$1; �. The map g� is well-de;ned since (P�(m))�∈� is a
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coinvariant of H on M for all m∈M1, and is H�-linear since, for any x∈M� and
a∈H�,

g�(x · a) = (P� ⊗ idH�)$1; �(x · a)

= P�(x(0;1) · a(1;1)) ⊗ x(1; �)a(2; �) by (2:6)

= (x(0; �) · a(1; �)) · S�−1 (x(1; �−1)a(2; �−1)) ⊗ x(2; �)a(3; �) by (2:6)

= x(0; �) · (a(1; �)S�−1 (a(2; �−1))S�−1 (x(1; �−1))) ⊗ x(2; �)a(3; �)

= x(0; �) · S�−1 (x(1; �−1)) ⊗ x(2; �)	(a(1;1))a(2; �) by (1:5)

= x(0; �) · S�−1 (x(1; �−1)) ⊗ x(2; �)a by (1:2)

= g�(x) / a:

Moreover (g� ⊗ idH�)$�;� = 2�;�g�� for all �; �∈ �. Indeed, for any x∈M��,

2�;�(g��(x)) = 2�;�(P��(x(0;1)) ⊗ x(1; ��))

= P��(x(0;1))(0; �) ⊗ x(1; ��)(1; �) ⊗ P��(x(1;1))(1;�)x(1; ��)(2;�);

and so, since (P�(x(0;1)))�∈� is a �-coinvariant of H on M ,

2�;�(g��(x)) = P�(x(0;1)) ⊗ x(1; �) ⊗ x(2;�)

= g�(x(0; �)) ⊗ x(1;�)

= (g� ⊗ idH�)$�;�(x):

Thus g= {g�}�∈� :M → M co H ⊗ H is a Hopf �-comodule morphism. It remains now
to verify that g�f� = id(M co H⊗H)� and f�g� = idM� for any �∈ �. Let m∈M co H

� and
h∈H�. By the de;nition of M co H

� , there exists a coinvariant (m�)�∈� of H on M such
that m=m�. In particular, $1; �(m) =m1 ⊗ 1� and P�(m1) =m� · S�−1 (1�−1 ) =m · 1� =m.
Then

g�f�(m⊗ h) = g�(m · h)

= g�(m) / h since g� is H�-linear

= (P�(m1) ⊗ 1�) / h

= m⊗ h:

Finally, for all x∈M�,

f�g�(x) = (x(0; �) · S�−1 (x(1; �−1))) · x(2; �)

= x(0; �) · (S�−1 (x(1; �−1))x(2; �))

= x(0; �)	(x(1;1)) · 1� by (1:5)

= x by (2:2):

Hence g=f−1 and f and g are Hopf �-comodule isomorphisms.
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3. Existence and uniqueness of �-integrals

In this section, we introduce and discuss the notion of a �-integral for a Hopf
�-coalgebra. In particular, by generalizing the arguments of [17, Section 5], we show
that, in the ;nite type case, the space of left (resp. right) �-integrals is one
dimensional.

3.1. �-integrals

We ;rst recall that a left (resp. right) integral for a Hopf algebra (A; �; 	; S) is an
element 4∈A such that x4= 	(x)4 (resp. 4x = 	(x)4) for all x∈A. A left (resp.
right) integral for the dual Hopf algebra A∗ is a —-linear form �∈A∗ verifying (f ⊗
�)�=f(1A)� (resp. (� ⊗ f)�=f(1A)�) for all f∈A∗ Let us extend this notion to
the setting of a Hopf �-coalgebra.

Let H = ({H�; m�; 1�}; �; 	; S) be a Hopf �-coalgebra. A left (resp. right) �-integral
for H is a family of —-linear forms �= (��)�∈� ∈

∏
�∈� H

∗
� such that, for all �; �∈ �;

(idH� ⊗ ��)��;� = ���1� (resp: (�� ⊗ idH�)��;� = ���1�): (3.1)

Note that �1 is a usual left (resp. right) integral for the Hopf algebra H∗
1 .

If we use the multiplication of the dual �-graded algebra H∗ of H (see Section 1.2),
we have that �= (��)�∈� ∈

∏
�∈� H

∗
� is a left (resp. right) �-integral for H if and only

if, for all �; �∈ � and f∈H∗
� (resp. g∈H∗

� );

f�� =f(1�)��� (resp: ��g= g(1�)���):

A �-integral �= (��)�∈� for H is said to be non-zero if �� 
= 0 for some �∈ �.

Lemma 3.1. Let �= (��)�∈� be a non-zero left (resp. right) �-integral for H . Then
�� 
= 0 for all �∈ � such that H� 
= 0. In particular �1 
= 0.

Proof. Let �= (��)�∈� be a left �-integral for H such that �� 
= 0 for some �∈ � and
let �∈ � with H� 
= 0. Then H��−1 
= 0 (by Corollary 1.2) and so 1��−1 
= 0. Using (3.1),
we have that (idH��−1 ⊗ ��)���−1 ; � = ��1��−1 
= 0. Hence �� 
= 0. The right case can be
done similarly.

Remark 3.2. Let H be a ;nite type Hopf �-coalgebra. Consider the Hopf algebra H∗

dual to H (see Section 1.3.4). If H� = 0 for all but a ;nite number of �∈ �, then
�= (��)�∈� ∈

∏
�∈� H

∗
� is a left (resp. right) �-integral for H if and only if

∑
�∈� ��

is a left (resp. right) integral for H∗. If H� 
= 0 for in;nitely many �∈ �; then H∗ is
in;nite dimensional and thus does not have any non-zero left or right integral (see
[18]). Nevertheless we show in the next subsection that H always has a non-zero
�-integral.
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3.2. The space of �-integrals is one dimensional

It is known (see [17, Corollary 5:1:6]) that the space of left (resp. right) integrals for
a ;nite-dimensional Hopf algebra is one dimensional. In this subsection, we generalize
this result to ;nite type Hopf �-coalgebras.

Let H = {H�}�∈� be a Hopf �-coalgebra (not necessarily of ;nite type). The dual
�-graded algebra H∗ of H (see Section 1.2) is a �-graded left H∗-module via left multi-
plication. Let (H∗)rat be its maximal rational �-graded submodule (see
Theorem 2.2(c)). Denote by H = (H∗)rat = {H�}�∈� the right �-comodule over H
which corresponds to it by Lemma 2.4. Recall that H� ⊂ H∗

�−1 for any �∈ �. The
�-comodule structure maps of H will be denoted by $= {$�;�}�;�∈�.

Lemma 3.3. Let �= (��)�∈� ∈
∏

�∈� H
∗
� . Then � is a left �-integral for H if and only

if (��−1 )�∈� is a coinvariant of H on H (see Example 2:1).

Proof. Suppose that � is a left �-integral for H . Fix �∈ �. Let �; �∈ � such that
�� = �. We have that $�;�(��−1 ) = ��−1 ⊗ 1� ∈H∗

� ⊗ H� since f��−1 =f(1�)��−1 for
all f∈H∗

� . Therefore ��−1 ∈⋂
��=� $

−1
�;�(H∗

� ⊗H�) = (H∗)rat
�−1 =H� , see Theorem 2.2(c).

Hence, since $�;�(�(��)−1 ) = ��−1 ⊗ 1� for all �; �∈ �; (��−1 )�∈� is a coinvariant of H
on H . Conversely, suppose that (��−1 )�∈� is a coinvariant of H on H . Let �; �∈ �.
Then $(��)−1 ; �(��) = ��� ⊗ 1�; i.e., f�� =f(1�)��� for all f∈H∗

� . Hence � is a left
�-integral for H .

For all �∈ �; we de;ne a right H�-module structure on H� by setting

(f ) a)(x) =f(xS�(a))

for any f∈H�; a∈H�, and x∈H�−1 .

Lemma 3.4. H is a right Hopf �-comodule over H.

Proof. Let us ;rst show that for any �; �∈ �; f∈H��; a∈H��; and g∈H∗
� ,

g(f ) a) =f(0; �) ) a(1; �)〈g; f(1;�)a(2;�)〉; (3.2)

where 〈 ; 〉 denotes the natural pairing between H∗
� and H�. Remark ;rst that

1� ⊗ S��(a) = 	(a(2;1))1� ⊗ S��(a(1; ��)) by (1:2)

= S�−1 (a(2;�−1))a(3;�) ⊗ S��(a(1; ��)) by (1:5)

= S�(a(1; �))(1;�)a(2;�) ⊗ S�(a(1; �))(2; (��)−1) by Lemma 1:1(c)

Then, for all x∈H�−1 ;

x(1;�) ⊗ x(2; (��)−1)S��(a)

= x(1;�)S�(a(1; �))(1;�)a(2;�) ⊗ x(2; (��)−1)S�(a(1; �))(2; (��)−1)

= (xS�(a(1; �)))(1;�)a(2;�) ⊗ (xS�(a(1; �)))(2; (��)−1) by (1:4)
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and so

g(f ) a)(x) = 〈g; x(1;�)〉〈f ) a; x(2; (��)−1)〉
= 〈g; x(1;�)〉〈f; x(2; (��)−1)S��(a)〉
= 〈g; (xS�(a(1; �)))(1;�)a(2;�)〉〈f; (xS�(a(1; �)))(2; (��)−1)〉
= ((a(2;�) * g)f) ) a(1; �)(x);

where * is the left H�-action on H∗
� de;ned by (b * l)(y) = l(yb) for any l∈H∗

�
and b; y∈H�. Then

g(f ) a) = ((a(2;�) * g)f) ) a(1; �)

= (f(0; �)〈a(2;�) * g;f(1;�)〉) ) a(1; �) by de;nition of $�;�

= f(0; �) ) a(1; �)〈g; f(1;�)a(2;�)〉
and hence (3.2) is proved.

Recall that the �-comodule structure map $�;� of H is, via the natural embedding
H� ⊗ H� ⊂ H∗

� ⊗ H� ,→ Hom—(H∗
� ; H

∗
� ), the restriction onto H� ⊗ H� of the map

2�;� :H�� → Hom—(H∗
� ; H

∗
� ) de;ned by 2�;�(f)(g) = gf. Let �∈ �. By (3.2), we have

that, for any �; �∈ � such that �� = �; f∈H� ; and a∈H�,

2�;�(f ) a) =f(0; �) ) a(1; �) ⊗ f(1;�)a(2;�) ∈ (H� ) a(1; �)) ⊗ H� ⊂ H∗
� ⊗ H�:

Therefore, by Theorem 2.2(c), f ) a∈⋂
��=� 2

−1
�;�(H∗

� ⊗ C�) =H� . Hence the ac-
tion of H� on H� is well-de;ned. This is a right action because S� is unitary and
anti-multiplicative (see Lemma 1.1). Finally, axiom (2.6) is satis;ed since (3.2) says
that $�;�(f ) a) =f(0; �) ) a(1; �) ⊗ f(1;�)a(2;�) for any �; �∈ �; f∈H��; and a∈H��.
Thus H is a right Hopf �-comodule over H .

By Theorem 2.7, the Hopf �-comodule H is isomorphic to the Hopf �-comodule
(H )co H ⊗ H: Let f = {f� : (H )co H

� ⊗ H� → H�}�∈� be the right Hopf �-comodule
isomorphism between them as in the proof Theorem 2.7. Recall that f�(m⊗h) =m ) h
for any �∈ �; m∈ (H )co H

� ; and h∈H�.

Lemma 3.5. If there exists a non-zero left �-integral for H; then S� is injective for
all �∈ �.

Proof. Suppose that �= (��)�∈� is a non-zero left �-integral for H . Let �∈ �. If H� = 0;
then the result is obvious. Let us suppose that H� 
= 0. Then H�−1 
= 0 by Corollary 1.2
and so ��−1 
= 0 (by Lemma 3.1). Let h∈H� such that S�(h) = 0. By Lemma 3.3,
��−1 ∈H co H

� . Now f�(��−1 ⊗ h) = ��−1 ) h= 0 (since S�(h) = 0). Thus ��−1 ⊗ h= 0
(since f� is an isomorphism) and so h= 0 (since ��−1 
= 0).

Theorem 3.6. Let H be a 9nite type Hopf �-coalgebra. Then the space of left (resp.
right) �-integrals for H is one dimensional.
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Proof. For any �; �∈ �; since H is of ;nite type and H∗
� =H∗

�−1 , we have that dim H∗
� ⊗

H� = dim Hom—(H∗
� ; H

∗
� )¡ + ∞. Therefore, the natural embedding H∗

� ⊗ H� ,→
Hom—(H∗

� ; H
∗
� ) is an isomorphism. Thus H∗ is a rational �-graded H∗-module (see

Section 2.2) and so H� =H∗
�−1 for all �∈ �. Now dim(H )co H

1 = 1 since (H )co H
1 ⊗H1

∼=
H1 ; dim H1 = dim H1 ¡ + ∞, and dim H1 
= 0 (by Corollary 1.2). Hence there exists
a �-coinvariant ( �)�∈� of H on H such that  1 
= 0. Set �� =  �−1 for any �∈ �. By
Lemma 3.3, �= (��)�∈� is a left �-integral for H . Moreover �1 =  1 
= 0 and so � is
non-zero.

Suppose now that *= (*�)�∈� is another left �-integral for H . Let �∈ � such that
H� 
= 0. By Lemma 3.5, S� and S�−1 are injective (since there exists a non-zero left
integral for H) and so dim H� = dim H�−1 . Therefore, dim(H )co H

� = 1 since (H )co H
� ⊗

H�
∼= H� and 0 
= dim H� = dim H� ¡ + ∞: Now ��−1 ; *�−1 ∈ (H )co H

� by Lemma 3.3
and ��−1 
= 0 (by Lemma 3.1). Hence there exists k� ∈— such that *�−1 = k���−1 . If
�∈ � is such that H� 
= 0; then

k1�11� = *11� = (idH� ⊗ *�−1 )��;�−1 = k�(idH� ⊗ ��−1 )��;�−1 = k��11�;

and thus k� = k1 (since �1 
= 0 and 1� 
= 0). If �∈ � is such that H� = 0; then *� = 0 = ��

and so *� = k1��. Hence we can conclude that * is a scalar multiple of �.
To show the existence and the uniqueness of right �-integrals for H , it suGces to

consider the opposite and coopposite Hopf �-coalgebra H op;cop to H (see Section 1.3.3).
Indeed �= (��)�∈� ∈

∏
�∈� H

∗
� is a right �-integral for H if and only if (��−1 )�∈� is a

left �-integral for H op;cop. This completes the proof of the theorem.

Corollary 3.7. Let H = {H�}�∈� be a 9nite type Hopf �-coalgebra. Then
(a) The antipode S = {S�}�∈� of H is bijective.
(b) Let �∈ �. Then H∗

� is a free left (resp. right) H�-module for the action de9ned;
for any f∈H∗

� and a; x∈H�; by

(a * f)(x) =f(xa) (resp: (f ( a)(x) =f(ax)):

Its rank is 1 if H� 
= 0 and 0 otherwise. Moreover; if �= (��)�∈� is a non-zero
left (resp. right) �-integral for H; then �� is a basis vector for H∗

� .

Proof. To show part (a), let �∈ �. By Lemma 3.5 and Theorem 3.6, S� :H� → H�−1

and S�−1 :H�−1 → H� are injective. Thus dim H� = dim H�−1 and so S� is bijective. To
show part (b), let �= (��)�∈� be a non-zero left �-integral for H and ;x �∈ �. If
H� = 0, then the result is obvious. Let us suppose that H� 
= 0. Recall that H�−1 =H∗

�

and f�−1 : (H∗)co H
� ⊗H�−1 → H∗

� de;ned by f⊗h �→ S�−1 (h) * f is an isomorphism.
Since 0 
= �� ∈ (H∗)co H

� , dim(H∗)co H
� = 1, and S�−1 is bijective, the map H� → H∗

�

de;ned by h �→ h * �� is an isomorphism. Thus (H∗
� ;*) is a free left H�-module of

rank 1 with vector basis ��. Using H op;cop (see Section 1.3.3), one easily deduces the
right case.
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4. The distinguished �-grouplike element

In this section, we extend the notion of a grouplike element of a Hopf algebra to
the setting of a Hopf �-coalgebra. We show that a �-grouplike element is distinguished
in a ;nite type Hopf �-coalgebra and we study its relations with the �-integrals. As a
corollary, for any �∈ � of ;nite order, we give an upper bound for the (;nite) order
of S�−1S�.

4.1. �-grouplike elements

A �-grouplike element of a Hopf �-coalgebra H is a family g= (g�)�∈� ∈
∏

�∈� H�

such that ��;�(g��) = g� ⊗ g� for any �; �∈ � and 	(g1) = 1— (or equivalently g1 
= 0).
Note that g1 is then a (usual) grouplike element of the Hopf algebra H1.

One easily checks that the set G(H) of �-grouplike elements of H is a group
(with respect to the multiplication and unit of the product monoid

∏
�∈� H�) and if

g= (g�)�∈� ∈G(H), then g−1 = (S�−1 (g�−1 ))�∈�.
We remark that the group Hom(�;—∗) acts on G(H) by 9g= (9(�)g�)�∈� for any

g= (g�)�∈� ∈G(H) and 9∈Hom(�;—∗).

Lemma 4.1. Let H be a 9nite type Hopf �-coalgebra. Then there exists a unique
�-grouplike element g= (g�)�∈� of H such that (idH� ⊗ ��)��;� = ���g� for any right
�-integral �= (��)�∈� and all �; �∈ �.

The �-grouplike element g= (g�)�∈� of the previous lemma is called the distin-
guished �-grouplike element of H . Note that g1 is the (usual) distinguished grouplike
element of the Hopf algebra H1.

Proof. Let �= (��)�∈� be a non-zero right �-integral for H . Let �∈ �. For any ’∈H∗
� ;

(’��−1�)�∈� is a right �-integral for H and thus, by Theorem 3.6, there exists a unique
k’ ∈— such that ’��−1� = k’�� for all �∈ �. Now (’ �→ k’)∈H∗∗

�
∼= H� (dim H� ¡ +

∞). Therefore, there exists a unique g� ∈H� such that ’��−1� =’(g�)�� for any �∈ �
and ’∈H∗

� . Then ’�� =’(g�)��� for any �; �∈ � and ’∈H∗
� and hence (idH� ⊗

��)��;� = ���g� for all �; �∈ �. Let �; �∈ �. If H�� = 0, then either H� = 0 or H� = 0
(by Corollary 1.2) and so ��;�(g��) = 0 = g� ⊗ g�. If H�� 
= 0, then, for any ’∈H∗

�

and  ∈H∗
� ; k’ ��� = (’ )�1 =’( �1) = k ’�� = k’k ��� and thus k’ = k’k (since

��� 
= 0 by Lemma 3.1), that is ��;�(g��) = g�⊗g�. Moreover 	(g1)�1 = (	⊗�1)�1;1 = �1

and so 	(g1) = 1 (since �1 
= 0 by Lemma 3.1). Then g= (g�)�∈� is a �-grouplike el-
ement of H . Since all the right �-integrals for H are scalar multiple of �, the “ex-
istence” part of the lemma is demonstrated. Let us now show the uniqueness of g.
Suppose that h= (h�)�∈� is another such �-grouplike element of H . Let �= (��)�∈�

be a non-zero right �-integral for H . Fix �∈ �. If H� = 0, then h� = 0 = g�. If H� 
= 0,
then �� 
= 0 (by Lemma 3.1) and so there exists a∈H� such that ��(a) = 1.
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Therefore g� = ��(a)g� = (idH� ⊗ �1)��;1(a) = ��(a)h� = h�. This completes the proof
of the lemma.

4.2. The distinguished �-grouplike element and �-integrals

Throughout this subsection, H = {H�}�∈� will denote a ;nite type Hopf �-coalgebra.
Since H1 is a ;nite-dimensional Hopf algebra, there exists (e.g., see [13]) a unique

algebra morphism : :H1 → — such that if 4 is a left integral for H1, then 4x = :(x)4
for all x∈H1. This morphism is a grouplike element of the Hopf algebra H∗

1 , called
the distinguished grouplike element of H∗

1 . In particular, it is invertible in H∗
1 and its

inverse :−1 is also an algebra morphism and veri;es that if 4 is a right integral for
H1, then x4= :−1(x)4 for all x∈H1.

For all �∈ �, we de;ne a left and a right H∗
1 -action on H� by setting, for any f∈H∗

1

and a∈H�,

f * a= a(1; �)f(a(2;1)) and a ( f =f(a(1;1))a(2; �):

The next theorem generalizes [15, Theorem 3]. It is used in Section 7 to show the
existence of traces.

Theorem 4.2. Let �= (��)�∈� be a right �-integral for H; g= (g�)�∈� be the distin-
guished �-grouplike element of H; and : be the distinguished grouplike element of H∗

1 .
Then; for any �∈ � and x; y∈H�;
(a) ��(xy) = ��(S�−1S�(y ( :)x);
(b) ��(xy) = ��(yS�−1S�(:−1 * g−1

� xg�));
(c) ��−1 (S�(x)) = ��(g�x).

Before proving Theorem 4.2, we establish the following lemma.

Lemma 4.3. Let �= (��)�∈� be a right �-integral for H; �∈ �; and a∈H�.
(a) If 4 is a right integral for H1 such that �1(4) = 1; then

S�(a) = ��(4(1; �)a)4(2; �−1):

(b) If 4 is a left integral for H1 such that �1(4) = 1; then

S−1
�−1 (a) = ��(a4(1; �))4(2; �−1):

Proof. To show part (a), let �∈ �. De;ne f∈H∗
� by f(x) = ��(4(1; �)x)4(2; �−1) for

any x∈H�. If ∗ denotes the product in the convolution algebra Conv(H;H�−1 ) (see
Section 1.2), then, for any x∈H1,

(f ∗ idH�−1 )(x) = ��(4(1; �)x(1; �))4(2; �−1)x(2; �−1)

= ��((4x)(1; �))(4x)(2; �−1) by (1:4)

= 	(x)��(4(1; �))4(2; �−1) since 4 is a right integral for H1
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= 	(x)�1(4)1�−1 by (3:1)

= 	(x)1�−1 since �1(4) = 1:

Therefore, since idH�−1 is invertible in Conv(H;H�−1 ) with inverse S�, we have that
f = S�, that is S�(a) = ��(4(1; �)a)4(2; �−1) for all a∈H�. Part (b) can be deduced from
part (a) by using the Hopf �-coalgebra H op (see Section 1.3.1).

Proof of Theorem 4.2. We use the same arguments as in the proof of [15, Theorem 3],
even if we cannot use the duality (since the notion a Hopf �-coalgebra is not self-dual).
We can assume that � is a non-zero right �-integral (otherwise the result is obvious).
To show part (a), let �∈ � and x; y∈H�. Since �1 is a non-zero right integral for the
Hopf algebra H∗

1 , there exists a left integral 4 for H1 such that �1(4) = �1(S1(4)) = 1
(cf. [15, Proposition 1]). By Lemma 4.3(b) for a= S�−1S�(y ( :), we have that

S�(y ( :) = ��(S�−1S�(y ( :)4(1; �))4(2; �−1): (4.1)

It is easy to verify that (:−1��)�∈� is a right �-integral for H and 4 ( : is a right
integral for H1 such that (:−1�1)(4 ( :) = 1. Thus Lemma 4.3(a) for a=y ( : gives
that

S�(y ( :) = (:−1��)((4 ( :)(1; �)(y ( :)) (4 ( :)(2; �−1)

= (:−1��)((4(1; �)y) ( :)4(2; �−1) by (1:4)

= ��(((4(1; �)y) ( :) ( :−1)4(2; �−1)

= ��((4(1; �)y) ( 	)4(2; �−1)

= ��(4(1; �)y)4(2; �−1) by (1:2):

Hence, by comparing with (4.1), we obtain that

��(4(1; �)y)4(2; �−1) = ��(S�−1S�(y ( :)4(1; �))4(2; �−1): (4.2)

Now (��S�−1 )�∈� is a right �-integral for H cop and 4 is a left integral for H cop
1

such that (�1S1)(4) = 1. Thus, applying Lemma 4.3(b) for a= S−1
�−1 (x)∈H cop

� , we have
(Scop

�−1 )−1(S−1
�−1 (x)) = ��S�−1 (S−1

�−1 (x)4(2; �−1))4(1; �), that is

x =4(1; �)��(S�−1 (4(2; �−1))x): (4.3)

Finally, evaluating (4.2) with ��(S�−1 (·)x) and using (4.3) gives that ��(xy) =
��(S�−1S�(y ( :)x).

To show part (b), let �∈ � and a; b∈H�. For any �∈ �, let us de;ne 9� ∈ (H op;cop
� )∗

by 9�(x) = ��−1 (g�−1x) for all x∈H op;cop
� . Using Lemma 4.1, one easily checks that

9= (9�)�∈� is a right �-integral for H op;cop. Let us denote by ×op the multiplica-
tion of H op;cop

�−1 and by (cop the right action of (H op;cop
1 )∗ on H op;cop

�−1 de;ned by
h (cop f = (f ⊗ id)�cop

1; �−1 (h). Then, since :−1 is the distinguished grouplike el-
ement of (H op;cop

1 )∗, part (a) with x = g−1
� b and y = g−1

� ag� gives that 9�−1 (x×op

y) =9�−1 (Sop;cop
� Sop;cop

�−1 (y (cop :−1)×op x), that is ��(ab)=��(bS�−1S�(:−1 *g−1
� ag�)).
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Let us show part (c). For any �∈ �, de;ne 9� ∈H∗
� by 9�(x) = ��(g�x) for all x∈H�.

Since (9�)�∈� and (��−1S�)�∈� are left �-integrals for H which are non-zero (because �
is non-zero, g is invertible and S is bijective), there exists k ∈— such that 9� = k��−1S�

for all �∈ � (by Theorem 3.6). As above, let 4 be a left integral for H1 such that
�1(4) = �1(S1(4)) = 1. Recall that 	(g1) = 1. Then 1 = �1(4) = �1(	(g1)4) = �1(g14) =
k�1(S1(4)) = k. Hence ��−1S� =9� for all �∈ �, that is ��−1 (S�(x)) = ��(g�x) for all
�∈ � and x∈H�. This completes the proof of the theorem.

The following corollary will be used later to relate the distinguished grouplike ele-
ment of a ;nite type quasitriangular Hopf �-coalgebra to the R-matrix.

Corollary 4.4. Let 4 be a left integral for H1 and g= (g�)�∈� be the distinguished
�-grouplike element of H . Then; for all �∈ �;

4(1; �) ⊗ 4(2; �−1) = S�−1S�(4(2; �))g� ⊗ 4(1; �−1):

Proof. We can suppose that 4 
= 0. Let �∈ �. Remark that it suGces to show that, for
all f∈H∗

�−1 ,

f(4(2; �−1))4(1; �) =f(4(1; �−1))S�−1S�(4(2; �))g�: (4.4)

Fix f∈H∗
�−1 . Let �= (��)�∈� be a non-zero right �-integral for H (see Theorem 3.6).

By multiplying � by some (non-zero) scalar, we can assume that �1(4) = �1(S1(4)) = 1.
By Corollary 3.7(b), there exists a∈H�−1 such that f(x) = ��−1 (ax) for all x∈H�−1 .
By Lemma 4.3(b), S�−1 (a) = ��−1 (a4(1; �−1))S�−1S�(4(2; �)). Thus

S�−1 (a)g� =f(4(1; �−1))S�−1S�(4(2; �))g�: (4.5)

Since (��S�−1 )�∈� is a right �-integral for H op;cop and 4 is a right integral for H op;cop
1

such that (�1S1)(4) = 1, Lemma 4.3(a) applied to H op;cop gives that

S�−1 (a) = ��S�−1 (a4(2; �−1))4(1; �):

Then, by using Theorem 4.2(c), we get

S�−1 (a)g� = ��S�−1 (a4(2; �−1))4(1; �)g�

= ��−1 (g�−1a4(2; �−1))4(1; �)g�: (4.6)

Now, since 4 is left integral for H1,

4(1; �)g� ⊗ 4(2; �−1)g�−1 =��;�−1 (4g1) = :(g1)4(1; �) ⊗ 4(2; �−1):

Therefore,

4(1; �)g� ⊗ g�−1a4(2; �−1) =4(1; �) ⊗ :(g1)g�−1a4(2; �−1)g
−1
�−1

and so, using (4.6) and then Theorem 4.2(a),

S�−1 (a)g� = ��−1 (:(g1)g�−1a4(2; �−1)g
−1
�−1 )4(1; �)

= ��−1 (:(g1)S�S�−1 (g−1
�−1 ( :)g�−1a4(2; �−1))4(1; �):
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Now S�S�−1 (g−1
�−1 ( :) = :(g1)−1g−1

�−1 since g−1 = (g−1
� = S�−1 (g�−1 ))�∈� is a �-

grouplike element and : is an algebra morphism. Thus

S�−1 (a)g� = ��−1 (a4(2; �−1))4(1; �) =f(4(2; �−1))4(1; �):

Finally, by comparing the last equation with (4.5), we get (4.4).

4.3. The order of the antipode

It is known that the order of the antipode of a ;nite-dimensional Hopf algebra A is
;nite (by Radford [13, Theorem 1]) and divides 4 dim A (by Nichols and Zoeller [11,
Proposition 3:1]). Let us apply this result to the setting of a Hopf �-coalgebra.

Let H = {H�}�∈� be a ;nite-type Hopf �-coalgebra with antipode S = {S�}�∈�. Let
�∈ � of ;nite order d and denote by 〈�〉 the subgroup of � generated by �. By
considering the (;nite-dimensional) Hopf algebra ⊕�∈〈�〉H� (coming from the Hopf
〈�〉-coalgebra {H�}�∈〈�〉, as in Section 1.3.5), we obtain that the order of S�−1S� ∈
AutAlg(H�) is ;nite and divides 2

∑
�∈〈�〉 dim H�. As a corollary of Theorem 4.2, we

give another upper bound for the order of S�−1S�.

Corollary 4.5. Let H = {H�}�∈� be a 9nite type Hopf �-coalgebra with antipode
S = {S�}�∈�. Then
(a) If �∈ � has a 9nite order d; then (S�−1S�)2d dim H1 = idH� .
(b) If �∈ � has order 2; then S8 dim H1

� = idH� .

Before proving Corollary 4.5, we establish the following lemma.

Lemma 4.6. Let H be a 9nite-type Hopf �-coalgebra; g= (g�)�∈� be the distin-
guished �-grouplike element of H; and : be the distinguished grouplike element of
H∗

1 . Then (S�−1S�)2(x) = g�(: * x ( :−1)g−1
� for all �∈ � and x∈H�.

Proof. Let �∈ � and x; y∈H�. If H� = 0, then the result is obvious. Let us suppose
that H� 
= 0. Let �= (��)�∈� be a non-zero right �-integral for H . Then

��(g�(: * x ( :−1)g−1
� y)

= ��(yS�−1S�(:−1 * g−1
� g�(: * x ( :−1)g−1

� g�)) by Theorem 4:2(b)

= ��(yS�−1S�(x ( :−1))

= ��(S�−1S�(S�−1S�(x ( :−1) ( :)y) by Theorem 4:2(a)

= ��((S�−1S�)2(x ( :−1 ( :)y) since S�−1S� is comultiplicative

= ��((S�−1S�)2(x ( 	)y)

= ��((S�−1S�)2(x)y):
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Now, by Corollary 3.7(b), H∗
� is a free right H�-module of rank 1 for the action

de;ned by (f / a)(x) =f(ax) for any f∈H∗
� and a; x∈H�, and �� is a basis vector

of (H∗
� ; /). Thus, since the above computation says that

�� / g�(: * x ( :−1)g−1
� = �� / (S�−1S�)2(x);

we conclude that (S�−1S�)2(x) = g�(: * x ( :−1)g−1
� .

Proof of Corollary 4.5. To show part (a), let �∈ � of ;nite order d. Consider the
distinguished �-grouplike element g= (g�)�∈� of H and the distinguished grouplike
element : of H∗

1 . Using Lemma 4.6, one easily shows by induction that, for all x∈H�

and l∈N,

(S�−1S�)2l(x) = gl
�(:

l * x ( :−l)g−l
� : (4.7)

Recall that the order of a grouplike element of a ;nite-dimensional Hopf algebra A is
;nite and divides dim A (see [11, Theorem 2.2]). Therefore g1 has a ;nite order which
divides dim H1 and : has a ;nite order which divides dim H∗

1 = dim H1. Now, since
�d = 1 and (gdim H1

� )�∈� ∈G(H),

gd dim H1
� = (gdim H1

1 )(1; �) · · · (gdim H1
1 )(d;�) = 11(1; �) · · · 11(d;�) = 1d

� = 1�:

Then, for all x∈H�, by (4.7),

(S�−1S�)2d dim H1 (x) = gd dim H1
� (:d dim H1 * x ( :−d dim H1 )g−d dim H1

�

= 1�(	 * x ( 	)1� = x:

Hence (S�−1S�)2d dim H1 = idH� . Part (b) is part (a) for d= 2, since in this case S� is an
endomorphism of H�.

5. Semisimplicity and cosemisimplicity

In this section, we de;ne the semisimplicity and the cosemisimplicity for Hopf
�-coalgebras, and we give criteria for a Hopf �-coalgebra to be semisimple (resp.
cosemisimple).

5.1. Semisimple Hopf �-coalgebras

A Hopf �-coalgebra H = {H�}�∈� is said to be semisimple if each algebra H� is
semisimple.

Note that, since any in;nite-dimensional Hopf algebra (over a ;eld) is never semi-
simple (see [18, Corollary 2:7]), a necessary condition for H to be semisimple is that
H1 is ;nite dimensional.

Lemma 5.1. Let H = {H�}�∈� be a 9nite type Hopf �-coalgebra. Then H is semisim-
ple if and only if H1 is semisimple.



98 A. Virelizier / Journal of Pure and Applied Algebra 171 (2002) 75–122

Proof. We have to show that if H1 is semisimple then H is semisimple. Suppose that
H1 is semisimple and ;x �∈ �. Since H� is a ;nite-dimensional algebra, it suGces to
show that all left H�-modules are completely reducible. Thus let M be a left H�-module
and N be a submodule of M . Since H1 is a ;nite-dimensional semisimple Hopf algebra,
there exists a left integral 4 for H1 such that 	(4) = 1 (cf. [17, Theorem 5:1:8]). Let
p :M → N by any —-linear projection which is the identity on N . Let P :M → N be
the —-linear map de;ned, for any m∈M , by

P(m) =4(1; �) · p(S�−1 (4(2; �−1)) · m);

where · denotes the action of H� on M . The map P is the identify on N since, for
any n∈N ,

P(n) = 4(1; �) · p(S�−1 (4(2; �−1)) · n) =4(1; �) · (S�−1 (4(2; �−1)) · n)

= (4(1; �)S�−1 (4(2; �−1))) · n= 	(4)1� · n= n:

Let h∈H�. Using (1.2) and the fact that 4 is a left integral for H1, we have

4(1; �) ⊗ 4(2; �−1) ⊗ h = ��;�−1 (	(h(1;1))4) ⊗ h(2; �)

= ��;�−1 (h(1;1)4) ⊗ h(2; �)

= h(1; �)4(1; �) ⊗ h(2; �−1)4(2; �−1) ⊗ h(3; �)

and so

4(1; �) ⊗ S�−1 (4(2; �−1))h

= h(1; �)4(1; �) ⊗ S�−1 (h(2; �−1)4(2; �−1))h(3; �)

= h(1; �)4(1; �) ⊗ S�−1 (4(2; �−1))S�−1 (h(2; �−1))h(3; �) by Lemma 1:1(c)

= h(1; �)	(h(2;1))4(1; �) ⊗ S�−1 (4(2; �−1))1� by (1:5)

= h4(1; �) ⊗ S�−1 (4(2; �−1)) by (1:2):

Therefore, for all h∈H� and m∈M ,

P(h · m) = 4(1; �) · p(S�−1 (4(2; �−1))h · m)

= h4(1; �) · p(S�−1 (4(2; �−1)) · m) = h · P(m):

Hence P is H�-linear and ker P is a H�-supplement of N in M .

5.2. Cosemisimple �-comodules and �-coalgebras

Let C be a �-coalgebra and M be a right �-comodule over C. If {Ni = {Ni
�}�∈�}i∈I

is a family of �-subcomodules of M , we de;ne their sum by {∑i∈I N i
�}�∈�. It is easy

to see that it is a �-subcomodule of M . We denote it by
∑

i∈I N i. This sum is said
to be direct provided

∑
i∈I N i

� is a direct sum for all �∈ �. In this case
∑

i∈I N i will
be denoted by

⊕
i∈I N

i.
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A right �-comodule M = {M�}�∈� is said to be simple if it is non-zero (i.e., M� 
= 0
for some �∈ �) and if it has no �-subcomodules other than 0 = {0}�∈� and itself.

Lemma 5.2. Let M be a right �-comodule over a �-coalgebra C. The following con-
ditions are equivalent:
(a) M is a sum of a family of simple �-subcomodules;
(b) M is a direct sum of a family of simple �-subcomodules;
(c) every �-subcomodule N of M is a direct summand; i.e.; there exists a �-sub-

comodule N ′ of M such that M =N ⊕ N ′.

Proof. Let us show condition (a) ⇒ condition (b). Suppose that M =
∑

i∈I M i is a
sum of simple �-submodules. Let J be a maximal subset of I such that

∑
j∈J Mj

is direct. Let us show that this sum is in fact equal to M . It suGces to prove that
each Mi (i∈ I) is contained in this sum. The intersection of our sum with Mi is a
�-subcomodule of Mi, thus equal to 0 or Mi. If it is equal to 0, then J is not maximal
since we can adjoin i to it. Hence Mi is contained in the sum.

To show condition (b) ⇒ condition (c), suppose that M =
⊕

i∈I M
i and let N be a

�-subcomodule of M . Let J be a maximal subset of I such that the sum N +
⊕

j∈J M
j

is direct. The same reasoning as before shows this sum is equal to M .
Let us show condition (c) ⇒ condition (a). Let N be the �-subcomodule of M

de;ned as the sum of all simple �-subcomodules of M . Suppose that M 
=N . Then
M =N ⊕F where F is a non-zero �-subcomodule of M . Let us show that there exists
a simple �-subcomodule of F , contradicting the de;nition of N . By Theorem 2.2(a),
MF =

⊕
�∈�

MF� (where MF� =F�−1 ) is a rational �-graded left C∗-module which is non-zero.
Let v∈ MF; v 
= 0. The kernel of the morphism of �-graded left C∗-modules C∗ → C∗v
is a �-graded left ideal J 
=C∗. Therefore, J is contained in a maximal �-graded left
ideal I 
=C∗ (by Zorn’s lemma). Then I=J is a maximal �-graded left C∗-submodule
of C∗=J (not equal to C∗=J ), and hence Iv is a maximal �-graded C∗-submodule of
C∗v, not equal to C∗v (corresponding to I=J under the �-graded isomorphism C∗=J →
C∗v). Moreover, it is rational since it is a submodule of the rational module MF (see
Theorem 2.2(b)). So we can consider the �-subcomodule Iv of M (see Lemma 2.4).
Write then M = Iv⊕ L where L is �-subcomodule of M . Therefore MM = Iv⊕ ML and so
C∗v= Iv⊕ ( ML∩C∗v). Now, since Iv is a maximal �-graded C∗-submodule of C∗v (not
equal to C∗v), we have that ML∩C∗v is a non-zero �-graded C∗-submodule of MF which
does not contain any �-graded submodule other than 0 and itself. Moreover ML ∩ C∗v
is rational since it is a �-graded C∗-submodule of the rational �-graded C∗-module MF
(see Theorem 2.2(b)). Finally ML ∩ C∗v is a simple �-subcomodule of F .

A right �-comodule satisfying the equivalent conditions of Lemma 5.2 is said to be
cosemisimple. A �-coalgebra is called cosemisimple if it is cosemisimple as a right
�-comodule over itself (with comultiplication as structure maps).

When �= 1, one recovers the usual notions of cosemisimple comodules and
coalgebras.
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When � is ;nite, a �-coalgebra C = {C�}�∈� is cosemisimple if and only if the
�-graded coalgebra C̃ =

⊕
�∈� C� (de;ned as in Section 3:5) is graded-cosemisimple

(i.e., is a direct sum of simple �-graded right comodules).

Lemma 5.3. Every �-subcomodule or quotient of a cosemisimple right �-comodule is
cosemisimple.

Proof. Let N be a �-subcomodule of a cosemisimple right �-comodule M . Let F be the
sum of all simple �-subcomodules of N and write M =F⊕F ′. Therefore N =F⊕(F ′∩
N ). If F ′∩N 
= 0, it contains a simple �-subcomodule (see the demonstration of Lemma
5.2). Thus F ′∩N = 0 and N =F , which is cosemisimple. Now write M =N⊕N ′. N ′ is
a sum of simple �-subcomodules (it is a �-subcomodule of M and thus cosemisimple)
and the canonical projection M → M=N induces a �-comodule isomorphism between
N ′ onto M=N . Hence M=N is cosemisimple.

5.3. Cosemisimple Hopf �-coalgebras

A Hopf �-coalgebra H = {H�}�∈� is said to be cosemisimple if it is cosemisimple
as a �-coalgebra. A right �-comodule M = {M�}�∈� over H is said to be reduced if,
for all �∈ �; M� = 0 whenever H� = 0.

The next theorem is the Hopf �-coalgebra version of the dual Maschke theorem (see
[17, Section 14:0:3]).

Theorem 5.4. Let H be a Hopf �-coalgebra. The following conditions are equivalent:
(a) every reduced right �-comodule over H is cosemisimple;
(b) H is cosemisimple;
(c) there exists a right �-integral �= (��)�∈� for H such that ��(1�) = 1 for some

�∈ �;
(d) there exists a right �-integral �= (��)�∈� for H such that ��(1�) = 1 for all �∈ �

with H� 
= 0.

Proof. Condition (a) implies trivially condition (b). Moreover condition (c) is equiv-
alent to condition (d). Indeed condition (d) implies condition (c) since H1 
= 0 (by
Corollary 1.2). Conversely, suppose that �∈ � is such that ��(1�) = 1. Let �∈ � such
that H� 
= 0. Then ��(1�)1�−1� = (�� ⊗ idH�−1�

)��;�−1�(1�) = ��(1�)1�−1� = 1�−1�. Now
1�−1� 
= 0 by Corollary 1.2. Hence ��(1�) = 1.

Let us show that condition (b) implies condition (d). Consider H as a right �-co-
module over itself (with comultiplication as structure maps). For any �∈ �, set N� =—1�.
Since the comultiplication is unitary, N is a �-subcomodule of H . Therefore N is a
direct summand of H (since H is cosemisimple), that is there exists a �-comodule
morphism p= {p�}�∈� :H → N such that p�|N� = idN� for all �∈ �. For any �∈ �,
since N� =—1�, there exists a (unique) —-form �� ∈H∗

� such that p�(h) = ��(h)1� for
all h∈H�. Let us verify that �= (��)�∈� is a right �-integral for H . Let �; �∈ �. Since
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p is a �-comodule morphism, we have that

���1� ⊗ 1� =��;�p�� = (��1� ⊗ idH�)��;�: (5.1)

If H� = 0, then either H� = 0 or H�� = 0 (by Corollary 1.2) and so ���1� = 0 = (�� ⊗
idH�)���. If H� 
= 0, then there exists f∈H∗

� such that f(1�) = 1 and, by applying
(f⊗ idH�) to both sides of (5.1), we get that ���1� = (�� ⊗ idH�)��;�. Therefore � is a
right �-integral for H . Finally, let �∈ � such that H� 
= 0. Then ��(1�)1� =p�(1�) = 1�

(since 1� ∈N�) and so ��(1�) = 1 (since 1� 
= 0).
To show that condition (d) implies condition (a), let M = {M�}�∈� be a reduced

right �-comodule over H with structure maps by $= {$�;�}�;�∈� and N = {N�}�∈�

be a �-subcomodule of M . We have to show that N is a direct summand of M
(see Lemma 5.2). De;ne *� :H�−1 ⊗H� → — by *�(x⊗y) = ��(S�−1 (x)y) for all �∈ �.
We ;rst prove that, for any �; �; �∈ �;

(idH� ⊗ *��)(��; (��)−1 ⊗ idH��) = (*� ⊗ idH�)(idH�−1 ⊗ ��;�): (5.2)

Indeed, for any x∈H�−1 and y∈H��,

(idH� ⊗ *��)(��; (��)−1 ⊗ idH��)(x ⊗ y)

= x(1;�)���(S(��)−1 (x(2; (��)−1))y)

= x(1;�)(�� ⊗ idH�)��;�(S(��)−1 (x(2; (��)−1))y) by (3:1)

= x(1;�)S�−1 (x(2;�−1))y(2;�)��(S�−1 (x(3; �−1))y(1; �)) by Lemma 1:1(c)

=y(2;�)��(S�−1 (	(x(1;1))x(2; �−1))y(1; �)) by (1:5)

= ��(S�−1 (x)y(1; �))y(2;�) by (1:2)

= (*� ⊗ idH�)(idH�−1 ⊗ ��;�)(x ⊗ y):

Let q :M1 → N1 be any —-linear projection which is the identity on N1. De;ne, for
all �∈ �;

p� = (idN� ⊗ *�)($�;�−1 ◦ q⊗ idH�)$1; � :M� → N�:

For any �; �∈ �; using (2.1) and (5.2), we have

$�;�p��

= $�;�(idN�� ⊗ *��)($��; (��)−1 ◦ q⊗ idH��)$1; ��

= (idN� ⊗ idH� ⊗ *��)(($�;� ⊗ idH(��)−1 )$��; (��)−1 ◦ q⊗ idH��)$1; ��

= (idN� ⊗ idH� ⊗ *��)((idN� ⊗ ��; (��)−1 )$�;�−1 ◦ q⊗ idH��)$1; ��

= (idN� ⊗ (idH� ⊗ *��)(��; (��)−1 ⊗ idH��))($�;�−1 ◦ q⊗ idH��)$1; ��

= (idN� ⊗ (*� ⊗ idH�)(idH�−1 ⊗ ��;�))($�;�−1 ◦ q⊗ idH��)$1; ��

= (idN� ⊗ *� ⊗ idH�)($�;�−1 ◦ q⊗ idH� ⊗ idH�)(idM1 ⊗ ��;�)$1; ��



102 A. Virelizier / Journal of Pure and Applied Algebra 171 (2002) 75–122

= (idN� ⊗ *� ⊗ idH�)($�;�−1 ◦ q⊗ idH� ⊗ idH�)($1; � ⊗ idH�)$�;�

= (p� ⊗ idH�)$�;�:

Thus p= {p�}�∈� is a �-comodule morphism between M and N . Let �∈ � and n∈N�.
If H� = 0; then N� = 0 (since M and thus N is reduced) and so p�(n) = 0 = n. If H� 
= 0;
then

p�(n) = n(0; �)��(S�−1 (n(1; �−1))n(2; �)) since q|N1 = idN1

= n(0; �)	(n(1;1))��(1�) by (1:5)

= n by (2:2) and since ��(1�) = 1:

Therefore, q is a �-comodule projection of M onto N and consequently N is a direct
summand of M (namely M =N ⊕ ker q). This ;nishes the proof of the theorem.

Corollary 5.5. Let H be a Hopf �-coalgebra. Then
(a) if H is cosemisimple; then the Hopf algebra H1 is cosemisimple;
(b) if H is of 9nite type; then H is cosemisimple if and only if H1 is cosemisimple.

Proof. To show part (a), suppose that H is cosemisimple. By Theorem 5.4 and Corol-
lary 1.2, there exists a right �-integral �= (��)�∈� for H such that �1(11) = 1. Since
�1 is a right integral for H∗

1 such that �1(11) 
= 0; H1 is cosemisimple (by Sweedler
[17, Theorem 14:0:3]). Let us show part (b). Suppose that H is of ;nite type and
H1 is cosemisimple. By Sweedler [17, Theorem 14:0:3], there exists a right integral 9
for H∗

1 such that 9(11) = 1. By Theorem 3.6, there exists a non-zero right �-integral
�= (��)�∈� for H . In particular, �1 is a non-zero right integral for H∗

1 . Therefore, since
H1 is a ;nite dimensional, there exists k ∈— such that 9= k�1 (by Sweedler [17, The-
orem 5:1:6]). Thus (k��)�∈� is a right �-integral for H such that k�1(11) = 1. Hence
H is cosemisimple by Theorem 5.4.

Corollary 5.6. Let H be a 9nite-type Hopf �-coalgebra over a 9eld — of characteristic
0. Then H is semisimple if and only if it is cosemisimple.

Proof. By Lemma 5.1, H is semisimple if and only if H1 is semisimple, and by
Corollary 5.5(b), H is cosemisimple if and only if H1 is cosemisimple. It is then easy
to conclude using the fact that, in characteristic 0, a ;nite-dimensional Hopf algebra is
semisimple if and only if it is cosemisimple (see [8, Theorem 3:3]).

Corollary 5.7. Let H be a 9nite type cosemisimple Hopf �-coalgebra. If g= (g�)�∈�

is the distinguished �-grouplike element of H; then g= 1 in G(H); i.e.; g� = 1� for all
�∈ �. Consequently; the spaces of left and right �-integrals for H coincide.

Proof. Let �∈ �. If H� = 0; then g� = 0 = 1�. Suppose that H� 
= 0. By Theorem 5.4,
there exists a right �-integral �= (��)�∈� for H such that ��(1�) = 1 and �1(11) = 1.
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Then g� = ��(1�)g� = (idH� ⊗ �1)��;1(1�) = �1(11)1� = 1�. Moreover, by Theorem 3.6
and Lemma 4.1, the spaces of left and right �-integrals for H coincide.

6. Quasitriangular Hopf �-coalgebras

In this section, we recall the de;nitions of crossed, quasitriangular, and ribbon Hopf
�-coalgebras given by Turaev [19], and we generalize the main properties of quasitri-
angular Hopf algebras to the setting of Hopf �-coalgebras.

6.1. Crossed Hopf �-coalgebras

Following [19, Section 11:2], a Hopf �-coalgebra H = ({H�}; �; 	; S) is said to be
crossed provided it is endowed with a family ’= {’� :H� → H���−1}�;�∈� of —-linear
maps (the crossing) such that

each ’� :H� → H���−1 is an algebra isomorphism; (6.1)

each ’� preserves the comultiplication; i:e:; for all �; �; �∈ �;

(’� ⊗ ’�)��;� =����−1 ;���−1’�; (6.2)

each ’� preserves the counit; i:e:; 	’� = 	; (6.3)

’ is multiplicative in the sense that ’��′ =’�’�′ for all �; �′ ∈ �: (6.4)

Lemma 6.1. Let H be a crossed Hopf �-coalgebra with crossing ’. Then
(a) ’1|H� = idH� for all �∈ �;
(b) ’−1

� =’�−1 for all �∈ �;
(c) ’ preserves the antipode; i.e.; ’�S� = S���−1’� for all �; �∈ �;
(d) if �= (��)�∈� is a left (resp. right) �-integral for H and �∈ �; then (����−1’�)�∈�

is also a left (resp. right) �-integral for H ;
(e) if g= (g�)�∈� is a �-grouplike element of H and �∈ �; then (’�(g�−1��))�∈� is

also a �-grouplike element of H .

Proof. Parts (a), (b), (d) and (e) follow directly from the axioms of a crossing. To
show part (c), let �; �∈ �. Using the axioms, it is easy to verify that ’−1

� S���−1’� ∗
idH�−1 = 	1�−1 in the convolution algebra Conv(H;H�−1 ) (see Section 1.2). Thus, since
S� is the inverse of idH�−1 in Conv(H;H�−1 ); we have that ’−1

� S���−1’� = S� and so
S���−1’� =’�S�.

Corollary 6.2. Let H be a 9nite type crossed Hopf �-coalgebra with crossing ’. Then
there exists a unique group homomorphism ’̂ :� → —∗ such that if �= (��)�∈� is a
left or right �-integral for H; then ����−1’� = ’̂(�)�� for all �; �∈ �.
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Proof. Let �= (��)�∈� be a non-zero left �-integral for H . For any �∈ �; since
(����−1’�)�∈� is a non-zero left �-integral for H (see Lemma 6.1(d)) and by the
uniqueness (within scalar multiple) of a left �-integral in the ;nite-type case (see Theo-
rem 3.6), there exists a unique ’̂(�)∈—∗ such that ����−1’� = ’̂(�)�� for all �∈ �. Us-
ing (6.4) and Lemma 6.1, one veri;es that ’̂ :� → —∗ is a group homomorphism. Since
any left �-integral for H is a scalar multiple of �; the result holds for any left �-integral.
Finally, let �= (��)�∈� be a right �-integral for H . Since the antipode is bijective (H is
of ;nite type), and using Lemma 6.1(d) and the fact that (��−1S�)�∈� is a left �-integral
for H; we have that, for all �; �∈ �; ����−1’� = ����−1S��−1�−1’�S

−1
�−1 = ’̂(�)��S�−1

S−1
�−1 = ’̂(�)��.

Lemma 6.3. Let H be a 9nite type crossed Hopf �-coalgebra with crossing ’. Let
’̂ be as in Corollary 6:2. Then; for any �∈ �;
(a) if 4 is a left or right integral for H1; then ’�(4) = ’̂(�)4;
(b) if : is the distinguished grouplike element of H∗

1 ; then :’� = :;
(c) if g= (g�)�∈� is the distinguished �-grouplike element of H; then ’�(g�) = g���−1

for all �∈ �.

Proof. Let us show part (a). Let 4 be a left integral for H1. We can assume that
4 
= 0 (if 4= 0; then the result is obvious). By Lemma 6.1 and (6:3); x’�(4) =
’�(’�−1 (x)4) =’�(	’�−1 (x)4) = 	(x)’�(4) for any x∈H1. Thus ’�(4) is a left inte-
gral for H1. Therefore, since H1 is ;nite dimensional and 4 
= 0; there exists k ∈— such
that ’�(4) = k4. Let �= (��)�∈� be a non-zero right �-integral for H . We have that
’̂(�)�1(4) = �1(’�(4)) = �1(k4) = k�1(4). Now �1(4) 
= 0 (because 4 is a non-zero
left-integral for H1 and �1 is a non-zero right integral for H∗

1 ). Hence k = ’̂(�) and so
’�(4) = ’̂(�)4. It can be shown similarly that the result holds if 4 is a right integral
for H1.

Let us show part (b). If 4 is a left integral for H1; then, for all x∈H1; 4x =
’�−1 (’�(4)’�(x)) =’�−1 (:(’�(x))’�(4)) = :’�(x)4 (since ’�(4) is a left integral
for H1). Thus, by the uniqueness of the distinguished grouplike element of the Hopf
algebra H∗

1 ; we have that :’� = :.
To show part (c), let �= (��)�∈� be a right �-integral for H . By Lemma 6.1(d),

(��−1��’�−1 )�∈� is also a right �-integral for H . Then, for any �; �∈ �; using (6:2) and
Lemmas 4.1 and 6.1,

(idH� ⊗ ��)��;� = ’�−1 (idH���−1 ⊗ ��’�−1 )����−1 ;���−1’�

= ’�−1 (���’�−1’�g���−1 )

= ���’�−1 (g���−1 ):

Hence, by the uniqueness of the distinguished �-grouplike element (see Lemma 4.1),
we have that ’�−1 (g���−1 ) = g� and so ’�(g�) = g���−1 for all �∈ �.
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6.1.1. The opposite (resp. coopposite) Hopf �-coalgebra
Let H be a crossed Hopf �-coalgebra with crossing ’. If the antipode of H is bi-

jective, then the opposite (resp. coopposite) Hopf �-coalgebra to H (see Sections 1.3.1
and 1.3.2) is crossed with crossing given by ’op

� |H op
�

=’�|H� (resp. ’cop
� |H cop

�
=’�|H−1

�
)

for all �; �∈ �.

6.1.2. The mirror Hopf �-coalgebra
Let H = ({H�}; �; 	; S; ’) be a crossed Hopf �-coalgebra. Following [19, Section

11:6], its mirror MH is de;ned by the following procedure: set MH� =H�−1 as an algebra,
M��;� = (’� ⊗ idH�−1 )��−1�−1�;�−1 ; M	= 	; MS� =’�S�−1 and M’�| MH�

=’�|H�−1 . It is also a
crossed Hopf �-coalgebra.

6.2. Quasitriangular Hopf �-coalgebras

Following [19, Section 11:3], a quasitriangular Hopf �-coalgebra is a crossed Hopf
�-coalgebra H = ({H�}; �; 	; S; ’) endowed with a family R= {R�;� ∈H� ⊗H�}�;�∈� of
invertible elements (the R-matrix) such that

for any �; �∈ � and x∈H��;

R�;� · ��;�(x) = ��;�(’�−1 ⊗ idH�)����−1 ; �(x) · R�;�; (6.5)

where ��;� denotes the ?ip map H� ⊗ H� → H� ⊗ H�;

for any �; �∈ �;

(idH� ⊗ ��;�)(R�;��) = (R�;�)1�3 · (R�;�)12�;

(��;� ⊗ idH�)(R��;�) = [(idH� ⊗ ’�−1 )(R�;���−1 )]1�3 · (R�;�)�23; (6.6)

where, for —-spaces P;Q and r =
∑

j pj⊗qj ∈P⊗Q; we set r12� = r⊗1� ∈P⊗Q⊗H�;
r�23 = 1� ⊗ r ∈H� ⊗ P ⊗ Q and r1�3 =

∑
j pj ⊗ 1� ⊗ qj ∈P ⊗ H� ⊗ Q;

the family R is invariant under the crossing, i.e., for any �; �; �∈ �;

(’� ⊗ ’�)(R�;�) =R���−1 ;���−1 : (6.7)

Note that R1;1 is a (classical) R-matrix for the Hopf algebra H1.
When � is abelian and ’ is trivial (that is ’�|H� = idH� for all �; �∈ �), one recovers

the de;nition of quasitriangular �-colored Hopf algebra given by Ohtsuki [12].
If � is ;nite, then an R-matrix for H does not necessarily give rise to a (usual)

R-matrix for the Hopf algebra H̃ =
⊕

�∈� H� (see Section 1:3:5). However, if the group
� is ;nite abelian and if ’ is trivial, then R̃=

∑
�;�∈� R�;� is an R-matrix for H̃ .

Notation. In the proofs, when we write a component R�;� of an R-matrix as R�;� = a�⊗
b�, it is to signify that R�;� =

∑
j aj ⊗ bj for some aj ∈H� and bj ∈H�, where j runs

over a ;nite set of indices.
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We now generalize the main properties of quasitriangular Hopf algebras (see [3]) to
the setting of quasitriangular Hopf �-coalgebras.

Lemma 6.4. Let H = ({H�}; �; 	; S; ’; R) be a quasitriangular Hopf �-coalgebra. Then;
for any �; �; �∈ �;
(a) (	⊗ idH�)(R1; �) = 1� = (idH� ⊗ 	)(R�;1);
(b) (S�−1’� ⊗ idH�)(R�−1 ;�) =R−1

�;� and (idH� ⊗ S�)(R−1
�;�) =R�;�−1 ;

(c) (S� ⊗ S�)(R�;�) = (’� ⊗ idH�−1 )(R�−1 ;�−1 );
(d) (R�;�)�23 · (R�;�)1�3 · (R��)12� = (R�;�)12� · [(idH� ⊗ ’�−1 )(R�;���−1 )]1�3 · (R�;�)�23.

Part (d) of Lemma 6.4, which is the Yang-Baxter equality for R= {R�;�}�;�∈�; ;rst
appeared in [19, Section 11:3]. We prove it here for completeness sake.

Proof. Let us show part (a). We have

R1; � = (	⊗ idH1 ⊗ idH�)(�1;1 ⊗ idH�)(R1; �) by (1:2)

= (	⊗ idH1 ⊗ idH�)([(idH1 ⊗ ’1)(R1; �)]11� 3 · (R1; �)1�23) by (6:6)

= (	⊗ idH1 ⊗ idH�)((R1; �)11� 3 · (R1; �)1�23) by Lemma 6:1(a)

= (	⊗ idH1 ⊗ idH�)((R1; �)11� 3) · (	⊗ idH1 ⊗ idH�)((R1; �)1�23) by (1:4)

= (11 ⊗ (	⊗ idH�)(R1; �)) · R1; �:

Thus 11 ⊗ (	 ⊗ idH�)(R1; �) = 11 ⊗ 1� (since R1; � is invertible). By applying (	 ⊗ idH�)
on both sides, we get the ;rst equality of part (a). The second one can be obtained
similarly.

To show the ;rst equality of part (b), set

E= (m� ⊗ idH�)(S�−1 ⊗ idH� ⊗ idH�)(��−1 ; � ⊗ idH�)(R1;�):

Let us compute E in two diUerent ways. On one hand,

E = (m� ⊗ idH�)(S�−1 ⊗ idH� ⊗ idH�)

([(idH�−1 ⊗ ’�−1 )(R�−1 ; ���−1 )]1�3 · (R�;�)�−123) by (6:6)

= (S�−1 ⊗ ’�−1 )(R�−1 ; ���−1 ) · R�;�

= (S�−1’� ⊗ idH�)(R�−1 ;�) · R�;� by (6:7):

On the other hand,

E = (	1� ⊗ idH�)(R1;�) by (1:5)

= 1� ⊗ 1� by part (a):

Comparing these two calculations and since R�;� is invertible, we get the ;rst equality
of part (b). The second one can be proved similarly by computing the expression
F= (idH� ⊗ m�−1 )(idH� ⊗ idH�−1 ⊗ S�)(idH� ⊗ ��−1 ;�)(R−1

�;1).
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Part (c) is a direct consequence of part (b) and Lemma 6.1(a) and (c).
Finally, part (d) follows from axioms (6.5) and (6.6):

(R�;�)�23 · (R�;�)1�3 · (R�;�)12�

= (R�;�)�23 · (idH� ⊗ ��;�)(R�;��)

= (idH� ⊗ R�;� · ��;�)(R�;��)

= (idH� ⊗ ��;�(’�−1 ⊗ idH�)����−1 ;� · R�;�)(R�;��)

= (idH� ⊗ ��;�(’�−1 ⊗ idH�))((R�;�)1���−13 · (R�;���−1 )12�) · (R�;�)�23

= (R�;�)12� · [(idH� ⊗ ’�−1 )(R�;���−1 )]1�3 · (R�;�)�23:

This completes the proof of the lemma.

6.3. The Drinfeld elements

Let H = ({H�; m�; 1�}; �; 	; S; ’; R) be a quasitriangular Hopf �-coalgebra. We de;ne
the (generalized) Drinfeld elements of H , for any �∈ �, by

u� =m�(S�−1’� ⊗ idH�)��;�−1 (R�;�−1 )∈H�:

Note that u1 is the Drinfeld element of the quasitriangular Hopf algebra H1 (see [3]).

Lemma 6.5. For any �; �∈ �;
(a) u� is invertible and u−1

� =m�(idH� ⊗ S�−1S�)��;�(R�;�);
(b) S�−1S�(’�(x)) = u�xu−1

� for all x∈H�;
(c) the antipode of H is bijective;
(d) ’�(u�) = u���−1 ;
(e) S�−1 (u�−1 )u� = u�S�−1 (u�−1 ) and this element; noted c�; veri9es c�’�−1 (x) =

’�(x)c� for all x∈H�;
(f) ��;�(u��) = [��;�(idH� ⊗ ’�)(R�;�) · R�;�]−1 · (u� ⊗ u�)

= (u� ⊗ u�) · [��;�(’�−1 ⊗ idH�)(R�;�) · (’�−1 ⊗ ’�−1 )(R�;�)]−1;
(g) 	(u1) = 1:

Proof. We adapt the methods used in [3] to our setting. Let us prove parts (a) and
(b). We ;rst show that for all x∈H�,

S�−1S�(’�(x))u� = u�x: (6.8)

Write R�;�−1 = a� ⊗ b�−1 so that u� = S�−1 (’�(b�−1 ))a�. Let x∈H�. Using (1.1) and
(6.5), we have that

(R�;�−1 )12� · (idH� ⊗ ��−1 ; �)��;1(x)

= (��−1 ; �(’�−1 ⊗ idH�)��−1 ; � ⊗ idH�)�1; �(x) · (R�;�−1 )12�;
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that is a�x(1; �) ⊗b�−1x(2; �−1) ⊗ x(3; �) = x(2; �)a�⊗’�−1 (x(1; �−1))b�−1 ⊗ x(3; �). Evaluate both
sides of this equality with (idH�⊗S�−1’�⊗S�−1S�’�), reverse the order of the tensorands
and multiply them to obtain

S�−1S�’�(x(3; �))S�−1’�(b�−1x(2; �−1))a�x(1; �)

= S�−1S�’�(x(3; �))S�−1’�(’�−1 (x(1; �−1))b�−1 )x(2; �)a�:

Now, by Lemmas 1.1(a) and 6:1(c), the left-hand side is equal to

S�−1’�S�(x(3; �))S�−1’�(x(2; �−1))S�−1 (’�(b�−1 ))a�x(1; �)

= S�−1’�(x(2; �−1)S�(x(3; �)))u�x(1; �)

= S�−1’�(	(x(2;1))1�−1 )u�x(1; �) by (1:5)

= u�	(x(2;1))x(1; �) since S�−1’�(1�−1 ) = 1�

= u�x by (1:2);

and, by Lemma 1.1(a), the right-hand side is equal to

S�−1S�’�(x(3; �))S�−1 (’�(b�−1 ))S�−1 (x(1; �−1))x(2; �)a�

= S�−1S�’�(	(x(1;1))x(2; �))S�−1 (’�(b�−1 ))a� by (1:5)

= S�−1S�’�(x)u� by (1:2):

Thus (6.8) is proven. Let us show that u� is invertible. Set

ũ � =m�(idH� ⊗ S�−1S�)��;�(R�;�)∈H�:

By Lemma 6.4(b) and (6.7), R�;� = (idH� ⊗S�−1 )(’�⊗’�)(R−1
�;�−1 ). Write R−1

�;�−1 = c�⊗
d�−1 . Then ũ � = S�−1 (’�(d�−1 ))S�−1S�(’�(c�)) and a�c� ⊗ b�−1d�−1 = 1� ⊗ 1�−1 . Now

ũ �u� = S�−1 (’�(d�−1 ))S�−1S�(’�(c�))u�

= S�−1 (’�(d�−1 ))u�c� by (6:8) with x = c�

= S�−1 (’�(d�−1 ))S�−1 (’�(b�−1 ))a�c�

= S�−1 (’�(b�−1d�−1 ))a�c� by Lemma 1:1(a)

= S�−1 (’�(1�−1 ))1� = 1�:

It can be shown similarly that u�ũ � = 1�. Thus u� is invertible, u−1
� = ũ �, and so

S�−1S�(’�(x)) = u�xu−1
� for any x∈H�.

Part (c) is a direct consequence of part (b). Part (d) follows from (6.1), (6.4), and
(6.7). Let us show part (e). For any x∈H�,

S�−1 (u�−1 )u�’�−1 (x)

= S�−1 (u�−1 )S�−1S�(x)u� by part (b)
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= S�−1 (u�−1 )S�−1S�S�−1 (’�−1S−1
�−1 (’�(x)))u� by Lemma 6:1(c)

= S�−1 (u�−1 )S�−1 (u�−1S−1
�−1 (’�(x))u−1

�−1 )u� by part (b)

=’�(x)S�−1 (u�−1 )u� since S�−1 is anti-multiplicative:

In particular, for x = u�, one gets that S�−1 (u�−1 )u� = u�S�−1 (u�−1 ).
For the proof of the ;rst equality of part (f), set R̃�;� = ��;�(idH� ⊗ ’�)(R�;�). By

Lemma 6.1 and (6.7), we have also that R̃�;� = ��;�(’�−1 ⊗ idH�)(R���−1 ; �). We ;rst
show that for all x∈H��,

R̃�;� · R�;� · ��;�(x) = (’� ⊗ ’�)��;�(’(��)−1 (x)) · R̃�;� · R�;�: (6.9)

By (6.5), R�;� ·��;�(’�−1 (x)) = ��;�((’�−1⊗idH�)����−1 ;�(’�−1 (x)))·R�;�. Evaluate both
sides of this equality with the algebra homomorphism ��;�(idH�⊗’�) and multiply them
on the right by R�;� to obtain

��;�(idH� ⊗ ’�)(R�;�) · ��;�(idH� ⊗ ’�)��;�(’�−1 (x)) · R�;�

= (’�’�−1 ⊗ idH�)����−1 ;�(’�−1 (x)) · ��;�(idH� ⊗ ’�)(R�;�) · R�;�:

Then, using (6.5) and (6.2), one gets equality (6.9). Set now

E= R̃�;� · R�;� · ��;�(u��):

We have to show that E= u�⊗u�. Write R��; (��)−1 = r⊗s; R�;� = a�⊗b�, and R̃�;� = c�⊗
d�. Then u�� = S(��)−1 (’��(s))r =’��S(��)−1 (s)r. We have that

E = R̃�;� · R�;� · ��;�(’��S(��)−1 (s)r)

= R̃�;� · R�;� · ��;�(’��S(��)−1 (s)) · ��;�(r) by (1:4):

Therefore, using (6.9) for x =’��S(��)−1 (s) and then Lemmas 1.1(c) and 6:1(c), we
obtain that

E = (’� ⊗ ’�) · ��;�(S(��)−1 (s)) · R̃�;� · R�;� · ��;�(r)

= (’� ⊗ ’�)��;�(S�−1 ⊗ S�−1 )��−1 ; �−1 (s) · R̃�;� · R�;� · ��;�(r)

= ’�S�−1 (s(2; �−1))c�a�r(1; �) ⊗ ’�S�−1 (s(1;�−1))d�b�r(2;�)

= S�−1 (’�(s(2; �−1)))c�a�r(1; �) ⊗ S�−1 (’�(s(1;�−1)))d�b�r(2;�):

Now H� ⊗ H� is a right H� ⊗ H� ⊗ H�−1 ⊗ H�−1 -module under the action

(x ⊗ y) � (h1 ⊗ h2 ⊗ h3 ⊗ h4) = S�−1 (’�(h3))xh1 ⊗ S�−1 (’�(h4))yh2:

For any —-spaces P;Q and any x =
∑

j pj⊗qj ∈P⊗Q, we set x12�� = x⊗1�⊗1� ∈P⊗
Q ⊗ H� ⊗ H�; x�2�4 =

∑
j 1� ⊗ pj ⊗ 1� ⊗ qj ∈H� ⊗ P ⊗ H� ⊗ Q, etc. Then

E = c� ⊗ d� � a�r(1; �) ⊗ b�r(2; �−1) ⊗ s(2; �−1) ⊗ s(1;�−1)

= R̃�;� � (R�;�)12�−1�−1 · (��;� ⊗ ��−1 ; �−1��−1 ; �−1 )(R��; (��)−1 )
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= R̃�;� � (R�;�)12�−1�−1 · (��;� ⊗ idH�−1 ⊗ idH�−1 )

((R��;�−1 )12�−1 · (R��;�−1 )1�−13) by (6:6)

= R̃�;� � (R�;�)12�−1�−1 · (��;� ⊗ idH�−1 ⊗ idH�−1 )((R��;�−1 )12�−1 )

· (��;� ⊗ idH�−1 ⊗ idH�−1 )((R��;�−1 )1�−13) by (1:4):

Therefore, by (6.6) and Lemma 6.4(d),

E = R̃�;� � (R�;�)12�−1�−1 · [(idH� ⊗ ’�−1 )(R�;��−1�−1 )]1�3�−1

· (R�;�−1 )�23�−1 · [(idH� ⊗ ’�−1 )(R�;�−1 )]1��−14 · (R�;�−1 )a2�−14

= R̃�;� � (R�;�−1 )�23�−1 · (R�;�−1 )1�3�−1 · (R�;�)12�−1�−1

· [(idH� ⊗ ’�−1 )(R�;�−1 )]1��−14 · (R�;�−1 )�2�−14:

Write R�;� = e� ⊗ f� and R�;�−1 = h� ⊗ k�−1 . Then R̃�;� =’�(f�) ⊗ e� and so

R̃�;� � (R�;�−1 )�23�−1

= S�−1 (’�(k�−1 ))’�(f�) ⊗ e�h�

= ��;�(idH� ⊗ ’�S�−1 )((idH� ⊗ S−1
�−1 )(R�;�) · R�;�−1 ) by Lemma 6:1(c)

= ��;�(idH� ⊗ ’�S�−1 )(R−1
�;�−1 · R�;�−1 ) by Lemma 6:4(b)

= 1� ⊗ 1�:

If we write R�;�−1 =m� ⊗ n�−1 , then

1� ⊗ 1� � (R�;�−1 )1�−13�−1 = S�−1’�(n�−1 )m� ⊗ 1� = u� ⊗ 1�:

Therefore

E= u� ⊗ 1� � (R�;�)12�−1�−1 · [(idH� ⊗ ’�−1 )(R�;�−1 )]1��−14 · (R�;�−1 )�2�−14:

Write now R�;�−1 =p� ⊗ q�−1 . Then

u� ⊗ 1� � (R�;�)12�−1�−1 · [(idH� ⊗ ’�−1 )(R�;�−1 )]1��−14

= u�a�p� ⊗ S�−1 (q�−1 )b�

= (u� ⊗ 1�) · (idH� ⊗ S�−1 )((idH� ⊗ S−1
�−1 )(R�;�) · R�;�−1 )

= (u� ⊗ 1�) · (idH� ⊗ S�−1 )(R−1
�;�−1 · R�;�−1 ) by Lemma 6:4(b)

= u� ⊗ 1�:

Hence E= u� ⊗ 1� � (R�;�−1 )�2�−14. Finally, write R�;�−1 = x� ⊗ y�−1 . Then E= u� ⊗
S�−1 (’�(y�−1 ))x� = u� ⊗ u�. This completes the proof of the ;rst equality of part (f).
Let us show the second one. Using the ;rst equality of part (f) and then part (b),
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we have that

��;�(u��) = [��;�(idH� ⊗ ’�)(R�;�) · R�;�]−1 · (u� ⊗ u�)

= (u� ⊗ u�) · (’�−1 (S�−1S�)−1 ⊗ ’�−1 (S�−1S�)−1)

([��;�(idH� ⊗ ’�)(R�;�) · R�;�]−1)

and so, by Lemmas 6.1 and 6.4(c),

��;�(u��) = (u� ⊗ u�) · [��;�(’�−1 ⊗ idH�)(R�;�) · (’�−1 ⊗ ’�−1 )(R�;�)]−1:

It remains to show part (g). We have

u1 = (	⊗ idH1 )�1;1(u1) by (1:2)

= (	⊗ idH1 )((�1;1(R1;1) · R1;1)−1 · (u1 ⊗ u1)) by Part (f )

= (	⊗ idH1 )(R1;1)−1 · (idH1 ⊗ 	)(R1;1)−1 · 	(u1)u1 by (1:4)

= 	(u1)u1 by Lemma 6:4(a):

Now u1 
= 0 since u1 is invertible (by part (a)) and H1 
= 0 (by Corollary 1.2). Hence
	(u1) = 1. This ;nishes the proof of the lemma.

6.3.1. The coopposite Hopf �-coalgebra
Let H be a quasitriangular Hopf �-coalgebra with R-matrix R= {R�;�}�;�∈�. By

Lemma 6.5(c), the antipode of H is bijective. Thus, we can consider the coopposite
crossed Hopf �-coalgebra H cop to H (see Section 6.1.1). It is quasitriangular by setting
Rcop
�;� = (’�⊗ idH�−1 )(R−1

�−1 ;�−1 ) = (S�⊗ idH�−1 )(R�;�−1 ). The Drinfeld elements of H and

H cop are related by ucop
� = u−1

�−1 .

6.3.2. The mirror Hopf �-coalgebra
Let H be a quasitriangular Hopf �-coalgebra with R-matrix R= {R�;�}�;�∈�. Follow-

ing [19, Section 11:6], the mirror crossed Hopf �-coalgebra MH to H (see
Section 6.1.2) is quasitriangular with R-matrix given by MR�;� = ��−1 ; �−1 (R−1

�−1 ; �−1 ). The

Drinfeld elements associated to H and MH verify Mu� = S�(u�)−1.
The following corollary of Lemma 6.5 will be used in Section 6.6 to compute the

distinguished �-grouplike element from the R-matrix.

Corollary 6.6. Let H be a quasitriangular Hopf �-coalgebra. For all �∈ �, set ‘� =
S�−1 (u�−1 )−1 u� = u�S�−1 (u�−1 )−1 ∈H�. Then
(a) ‘ = (‘�)�∈� is a �-grouplike element of H;
(b) (S�−1S�)2(x) = ‘�x‘−1

� for all �∈ � and x∈H�.

Proof. Let us show part (a). Denote by Mu� the Drinfeld elements of the mirror Hopf
�-coalgebra MH to H (see Section 6.3.2). Since Mu� = S�(u�)−1, Lemma 6.5(f) applied
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to MH gives that, for any �; �∈ �,

��;�(S(��)−1 (u(��)−1 )−1) = ��;�(’�−1 ⊗ idH�)(R�;�)

· (’�−1 ⊗ ’�−1 )(R�;�) · (S�−1 (u�−1 )−1 ⊗ S�−1 (u�−1 )−1):

Now, by Lemma 6.5(f),

��;�(u��) = (u� ⊗ u�) · [��;�(’�−1 ⊗ idH�)(R�;�) · (’�−1 ⊗ ’�−1 )(R�;�)]−1:

Thus we obtain that ��;�(‘��) =��;�(u��) ·��;�(S(��)−1 (u(��)−1 )−1) = ‘�⊗‘�. Moreover
	(‘1) = 	(u1S1(u1)−1) = 	(u1)	(S1(u1))−1 = 	(u1)	(u1)−1 = 1 by (1.4) and Lemma 1.1(d).
Hence ‘ = (‘�)�∈� ∈G(H).

To show part (b), let �∈ � and x∈H�. Applying Lemma 6.5(b) to MH and then to
H gives that

(S�−1S�)2(x) = S�−1S�(S�−1 (u�−1 )−1’�(x)S�−1 (u�−1 ))

= S�−1S�(S�−1 (u�−1 )−1)S�−1S�(’�(x))S�−1S�(S�−1 (u�−1 ))

= u�S�−1 (u�−1 )−1xS�−1 (u�−1 )u−1
�

= ‘�x‘−1
� :

This completes the proof of the corollary.

6.3.3. The double of a crossed Hopf �-coalgebra
The Drinfeld double construction for Hopf algebras can be extended to the setting

of crossed Hopf �-coalgebras, see [21]. This yields examples of quasitriangular Hopf
�-coalgebras.

6.4. Ribbon Hopf �-coalgebras

Following [19, Section 11:4], a quasitriangular Hopf �-coalgebra H = ({H�}; �; 	;
S; ’; R) is said to be ribbon if it is endowed with a family = {� ∈H�}�∈� of invertible
elements (the twist) such that

’�(x) = −1
� x� for all �∈ � and x∈H�; (6.10)

S�(�) = �−1 for all �∈ �; (6.11)

’�(�) = ���−1 for all �; �∈ �; (6.12)

for all �; �∈ �;

��;�(��) = (� ⊗ �) · ��;�((’�−1 ⊗ idH�)(R���−1 ; �)) · R�;�: (6.13)

Note that 1 is a (classical) twist of the quasitriangular Hopf algebra H1.
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Lemma 6.7. Let H = ({H�}; �; 	; S; ’; R; ) be a ribbon Hopf �-coalgebra. Then
(a) ’�−1 (x) = �x−1

� for all �∈ � and x∈H�;
(b) 	(1) = 1;
(c) if �∈ � has a 9nite order d; then d

� is a central element of H�. In particular 1

is central;
(d) �u� = u�� for all �∈ �, where the u� are the Drinfeld elements of H.

Proof. Part (a) is a direct consequence of (6.10), (6.12), and Lemma 6.1. Let us show
part (b). We have

1 = (	⊗ idH1 )�1;1(1) by (1:2)

= (	⊗ idH1 )((1 ⊗ 1) · �1;1(R1;1) · R1;1) by (6:13) and Lemma 6:1(a)

= (	⊗ idH1 )(1 ⊗ 1) · (idH1 ⊗ 	)(R1;1) · (	⊗ idH1 )(R1;1) by (1:4)

= 	(1)1 by Lemma 6:4(a)

Now 1 
= 0 since it is invertible and H1 
= 0 (by Corollary 1.2). Hence 	(1) = 1. To
show part (c), let �∈ � of ;nite order d. For any x∈H�, using (6.4), Lemma 6.1 and
(6.10), we have that x =’1(x) =’�d(x) =’d

�(x) = −d
� xd

� and so d
�x = xd

� . Hence d
�

is central in H�. Finally, let us show part (d). Using Lemma 6.5(d) and (6.10), we
have that u� =’�(u�) = −1

� u��, and so �u� = u��.

6.4.1. The coopposite Hopf �-coalgebra
Let H be a ribbon Hopf �-coalgebra with twist = {�}�∈�. The coopposite quasi-

triangular Hopf �-coalgebra H cop (see Section 6.3.1) is ribbon with twist cop
� = −1

�−1 .

6.4.2. The mirror Hopf �-coalgebra
Let H be a ribbon Hopf �-coalgebra with twist = {�}�∈�. Following [19, Section

11:6], the mirror quasitriangular Hopf �-coalgebra MH (see Section 6.3.2) is ribbon with
twist M� = −1

�−1 .

6.5. The spherical �-grouplike element

Let H = ({H�}; �; 	; S; ’; R; ) be a ribbon Hopf �-coalgebra. For any �∈ �, we set
(see Lemma 6.7(d))

G� = �u� = u�� ∈H�:

Lemma 6.8. (a) G = (G�)�∈� is a �-grouplike element of H;
(b) ’�(G�) =G���−1 for all �; �∈ �;
(c) S�(G�) =G−1

�−1 for all �∈ �;
(d) −2

� = c� for all �∈ �, where c� = S�−1 (u�−1 )u� = u�S�−1 (u�−1 ) as in Lemma 6:5(e);
(e) S�(u�) =G−1

�−1u�−1G−1
�−1 for all �∈ �;

(f) S�−1S�(x) =G�xG−1
� for all �∈ � and x∈H�.
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The �-grouplike element G = (G�)�∈� of the previous lemma is called the spherical
�-grouplike element of H.

Proof. Let us show part (a). Firstly 	(G1) = 	(1u1) = 	(1)	(u1) = 1 by Lemmas 6:5(g)
and 6:7(b). Secondly, for any �; �∈ �, using (6.13) and Lemma 6.5(f),

��;�(G��) = ��;�(��u��)

= ��;�(��) · ��;�(u��)

= (� ⊗ �) · [��;�((’�−1 ⊗ idH�)(R���−1 ; �)) · R�;�]

· [��;�((’�−1 ⊗ idH�)(R���−1 ; �)) · R�;�]−1 · (u� ⊗ u�)

= G� ⊗ G�:

Thus G = (G�)�∈� ∈G(H). Part (b) follows directly from Lemma 6.5(d) and (6.12),
and part (c) from the fact that G is a �-grouplike element. By part (c) and (6.11),
−2
� = u�G−1

� −1
� = u�S�−1 (G�−1 )−1

� = u�S�−1 (�−1u�−1 )−1
� = c� and so part (d) is

established. Let us show part (e). By (6.11) and part (c), G−1
�−1u�−1 = −1

�−1 = S�(−1
� ) =

S�(G−1
� u�) = S�(u�) S�(G�)−1 = S�(u�)G�−1 . Therefore S�(u�) =G−1

�−1u�−1G−1
�−1 . Finally,

to show part (f), let x∈H�. Then, using Lemmas 6:5(b) and 6:7(a),

S�−1S�(x) = u�’�−1 (x)u−1
� = u��x−1

� u−1
� =G�xG−1

� :

This completes the proof of the lemma.

6.6. The distinguished �-grouplike element from the R-matrix

In this subsection, we show that the distinguished �-grouplike element of a ;nite
type quasitriangular Hopf �-coalgebra can be computed by using the R-matrix. This
generalizes [14, Theorem 2].

Theorem 6.9. Let H be a 9nite type quasitriangular Hopf �-coalgebra. Let g= (g�)�∈�

be the distinguished �-grouplike element of H; : be the distinguished grouplike element
of H∗

1 ; ‘ = (‘�)�∈� ∈G(H) be as in Corollary 6:6, and ’̂ be as in Corollary 6:2. We
de9ne h� = (idH� ⊗ :)(R�;1) for any �∈ �. Then
(a) h= (h�)�∈� is a �-grouplike element of H;
(b) g= ’̂−1‘h in G(H), i.e., g� = ’̂(�)−1‘�h� for all �∈ �.

Proof. We adapt the technique used in the proof of [14, Theorem 2]. Let us ;rst show
part (a). For any �; �∈ �, using (6.6), the multiplicativity of :, and Lemma 6.3(b), we
have that

��;�(h��) = ��;�(idH�� ⊗ :)(R��;1)

= (idH� ⊗ idH� ⊗ :)([(idH� ⊗ ’�−1 )(R�;1)]1�3 · (R�;1)�23)
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= ((idH� ⊗ :’�−1 )(R�;1) ⊗ 1�) · (1� ⊗ (idH� ⊗ :)(R�;1))

= ((idH� ⊗ :)(R�;1) ⊗ 1�) · (1� ⊗ h�)

= h� ⊗ h�:

Moreover, using Lemma 6.4(a), 	(h1) = (	⊗ :)(R1;1) = :(11) = 1. Thus h∈G(H).
To show part (b), let �∈ � and 4 be a non-zero left integral for H1. We ;rst show

that, for any x∈H�−1 ,

4(1; �) ⊗ x4(2; �−1) = S�−1 (x)4(1; �) ⊗ 4(2; �−1) (6.14)

and

4(1; �−1)x ⊗ 4(2; �) =4(1; �−1) ⊗ 4(2; �)S�−1 (x ( :): (6.15)

Indeed

4(1; �) ⊗ x4(2; �−1)

= 	(x(1;1))4(1; �) ⊗ x(2; �−1)4(2; �−1) by (1:2)

= S�−1 (x(1; �−1))x(2; �)4(1; �) ⊗ x(3; �−1)4(2; �−1) by (1:5)

= S�−1 (x(1; �−1))(x(2;1)4)(1; �) ⊗ (x(2;1)4)(2; �−1) by (1:4);

and so, since 4 is a left integral for H1,

4(1; �) ⊗ x4(2; �−1) = S�−1 (x(1; �−1)	(x(2;1)))4(1; �) ⊗ 4(2; �−1)

= S�−1 (x)4(1; �) ⊗ 4(2; �−1) by (1:2):

Similarly,

4(1; �−1)x ⊗ 4(2; �−1)

=4(1; �−1)x(1; �−1) ⊗ 4(2; �)	(x(2;1)) by (1:2)

=4(1; �−1)x(1; �−1) ⊗ 4(2; �)x(2; �)S�−1 (x(3; �−1)) by (1:5)

= (4x(1;1))(1; �−1) ⊗ (4x(1;1))(2; �)S�−1 (x(2; �−1)) by (1:4);

and so, since 4 is a left integral for H1,

4(1; �−1)x ⊗ 4(2; �−1) = 4(1; �−1) ⊗ 4(2; �)S�−1 (:(x(1;1))x(2; �−1))

= 4(1; �−1) ⊗ 4(2; �)S�−1 (x ( :):

Write R�;�−1 = a�⊗b�−1 . Recall that u� = S�−1’�(b�−1 )a�. By Lemma 6.4(c) and (6.7),
R�−1 ; � = S�(a�) ⊗ ’�S�−1 (b�−1 ). Thus u�−1 = S�S�−1 (b�−1 )S�(a�) and so, using
Lemma 6.5(b) and (d), S�−1 (u�−1 ) = S−1

� (u�−1 ) = a�S�−1 (b�−1 ). Then

4(2; �)S�−1 (’�(b�−1 ) ( :)a� ⊗ 4(1; �−1)

=4(2; �)a� ⊗ 4(1; �−1)’�(b�−1 ) by (6:15) for x =’�(b�−1 )
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= (idH� ⊗ ’�)(4(2; �)a� ⊗ ’�−1 (4(1; �−1))b�−1 )

= (idH� ⊗ ’�)(a�4(1; �) ⊗ b�−14(2; �−1)) by (6:5)

= (idH� ⊗ ’�)(a�S�−1 (b�−1 )4(1; �) ⊗ 4(2; �−1)) by (6:14) for x = b�−1

= S�−1 (u�−1 )4(1; �) ⊗ ’�(4(2; �−1))

= (’�−1 ⊗ idH�−1 )(’�S�−1 (u�−1 )’�(4(1; �)) ⊗ ’�(4(2; �−1))) by (6:4)

= (’�−1 ⊗ idH�−1 )(’�S�−1 (u�−1 )’�(4)(1; �) ⊗ ’�(4)(2; �−1)) by (6:2):

Now ’�(4) = ’̂(�)4 by Lemma 6.3(a) and

4(1; �) ⊗ 4(2; �−1) = S�−1S�(4(2; �))g� ⊗ 4(1; �−1)

by Corollary 4.4. Therefore

4(2; �)S�−1 (’�(b�−1 ) ( :)a� ⊗ 4(1; �−1)

= ’̂(�)(’�−1 ⊗ idH�−1 )(’�S�−1 (u�−1 )S�−1S�(4(2; �))g� ⊗ 4(1; �−1))

= ’̂(�)S�−1 (u�−1 )’�−1S�−1S�(4(2; �))’�−1 (g�) ⊗ 4(1; �−1)

= ’̂(�)S�−1 (u�−1 )’�−1S�−1S�(4(2; �))g� ⊗ 4(1; �−1) by Lemma 6:3(c):

Let �= (��)�∈� be right �-integral for H such that �1(4) = 1 (see the proof of
Corollary 4.4). Applying (idH� ⊗ ��−1 ) on both sides of the last equality, we get

��−1 (4(1; �−1))4(2; �)S�−1 (’�(b�−1 ) ( :)a�

= ’̂(�)S�−1 (u�−1 )’�−1S�−1S�(��−1 (4(1; �−1))4(2; �))g�;

and so, since ��−1 (4(1; �−1))4(2; �) = �1(4)1� = 1�,

S�−1 (’�(b�−1 ) ( :)a� = ’̂(�)S�−1 (u�−1 )g�: (6.16)

Write R�;1 = c� ⊗ d1 so that h� = :(d1)c�. Since, by (6.2) and Lemma 6.3(b),
’�(x) ( :=’�(x ( :) for all x∈H�−1 , we have that

a� ⊗ (’�(b�−1 ) ( :) = a� ⊗ ’�(b�−1 ( :)

= (idH� ⊗ :⊗ ’�)(idH� ⊗ �1; �−1 )(R�;�−1 )

= (idH� ⊗ :⊗ ’�)((R�;�−1 )11�3 · (R�;1)12�−1 ) by (6:6)

= a�:(d1)c� ⊗ ’�(b�−1 )

= a�h� ⊗ ’�(b�−1 ):

Therefore S�−1 (’�(b�−1 ) ( :)a� = S�−1 (’�(b�−1 ))a�h� = u�h�. Finally, comparing with
(6.16), we get ’̂(�)S�−1 (u�−1 )g� = u�h�. Hence g� = ’̂(�)−1‘�h�; since ‘� =
S�−1 (u�−1 )−1u�. This ;nishes the proof of the theorem.
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Corollary 6.10. Let H be a 9nite type ribbon Hopf �-coalgebra. Let g= (g�)�∈� be
the distinguished �-grouplike element of H; G = (G�)�∈� be the spherical �-grouplike
element of H; h= (h�)�∈� ∈G(H) as in Theorem 6:9; and ’̂ as in Corollary 6:2. Then
’̂g=G2h in G(H); i.e.; ’̂(�)g� =G2

�h� for all �∈ �.

Proof. For any �∈ �; ’̂(�)g� = S�−1 (u�−1 )−1u�h� = 2
�u

2
�h� =G2

�h� by Theorem 6.9(b)
and Lemma 6.8(d).

7. Existence of �-traces

In this section, we introduce the notion of a �-trace for a crossed Hopf �-coalgebra
and we show the existence of �-traces for a ;nite type unimodular Hopf �-coalgebra
whose crossing ’ veri;es that ’̂= 1. Moreover, we give suGcient conditions for the
homomorphism ’̂ to be trivial.

7.1. Unimodular Hopf �-coalgebras

A Hopf �-coalgebra H = {H�}�∈� is said to be unimodular if the Hopf algebra H1

is unimodular (it means that the spaces of left and right integrals for H1 coincide).
If H1 is ;nite dimensional, then H is unimodular if and only if := 	, where : is the
distinguished grouplike element of H∗

1 .
If � is ;nite, then a left (resp. right) integral for the Hopf algebra H̃ =

⊕
�∈� H�

(see Section 1.3.5) must belong to H1, and so the spaces of left (resp. right) integrals
for H and H1 coincide. Hence, when � is ;nite, H is unimodular if and only if H̃ is
unimodular.

One can remark that a semisimple ;nite type of Hopf �-coalgebra H = {H�}�∈�

is unimodular (since the ;nite-dimensional Hopf algebra H1 is semisimple and so
unimodular). Note that a cosemisimple Hopf �-coalgebra is not necessarily unimodular.

7.2. �-traces

Let H = ({H�}; �; 	; S; ’) be a crossed Hopf �-coalgebra. A �-trace for H is a family
of —-linear forms tr = (tr�)�∈� ∈

∏
�∈� H∗

� such that, for any �; �∈ � and x; y∈H�,

tr�(xy) = tr�(yx); (7.1)

tr�−1 (S�(x)) = tr�(x); (7.2)

tr���−1 (’�(x)) = tr�(x): (7.3)

This notion is motivated mainly by topological purposes: �-traces are used in [20] to
construct Hennings-like invariants (see [4,6]) of principal �-bundles over link comple-
ments and over 3-mainfolds.
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Note that tr1 is a (usual) trace for the Hopf algebra H1, invariant under the action
’ of �.

In the next lemma, generalizing [4, Proposition 4:2], we give a characterization of
the �-traces.

Lemma 7.1. Let H = {H�}�∈� be a 9nite type unimodular ribbon Hopf �-coalgebra
with crossing ’. Let �= (��)�∈� be a non-zero right �-integral for H; G = (G�)�∈�

be the spherical �-grouplike element of H, and ’̂ be as in Corollary 6:2. Let tr =
(tr�)�∈� ∈

∏
�∈� H∗

� . Then tr is a �-trace for H if and only if there exists a family
z = (z�)�∈� ∈

∏
�∈� H� satisfying, for all �; �∈ �;

(a) tr�(x) = ��(G�z�x) for all x∈H�;
(b) z� is central in H�;
(c) S�(z�) = ’̂(�)−1z�−1 ;
(d) ’�(z�) = ’̂(�)z���−1 .

Proof. We ;rst show that, for all �∈ � and x; y∈H�,

��(G�xy) = ��(G�yx); (7.4)

and

’̂(�)��−1 (S�(x)) = ��(G2
�x): (7.5)

Indeed, let : be the distinguished grouplike element of H∗
1 . Since := 	 (H is uni-

modular), Theorem 4.2(a) gives that ��(G�xy) = ��(S�−1S�(y)G�x). Now, by Lemma
6.8(f), S�−1S�(y) =G�yG−1

� . Thus ��(G�xy) = ��(G�yx) and (7.4) is proven. More-
over, Corollary 6.10 gives that ’̂(�)g� =G2

�h�, where g= (g�)�∈� is the distinguished
�-grouplike element of H and h� = (idH� ⊗ :)(R�;1). Since := 	 and by Lemma 6.4(a),
h� = (idH� ⊗ 	)(R�;1) = 1�. Thus ’̂(�)g� =G2

� . Now ��−1 (S�(x)) = ��(g�x) by Theorem
4.2(c). Hence ’̂(�)��−1 (S�(x)) = ��(G2

�x) and (7.5) is proven.
Let us suppose that there exists z = (z�)�∈� ∈

∏
�∈� H� verifying conditions (a)–(d).

For any �; �∈ � and x; y∈H�,

tr�(xy) = ��(G�z�xy) by Condition (a)

= ��(G�yz�x) by(7:4)

= ��(G�z�yx) since z� is central

= tr�(yx) by Condition (a);

tr�−1 (S�(x))

= ��−1 (G�−1z�−1S�(x))

= ’̂(�)��−1 (S�(G−1
� )S�(z�)S�(x)) by Condition (c) and Lemma 6:8 (c)

= ’̂(�)��−1 (S�(xz�G−1
� )) by Lemma 1:1(a)
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= ��(G2
�xz�G

−1
� ) by (7:5)

= ��(G�z�G�xG−1
� ) since z� is central

= tr�(G�xG−1
� )

= tr�(x) since tr� is symmetric;

and

tr���−1 (’�(x))

= ����−1 (G���−1z���−1’�(x))

= ’̂(�)−1����−1 (’�(G�)’�(z�)’�(x)) by Condition (d) and Lemma 6:8(b)

= ’̂(�)−1����−1 (’�(G�z�x))

= ’̂(�)−1’̂(�)��(G�z�x) by Corollary 6:2

= tr�(x):

Hence tr is a �-trace.
Conversely, suppose that tr is a �-trace. Recall that H∗

� is a right H�-module for the
action de;ned, for all f∈H∗

� and a; x∈H�, by

(f ( a)(x) =f(ax):

By Corollary 3.7(b), (H∗
� ;() is free, its rank is 1 (resp. 0) if H� 
= 0 (resp. H� = 0),

and �� is a basis vector for (H∗
� ;(). Thus, for any �∈ �, there exists w� ∈H� such

that tr� = �� ( w�. Set z� =G−1
� w�. Let us verify that the family z = (z�)�∈� verify

conditions (a)–(d). By the de;nition of z�, condition (a) is clearly veri;ed. Let �∈ �
and x∈H�. For any y∈H�,

(�� ( G�z�x)(y) = ��(G�z�xy)

= tr�(xy)

= tr�(yx) by (7:1)

= ��(G�z�yx)

= ��(G�xz�y) by (7:4)

= (�� ( G�xz�)(y):

Therefore �� ( G�z�x = �� ( G�xz�. Hence G�z�x =G�xz� (since �� is a basis vector
for (H∗

� ;()) and so z�x = xz�. Condition (b) is then veri;ed. Let �∈ �. For any x∈H�;

(��−1 ( G�−1S�(z�))(x)

= ��−1 (G�−1S�(z�)x)
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= ��−1 (S�(S−1
� (x)z�G−1

� )) by Lemmas 1:1(a) and 6:8(c)

= ’̂(�)−1��(G2
�S

−1
� (x)z�G−1

� ) by (7:5)

= ’̂(�)−1��(G�z�S−1
� (x)) by (7:4) and since z� is central

= ’̂(�)−1tr�(S−1
� (x))

= ’̂(�)−1tr�−1 (x) by (7:2)

= (��−1 ( G�−1 ’̂(�)−1z�−1 )(x):

We conclude as above that S�(z�) = ’̂(�)−1z�−1 ; and so condition (c) is satis;ed,
Finally, let �; �∈ �. For any x∈H�;

(�� ( ’̂(�)G�’�−1 (z���−1 ))(x)

= ’̂(�)��(G�’�−1 (z���−1 )x)

= ����−1 (’�(G�’�−1 (z���−1 )x)) by Corollary 6:2

= ����−1 (G���−1z���−1’�(x)) by Lemma 6:8(b)

= tr���−1 (’�(x))

= tr�(x) by (7:3)

= (�� ( G�z�)(x):

Thus G�z� = ’̂(�)G�’�−1 (z���−1 ) and so ’�(z�) = ’̂(�)z���−1 . Hence condition (d) is
veri;ed and the lemma is proven.

In the setting of Lemma 7.1, constructing a �-trace from a right �-integral �= (��)�∈�

reduces to ;nding a family z = (z�)�∈� which satis;es conditions (b)–(d) of Lemma
7.1. Let us give two possible choices of the family z.

Let 4 be a left integral for H1 such that �1(4) = 1. Set z1 =4 and z� = 0 if � 
= 1.
This family z = (z�)�∈� veri;es conditions (b)–(d) since H is unimodular (and so 4 is
central and S1(4) =4) and by Lemma 6.3(a). The �-trace obtained is given by tr1 = 	
and tr� = 0 if � 
= 1.

If the homomorphism ’̂ of Corollary 6.2 is trivial (that is ’̂(�) = 1 for all �∈ �),
then another possible choice is z� = 1�. In the two next lemmas, we give suGcient
conditions for the homomorphism ’̂ to be trivial.

Lemma 7.2. Let H be a 9nite type crossed Hopf �-coalgebra with crossing ’. If H
is semisimple or cosemisimple or if ’�|H1 = idH1 for all �∈ �; then ’̂= 1.

Proof. Let �∈ �. If H is semisimple, then H1 is semisimple and thus there ex-
ists a left integral 4 for H1 such that 	(4) = 1 (by Sweedler [17, Theorem 5:1:8]).
Now ’�(4) = ’̂(�)4 by Lemma 6.3(a). Therefore, using (6.3), ’̂(�) = ’̂(�)	(4) =
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	(’̂(�)4) = 	’�(4) = 	(4) = 1. Suppose now that H is cosemisimple. By Theorem
5.4, there exists a right �-integral �= (��)�∈� for H such that �1(11) = 1. Then ’̂(�) =
’̂(�)�1(11) = �1(’�(11)) = �1(11) = 1. Suppose ;nally that ’�|H1 = idH1 . Let �= (��)�∈�

be a non-zero right �-integral for H . Then ’̂(�)�1 = �1’�|H1 = �1 and thus ’̂(�) = 1
(since �1 
= 0 by Lemma 3.1).

Lemma 7.3. Let H be a 9nite type ribbon Hopf �-coalgebra with crossing ’ and
twist = {�}�∈�. Let �= (��)�∈� be a right �-integral for H. If �1(1) 
= 0; then
’̂= 1.

Proof. Let �∈ �. By (6:4:c) and Corollary 6.2, �1(1) = �1(’�(1)) = ’̂(�)�1(1).
Therefore ’̂(�) = 1 since �1(1) 
= 0.

We conclude with the following theorem, which follows directly from Lemma 7.1
(by choosing z� = 1� for all �∈ �) and Lemmas 7.2 and 7.3.

Theorem 7.4. Let H be a 9nite type unimodular ribbon Hopf �-coalgebra with cross-
ing ’ and twist  = {�}�∈�. Let �= (��)�∈� be a right �-integral for H and
G = (G�)�∈� be the spherical �-grouplike element of H. Suppose that at least one
of the following conditions is veri9ed:
(a) H is semisimple;
(b) H is cosemisimple;
(c) �1(1) 
= 0;
(d) ’�|H1 = idH1 for all �∈ �.
Then tr = (tr�)�∈�; de9ned by tr�(x) = ��(G�x) for all �∈ � and x∈H�; is a �-trace
for H.
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