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Abstract

We study algebraic properties of Hopf group-coalgebras, recently introduced by Turaev. We
show the existence of integrals and traces for such coalgebras, and we generalize the main
properties of quasitriangular and ribbon Hopf algebras to the setting of Hopf group-coalgebras.
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0. Introduction

Recently, Turaev [19] introduced, for a group =, the notion of a modular crossed
n-category and showed that such a category gives rise to a three-dimensional homo-
topy quantum field theory with target space K(m, 1). Examples of n-categories can be
constructed from the so-called Hopf n-coalgebras also introduced in [19].

The notion of a Hopf m-coalgebra generalizes that of a Hopf algebra. Hopf =-
coalgebras are used by the author in [20] to construct Hennings-like (see [4,6]) and
Kuperberg-like (see [7]) invariants of principal n-bundles over link complements and
over 3-manifolds. The aim of the present paper is to lay the algebraic foundations
for [20], specifically to establish the existence of integrals and traces for a Hopf
m-coalgebras.

Let us briefly recall some definitions of [19]. Given a (discrete) group 7, a Hopf
n-coalgebra is a family H ={H,},ec, of algebras (over a field k) endowed with a
comultiplication 4 = {4, p:H,p — H,®Hg}, per, a counit e: H; — k, and an antipode
S={S,:H, — H,-1 }4c, which verify some compatibility conditions. A crossing for
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H is a family of algebra isomorphisms ¢ = {@g:H, — Hg,p-1}, pcx Which preserves
the comultiplication and the counit, and which yields an action of 7 in the sense that
@p@p = @pp. A crossed Hopf n-coalgebra H is quasitriangular (resp. ribbon) when it
is endowed with an R-matrix R={R, s € H, ® Hg}, per (resp. an R-matrix and a twist
0={0, € H,} ) verifying some axioms which generalize the classical ones given in
[2] (resp. [16]). The case m=1 is the standard setting of Hopf algebras. When = is
commutative and ¢ is trivial, one recovers the definition of a quasitriangular or ribbon
n-colored Hopf algebra given by Ohtsuki [12].

Basic notions of the theory of Hopf algebras can be extended to the setting of Hopf
n-coalgebras. In particular, a (right) n-integral for a Hopf n-coalgebra H is a family of
k-forms A= (4y: Hy — K)yer such that (4,®1dg, )4y 5= Z4p1p for all o, f € 7. When H
is crossed, a m-trace for H is a family of k-forms tr = (tr, : H, — Kk),c, which verifies
try(xy) = try(yx), try—1(Sy(x)) =try(x), and trp,p-1(@p(x)) =tr,(x) for all «, f€n and
x,y € H,. These notions were introduced in [20] for topological purposes.

In the first part of the paper (Sections 1-5), we mainly focus on Hopf n-coalgebras
of finite type, that is Hopf n-coalgebras H = {H, },c, with each H, finite dimensional.
The first main result is the existence and uniqueness (up to a scalar multiple) of a
n-integral for such a Hopf n-coalgebra. To prove this result, we study rational n-graded
modules, introduce the notion of a Hopf n-comodule, and generalize the fundamental
theorem of Hopf modules (see [9]) to Hopf m-comodules.

As for Hopf algebras, any finite type Hopf m-coalgebra contains a distinguished
n-grouplike element. Generalizing [15], we study the relationships between this element,
the antipode, and the m-integrals. As a corollary, we give an upper bound for the order
of S,-185, whenever o € n has a finite order.

The notions of semisimplicity and cosemisimplicity can be extended to the setting
of Hopf m-coalgebras. We show that a finite type Hopf n-coalgebra H ={H,},c, is
semisimple (that is each H, is semisimple) if and only if H; is semisimple. We define
the cosemisimplicity for m-comodules and m-coalgebras, and we use m-integrals to give
necessary and sufficient criteria for a Hopf m-coalgebra to be cosemisimple.

In the second part of the paper (Sections 6 and 7), we study quasitriangular Hopf
n-coalgebras. The main result is the existence of n-traces for a semisimple (resp.
cosemisimple) finite type unimodular ribbon Hopf n-coalgebra. To prove this result,
we generalize the main properties of quasitriangular Hopf algebras (see [3,5,14]). In
particular, we introduce and study the (generalized) Drinfeld elements of a quasitrian-
gular Hopf m-coalgebra H, we compute the distinguished n-grouplike element of H by
using the R-matrix, and we show that the twist of a ribbon Hopf n-coalgebra leads to
a m-grouplike element which implements the square of the antipode by conjugation.

The paper is organized as follows. In Section 1, we review the basic definitions
and properties of Hopf m-coalgebras. In Section 2, we discuss the notions of a ra-
tional m-graded module and of a Hopf m-comodule. In Section 3, we use these no-
tions to establish the existence and uniqueness of n-integrals. Section 4 is devoted to
the study of the distinguished 7m-grouplike element. In Section 5, we discuss the no-
tion of a semisimple (resp. cosemisimple) Hopf m-coalgebra. In Section 6, we study



A. Virelizier | Journal of Pure and Applied Algebra 171 (2002) 75-122 77

crossed, quasitriangular, and ribbon Hopf n-coalgebras. Finally, we construct zn-traces in
Section 7.

1. Basic definitions

Throughout the paper, we let @ be a discrete group (with neutral element 1) and k
be a field (although much of what we do is valid over any commutative ring). We
set k* =k \ {0}. All algebras are supposed to be over k, associative, and unitary. The
tensor product ® =®y is always assumed to be over k. If U and V' are k-spaces,
ouy: U®V — V ® U will denote the flip map defined by oy y(u@0v)=v® u.

1.1. n-coalgebras

We recall the definition of a n-coalgebra, following [19, Section 11.2]. A w-coalgebra
(over k) is a family C ={C, },c of k-spaces endowed with a family 4= {4, 3:C,p —
C, ® Cply pen of k-linear maps (the comultiplication) and a k-linear map ¢:C; — k
(the counit) such that

A is coassociative in the sense that, for any a, 5,y € 7,

(A5 @ idc,)Ayp,, = (dc, @ Ap,) 45 p) (1.1)

forall o, fem, (idg, ®¢)4,1 =1dc, =(e ®idc, )44 (1.2)

Note that (Cy,4;.1,¢) is a coalgebra in the usual sense of the word.

Sweedler’s notation. We extend the Sweedler notation for a comultiplication in the
following way: for any o, f € m and ¢ € C,p, we write

Ay p(c) = Z C(1.0) @ c2,p) € Cy @ C,
(c)
or shortly, if we leave the summation implicit, 4, g(c)=c(1,4) ® ¢2,5)- The coassocia-
tivity axiom (1.1) gives that, for any o, f,7 € and ¢ € Cyp,,
CLap)(1,m) & C1apy2.p) @ €2,y) = C(1,a) @ €2 p)(1.) @ €2, py)27)-
This element of C, ® Cg ® C, is written as c(1,.) ® co,p) ® ¢@3,5). By iterating the

procedure, we define inductively c(1,5,) ® -+ - ® c(na,) for any c € C,,...4,.

1.2. Convolution algebras

Let C=({Cy},4,¢) be a n-coalgebra and A be an algebra with multiplication m
and unit element 14. For any f € Homy(C,,4) and g € Homy(Cp,4), we define their
convolution product by

frg=m(f® g)Ang eHom]k(CfXﬂ>A)'
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Using (1.1) and (1.2), one verifies that the k-space
Conv(C,4) = (PHomy (C,, 4)

aen
endowed with the convolution product * and the unit element ¢l 4, is a n-graded algebra,
called convolution algebra.
In particular, for 4 =k, the n-graded algebra Conv(C,k)=&p
to C and is denoted by C*.

C; is called dual

aemn

1.3. Hopf m-coalgebras

Following [19, Section 11.2], a Hopf m-coalgebra is a m-coalgebra H = ({H,}, 4,¢)
endowed with a family S={S,:H, — H,-1 },c, of k-linear maps (the antipode) such
that

each H, is an algebra with multiplication m, and unit element 1, € H,, (1.3)

e:Hy —kand 4, 5:H,s — H, ® Hg (for all a, f € 7) are algebra
homomorphisms, (1.4)

for any o€ m, m,(S,—1 ®idy,)d,-1 =l =m,(idy, @ Sy—1)4, 41 (L.5)

We remark that the notion of a Hopf n-coalgebra is not self-dual and that (H;,m, 11,
A41,1,6,81) is a (classical) Hopf algebra.

The Hopf n-coalgebra H is said to be of finite type if, for all o € n, H, is finite
dimensional (over k). Note that it does not mean that €, __H, is finite-dimensional
(unless H, =0 for all but a finite number of o € 7).

The antipode S = {S,},cx of H is said to be bijective if each S, is bijective. Unlike
[19, Section 11.2], we do not suppose that the antipode of a Hopf m-coalgebra H is
bijective. However, we will show that it is bijective whenever H is of finite type (see
Corollary 3.7(a)) or quasitriangular (see Lemma 6.5(c)).

A useful remark is that if H={H,}sc, is a Hopf m-coalgebra with antipode S=
{Sy}uen, then axiom (1.5) says that S, is the inverse of idy _, in the convolution
algebra Conv(H, H,-1) for all « €.

In the next lemma, generalizing [17, Proposition 4.0.1], we show that the antipode
of a Hopf m-coalgebra is anti-multiplicative and anti-comultiplicative.

aET

Lemma 1.1. Let H=({H,,my, 1,},4,¢,8) be a Hopf n-coalgebra. Then
(a) Sy(ab)=Sy(b)S,(a) for any o€ and a,b € Hy;

(b) Sy(1,)=1,-1 for any a€m;

(¢) dp—10-1Ssp =01 _ 1, ,(S2 @ Sp)Aap for any o, f €m;

(d) &Sy =e.

Proof. The proof is essentially the same as in the Hopf algebra setting. For example,
to show part (c), fix «,f€n and consider the algebra Conv(H,Hy-1 ® H,-1) with
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convolution product * and unit element e=¢lg-1 ® 1,-1. Using axioms (1.2), (1.4),
and (1.5), one easily checks that Ag—1 ,1S,p%Ap-1 ,-1 =e and Ag—1 ;- *OH .\ Hy_ (Sy®
Sp)As 5 =e. Hence we can conclude that Ag—1 1Sy =04, 1, (S2 @ Sp)dsp. L

Corollary 1.2. Let H={H,},cx be a Hopf m-coalgebra. Then {a.€n|H,#0} is a
subgroup of .

Proof. Set G={aen|H,#0}. Firstly 1; #£0 (since &(1;)=1+#£0) and so 1 € G. Then
let o,f€G. Using (1.4), 4, p5(l4p)=1, ® 13 #0. Therefore 1,5#0 and so af €G.
Finally, let « € G. By Lemma 1.1(b), S,-1(1,-1)=1,%#0. Thus 1,-1 #0 and hence
v leG O

1.3.1. Opposite Hopf m-coalgebra

Let H = {H,},c, be a Hopf n-coalgebra. Suppose that the antipode S = {S, }4c, of H
is bijective. For any o € 7, let H,” be the opposite algebra to H,. Then H = {H;"},c.,
endowed with the comultiplication and counit of H and with the antipode
S = {S3? =S\ }aer. is a Hopf m-coalgebra called opposite to H.

1.3.2. Coopposite Hopf m-coalgebra
Let C=({Cy},4,¢) be a m-coalgebra. Set

cop __ cop _
CO( —Cufl and A“,'[g*GC/;_I,Cx_lA[E*I,aFl-

Then CP = ({C;"}, A°P,¢) is a m-coalgebra, called coopposite to C. If H is a Hopf
n-coalgebra whose antipode S = {S,},c, is bijective, then the coopposite n-coalgebra
HP, where H,” =H, 1 as an algebra, is a Hopf m-coalgebra with antipode
Seop — {S;OP — S;l}aefl.

1.3.3. Opposite and coopposite Hopf n-coalgebra
Let H=({H,},4,¢S) be a Hopf n-coalgebra. Even if the antipode of H is not
bijective, one can always define a Hopf m-coalgebra opposite and coopposite to H by

setting Hy,™ P =H®,, AT = A7), PP =¢, and S;"*F =5,-1.

1.3.4. The dual Hopf algebra

Let H =({Hymy,1,},4,¢,S) be a finite type Hopf n-coalgebra. The n-graded alge-
bra H* =@, H; dual to H (see Section 1.2) inherits a structure of a Hopf algebra
by setting, for all o €n and f € H],

A(f)=my(f)€(H, ® Hy)" = H; ® H,

e(f)=f(1y), and S(f)= f oS,-1. Note that if H,# 0 for infinitely many o € «, then
H* is infinite dimensional.
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1.3.5. The case w finite

Let us first remark that, when 7 is a finite group, there is a one-to-one correspondence
between (isomorphic classes of) n-coalgebras and (isomorphic classes of) n-graded
coalgebras. Recall that a coalgebra (C, 4,¢) is n-graded if C admits a decomposition

as a direct sum of k-spaces C = @aen C, such that, for any a €7,

AC)C Y CpaC, and &C)=0 if a1
pr=o

Let us denote by p,:C — C, the canonical projection. Then {C,},c. is a n-coalgebra
with comultiplication {(py ® ps)4|c,; }uper and counit ¢|c,. Conversely, if C=({C,},
4,¢) is a m-coalgebra, then C =P, C, is a n-graded coalgebra with comultiplication
A and counit £ given on the summands by

¢ ifa=1,
C":ZA/}’V and '§|C,{

fr—u 0 if a#1.

4

Let now H =({H,,my,1,},4,¢,.8) be a Hopf n-coalgebra, where = is a finite group.
Then the coalgebra (H, 4,£), defined as above, is a Hopf algebra with multiplication
rir, unit element 1, and antipode S given by

m, ifa=p _ R
mm@mz{ . =1, and §=) 5,
O if o 7é ﬁa 1sy4 aen
When H is of finite type and 7 is finite, the Hopf algebra H* (see Section 1.3.4) is
simply the dual Hopf algebra A .

Remark 1.3. When 7 is finite, the structure of n-comodules over a m-coalgebra C
(Theorem 2.2), the existence of =m-integrals for a finite type Hopf n-coalgebra H
(Theorem 3.6) and their relations with the distinguished n-group-like element (The-
orem 4.2) can be deduced from the classical theory of coalgebras and Hopf algebras
by using C or A (defined as in Section 1.3.5). Nevertheless, for the general case,
self-contained proofs must be given.

In general, the results relating to a quasitriangular Hopf n-coalgebra (see Sections 6
and 7) cannot be deduced from the classical theory of quasitriangular Hopf algebras.
Indeed, even if = is finite, an R-matrix for a Hopf m-coalgebra H (whose definition
involves an action of 7, see Section 6.2) does not necessarily lead to a usual R-matrix
for the Hopf algebra .

2. Modules and comodules
In this section, we introduce and discuss the notions of 7-comodules, rational 7-graded

modules, and Hopf n-comodules. They are used in Section 3 to show the existence of
integrals.
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2.1. m-comodules

Let C=({C,},4,¢) be a m-coalgebra. A right mn-comodule over C is a family
M ={M,}scr of k-spaces endowed with a family p={p,p:M,s — M, ® Cp}s pen
of k-linear maps (the structure maps) such that

for any o, 5,7 € 7,

(pa,ﬁ (29 idC», )pocﬁ,"/ = (idM1 ® Aﬁ.”/)pa,ﬁya (2.1)

for any a € m, (idy, ® €)pq,1 =1dyy,. (2.2)

Note that M; endowed with the structure map p;; is a (usual) right comodule over
the coalgebra C.

If 7 is finite and C = &X,cx Ca 1s the m-graded coalgebra defined as in Section 1.3.5,
then M leads to a 7-graded right comodule M =), .. M, over C with comodule map
ﬁ:Za,/jen Pap (see [10]).

A m-subcomodule of M is a family N = {N,},c., where N, is a k-subspace of M,,
such that p, g(N,s) C N, ® Cp for all «, f € n. Then N is a right n-comodule over C
with induced structure maps.

A m-comodule morphism between two right n-comodules M and M’ over C (with
structure maps p and p’) is a family f={f,: M, — M_,},c. of k-linear maps such
that p; ; foup = (f> ®idc, )psp for all o, f € m.

Sweedler’s notation. We extend the notation of Section 1.1 by setting, for any o, f € n
and m € M,g,

P, p(m) =m0y @ m1 gy € My ® Cg.

Axiom (2.1) gives that, for any o, f,y € and m € M,,,

M0,46)(0,2) @ M(0,0p)(L, ) @ M(1,y) = M(0,2) & M(1,py)(1,5) & M(1,py)2.7)-

This element of M, ® Cp ® C, is written as mo,,) @ m1,p) @ M(2,5). By iterating the
procedure, we define inductively mg o) @ M(1,0) ® - - - @ M.,y fOr any m € My y,...q,.

Let N ={N,}ycr be a m-subcomodule of a right n-comodule M ={M,},c, over a
n-coalgebra C. One easily checks that M/N = {M,/N,},cr is a right n-comodule over
C, with structure maps naturally induced from the structure maps of M. Moreover,
this is the unique structure of a right n-comodule over C on M/N which makes the
canonical projection p={p,: M, — M,/N,}scr a n-comodule morphism.

If ' ={fu: My — M}}scr is a T-comodule morphism between two right 7-comodules
M and M, then ker(f) = {ker(fy)}uer is @ m-subcomodule of M, f(M)={f.(M,)}secn
is a m-subcomodule of M’, and the canonical isomorphism f ={f  :M,/ker(f,) —
fo(M)}sen is @ m-comodule isomorphism.
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Example 2.1. Let H be a Hopf n-coalgebra and M ={M,},c, be a right n-comodule
over H with structure maps p={p, g}, pecr. The coinvariants of H on M are the
elements of the k-space

{m =(my)yer € HM“ | po, p(myp) =my @ 1p for all o, f € n} .
aen

For any a €7, let M be the image of the (canonical) projection of this set onto

M,. It is easy to verify that M = {M°H}, . is a right n-subcomodule of M, called

the m-subcomodule of coinvariants.

2.2. Rational n-graded modules

Throughout this subsection, C =({C,},4,¢) will denote a m-coalgebra and C*=
X ,er Cy its dual n-graded algebra (see Section 1.2). In this subsection we explore the
relationships between right m-comodules over C and m-graded left C*-modules.

Let M =P, M, be a n-graded left C*-module with action y:C* ® M — M. Set
M,=M,-. For any o, § € , define

P i Moy — Homy (Cj,My) by pog(m)(f)=y(f @ m). (2.3)
There is a natural embedding
M, ® Cg — Homy(C5,M,) m®@c— (f— f(c)m).

Regard this embedding as inclusion, so that M, ® Cpg C Homk(C/}‘,A;[ «). The m-graded
left C*-module M is said to be rational provided p, s(M,5) C M,®Cy for all o, f € 7.
In this case, the restriction of p, g onto M,® Cy will also be denoted by

pa”/;IMxﬁ —>M“®Cﬁ. (2.4)

The definition given here generalizes that of a rational n-graded left module given in
[10] and agrees with it when = is finite.
The next theorem generalizes [10, Theorem 6.3; 17, Theorem 2.1.3].

Theorem 2.2. Let C be a n-coalgebra. Then

(a) There is a one-to-one correspondence between (isomorphic classes of) right m-
comodules over C and (isomorphic classes of) rational n-graded left C*-
modules.

(b) Every graded submodule of a rational n-graded left C*-module is rational.

(c) Any n-graded left C*-module L=, , L, has a unique maximal rational graded
submodule, noted L™, which is equal to the sum of all rational graded sub-
modules of L. Moreover, if p={pyp}tspen is defined as in (2.3), then (L™'), =

s per p;},(L_“ ® Cg) for any y €.
=y

Before proving the theorem, we needs two lemmas. Recall that a left module M over
a m-graded algebra 4=Q), .. A4, is graded if M admits a decomposition as a direct

uEn
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sum of k-spaces M =), ., M, such that A,My C M, for all o, f € n. A submodule
N of M is graded if N =@),..(N N M,). The quotient M/N is then a left n-graded
A-module by setting (M/N), =(M, + N)/N for all o € n. This is the unique structure
of a m-graded A-module on M/N which makes the canonical projection M — M/N a
graded A-morphism.

Let M ={M,},c. be a family of k-spaces and p={p, p: M,p — M, @ Cp}, pcx be a
family of k-linear maps. Set M = D.c. M,, where M, =M, . Let Y, C* QM — M
be the k-linear map defined on the summands by

- ey ®ppp-1

C:@Mp

Ty, ®idc,

SCraMyp®C,
- . idyz,, ®C) _ -
— My ® G, ®COC—)M1/3 ®k = My,
where (,) denotes the natural pairing between C; and C,.

Lemma 2.3. (M, p) is a right n-comodule over C if and only if (M, V,) is a n-graded
left C*-module.

Proof. Suppose that (M, p) is a right n-comodule over C. Firstly, for any m € M,,
Vp(e ® m)=m ,—1ye(m(1,1y) =m, by (2.2). Secondly, for any f€Cj, g€ Cp, and
meM,,

Uo(fg @ m)=m pp-1)S9(M1,0p))
= mo,(upy)-1).S (M(1,0))9(M2,py)
= (f @ meo,(ppy-19(mq1,p)))

= (/@ Yp(g @ m)).

Moreover, by construction, y,(C; ®]\;[/;) - M“/g for any o, f € . Hence (M, Y,) is a
n-graded left C*-module.

Conversely, suppose that (M, Y,) is a left m-graded C*-module. Axiom (2.2) is
satisfied since (idy, ® €)py,1(m) =y,(e @ m)=m for all w € = and m € M, =M,-1. To
show that axiom (2.1) is satisfied, let o, f,7 € w and m € M,p,. Set

0=(pop® idC;; )0ap,(m) — (i, ® Ap)py,py(m) € My ® Cp @ C,.

Suppose that 6 #0. Then there exists F € (M, ® Cg ® C,)* such that F(6)#0. Now
M;® C/}‘ ® C; is dense in the linear topological space (M, ® Cp ® C,)* endowed with
the (M, ® Cy @ C,)-topology (see [1, p. 70]). Thus (M7 ® C; & CJ) N (F + o) £,
where o+ ={f €M, ® Cy ® C,)*| f(5)=0}. Then there exists G M, @ Cj; ® C;
such that G(9) #0. Now for all /€M, g€ Cy, and he 7,

(f @9 @h)(pap @idc,)paupy(m) = f o Yy(g @ Yp(h @ m))
= oYp(gh©m)

=(f®g9g® h)(idMa & Aﬁ,"/)poc,ﬂy(m)a
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ie, (f®g®h)(0)=0. Therefore G(5) =0, which is a contradiction. We conclude that
0 =0 and then (p,, s®idc,)pup,, = (idy, @ 4p,,)p., p,- Hence (M, p) is a right n-comodule
over C. [

Lemma 2.4. Let (M =Q),., M, ) be a rational n-graded left C*-module. Then
M ={M}ycr, endowed with the structure maps p=/{p, p}spcr defined by (2.4), is
a right n-comodule over C.

Proof. Let xp,,.C* ® M — M be the map defined as in Lemma 2.3. It is easy to

verify that (M, lﬁp) (M, ). Thus (M Y,) is a m-graded left C*-module and hence, by
Lemma 2.3, (M, p) is a right m-comodule over C. [J

Proof of Theorem 2.2. Part (a) follows directly from Lemmas 2.3 and 2.4. To show
part (b), let N be a graded submodule of a rational n-graded left C*-module (M, ).
Let pyp :1\-113 — Homk(C;,]\-fa) defined by p, g(m)(f) =y(f @m). Suppose that there
exist o, f € and n € N,p such that p, g(n) € N, ® Cp. Since M is rational, we can
write py p(n)= Zf‘:l nRcEM,® Cp. Without loss of generality, we can assume that
the ¢; are k-linearly independent and n, & N,. Let f € Cj such that f(c;)=1 and
f(ci)=0 for i = 2. Now Y(f ®@n)= Zf:l ni f(¢;)=ny & N,=N,-1, contradicting the
fact that N is a graded submodule of M. Thus pa,ﬁ(l\_/x[;) CN,® Cp for all o, fem.
Hence N is rational.

Let us show part (c). Denote by - the left action of C* on L. Set L,=L,~1 and
P Lyp — Homy (Cj, Ly) given by p, p(m)(f) = f-m. Recall L, ® Cy can be viewed
as a subspace of Homy(Cj,L,) via the embedding L, ® Cy — Homy(Cj,L,) given
by m® ¢ — (f — f(c)m). Define M, = ﬂ“ﬁ:y,l p;’;;(L_a ® Cp) for any yem, and set
M=, M, Fix o, fen, f€C;, and meMg. Let u,ven such that uv=(af)~".
We can write p,, ,(m)= Zf:l I; @ ¢c; €L, ® Cyy. Now, for any g € Cy,

k k
g-(f-m)=(gf)-m=>gf(c)li=>_ g(f(Ciamn)eirn)l:-
i=1 i=1

Then p,o(f - m)=3"4 li ® f(Cizo)eit.o) €L, @ C, and so f - me py ML, @ Cp).
Hence f-me ﬂuv:(aﬁ),l p;é(Lu ® Cy)=M,p. Therefore M is a graded submodule of
L. Moreover one easily checks at this point that p,, [;(A;I ap) C M, ® Cp for any o, f§ in
n. Thus M is rational.

Suppose now that N is another rational graded submodule of L and denoted by
0 ={04p}upen its corresponding m-comodule structure maps (see Lemma 2.4). Let
y€n and o, f€n such that of =7~'. By the definition of p, s and g, and of the
embedding N, ® Cy C L,® Cp C Homk(Cﬂ,L ), it follows that p, gy = 0up : Nap —
N, ® Cp. Thus p, g(N,) = Qa’/g(Naﬂ) C N, ®Cp C LMX)C/;, and so N, C pa,ﬁ(L“®C/g).
This holds for all o, f€mn such that aff =y~ Thus N, C 45—, 1 p, s(Ls ® Cp) =M,
for any yen. Hence N C M. Therefore M is the unique maximal rational graded
submodule of L and is the sum of all rational graded submodules of L. [
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Wap Pap

M,p @ Hyp M, M, ® Hg
Poup A0, Va@mpg

Ma®Hp®Ha®Hﬁ —_— Ma®H1®H/3®Hﬁ
lde®¢TH/;.H,®1dH/1

Fig. 1. Compatibility of the structure maps of a right Hopf n-comodule.

Remark 2.5. It follows from Lemma 2.4 and Theorem 2.2(c) that a unique “maximal”
right m-comodule (M™') over a n-coalgebra C can be associated to any n-graded left
C*-module M.

2.3. Hopf m-comodules

In this subsection, we introduce and discuss the notion of a Hopf m-comodule.
Let H = ({Hy,my, 1,},4,¢,5) be a Hopf n-coalgebra. A right Hopf n-comodule over
H is a right m-comodule M = {M,, },c, over H such that

M, is a right H,-module for any o € 7. (2.5)

Let us denote by ¥, : M, ® H, — H, the right action of H, on M,
and by p={p, g}« per the m-comodule maps of M. These structures
are required to be compatible in the sense that, for any o, f € 7, the
diagram of Fig. 1 is commutative. (2.6)
When =1, one recovers the definition of a Hopf module (see [9]).

Note that axiom (2.6) means that p, g: M, — M, ®Hp is H,g-linear, where M, ® Hg
is endowed with the right H,z-module structure given by

(m®h)-a=y,(m® agq,q) @ hag,p).

A Hopf n-subcomodule of M is a m-subcomodule N ={N,}yc, of M such that N,
is a H,-submodule of M, for any o € n. Then N is a right Hopf n-comodule over H.

A Hopf m-comodule morphism between two right Hopf m-comodules M and M’ is
a m-comodule morphism f ={fy: M, — M,}4c, between M and M’ such that f, is
H,-linear for any o € 7.

Example 2.6. Let H ={H,},c. be a Hopf n-coalgebra and M = {M, },c, be a right
n-comodule over H, with structure maps p={p, p}spcr. For any acm, set (M ®
H), =M, ® H,. The multiplication in H, induces a structure of a right H,-module
on (M ® H), by setting (m ® h)<a=m ® ha. Define the n-comodule structure maps
Cop:(M @H)yp — (M @ H), ® Hy by

Eup(m @ h) =m,) @ ha1,) @ ma, pyhe, p)-

Here we write as usual p, g(m)=mo,x) @m(,py and A, g(h) = h(1,.) @ ko, p). One easily
verifies that M @ H = {(M ® H ), } s is a right Hopf n-comodule over H, called trivial.
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In the next theorem, we show that a Hopf m-comodule can be canonically decom-
posed. This generalizes the fundamental theorem of Hopf modules (see [9, Propo-
sition 1]).

Theorem 2.7. Let H be a Hopf n-coalgebra and M be a right Hopf n-comodule over
H. Consider the m-subcomodule of coinvariants M of M (see Example 2.1) and
the trivial right Hopf n-comodule M @ H (see Example 2.6). Then there exists a
Hopf n-comodule isomorphism M = M7 @ H.

Proof. We will denote by - (resp. <) the right action of H, on M, (resp. on (M @
H),) and by p={pyptsper (resp. E={&, p}uper) the m-comodule structure maps
of M (resp. of M®°¥ @ H). For any a € n, define P,:M; — M, by Py(m)=m,y
Sy-1(m(1 4—1y). Remark first that, for any m € My, (P,(m)),er is a coinvariant of / on
M. Indeed, for all o, f €,

Pop(Pop(m))

= P p(10,2) * Stopy =1 (M1 ap)—1)))

= P p(m0,5p)) - Ao pS(apy-1(M(1,ap)-1)) by (2.6)

=m(0,2) - Sy—1(m3,5-1y) @ m1 ) Sp-1(m g-1y) by Lemma 1.1(c)

=m0,y * Su—1 (&(m(1,1))M(2,5-1)) @ 15 by (1.5)

=m,q) - Sy-1(mq 1)) ® 1g by (1.2)

=P,(m)® lg.
For any o € , define f,: (M7 ®H), — M, by f(m®h)=m-h. Then f, is H,-linear
since f,(m®@h)-a=(m-h)-a=m-ha= f,(m®h)<a) for all me€ M and h,a € H,.

Moreover (f, ® idg, )&, p = papfap for all o, f € n. Indeed let m EM;EH and h € H,p.

By the definition of M:EH , there exists a coinvariant (m,),c, of H on M such that

m=mgp. In particular p, g(m)=m, ® 1g. Thus,

(fo @1dy, )op(m @ h) =my - h1.0) @ he,p)
= pa,[f(m) : Aoc,ﬁ(h)
= pa,p(m - h) by (2.6)
= o p(fap(m @ h)).
Then f={f,}uer:M°? @ H — M is a Hopf m-comodule morphism. To show

that f is an isomorphism, we construct its inverse. For any o € 7, define g,: M, —
(M°H QH), by gy, =(Py®idy,)p1,,. The map g, is well-defined since (P,(m)),e, is a
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coinvariant of H on M for all m € M|, and is H,-linear since, for any x € M, and
acH,,

Jo(x - a) = (P, @ idpy, )p1,4(x - @)
= Py(x0.1) - a,1)) @ X(1,1)@2.4) by (2.6)
= (X(0,2) " A(1,0)) * Sa1(X(1,0-1)A2,4-1)) @ X2,a3.4) by (2.6)
=X(0,2) * (A(1,)82-1(A2,6-1))S5=1 (X(1,6-1))) @ X(2,0)a(3,2)
=X(0,2) * Su—1(X(1,4-1)) @ X.mé(aq,1))a@a by (1.5)
=X(0,2) " Su-1(X(1,4-1)) @ X2.ma by (1.2)
=gu(x) <a.
Moreover (g, ® idu, )Py, p = Cy pgap for all o, f € n. Indeed, for any x € M,y,
o, p(gup(x)) = Co p(Pap(x(0,1)) @ X(1,25))
= Pup(X0.1))(0.0) @ X(1,ap)(1.2) @ Pap(X(1,1))(1.p)X(1.ap)2. )5
and so, since (P,(x(0,1))),yex 1S a m-coinvariant of H on M,
Cap(gap(x)) = PulX(0.1)) @ X(1,0) @ X(2,p)
= ga(X(0,0)) @ X(1,p)
= (gx ® idpy, ) s, p(x).

Thus g ={gy}sen: M — M @ H is a Hopf n-comodule morphism. It remains now
to verify that g, f, =idyewngn), and f.g, =idy, for any a€n. Let meMPH and
h € H,. By the definition of M/, there exists a coinvariant (m,),c, of H on M such
that m =m,. In particular, p; ,(m)=m; ® 1, and Py(m;)=my-S,—1(1,-1)=m-1,=m.
Then

YoS oa(m @ h) = go(m - h)
=g,(m)<h since g, is H,-linear
= (Py(m) ® 1;) <h
=m® h.
Finally, for all x € M,,
Sa9a(x) = (X(0,0) * S 1(X(1,0-1))) * X2,
=X(0,0) * (Su=1(X(1,0-1) X2,0))
=X(0,.08(x(1,1)) - 1o by (1.5)
=x by (2.2).

Hence g= f~! and f and ¢ are Hopf n-comodule isomorphisms. [J
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3. Existence and uniqueness of n-integrals

In this section, we introduce and discuss the notion of a m-integral for a Hopf
n-coalgebra. In particular, by generalizing the arguments of [17, Section 5], we show
that, in the finite type case, the space of left (resp. right) =-integrals is one
dimensional.

3.1. m-integrals

We first recall that a left (resp. right) integral for a Hopf algebra (4, 4,¢,5) is an
element 4 € A4 such that xA=¢g(x)A (resp. Ax=¢(x)A) for all x€ 4. A left (resp.
right) integral for the dual Hopf algebra A* is a k-linear form 1€ 4* verifying (f ®
MNA= f(14)A (resp. (A ® f)Ad= f(14)A) for all f€A* Let us extend this notion to
the setting of a Hopf n-coalgebra.

Let H =({H,,my, 1,},4,¢,5) be a Hopf n-coalgebra. A left (resp. right) m-integral
for H is a family of k-linear forms A= (1y)ser € [[,c, H; such that, for all «,f € m,

(idu, ® Ap)Aup=ruply  (resp. (Ay ® idpy) Ay p = Aoplp). 3.1)

Note that 4 is a usual left (resp. right) integral for the Hopf algebra H;".

If we use the multiplication of the dual n-graded algebra H* of H (see Section 1.2),
we have that 1= (4y)sex €[], H, is a left (resp. right) n-integral for A if and only
if, for all o, f €m and f € H, (resp. geHy),

f’lli = f(lo:))w/)’ (resp. )*ag:g(loc)/ldﬁ)'

A m-integral /= (Zy).en for H is said to be non-zero if 15 #0 for some <.

Lemma 3.1. Let 2= (Ay)uer be a non-zero left (resp. right) n-integral for H. Then
Ay #0 for all o€ such that H,#0. In particular A, #0.

Proof. Let /.= (/,).cr be a left n-integral for A such that ig#0 for some € and
let « €  with H, # 0. Then Hp,—1 # 0 (by Corollary 1.2) and so 14,1 # 0. Using (3.1),
we have that (idHﬁrl ® Ay)Apy—1,4 = Aplp,—1 #0. Hence 4, # 0. The right case can be
done similarly. [

Remark 3.2. Let H be a finite type Hopf n-coalgebra. Consider the Hopf algebra H*
dual to H (see Section 1.3.4). If H,=0 for all but a finite number of o € x, then
2= (Ao)uen € [, Hy is a left (resp. right) m-integral for A if and only if > _ 4,
is a left (resp. right) integral for H*. If H,# 0 for infinitely many o € &, then H* is
infinite dimensional and thus does not have any non-zero left or right integral (see
[18]). Nevertheless we show in the next subsection that H always has a non-zero
n-integral.
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3.2. The space of m-integrals is one dimensional

It is known (see [17, Corollary 5.1.6]) that the space of left (resp. right) integrals for
a finite-dimensional Hopf algebra is one dimensional. In this subsection, we generalize
this result to finite type Hopf m-coalgebras.

Let H={H,}scr be a Hopf m-coalgebra (not necessarily of finite type). The dual
n-graded algebra H* of H (see Section 1.2) is a n-graded left H*-module via left multi-
plication. Let (H*)™ be its maximal rational n-graded submodule (see
Theorem 2.2(c)). Denote by H"=(H*)™ ={H]},c, the right n-comodule over H
which corresponds to it by Lemma 2.4. Recall that A C H} , for any a€n. The
n-comodule structure maps of H® will be denoted by p={ps p}s per-

Lemma 3.3. Let /= (Ay)ucn €[], H,. Then J is a left n-integral for H if and only
if (Ay=1)yer is a coinvariant of H on H® (see Example 2.1).

Proof. Suppose that 1 is a left m-integral for H. Fix ye€mn. Let o, €n such that
af=7. We have that p, g(4,—1)=4,—1 @ lg €H; ® Hy since Sfhy1=f(15)y—1 for
all /€ Hg. Therefore Ay € ﬂaﬁ:y p;/lj(H; ®H/g):(H*);aﬁ, =H}, see Theorem 2.2(c).
Hence, since py p(Ayp)-1) =4y @ 1g for all o, B €n, (441 )ser is @ coinvariant of H
on H". Conversely, suppose that (1,-1),c, is a coinvariant of H on H". Let o, € 7.
Then pp)-1,4(Ag) =2op @ 1y, 1€, fAg= f(1,)dyp for all f € H;. Hence / is a left
n-integral for H. [

For all o € n, we define a right H,-module structure on H} by setting

(f — a)(x) = f(xS.(a))
for any f€H,, acH,, and x € H,-.

Lemma 3.4. H" is a right Hopf n-comodule over H.

Proof. Let us first show that for any o, f €7, feHgﬂ, acH,g, and g€ Hy,

9(f — @)= fo.n — aq.n(9. fa.paep), (3.2)
where (, ) denotes the natural pairing between H, ; and Hg. Remark first that
Ly @ Syp(a) = ela@, )1 @ Sapac.ap)) by (1.2)
= Sp-1(a@.p-1))ai,p) © Suplac,ap)) by (1.5)
= Suaq.)a.pac.p @ Sua.x)e,up-1) by Lemma 1.1(c)
Then, for all x € H,-1,
X(1,p) @ X2, (ap)-1)Sup(a)
=X, Su(a(1,2))1, a2, ) @ X2, p)~H)Su(A(1,m)2.@p)1)
= (xSu(ac,0))a.pac.p © (Suaa,o))eep-1 by (1.4)
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and so
9(f — a)(x) = (g xa.p) ([ — a:X@,ap)-1))
= (9:x1,p)) (S s X2 (ap)~1ySup(@))
= (9, (xSu(aq.))a.pae.p) (S (®Sx(aq.m))e,ep—1)

=((a@.p) — 9)f) — a@,«(x),

where — is the left Hg-action on Hj defined by (b — [)(y)=1[(yb) for any leHy
and b, y € Hg. Then

g(f —a)=(axp — 9)f) — aq,»
=(fo.nlaap — 9, fu.p)) — au.x by definition of p, s

=S — aqx {9 fa.paa.p)
and hence (3.2) is proved.

Recall that the m-comodule structure map p, s of H*° is, via the natural embedding
HZ ® Hy C Hf ® Hp — Homy(H;,H}), the restriction onto H; ® Hy of the map
Eap Hy, — Hom]k(H/}‘,Hia*) defined by &, 4(f)(g)=gf. Let yen. By (3.2), we have
that, for any o, f € such that af =y, f € H}, and a € H,,

Ep(f —a)= flom) — ata) @ fpap € (Hy — au,q) @ Hp C Hf ® Hpg.

Therefore, by Theorem 2.2(c), f — a€(),,_, {‘;;f(Hi; ® Cp)=H;. Hence the ac-
tion of H, on H; is well-defined. This is a right action because S, is unitary and
anti-multiplicative (see Lemma 1.1). Finally, axiom (2.6) is satisfied since (3.2) says
that px,ﬂ(f — a):f((),a) — a(1,0) ® f(l,ﬁ)a(z,/;) for any o, f €, fEHEﬁ, and aEHxﬁ.
Thus H" is a right Hopf n-comodule over H. [

By Theorem 2.7, the Hopf m-comodule H" is isomorphic to the Hopf n-comodule
(H®°" @ H. Let f={f,:(H)®" @ H, — HS},e. be the right Hopf n-comodule
isomorphism between them as in the proof Theorem 2.7. Recall that f,(m®@h)=m — h
for any a €, me (H*)®", and h€ H,.

Lemma 3.5. If there exists a non-zero left m-integral for H, then S, is injective for
all o €.

Proof. Suppose that 2 = (1, )secr i a non-zero left n-integral for H. Let o € 7. If H, =0,
then the result is obvious. Let us suppose that H, # 0. Then H,-1 # 0 by Corollary 1.2
and so A,-1#0 (by Lemma 3.1). Let A€ H, such that S,(4)=0. By Lemma 3.3,
Sy €HFPH Now f,(Ay1 @ h)= Ay — h=0 (since S,(h)=0). Thus 1,1 @ h=0
(since f, is an isomorphism) and so A=0 (since A,—1 #0). [

Theorem 3.6. Let H be a finite type Hopf n-coalgebra. Then the space of left (resp.
right) m-integrals for H is one dimensional.
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Proof. For any o, i € m, since H is of finite type and H; = H*_,, we have that dim 7} ®
Hp =dim Homk(H/}‘,H;) < + oo. Therefore, the natural embedding H} ® Hg —
Homy (Hg,Hy) is an isomorphism. Thus /™ is a rational n-graded H*-module (see
Section 2.2) and so H; = H_, for all o € n. Now dim(H");°# =1 since (H")S* 7 @H, =
HY, dimH; =dim H] < + oo, and dim H, #0 (by Corollary 1.2). Hence there exists
a m-coinvariant (Y, ),c, of H on H" such that Yy #0. Set A, =,—1 for any o € n. By
Lemma 3.3, /= (Ay)ucr is a left m-integral for H. Moreover 1; =y; #0 and so 1 is
non-zero.

Suppose now that é =(Jy)ser is another left m-integral for H. Let o € © such that
H,#0. By Lemma 3.5, S, and S,-: are injective (since there exists a non-zero left
integral for H) and so dim H, = dim H,1. Therefore, dim(H")°!" =1 since (H°)*° @
H, = H? and 0+ dim H, =dim H? < + co. Now A,-1,0,1 € (H®)®°" by Lemma 3.3
and 4,-1#0 (by Lemma 3.1). Hence there exists k, €k such that 6,1 =k,A,—1. If
o € is such that H, # 0, then

k21, =011,= (idHa( ® 50(*1 )Aoc,of‘ :koc(iqu ® /lafl )Aoc,oc*1 =ky11y,

and thus k, =k, (since 4; #0 and 1,#0). If o € 7 is such that H, =0, then J, =0= 4,
and so J, =k /,. Hence we can conclude that ¢ is a scalar multiple of A.

To show the existence and the uniqueness of right m-integrals for H, it suffices to
consider the opposite and coopposite Hopf n-coalgebra H°*“P to H (see Section 1.3.3).
Indeed A= (Ay)uen €[] e, H; is a right n-integral for A if and only if (1,-1)yer is a
left m-integral for H°>°P. This completes the proof of the theorem. [

Corollary 3.7. Let H={H,},c. be a finite type Hopf m-coalgebra. Then

(a) The antipode S ={S,}secr of H is bijective.

(b) Let acn. Then H} is a free left (resp. right) H,-module for the action defined,
for any f€H} and a,x € H,, by

(a—= [)x)=f(xa) (resp. (f — a)(x)= f(ax)).

Its rank is 1 if H,#0 and O otherwise. Moreover, if A= (Ag)pen is a non-zero
left (resp. right) m-integral for H, then A, is a basis vector for H}.

Proof. To show part (a), let o € . By Lemma 3.5 and Theorem 3.6, S, : H, — H,-
and S,-1:H,-1 — H, are injective. Thus dim H, =dim H,-: and so S, is bijective. To
show part (b), let 2 =(4y)secr be a non-zero left m-integral for H and fix xen. If
H, =0, then the result is obvious. Let us suppose that i, # 0. Recall that H]_, = H}
and f,1: (H*)°" @ H, — H} defined by f®@h — S,-1(h) — f is an isomorphism.
Since 0# A, € (H*)®°H, dim(H*)*° =1, and S, is bijective, the map H, — H}
defined by 4 +— h — A, is an isomorphism. Thus (H;,—) is a free left H,-module of
rank 1 with vector basis 4,. Using H°PP (see Section 1.3.3), one easily deduces the
right case. [J
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4. The distinguished n-grouplike element

In this section, we extend the notion of a grouplike element of a Hopf algebra to
the setting of a Hopf n-coalgebra. We show that a w-grouplike element is distinguished
in a finite type Hopf m-coalgebra and we study its relations with the m-integrals. As a
corollary, for any o € n of finite order, we give an upper bound for the (finite) order
of S,-18,.

4.1. m-grouplike elements

A n-grouplike element of a Hopf m-coalgebra H is a family g =(g.)uer € [[,c, Hx
such that 4, g(g.p) =g ® gp for any o, B and &(g;) = 1) (or equivalently g; #0).
Note that g; is then a (usual) grouplike element of the Hopf algebra H;.

One easily checks that the set G(H) of m-grouplike elements of H is a group
(with respect to the multiplication and unit of the product monoid [] . H,) and if
9= (9x)uen € G(H), then g=' =(S,-1(gs—1))uer-

We remark that the group Hom(w,k*) acts on G(H) by ¢g=(¢(%)gy)sen for any
9=(gx)ser € G(H) and ¢ € Hom(m, k™).

uEn

Lemma 4.1. Let H be a finite type Hopf m-coalgebra. Then there exists a unique
n-grouplike element g = (g, )uer of H such that (idy, ® /)A. p = Zupgs for any right
n-integral .= Ay )acr and all o, f € 7.

The =n-grouplike element g=(g,)scr Of the previous lemma is called the distin-
guished n-grouplike element of H. Note that g, is the (usual) distinguished grouplike
element of the Hopf algebra H;.

Proof. Let 4= (Zy)sex be a non-zero right n-integral for /. Let y € n. For any ¢ € H,
(¢Zy-14)uen is a right n-integral for H and thus, by Theorem 3.6, there exists a unique
ky €k such that ¢i,-1, =k,4, for all a €m. Now (¢ — ko) € H* = H, (dimH, < +
00). Therefore, there exists a unique g, € H, such that 4,1, = ¢@(g,)4, for any a€n
and @ € HS. Then @ig=(gy)i,p for any a,f€n and ¢ € H; and hence (idy, ®
/) A5 p = Aupgy for all o, fcm. Let o, f€m. If Hyp=0, then either H,=0 or Hy=0
(by Corollary 1.2) and so 4, 4(gup) =0=g, @ gg. If H,p#0, then, for any ¢ € H;
and € Hg, kpylap = (QY) 1 = (Y1) = ky@lp = kyky iyp and thus k,y =k,ky (since
/op 70 by Lemma 3.1), that is 4, g(g.p) = g.®@gp. Moreover &(g)A1 = (e®41)A1,1 =4
and so &(g;)=1 (since 1y #0 by Lemma 3.1). Then g=(g,)secr is a m-grouplike el-
ement of H. Since all the right m-integrals for H are scalar multiple of 4, the “ex-
istence” part of the lemma is demonstrated. Let us now show the uniqueness of g.
Suppose that &= (h,),c, is another such n-grouplike element of H. Let A= (4y)ycn
be a non-zero right n-integral for H. Fix « € 7. If H, =0, then s, =0=g,. If H, #0,
then A,#0 (by Lemma 3.1) and so there exists a€ H, such that A,(a)=1.
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Therefore ¢, = Ay(a)gy, =(dn, ® A1)4,,1(a)=ly(a)h, =h,. This completes the proof
of the lemma. [J

4.2. The distinguished n-grouplike element and m-integrals

Throughout this subsection, H = {H, },c, will denote a finite type Hopf 7-coalgebra.

Since H; is a finite-dimensional Hopf algebra, there exists (e.g., see [13]) a unique
algebra morphism v: H; — k such that if A is a left integral for H;, then Ax =v(x)A
for all x € H,. This morphism is a grouplike element of the Hopf algebra H;, called
the distinguished grouplike element of H{ . In particular, it is invertible in H;* and its
inverse v~! is also an algebra morphism and verifies that if A is a right integral for
H,, then xA=v"'(x)A for all x € H,.

For all o € m, we define a left and a right H*-action on H, by setting, for any f € H

and a € H,,

S —a=aqnflagr)) and a— f= f(aq1))ac.q.
The next theorem generalizes [15, Theorem 3]. It is used in Section 7 to show the

existence of traces.

Theorem 4.2. Let A= (Ay)uecn be a right m-integral for H, g =g, )xcr be the distin-
guished m-grouplike element of H, and v be the distinguished grouplike element of H .
Then, for any a € and x,y € H,,

(@) Za(xy) = A(Sy-18u(y — v)x);

(b) 7»«(?6)/) = j~oz(yS *‘Sx(vil - g;leac));

(€) Ay=1(Sa(x)) = Ax(garx).

Before proving Theorem 4.2, we establish the following lemma.

Lemma 4.3. Let A= (4y)yer be a right n-integral for H, o€ n, and a € H,.
(a) If A is a right integral for H, such that 2,(A)=1, then

Sot(a):ﬂvot(A(l,a)a)A(Z,aFI)
(b) If A is a left integral for H, such that 1,(A)=1, then
S (@)= Au(aA, ) A1y
Proof. To show part (a), let « €. Define f € H; by f(x)=/A(Aq1,xX)A@,q1) for

any x € H,. If * denotes the product in the convolution algebra Conv(H,H,-1) (see
Section 1.2), then, for any x € H,

(f *idp,_ )x) = Ao A% (1,2)) A1) X201
= 2a((Ax)(1,0) )(AX) 2,51y by (1.4)

= &(x)Aa(A(1,0))A2,5-1y since A is a right integral for H,
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=e&(x)A1(A)1,-1 by (3.1)
=¢g(x)1,-1 since A1(A)=1.

Therefore, since idHr, is invertible in Conv(H, H,-1) with inverse S,, we have that
J =8, that is S,(a) = Ay(A(1,)@)A2,4-1y for all @ € H,. Part (b) can be deduced from
part (a) by using the Hopf n-coalgebra H°P (see Section 1.3.1). [

Proof of Theorem 4.2. We use the same arguments as in the proof of [15, Theorem 3],
even if we cannot use the duality (since the notion a Hopf n-coalgebra is not self-dual).
We can assume that 4 is a non-zero right n-integral (otherwise the result is obvious).
To show part (a), let « € © and x, y € H,. Since 4; is a non-zero right integral for the
Hopf algebra H;", there exists a left integral A for H, such that 4;(A)=4,(S1(4))=1
(cf. [15, Proposition 1]). By Lemma 4.3(b) for a=S,-1S,(y — v), we have that

So((y — V) = )L“(Safle(y — V)A(l,o:))A(sz*l)- (41)

It is easy to verify that (v7'2,),e, is a right m-integral for # and A — v is a right
integral for H; such that (v=';)(4 — v)=1. Thus Lemma 4.3(a) for a=y — v gives
that

Su(y = v) = (" )(A = V)10 (y — ) (4 = V)gum1)
= ("2 (A y) — VA1) by (14)
=2o(((A1,0p) — V) — v DA,
= a((A1,0y) — €)A2,01)

= oA, ) ¥)A2,0-1y by (1.2).

Hence, by comparing with (4.1), we obtain that
/IQ(A(l,“)y)A(Z’OFl) = /LI(S 7150(()/ — V)A(l,a))/l(z’xfl). (42)

cop

Now (2,8,-1),er is a right m-integral for H°? and A is a left integral for H,
such that (415))(4)= 1. Thus, applying Lemma 4.3(b) for a=S, !, (x) € H,"”, we have
(552) (S ) = 8,1 (S, () A1) A1, that is

a1
x = A(1,0) A (Sy=1 (A2, q-1) %) 4.3)

Finally, evaluating (4.2) with 4,(S,-1(-)x) and using (4.3) gives that A,(xy)=
Aa(Sy=18:(y — v)x).

To show part (b), let o € & and a,b € H,. For any 7 € m, let us define ¢, € (H,™*")*
by ¢,(x)=24,-1(g,~1x) for all xeH>*”. Using Lemma 4.1, one easily checks that
¢ =(¢P,)yer is a right m-integral for H°»P. Let us denote by x° the multiplica-
tion of H ' and by —P the right action of (H;™*")* on H " defined by
h <P f=(f ®id)A},_(h). Then, since v~! is the distinguished grouplike el-
ement of (H{"*P)*, part (a) with x=g,'b and y=g, 'ag, gives that ¢, (xx°P
D)=yt (STPEPSEP (3 0P 1Y 5P 1) that s Jy(ab)=Iu(bS,1S,(v"" — g5 ' agy)).
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Let us show part (c). For any o € 7, define ¢, € H; by ¢,(x) = A,(g»x) for all x € H,.
Since (¢, )yen and (4,-1S,)yer are left m-integrals for H which are non-zero (because 4
is non-zero, ¢ is invertible and S is bijective), there exists k € k such that ¢, = k4,15,
for all € n (by Theorem 3.6). As above, let A be a left integral for H; such that
A1(A)=21(S1(A)) = 1. Recall that &(g;) = 1. Then 1 = 41(A) = 11(e(g1)A) = A1 (g1 4) =
kA1(S1(A))=k. Hence 1,-1S,= ¢, for all a €, that is A,-1(Sy(x))=1,(g,x) for all
aemn and x € H,. This completes the proof of the theorem. [J

The following corollary will be used later to relate the distinguished grouplike ele-
ment of a finite type quasitriangular Hopf n-coalgebra to the R-matrix.

Corollary 4.4. Let A be a left integral for Hy and g=(gy)ucr be the distinguished
n-grouplike element of H. Then, for all o €T,

A,y @ A, q-1y = Sy—182(A2,0))ga @ A1,54-1y-
Proof. We can suppose that 4 #0. Let o € n. Remark that it suffices to show that, for
all feH;,,

S (A=) A1) = (A a-1))Su-18u(A2,0) )Ga- (4.4)

Fix f€H)_,. Let A= (/;),er be a non-zero right n-integral for H (see Theorem 3.6).
By multiplying A by some (non-zero) scalar, we can assume that 1;(A) = 11(S1(4))=1.
By Corollary 3.7(b), there exists a € H,~1 such that f(x)=/1,-1(ax) for all x€ H,-:.
By Lemma 4.3(b), S,-1(a) = A,—1(ad( 4-1))Sy-18:(A2,4)). Thus

Sy-1(@)g = [ (A1,6-1))S5-18:( A2, )G (4.5)

Since (4,S,-1)yex is a right z-integral for H°P°P and A is a right integral for H™ "
such that (4;8))(4)=1, Lemma 4.3(a) applied to H°PP gives that

S(rl(a) :}vaS“—l(a/l(z’“—l))/l(hm).
Then, by using Theorem 4.2(c), we get

Sa*‘(a)gc( = ;LotSa*‘(aA(Z,a*‘))A(lﬂoc)ga

= /1“_1(g1_1a/1(2’a_1))/1(1,a)ga. (46)

Now, since A is left integral for H,

A,wyda @ A, u-11ga—1 = Aoy y=1(Ag1) = v(g1) A(1,0) @ A2,5-1)-
Therefore,

A,u)Ga @ go—1aAp 41y = A1,0) @ (g1 )grla/l(z,wl)g;—ll
and so, using (4.6) and then Theorem 4.2(a),

Sa—l(ll)go( = ;fol (v(gl )nglaA(Z,o«f')g;—ll )A(l,d)

= ;Lx*l(v(gl )S:szfl(gx_—]l — v)goﬁla/l(lo:*l))/l(l,a)-
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Now S,S,-1(g, — v)=v(g1)"'g;" since g—lz(glylzsﬂfl(g,;q))ﬁen is a 7-

grouplike element and v is an algebra morphism. Thus

Sy-1(a)go = Ay—1(ad (2,01 A0y = f (A1) A1,0)-

Finally, by comparing the last equation with (4.5), we get (4.4). [J

4.3. The order of the antipode

It is known that the order of the antipode of a finite-dimensional Hopf algebra 4 is
finite (by Radford [13, Theorem 1]) and divides 4dim A4 (by Nichols and Zoeller [11,
Proposition 3.1]). Let us apply this result to the setting of a Hopf n-coalgebra.

Let H={H,},cn be a finite-type Hopf n-coalgebra with antipode S = {S,}c,. Let
o €mn of finite order d and denote by (x) the subgroup of m generated by «. By
considering the (finite-dimensional) Hopf algebra ©pc(,yHp (coming from the Hopf
(o)-coalgebra {Hg}pe (s, as in Section 1.3.5), we obtain that the order of S,-1S, €
Autag(H,) is finite and divides 2 Zﬁe ) dim Hp. As a corollary of Theorem 4.2, we
give another upper bound for the order of S,-1S,.

Corollary 4.5. Let H={H,},cx be a finite type Hopf m-coalgebra with antipode
S={S,}ucn- Then

(a) If a€® has a finite order d, then (S,-1S,)*? M =idy .

(b) If a €1 has order 2, then SS9 =idy .

Before proving Corollary 4.5, we establish the following lemma.

Lemma 4.6. Let H be a finite-type Hopf m-coalgebra, g = (gy)ucr be the distin-
guished m-grouplike element of H, and v be the distinguished grouplike element of
Hy. Then (S,-18,)*(x)=gy(v — x — v V)g; ! for all «€n and x € H,.

Proof. Let o €n and x, y € H,. If H,=0, then the result is obvious. Let us suppose
that H, #0. Let A= (4;),ex be a non-zero right n-integral for /. Then

Za(ga(v = x = v g1 y)
= 2u(38,18,(v! — g, g, (v — x — v 1)g,'g,)) by Theorem 4.2(b)
= du(¥S,18,(x — v 1))
= o(Sy=18,(S,=1S,(x — v™') — v)y) by Theorem 4.2(a)
= ia((SrlS“)z(x — oyl v)y) since S,-1S, is comultiplicative
= 2((S18:)(x = €)y)

— (8,18, Y2 (x)y).
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Now, by Corollary 3.7(b), H; is a free right H,-module of rank 1 for the action
defined by (f <a)(x)= f(ax) for any f € H; and a,x € H,, and 4, is a basis vector
of (H;,<). Thus, since the above computation says that

Ay < gu(v — x — vil)g;1 =, < (Sr]S“)2(x),

we conclude that (S,-1S,)?(x)=g,(v — x — v~ g, O

Proof of Corollary 4.5. To show part (a), let « €7 of finite order d. Consider the
distinguished m-grouplike element g=(gy)scr of H and the distinguished grouplike
element v of H{". Using Lemma 4.6, one easily shows by induction that, for all x € H,
and /€N,

(S 18P () = go (v = x — v g, . (4.7)

Recall that the order of a grouplike element of a finite-dimensional Hopf algebra A4 is
finite and divides dim A (see [11, Theorem 2.2]). Therefore g; has a finite order which
divides dim A, and v has a finite order which divides dim /| =dim H;. Now, since
! =1 and (g5 " )per € G(H),

g amt — (gam Ay e (™Y g = Ty - iy = 19 = 1,

Then, for all x € H,, by (4.7),

(S:X—IS“ )211 dim H, (x) — gi dim H, (Vd dim Hy X — v—d dim H, )ga—d dim H,

=l e —x—¢)l,=x

Hence (S,-1S,)*?9m# —idy . Part (b) is part (a) for d =2, since in this case S, is an
endomorphism of H,. [l

5. Semisimplicity and cosemisimplicity

In this section, we define the semisimplicity and the cosemisimplicity for Hopf
n-coalgebras, and we give criteria for a Hopf n-coalgebra to be semisimple (resp.
cosemisimple).

5.1. Semisimple Hopf n-coalgebras

A Hopf n-coalgebra H = {H,},c, is said to be semisimple if each algebra H, is
semisimple.

Note that, since any infinite-dimensional Hopf algebra (over a field) is never semi-
simple (see [18, Corollary 2.7]), a necessary condition for H to be semisimple is that
H; is finite dimensional.

Lemma 5.1. Let H={H,}ycr be a finite type Hopf n-coalgebra. Then H is semisim-
ple if and only if Hy is semisimple.
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Proof. We have to show that if H; is semisimple then H is semisimple. Suppose that
H; is semisimple and fix o € . Since H, is a finite-dimensional algebra, it suffices to
show that all left H,-modules are completely reducible. Thus let M be a left H,-module
and N be a submodule of M. Since H, is a finite-dimensional semisimple Hopf algebra,
there exists a left integral A for H; such that &(A)=1 (cf. [17, Theorem 5.1.8]). Let
p:M — N by any k-linear projection which is the identity on N. Let P: M — N be
the k-linear map defined, for any m € M, by

P(m)=Aq1,0) » p(Sy—1(A@,5-1)) - M),

where - denotes the action of H, on M. The map P is the identify on N since, for
any n€N,

P(n)= A0y - p(Sy-1(A@u-1)) 1) = A0y - (Sy—1(A,q-1y) - 1)
= (A0S~ (A@p,u-1))) - n=2e(A)l, - n=n.
Let 7€ H,. Using (1.2) and the fact that A is a left integral for H;, we have
A,uy @ A,u-1y @ h =4, ,—1(e(h,1))A) @ h2,4)
= Ay 1 (ha,1)A) ® ho,g)

=h,0A(,0) @ hou—1)A2,0-1) @ h )

and so
A,y @ Sy—1 (A, 0-1))
=ha.0A1x) © Sy-1(ho, -1y A20-1))hG.0)
=ha.0A1x) © Su-1(A2,5-1))Sy-1(ho,5-1))hG.0) by Lemma 1.1(c)
= ha,0)e(h, 1) A1,a) @ Sy-1(A@p,-1y)1x by (1.5)
=hAq,) ®S;-1(Aga-1y) by (1.2).
Therefore, for all he H, and me M,
P(h-m)= A,y - p(Sy-1(A@,q-1y))h - m)
=hAq,a) - p(Sy-1(A@,u-1)) -m)=h - P(m).
Hence P is H,-linear and ker P is a H,-supplement of N in M. [J

5.2. Cosemisimple n-comodules and m-coalgebras

Let C be a n-coalgebra and M be a right n-comodule over C. If {N'={N:},c.}ics
is a family of m-subcomodules of M, we define their sum by {}",.; Ni}sen. It is easy
to see that it is a 7-subcomodule of M. We denote it by .., N’. This sum is said
to be direct provided ), ., N is a direct sum for all « € 7. In this case )., N' will
be denoted by @,., N

iel
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A right -comodule M = {M, },c, is said to be simple if it is non-zero (i.e., M, #0
for some a € ) and if it has no 7n-subcomodules other than 0={0},c, and itself.

Lemma 5.2. Let M be a right n-comodule over a n-coalgebra C. The following con-

ditions are equivalent:

(@) M is a sum of a family of simple n-subcomodules;

(b) M is a direct sum of a family of simple n-subcomodules;,

(c) every m-subcomodule N of M is a direct summand, i.e., there exists a m-sub-
comodule N' of M such that M =N & N'.

Proof. Let us show condition (a) = condition (b). Suppose that M =3}, M'is a
sum of simple m-submodules. Let J be a maximal subset of / such that Zje ;M
is direct. Let us show that this sum is in fact equal to M. It suffices to prove that
each M’ (i€1) is contained in this sum. The intersection of our sum with M’ is a
n-subcomodule of M, thus equal to 0 or M’. If it is equal to 0, then J is not maximal
since we can adjoin i to it. Hence M’ is contained in the sum.

To show condition (b) = condition (c), suppose that M =P, ., M “and let N be a
n-subcomodule of M. Let J be a maximal subset of / such that the sum N +EB].G M/
is direct. The same reasoning as before shows this sum is equal to M.

Let us show condition (¢) = condition (a). Let N be the m-subcomodule of M
defined as the sum of all simple m-subcomodules of M. Suppose that M # N. Then
M =N @ F where F is a non-zero n-subcomodule of M. Let us show that there exists
a simple m-subcomodule of F, contradicting the definition of N. By Theorem 2.2(a),
F=@,c,Fy (where F,=F,-1) is a rational n-graded left C*-module which is non-zero.
Let ve F, v#0. The kernel of the morphism of n-graded left C*-modules C* — C*v
is a 7m-graded left ideal J # C*. Therefore, J is contained in a maximal n-graded left
ideal 7 # C* (by Zorn’s lemma). Then //J is a maximal n-graded left C*-submodule
of C*/J (not equal to C*/J), and hence [v is a maximal n-graded C*-submodule of
C*v, not equal to C*v (corresponding to //J under the n-graded isomorphism C*/J —
C*v). Moreover, it is rational since it is a submodule of the rational module £ (see
Theorem 2.2(b)). So we can consider the m-subcomodule v of M (see Lemma 2.4).
Write then M =1Iv @ L where L is n-subcomodule of M. Therefore M =Iv @ L and so
C*v=1Iv®(LNC*v). Now, since /v is a maximal n-graded C*-submodule of C*v (not
equal to C*v), we have that LN C*v is a non-zero n-graded C*-submodule of F which
does not contain any 7n-graded submodule other than 0 and itself. Moreover L N C*v
is rational since it is a m-graded C*-submodule of the rational n-graded C*-module F
(see Theorem 2.2(b)). Finally L N C*v is a simple m-subcomodule of F. [

A right n-comodule satisfying the equivalent conditions of Lemma 5.2 is said to be
cosemisimple. A m-coalgebra is called cosemisimple if it is cosemisimple as a right
n-comodule over itself (with comultiplication as structure maps).

When m=1, one recovers the usual notions of cosemisimple comodules and
coalgebras.
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When = is finite, a m-coalgebra C={C,}yc, is cosemisimple if and only if the
n-graded coalgebra C =@, C. (defined as in Section 3.5) is graded-cosemisimple
(i.e., is a direct sum of simple m-graded right comodules).

Lemma 5.3. Every n-subcomodule or quotient of a cosemisimple right n-comodule is
cosemisimple.

Proof. Let N be a n-subcomodule of a cosemisimple right 7-comodule M. Let F' be the
sum of all simple n-subcomodules of N and write M = F @F’. Therefore N = F®(F'N
N). If F'NN #£0, it contains a simple n-subcomodule (see the demonstration of Lemma
5.2). Thus F'NN =0 and N = F, which is cosemisimple. Now write M = N®N'. N’ is
a sum of simple m-subcomodules (it is a n-subcomodule of M and thus cosemisimple)
and the canonical projection M — M/N induces a m-comodule isomorphism between
N’ onto M/N. Hence M/N is cosemisimple. [J

5.3. Cosemisimple Hopf m-coalgebras

A Hopf n-coalgebra H ={H,}yc, is said to be cosemisimple if it is cosemisimple
as a m-coalgebra. A right n-comodule M ={M,},c, over H is said to be reduced if,
for all « € ©, M, =0 whenever H, =0.

The next theorem is the Hopf n-coalgebra version of the dual Maschke theorem (see
[17, Section 14.0.3]).

Theorem 5.4. Let H be a Hopf n-coalgebra. The following conditions are equivalent:

(a) every reduced right n-comodule over H is cosemisimple;

(b) H is cosemisimple;

(c) there exists a right n-integral A= (Ay)yen for H such that L,(1,)=1 for some
oET;

(d) there exists a right m-integral A= (Ay)yer for H such that 1,(1,)=1 for all e €n
with H, #0.

Proof. Condition (a) implies trivially condition (b). Moreover condition (c) is equiv-
alent to condition (d). Indeed condition (d) implies condition (¢) since H; #0 (by
Corollary 1.2). Conversely, suppose that f € r is such that ig(1z)=1. Let a« € 7 such
that H, #0. Then Z,(1,)13-1,=(Ap @ idHﬁila)Aﬁ,ﬁ—la(la) =Ap(1p)1p-1,=1g-1,. Now
lg-1,# 0 by Corollary 1.2. Hence 4,(1,)=1.

Let us show that condition (b) implies condition (d). Consider H as a right ©-co-
module over itself (with comultiplication as structure maps). For any o € &, set N, =k1,.
Since the comultiplication is unitary, N is a m-subcomodule of H. Therefore N is a
direct summand of H (since H is cosemisimple), that is there exists a m-comodule
morphism p={p,}yer:H — N such that p,|y, =idy, for all € n. For any a €,
since N, =k1,, there exists a (unique) k-form 4, € H such that p,(h)=4,(h)1, for
all h€ H,. Let us verify that 1 =(4,),c, is a right n-integral for H. Let o, f € n. Since
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p is a m-comodule morphism, we have that
la/jla(@ 1/}2111)5[)1[;:()%1%®idHﬁ)Ao(,[;. (51)

If H,=0, then either Hg=0 or H,3 =0 (by Corollary 1.2) and so d,lp=0=(4, ®
idy, ). If H, #0, then there exists f € H; such that f(1,)=1 and, by applying
(f ®idpy, ) to both sides of (5.1), we get that Z,51p= (1, ®1idp, )4, 5. Therefore /1 is a
right w-integral for H. Finally, let « € © such that A, #0. Then 4,(1,)1, = p,(1,) =1,
(since 1,€N,) and so 4,(1,)=1 (since 1,#0).

To show that condition (d) implies condition (a), let M ={M,},c, be a reduced
right m-comodule over H with structure maps by p={pp}tspecx and N ={N,}ucn
be a m-subcomodule of M. We have to show that N is a direct summand of M
(see Lemma 5.2). Define 6, :H,-1 @ H, — k by 0,(x® y) = 2,(S,~1(x)y) for all o € 7.
We first prove that, for any o, 5,7y € 7,

(ids, © O )(Ap oy @ idir,) = (0, @ idy, Nid_, © Ay p). (5.2)
Indeed, for any x € H,-1 and y € H,

(idp, @ 0up ) (A (1py-1 © 1dp, )(x @ ¥)
= X015 Aap(S(ap)=1 (X2, (2p)-1)) V)
=x(1,p) (e @ idp, ) Ay g(Seapy-1 (X2, (2py-11)¥) by (3.1)
=x(1,p)Sp1 (X2, 1)) V2. ) Aa(Ss—1(X3,5-1)) ¥(1,)) by Lemma 1.1(c)
= Y2.p) 2o (Sy—1(€(x(1,1) X (2,0~ 1)) V(1,2)) by (1.5)
= 2o(Sy—1(X)y1,0)¥2.p by (1.2)

= (56{ ® idH/; )(iqu,1 ® Ad,ﬁ)(x ® y)

Let ¢: M; — N; be any k-linear projection which is the identity on N;. Define, for
all aem,

Po= (ide ® 50()(poc,o<*1 0q® ide )pl,oc ‘M, — N,.
For any o, f € 7, using (2.1) and (5.2), we have

Pa, Pop
= pa,p(idn,, ® 05p)(Pup apy—1 © g @ 1dp,,)P1.0p
= (idy, ® idn, © 0up)((Pop @ idp,, — IPsp ap)-1 © 4 @ 1dm,,)P1.0p
=(idy, ® idy, @ dyp)((idn, @ Ag (4p)-1)Psa—1 © ¢ @ idm,,)P1,4p
= (idy, ® (idw; @ 0up ) (A (ap)—1 © 1dp1,,) )N (Pou-1 © q © 1dp,,)P1.0p
=(idy, ® (04 @ idy, )(idy,_, @ Ay p) ) Pso—1 © g @ 1dp,)P1,0p

= (idy, ® 0y @ idp, )(Py,a-1 © ¢ @ idpy, @ idy,)(idy, @ Ay p)p1,ap
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= (idy, ® 95 @ idp, )(Py,0-1 © ¢ @ idy, @ idy, ) (P14 @ idp, )pap

=(px @ idp,)pap-

Thus p={py}sex is a T-comodule morphism between M and N. Let o € = and n € N,
If H, =0, then N, =0 (since M and thus N is reduced) and so p,(n)=0=n. If H, #0,
then

Do) = 1(0,0) 2a(Sy—1 (1 5—1)(2,0))  since gy, =idy,
= n(0,)(n(1,1))4(12) by (1.5)
=n by (2.2) and since A,(1,)=1.

Therefore, ¢ is a m-comodule projection of M onto N and consequently N is a direct
summand of M (namely M =N & ker ¢). This finishes the proof of the theorem. [J

Corollary 5.5. Let H be a Hopf n-coalgebra. Then
(a) if H is cosemisimple, then the Hopf algebra H, is cosemisimple;
(b) if H is of finite type, then H is cosemisimple if and only if Hy is cosemisimple.

Proof. To show part (a), suppose that H is cosemisimple. By Theorem 5.4 and Corol-
lary 1.2, there exists a right m-integral A= (4,),c, for H such that A;(1;)=1. Since
A1 is a right integral for H|" such that 4;(1;)#0, H; is cosemisimple (by Sweedler
[17, Theorem 14.0.3]). Let us show part (b). Suppose that H is of finite type and
H; is cosemisimple. By Sweedler [17, Theorem 14.0.3], there exists a right integral ¢
for H such that ¢(1;)=1. By Theorem 3.6, there exists a non-zero right m-integral
A= (Ay)sen for H. In particular, 4, is a non-zero right integral for H;*. Therefore, since
Hi is a finite dimensional, there exists £ €k such that ¢ =kA; (by Sweedler [17, The-
orem 5.1.6]). Thus (kly),c, 1s a right m-integral for H such that k4;(1;)=1. Hence
H is cosemisimple by Theorem 5.4. [

Corollary 5.6. Let H be a finite-type Hopf n-coalgebra over a field k of characteristic
0. Then H is semisimple if and only if it is cosemisimple.

Proof. By Lemma 5.1, H is semisimple if and only if H; is semisimple, and by
Corollary 5.5(b), H is cosemisimple if and only if H; is cosemisimple. It is then easy
to conclude using the fact that, in characteristic 0, a finite-dimensional Hopf algebra is
semisimple if and only if it is cosemisimple (see [8, Theorem 3.3]). [l

Corollary 5.7. Let H be a finite type cosemisimple Hopf n-coalgebra. If g=1(g,)ucn
is the distinguished m-grouplike element of H, then g=1 in G(H), i.e., g,=1, for all
o € . Consequently, the spaces of left and right n-integrals for H coincide.

Proof. Let o € n. If H, =0, then g,=0=1,. Suppose that H,#0. By Theorem 5.4,
there exists a right m-integral A= (4,),c, for H such that 4,(1,)=1 and A;(1;)=1.
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Then g, = 2,(1,)g, = (idpy, ® A1)4,,1(15) =A41(11)1,=1,. Moreover, by Theorem 3.6
and Lemma 4.1, the spaces of left and right n-integrals for H coincide. [

6. Quasitriangular Hopf n-coalgebras
In this section, we recall the definitions of crossed, quasitriangular, and ribbon Hopf

n-coalgebras given by Turaev [19], and we generalize the main properties of quasitri-
angular Hopf algebras to the setting of Hopf m-coalgebras.

6.1. Crossed Hopf m-coalgebras
Following [19, Section 11.2], a Hopf n-coalgebra H = ({H,},4,¢,S) is said to be

crossed provided it is endowed with a family ¢ = {¢@g:H, — Hg,p-1}s per of k-linear
maps (the crossing) such that

each @p:H, — Hp,p-1 is an algebra isomorphism, (6.1)

each @g preserves the comultiplication, i.e., for all o, f,7 € m,

(0p @ @p) Ay = Apyp—1. pyp—1 P (6.2)
each g preserves the counit, i.e., epp=¢, (6.3)
@ is multiplicative in the sense that @gg = @ppp for all f,p' € n. (6.4)

Lemma 6.1. Let H be a crossed Hopf n-coalgebra with crossing ¢. Then

(@) @iu, =1idy, for all o€ m;

(b) go;l =q@p-1 forall Bem;

(c) @ preserves the antipode, i.e., ¢Sy = Sp,p-1¢p for all o, p € m;

(d) if A= (As)sexr is a left (resp. right) n-integral for H and B € n, then (Ag,p-1 @ )uen
is also a left (resp. right) m-integral for H,

(€) if §=(gu)uen is a m-grouplike element of H and B € n, then (¢g(gp-145))ucn is
also a n-grouplike element of H.

Proof. Parts (a), (b), (d) and (e) follow directly from the axioms of a crossing. To
show part (c¢), let o, f € n. Using the axioms, it is easy to verify that (p/;lSﬁw_l(pﬂ *
idy _, =¢l,-1 in the convolution algebra Conv(H, H,-1) (see Section 1.2). Thus, since
S, is the inverse of idHr1 in Conv(H, H,-1), we have that (pEISﬁ“ﬂ—I(pﬁ:Sa and so
S/iaﬁ—] Pp= (Pﬂsz (|

Corollary 6.2. Let H be a finite type crossed Hopf m-coalgebra with crossing ¢. Then
there exists a unique group homomorphism ¢:n — k* such that if 2= Ay )ucr is @
left or right m-integral for H, then Jg,p—1@p= @(B)iy for all o, fcm.
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Proof. Let A=(A,)ycx be a non-zero left m-integral for H. For any f€m, since
(Apsp-19p)aen is a non-zero left n-integral for H (see Lemma 6.1(d)) and by the
uniqueness (within scalar multiple) of a left n-integral in the finite-type case (see Theo-
rem 3.6), there exists a unique @(f) € k* such that Ag,s-1¢0p = ()4, for all o € 7. Us-
ing (6.4) and Lemma 6.1, one verifies that ¢ : 7 — k* is a group homomorphism. Since
any left m-integral for H is a scalar multiple of A, the result holds for any left n-integral.
Finally, let A =(4,),ecr be a right m-integral for H. Since the antipode is bijective (H is
of finite type), and using Lemma 6.1(d) and the fact that (1,15, ), is a left n-integral
for H, we have that, for all o, B €M, Agp-10p=Agos—1Sp—15-105S, " = P(B)AxS,—
S;ll =@(f)ig. U

Lemma 6.3. Let H be a finite type crossed Hopf m-coalgebra with crossing ¢. Let

¢ be as in Corollary 6.2. Then, for any p e,

(a) if A is a left or right integral for H,, then @g(A)= G(p)A;

(b) if v is the distinguished grouplike element of HY, then vog=v;

(©) if g=(9u)uecn is the distinguished n-grouplike element of H, then @g(gy)=gpp-
for all x €.

Proof. Let us show part (a). Let A4 be a left integral for H;. We can assume that
A#0 (if A=0, then the result is obvious). By Lemma 6.1 and (6.3), x@g(A)=
@p(pp-1(x)A) = @pe@p-1(x)A)=e(x)pg(A) for any x € Hy. Thus ¢g(A) is a left inte-
gral for H;. Therefore, since H; is finite dimensional and A # 0, there exists £ € k such
that @p(A)=kA. Let A= (Jy)ser be a non-zero right m-integral for H. We have that
O(P)r(A)=21(@p(A)) = A1(kA) = k7 (A). Now Ai(A)#0 (because A is a non-zero
left-integral for H, and 4, is a non-zero right integral for H;"). Hence k = ¢(f) and so
@p(A)=@(p)A. It can be shown similarly that the result holds if A is a right integral
for H;.

Let us show part (b). If A is a left integral for H;, then, for all x€ H|, Ax=
051 (@p(A)@p(x)) = P (W @p(x)@p(A)) = vpp(x)A (since py(A) is a left integral
for Hy). Thus, by the uniqueness of the distinguished grouplike element of the Hopf
algebra H", we have that vog=v.

To show part (c), let A=(4y)ser be a right m-integral for /. By Lemma 6.1(d),
(Ap—1ap®p—1 Jucn 1s also a right n-integral for /. Then, for any «,y € 7, using (6.2) and
Lemmas 4.1 and 6.1,

(idp, @ 4y) sy = @p-1(idn,, . ® y@p-1)Agup=1,pyp-1 08
= @p-1(AyPp-1PpGpup—1)
= Ay @p-1(gpaup-1)-

Hence, by the uniqueness of the distinguished n-grouplike element (see Lemma 4.1),
we have that ¢g-1(gp.p-1)=¢gs and so @g(gs) = gp,p—1 for all xen. [
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6.1.1. The opposite (resp. coopposite) Hopf m-coalgebra

Let H be a crossed Hopf m-coalgebra with crossing ¢. If the antipode of H is bi-
jective, then the opposite (resp. coopposite) Hopf m-coalgebra to H (see Sections 1.3.1
and 1.3.2) is crossed with crossing given by (p;}p| 5o = @plu, (resp. (pi’p e = @l 1)
for all o, €.

6.1.2. The mirror Hopf m-coalgebra

Let H=({H,},4,¢,S,¢) be a crossed Hopf m-coalgebra. Following [19, Section
11.6], its mirror H is defined by the following procedure: set H, = H,—: as an algebra,
Ay =(0p @ idy,_YAg-15-1p 51, =2, Sy=uS,-1 and Gylz, = @pln _,. It is also a
crossed Hopf 7m-coalgebra.

6.2. Quasitriangular Hopf m-coalgebras

Following [19, Section 11.3], a quasitriangular Hopf m-coalgebra is a crossed Hopf
n-coalgebra H = ({H,}, 4,¢,S, ¢) endowed with a family R={R, s € H, ® Hp}y pen of
invertible elements (the R-matrix) such that

for any o, f € m and x € Hyp,

Rx’ﬁ . Aa’[;(x) = O'l;,x((pl—] (029] ide )Aaﬁ“—l,a(x) . R%ﬁ, (65)
where o, denotes the flip map Hg ® H, — H, ® Hpg;

for any o, f € 7,
(idl—h ® A/f,v)(Rat,[fy) = (Rot,'y)l/B ' (Roc,[i)IZ'y'a

(4o,p @ idp, )(Rop,y) = [(1dy, @ @p-1 )Ry pyp-1)]1p3 - (Rpy)e23, (6.6)

where, for k-spaces P,Q and r =3, p;®q; € PRQ, we set iy =r®1, € POO®H,,
ro3=1,®reH, ® P® Q and V|ﬁ3izj P ® lﬁ®q,‘€P®H[;®Q;

the family R is invariant under the crossing, i.e., for any o, f,y € 7,

(0p @ @p)(Roy) = Rpyp—1 pyp—1- (6.7)

Note that R ; is a (classical) R-matrix for the Hopf algebra H;.

When 7 is abelian and ¢ is trivial (that is @p|H, =idy, for all o, f € 7), one recovers
the definition of quasitriangular n-colored Hopf algebra given by Ohtsuki [12].

If 7 is finite, then an R-matrix for H does not necessarily give rise to a (usual)
R-matrix for the Hopf algebra H = P, Hx (see Section 1.3.5). However, if the group
7 is finite abelian and if ¢ is trivial, then R = . pen Rop is an R-matrix for H.
Notation. In the proofs, when we write a component R, g of an R-matrix as R, g = a,®
by, it is to signify that R, g =), a; ® b; for some a; € H, and b; € Hy, where j runs
over a finite set of indices.
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We now generalize the main properties of quasitriangular Hopf algebras (see [3]) to
the setting of quasitriangular Hopf n-coalgebras.

Lemma 6.4. Let H=({H,},A4,¢,S, »,R) be a quasitriangular Hopf n-coalgebra. Then,

for any o, p,y €™,

(@) (¢®idy,)(Ri,)=1,=(1dy, ® &)(Ry1);

(b) (S,102 ® idp, YRy-1p) =R, and (idp, © Sp)(R, 3) =Ry p-15

(€) (Sx @ Sp)(Raop) = (02 @1dpy,_ N(Ry—1 p-1);

(d) (Rpy)a2s - (Ray)ips - (Rup)izy = Ry pizy - [(1dm, @ @p—1 )Ry pyp—1)]1p3 - (Rpy)a23-

Part (d) of Lemma 6.4, which is the Yang-Baxter equality for R={R, g}, pen, first
appeared in [19, Section 11.3]. We prove it here for completeness sake.
Proof. Let us show part (a). We have
Ri,=(e®idy, ®idy, )(41,1 ®idy, )(R1,«) by (1.2)
= (e ®idy, ®idy, )([(1dm, @ @1)(R1)], 5 (Ria)i,23) by (6.6)
=(e®idy, ®1dy, )(R1,0)1,,3 - (R1,4)1,23) by Lemma 6.1(a)
=(e®idy, ®idy, )((R1,2)1, 3) - (¢ @ idy, @ idy, )(R1,4)1,23) by (1.4)

=11 ®(e®idy, )(R1,4)) - Ri 4

Thus 1) ® (e ® idg, )(R1,4) =11 ® 1, (since R;, is invertible). By applying (¢ ® idg,)
on both sides, we get the first equality of part (a). The second one can be obtained
similarly.

To show the first equality of part (b), set

& =(my @1dp, )(Sy-1 ®idpy, ® idp, (4,1 5 @ idg, )(R1,p).
Let us compute & in two different ways. On one hand,
& = (my ®1dp, )(S,—1 @ idy, ®idp, )
([Gdy,_, @ @u-1)(Ro=1pa-1)]105 - (Rop)a-123) by (6.6)
= (841 @ Pu-1)(Ry=1 ypy—1) - Rap
= (Sy-1902 @ 1dp, )(Ry-15) - Ryp by (6.7).
On the other hand,
& =(ely ®idm,)(R1p) by (1.5)
=1,®1g by part (a).

Comparing these two calculations and since R, s is invertible, we get the first equality
of part (b). The second one can be proved similarly by computing the expression
F = (idy, @ mp-1)(idy, ® idpy,_, ® Sp)(idp, @ Ap-1 DR
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Part (c) is a direct consequence of part (b) and Lemma 6.1(a) and (c).
Finally, part (d) follows from axioms (6.5) and (6.6):

(Rpp)a23 - (Rayy)1p3 - (Royp)izy
=(Rpy)a23 - (ldp, @ A5 )(Ro ;)
=(idy, @ Ry - Ap;)(Ro py)
=(idpy, ® 0}, p(@p-1 @ idp ) Apyp-1. 5 - Ry )(Rapy)
=(idy, ® 0y, p(@p-1 @ idp, ) )((Rap)1pyp—13 - (Ropyp—1)125) - (Rp.p)o23

=Ry phzy - [(dy, @ @p—1) (R pyp—1)]1p3 - (Rp.y )23

This completes the proof of the lemma. [J

6.3. The Drinfeld elements

Let H = ({Hy,my, 14}, 4,¢,S, ,R) be a quasitriangular Hopf n-coalgebra. We define
the (generalized) Drinfeld elements of H, for any o € &, by

Uy =My (Sy-1¢y @1dp, )0, 41 (R y-1) € Hy.

Note that u; is the Drinfeld element of the quasitriangular Hopf algebra H; (see [3]).

Lemma 6.5. For any o,f €,
(@) u, is invertible and u; ' =m,(idy, @ S,-18,)054(Ry);
(b) S, 18,(@u(x)) =u,xu; ' for all x € Hy;
(c) the antipode of H is bijective;
(d) @p(us) =up,p-1;
(€) Sy—1(uy—1 )y =uySy—1(uy—1) and this element, noted c,, verifies c,@P,—1(x)=
@y(x)cy for all x € Hy,
(£) Ay p(ttap) = [0p,2(idr, © 02)(Rpo) - Ropp] ™" - (s @ )
= (uy @ up) - [0p.(pp-1 ®@idy, )Rp.o) - (@31 @ @p-1)(Ryp)] ™
(g) e(ur)=1.

Proof. We adapt the methods used in [3] to our setting. Let us prove parts (a) and
(b). We first show that for all x € H,,

Su=18u(Po() )ty = X (6.8)

Write R, ,—1 =a, ® b,—1 so that u, =S,-1(¢py(by-1))a,. Let x € H,. Using (1.1) and
(6.5), we have that

(Ro(,orl )120( . (idHy ® Aoﬁl,az)Ao:,l(x)

= (O_(x*l,x((pafl & idH;( )Aoﬁl,az & idHa( )Al,%(x) . (Rot,ofl )12067
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that is a,x(1,) ®ba71X(2’171) @ X(3,0) = X(2,0)0 @ Py—1 (X(l’a—l))bd—l ®X(3,4)- Evaluate both
sides of this equality with (idy, ®S,-1¢,®S,-15,¢4), reverse the order of the tensorands
and multiply them to obtain

Sy18500(X3,2) )Su—1 Qo (by—1X(2,5-1))AX(1,0)
= Su-1820u(X(3,0))Su=1 Qo Po=1(X(1,5-1))Dy=1 )X(2,0) -
Now, by Lemmas 1.1(a) and 6.1(¢c), the left-hand side is equal to
So=100Su(x3,0))Su—1 Pou(X(2,0-1))Su=1(Po(by—1) )X (1,2)
= 8,1 0u(X(2,5-1)Sa(X(3,2) ) JUaX(1,)
=S8u-1@a(8(x2,1)) =1 JuaX(1,0) by (1.5)
=u&(X2,1))X(1,0)  SiNCE Sy—1,(1,-1) =1,
=u,x by (1.2),
and, by Lemma 1.1(a), the right-hand side is equal to
Sy18500(X3,5) )S5=1(Po(by=1))S, 1 (X(1,0-1) JX(2,0) At
= 8,18 0a(e(x(1,1))X(2,2) )S—1 (Pa(by—1))ay by (1.5)
=Sy=1820a(x ), by (1.2).
Thus (6.8) is proven. Let us show that u, is invertible. Set
i1 = mo(idy, © S,-15,)05x(Ro.s) € H,.

By Lemma 6.4(b) and (6.7), Ry, = (idy, ® S,-1 ) @x @ @, )R, ) )). Write R} | =¢, ®
dy—1. Then 6, =S, 1(@u(d,-1))S,~1S,(py(cy)) and aycy @ by-1dy—1 =1, @ 1,—1. Now

U Uty = Sy (q)ot(da*‘ ))S *'Sx((px(coz))“ac
=S,-1(@,(d,—1))uyc, by (6.8) with x =c¢,
= rx*‘((pfx(do:*1 ))Saﬁl((pa(bofl ))asc,
=8,-1(@y(by-1d4—1))a,c, by Lemma 1.1(a)

:Sa—'(qoa(loc—‘ ))11 = 1.

It can be shown similarly that w,i,=1,. Thus u, is invertible, u, '—=4,, and so
S, 185(o(x)) = uxu; ! for any x € H,.

Part (c) is a direct consequence of part (b). Part (d) follows from (6.1), (6.4), and
(6.7). Let us show part (e). For any x € H,,

Sa*‘(uofl )”oc%rl(x)
=8,-1(Uy-1)S,-1Sy(x)u, by part (b)
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=Sy-1(ty=1)S,=18:S -1 (@1 o;ll(qoa(x)))ux by Lemma 6.1(c)
= 8,1 (1)1 (1S, (9u(x))u " Ju, - by part (b)
= @y(x)S,—1(uy—1 )uy since S,-1 is anti-multiplicative.

In particular, for x =u,, one gets that S,—1 (1,1 )ty = 1y Sy—1 (Uy—1).

For the proof of the first equality of part (f), set Rx’/gzo'/;’a(idyﬁ ® @.)(Rp,5). By
Lemma 6.1 and (6.7), we have also that R, 3 =0p,(¢,—1 ® idp, )(R,py-1,). We first
show that for all x € H,g,

Ryp Rop A0 p(x)= (0 @ @p)As p(@ipy-1(x)) - R - Rop- (6.9)

By (6.5), Rp.o Ap.a(@o-1(x)) = 04 p((¢p-1 @1dp, ) A pyp—1 p(¢,-1(x)))-Rp . Evaluate both
sides of this equality with the algebra homomorphism 6 ,(idy, ® ¢, ) and multiply them
on the right by R, g to obtain

O-[f,u(idh’/; ® QDO()(R[L%) . Gﬂ,a(idHﬁ & (Pcz)A[f,u(q)aﬁl(x)) 'Rot,[i
=(@20p-1 @ iduy)Agyp—1 p(@y-1(x)) - 0p4(1dr; @ @y )(Rpo) - Ry p-
Then, using (6.5) and (6.2), one gets equality (6.9). Set now
52151,/; -R“,/g . Am,ﬁ(uaﬁ).

We have to show that & = u,@ug. Write R, ;51 =r®s, Ry p=a,®bg, and R, 3 =c,®
dg. Then uyg =S~ 1 (Pup(s))r = QupSiupy-1 (s)r. We have that

E=Ryp Ryp Ay p(PupSupy-1()r)

:Rx,/} 'Rx,ﬁ : Aa,[i((pa/}S(ac[f)*l(s)) : Aoc,/f(r) by (1.4).

Therefore, using (6.9) for x = ¢,3S(,5)-1(s) and then Lemmas 1.1(c) and 6.1(c), we
obtain that

&= (02 @p) - Ao p(Sapy-1(5)) - Rop - Rop - A p(r)
= (02 ® 9p)op.u(Sg-1 © S;=1)Ag-1,41(8) - Ry - R Ay p(r)
= Sy 1(S2,0-1))Calal (1,2) @ PpSg—1(S1, p-1))dpbpr2, py
= 8,-1(@u(S2,0-1)))Calal (1,0) @ Sp-1(@p(s1,5-1)))d pbprz, p)-
Now H, ® Hy is a right H, ® Hy ® H,—1 ® Hp-1-module under the action
(x®@y) « (I @hy @ h3 @ ha) = S,~1(a(h3))xh1 @ Sp-1(@p(ha)) yha.

For any k-spaces P, Q and any x:Zi PiRG EPRO, we set X1 =x®1,®15EPR®
0 ®H, ® Hp, xx2ﬁ4zzj ,®p®lp®q eH, ®P ®Hg® O, etc. Then

&= Cy X dﬁ «“— Ayl(1,q) (4 bﬁl’(z’“—l) ®S(2"1—1) ®S(1’ﬁ—l)

=Ry p < Ryphizg-tp—t - (Aop @ 0p-1 51 Ag—1 41 ) Rop apy1)
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=Ry p < (Ryp)izg-1p1 - (App®idy_, idy, )
((Rypu—1 121 - (Ropp—1)12-13) by (6.6)
=Ry p « (Ryphizg-p—1 - (Ao ®@ dy_, @idp,_ )((Rap a1 )12p-1)
(g ®idy_, ®idy,_ N(Roppii3) by (14).
Therefore, by (6.6) and Lemma 6.4(d),
8 =Ry p < (Rup)ing-1p-1 - [(idn, @ @p-1 )Ry po—15-1)]1pap1
“(Rp o1 )a23p—1 - [(1dp, @ @p—1 ) (Rop-1)]1py—14 - (Rp,p=1)a2u—14
=Ry p « (Rpou1)zsp—t - R ipap—1 - (Royp) 1o 151
[(dy, @ @p-1)Rop-1)]1pu-14 - (Rp g1 )20 14-
Write Ry, =ep ® fy and Rg -1 =hg @ k,—1. Then ﬁm,/; =@y(f2) ®ep and so
Ry« (Rp,—1)ua3p—
=8,-1(Pulky—1))Pu( f2) @ ephy
— 6p(idp, ® 0,5, )((idn, @ S\ )Rya) - Ry,1) by Lemma 6.1(c)
=0p,4(idn, ® PuS,— )(R/;;,l “Rg,~1) by Lemma 6.4(b)
=1,® 1,
If we write R, ,-1 =m, ® n,-1, then
Ly @ 1p «= (Ryy=1)15-13p-1 = Sy=1 Qa(ny=1 )y @ lp =11, @ lg.
Therefore
&=y ® g« Rup)izep-1 - [(dr, © 05 Y Roop- Mgy 14 - R g1 Dz 14
Write now R, g1 = p, ® gg-1. Then
uy @ lg «= (Ryp)iog-1p-1 - [(1dp, @ @p-1)(Ry p-1)] 1514
=Uyly Py @ Sp1(qp-1)bg
= (uz ® 1) - (idy, ® Sp-)((idps, ® S )(Rap) - Rypt)
=(u, ® 1p) - (id, ® Sg-1 )R, " Ryp-1) by Lemma 6.4(b)
=u, ® lg.

Hence & =u, @ 1 «= (Rg g1 )y05—14. Finally, write Ry s-1 =x5 @ yg—1. Then & =u, ®
Sp-1(@p(yp-1))xp =u, @ ug. This completes the proof of the first equality of part (f).
Let us show the second one. Using the first equality of part (f) and then part (b),
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we have that
Ay p(yp) = [04,,(idp, ® @) (Rp2) - Ropl ™+ (uz @ up)
=y @ up) - (Py1(S-15:) " @ pp-1(Sg-1Sp) ")

([op.4(idn, ® @2)(Rps) - Rupl™")

and so, by Lemmas 6.1 and 6.4(c),

Aa,ﬂ(uaﬁ) = (”1 & uﬁ) ' [aﬁ,ac(@[f—‘ & iqu )(Rﬁ,ot) . (q)oc—‘ & Pp-1 )(Rac,ﬁ)]71~

It remains to show part (g). We have
ur = (e ®@idy,)41,1(u1) by (1.2)
=(e®idp, )((o1,1(R1,1) - Ri,1) ™" - (uy @uy)) by Part (f)
= (¢ @ idp )R, - (idm, @ &)(Ri) ™ - e(u)ur by (1.4)
=¢(u;)u; by Lemma 6.4(a).

Now u; # 0 since u; is invertible (by part (a)) and H, #0 (by Corollary 1.2). Hence
&(u;)=1. This finishes the proof of the lemma. [J

6.3.1. The coopposite Hopf n-coalgebra

Let H be a quasitriangular Hopf m-coalgebra with R-matrix R={R, g}, per. By
Lemma 6.5(c), the antipode of H is bijective. Thus, we can consider the coopposite
crossed Hopf m-coalgebra H°°P to H (see Section 6.1.1). It is quasitriangular by setting
R;f’g = (. ®idyy_, )(Ra__ll’ﬁ_] )=(S;®@idp,_, (R, p-1). The Drinfeld elements of / and

H°®P are related by u;® = u;,ll.

6.3.2. The mirror Hopf n-coalgebra

Let H be a quasitriangular Hopf 7-coalgebra with R-matrix R = {R, g}, per. Follow-
ing [19, Section 11.6], the mirror crossed Hopf n-coalgebra H to H (see
Section 6.1.2) is quasitriangular with R-matrix given by R, p= O'ﬁ—l,“—l(R[;_II,“_] ). The
Drinfeld elements associated to H and H verify i, =8,(uy)"".

The following corollary of Lemma 6.5 will be used in Section 6.6 to compute the
distinguished n-grouplike element from the R-matrix.

Corollary 6.6. Let H be a quasitriangular Hopf n-coalgebra. For all o.€ 1, set {, =
Sy-1(ty—1)"" uy=u,Sy—1(uy—1 )" €H,. Then

(@) £ =(ly)uecn is a m-grouplike element of H,

(b) (S,—18,)*(x)=t,xt; " for all o€ and x € H,.

Proof. Let us show part (a). Denote by i, the Drinfeld elements of the mirror Hopf
n-coalgebra H to H (see Section 6.3.2). Since i1, = S,(u,)~!, Lemma 6.5(f) applied
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to H gives that, for any o, f € 7,
Ao p(Seapy-1 (Uapy-1) ") = 04 @p-1 © idp, )(Rp.o)
(o1 @ @p-1)(Rap) - (Sy=1 (=)~ @ S (up-1) 7).
Now, by Lemma 6.5(f),

A () = (tty @ up) - [05,2(@p—1 @ idp, Y Rp0) - (91 @ @p-1 )Ry p)] ™"

Thus we obtain that A, g(¢,5) = Ay, p(tp) - A p(Seapy—1 (U(ap)—1 )"')=/4®{p. Moreover
e(/1) = e(urS1(uy) ™) = e(uy )e(S1(u1)) ™" = e(uy )e(u; )~ =1 by (1.4) and Lemma 1.1(d).
Hence ¢ = ({y)ver € G(H).

To show part (b), let x €7 and x € H,. Applying Lemma 6.5(b) to A and then to
H gives that

(S5-182 )2 () = S5m1Su(S1 (tt5=1) ™ 9o(X)S,1 (141 )
= 8,-18u(Sy=1 (t=1) )81 8u(92(2)) S, -1 S(S,—1 (1))
= U8, (1)~ xSy (- !
=/l

This completes the proof of the corollary. [J

6.3.3. The double of a crossed Hopf m-coalgebra

The Drinfeld double construction for Hopf algebras can be extended to the setting
of crossed Hopf m-coalgebras, see [21]. This yields examples of quasitriangular Hopf
m-coalgebras.

6.4. Ribbon Hopf m-coalgebras

Following [19, Section 11.4], a quasitriangular Hopf n-coalgebra H = ({H,}, 4,¢,
S, ,R) is said to be ribbon if it is endowed with a family 8 = {60, € H, },c, of invertible
elements (the twist) such that

@u(x)=0,"x0, for all v € m and x € H,, (6.10)
S.(0,)=0,-1 for all « € m, (6.11)
@p(0,) =0p,p—1 for all o, f€m, (6.12)

for all o, f €7,

A5, 5(025) = (0, @ 0p) - 05.,((Py—1 @ idp, ) (Rypy—1,4)) - Rop- (6.13)

Note that 0, is a (classical) twist of the quasitriangular Hopf algebra H;.
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Lemma 6.7. Let H=({H,},4,¢,S,¢,R,0) be a ribbon Hopf n-coalgebra. Then

(@) @y-1(x)=0,x0," for all «€n and x € Hy;

(b) &(01)=1;

(c) if w€n has a finite order d, then 0¢ is a central element of H,. In particular 0,
is central,

(d) O,u, =u,0, for all « € w, where the u, are the Drinfeld elements of H.

Proof. Part (a) is a direct consequence of (6.10), (6.12), and Lemma 6.1. Let us show
part (b). We have

0, = (e ®idy, )A1.1(61) by (1.2)
= (e®idy, )(0; ® 01)- 611(R1.1) - Ri.1) by (6.13) and Lemma 6.1(a)
= (¢ ®idy, )01 ® 01) - (idy, @ £)Ri,1) - (6@ idg JRi1) by (14)
=¢(0;)0, by Lemma 6.4(a)

Now 6 #0 since it is invertible and H; #0 (by Corollary 1.2). Hence ¢(6;)=1. To
show part (c), let o € 7 of finite order d. For any x € H,, using (6.4), Lemma 6.1 and
(6.10), we have that x = @ (x) = @(x) = @ (x) = 0;9x0¢ and so 0¢x =x0?. Hence 0¢
is central in H,. Finally, let us show part (d). Using Lemma 6.5(d) and (6.10), we
have that u, = @,(u,) = 0 'u,0,, and so O,u, =u,0,. O

6.4.1. The coopposite Hopf n-coalgebra
Let H be a ribbon Hopf n-coalgebra with twist 6 = {0,},c.. The coopposite quasi-
triangular Hopf 7-coalgebra H® (see Section 6.3.1) is ribbon with twist 65 =0."",.

6.4.2. The mirror Hopf n-coalgebra

Let H be a ribbon Hopf n-coalgebra with twist 0 = {0, },c.. Following [19, Section
11.6], the mirror quasitriangular Hopf n-coalgebra A (see Section 6.3.2) is ribbon with
twist 0, = 9;,11.

6.5. The spherical n-grouplike element

Let H=({H,},4,¢,S,¢,R,0) be a ribbon Hopf n-coalgebra. For any a € 7, we set
(see Lemma 6.7(d))

G, =04uy,=u,0, € H,.

Lemma 6.8. (a) G =(G,),cr is a n-grouplike element of H,

(b) @p(Gy) = Gpop—1 for all o,f e,

(c¢) S{(G,)=G, ", for all x€m;

(d) 0,2 =c, for all « € 7, where c, = S,—1(uy—1 Yy = uyS, 1 (uy—1) as in Lemma 6.5(e);
(e) Sy(uy)= G;,]lur] G;,'l for all v em;

() S,-18,(x)=G,xG; ! for all o € n and x € H,.
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The m-grouplike element G = (G, ),c, of the previous lemma is called the spherical
n-grouplike element of H.

Proof. Let us show part (a). Firstly e(G;) = e(0,u;)=¢&(0;)e(u;) =1 by Lemmas 6.5(g)
and 6.7(b). Secondly, for any a, f € %, using (6.13) and Lemma 6.5(f),

Ao, p(Gap) = Ao p(02pusp)
= A5,5(00p) - Ag, p(usp)
= (0, ® 0p) - [042((0y-1 @ idp, ) (Ropy—1,5)) - Rop]
[04.2((Pu—1 @ idp, ) Rapa—1.2))  Rupl ™"+ (s @ up)
~ G, ® Gy,

Thus G=(Gy)uer € G(H). Part (b) follows directly from Lemma 6.5(d) and (6.12),
and part (c) from the fact that G is a m-grouplike element. By part (c) and (6.11),
0,2 =u, G 0, =1, S, 1(G, )0, = u, Sy 1(0,-1u,-1)0, ' =c, and so part (d) is
established. Let us show part (¢). By (6.11) and part (c), G;_ll Uy—1 :0;_11 =8,(0;1)=
S(Gy 'uy) = Sy(uy) S:(Gy) ™' = 8,(u;)G,—1. Therefore S,(u,) =G, \u,~1G, . Finally,
to show part (f), let x € H,. Then, using Lemmas 6.5(b) and 6.7(a),

Sy 18,(X) =ty @1 ()t ' = 1, 0,x0,  u, = GoxG

o

This completes the proof of the lemma. [J

6.6. The distinguished n-grouplike element from the R-matrix

In this subsection, we show that the distinguished n-grouplike element of a finite
type quasitriangular Hopf m-coalgebra can be computed by using the R-matrix. This
generalizes [14, Theorem 2].

Theorem 6.9. Let H be a finite type quasitriangular Hopf n-coalgebra. Let g = (gy)ucn
be the distinguished n-grouplike element of H, v be the distinguished grouplike element
of H, { =({y)sex € G(H) be as in Corollary 6.6, and ¢ be as in Corollary 6.2. We
define h, = (idy, @ v)(Ry,1) for any o€ n. Then

(@) h=(hy)yen is a m-grouplike element of H,

(b) g=¢ '¢h in G(H), i.e., gy= @) Cyhy for all o €.

Proof. We adapt the technique used in the proof of [14, Theorem 2]. Let us first show
part (a). For any «, f € 7, using (6.6), the multiplicativity of v, and Lemma 6.3(b), we
have that

Ay (hop) = Ay p(idp,, @ V)(Ryp,1)

= (ide ® idHﬂ ® V)([(lde ® (P[;—l )(Roc,l )]]/33 : (Rﬁ,l)oc23)
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= ((idu, @ vep-1)(Ry1) @ 1p) - (1, @ (idy, @ v)(Rp.1))
=((idy, @ V)(Ry,1) ® 1p) - (1, ® hg)

=h, ® h/;.

Moreover, using Lemma 6.4(a), &(h)=(¢ @ v)(R1,1)=v(11)=1. Thus h € G(H).
To show part (b), let « € and A be a non-zero left integral for H;. We first show
that, for any x € H,-1,

/1(1"1) ® x/l(z’afl) = Srl(x)/l(l,“) ® /1(2’“71) (6.14)
and

A(l,acfl)x [ /1(2’0() = A(l’a—l) X A(z’a)Sfl(x — V). (615)
Indeed

A0y @ XA 2,01y
:8()((1’1))/1(17“) ®X(2,“—1)A(2’a71) by (12)
=8, 101,01y X2 A1,0) @ X3,0-1)A2,0-1y by (1.5)

=8,-1(x1,e-1))x2nA)1,0) @ (X2 nA)2,a-1y by (1.4),

and so, since A is a left integral for H,
A,y @ XA 2,51y = Sy—1 (X1, -1 (X2, DDA, @ A0y
=8,-1(X)A(1,0) ® A2 5-1y by (1.2).
Similarly,
A 1xX @ Aoy
=A@ a-1X(1a-1) @ AgaExan) by (1.2)
= A1 u-1X(10-1) @ A@X2.085-1(XG4-1)) by (1.5)
= (Ax,1))1,0-1y @ (Ax1, 1))@, (X2,0-1y) by (1.4),
and so, since A is a left integral for H,,
A am1y¥ @ A a1y = Agam) @ A Se1 (V0,10 X ,0-1))
= A1) @ A@.aSy-1(x — V).

Write R, ,-1 =a, ®b,-1. Recall that u, =S,-1¢y(b,-1)a,. By Lemma 6.4(c) and (6.7),
Ry, =8(ay) ® @uS,~1(by-1). Thus wu,—1 =8,5,-1(b,~1)S,(a,) and so, using
Lemma 6.5(b) and (d), S,—1(uy—1)=3S;"(uy1)=ayS, 1(b,1). Then

A(Z,ot)SoF‘(q)%(boF‘) —V)a, ® /1(1’171)

= A(z,%)aa (2] A(l’“—l)([)a(b“—l ) by (615) for x = (pa(b“—l )



116 A. Virelizier | Journal of Pure and Applied Algebra 171 (2002) 75-122

=(1dy, @ @u)(A@,u)0x @ Pu—1(A(1,5-1))by=1)
=(1dy, ® @a)(asA(1,0) @ by-1 4 5-1)) by (6.5)
=(idu, @ @u)(auSy—1(by=1)A(1,0) @ A2,5-1y) by (6.14) for x = b,
=8y 1(uy—1)A(1,0) @ Pu(A2,5-1))
=@y @idy_ N @aSy—1(uy—1)Pa(A(1,2)) @ Pa(A25-1))) by (6.4)
= (@1 ®@1dpy_ W @uSy—1(ty=1)Pa(A)(1,0) @ Po(A)2,4-1)) by (6.2).
Now ¢,(A)= @(x)A by Lemma 6.3(a) and
A, @ Au-1) = Sy-18:(A@2.0) )90 @ A(1,5-1y
by Corollary 4.4. Therefore
A@,a)Sa—1(Pulby—1) — V)ay & A1)
= @)@y @ 1dy W PuSy—1(Uy—1)S-18u(A2,0) )90 @ A(1,0-1))
= P()Sy—1 (Uy1)Py—18,-18:(A2,0))Pr-1(gn) @ A1,5-1y
= P(00)S,—1(Uy=1)Py—18,-18:(A2,2))gx @ A(1,4-1y by Lemma 6.3(c).

Let Z=(4y)yer be right z-integral for H such that A;(A4)=1 (see the proof of
Corollary 4.4). Applying (idy, ® A,—1) on both sides of the last equality, we get

;“ot—'(A(l,ot—‘))A(2,a)Sa—1(§Doz(bac—') - v)aoc
= @(“)Sorl (uzxfl )qom*lsa*lsx()“a*l (A(l,az*l ))A(z,a))ga,
and so, since /11_1(/1(1306_1))/1(2,1) =4, =1,
Sy 1(@a(by—1) — v)ay = P(0)S,—1 (ty—1)gs. (6.16)

Write R, 1=c, ® d; so that hy,=v(d|)c,. Since, by (6.2) and Lemma 6.3(b),
@u(x) — v=qu(x — v) for all x& H,-1, we have that

ay @ (Polby-1) — V) =ay @ Qu(by-1 — V)
= (idy, ® v ® @, )(idy, ® 41 41 )Ry 5-1)
= (idu, ® v @ @) ((Ryyu=1)115 - (Ru1)124-1) by (6.6)
= ayV(d1)cy @ Po(by-1)
= ashy @ @o(by-1).

Therefore S,-1(@y(by—1) — V)ay, =S,~1(Qy(b,-1))ayhy, =uyh,. Finally, comparing with
(6.16), we get G(a)S,—1(uy—1)gs =ush,. Hence g,=d(a)"'/yh,, since /=
S,—1(tty—1 )" 'u,. This finishes the proof of the theorem. [
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Corollary 6.10. Let H be a finite type ribbon Hopf n-coalgebra. Let g =gy )ascn be
the distinguished m-grouplike element of H, G = (G, )ycr be the spherical n-grouplike
element of H, h=(hy)ycrn € G(H) as in Theorem 6.9, and ¢ as in Corollary 6.2. Then
¢g=G?h in G(H), i.e., ¢(a)g, = G>h, for all o €.

Proof. For any o€, ¢(a)gy =S, 1(ty—1) 'tyhy = 02u2h, = G2h, by Theorem 6.9(b)
and Lemma 6.8(d). O

7. Existence of n-traces

In this section, we introduce the notion of a 7m-trace for a crossed Hopf m-coalgebra
and we show the existence of n-traces for a finite type unimodular Hopf n-coalgebra
whose crossing ¢ verifies that ¢ =1. Moreover, we give sufficient conditions for the
homomorphism ¢ to be trivial.

7.1. Unimodular Hopf n-coalgebras

A Hopf n-coalgebra H = {H, },c, is said to be unimodular if the Hopf algebra H;
is unimodular (it means that the spaces of left and right integrals for H; coincide).
If H, is finite dimensional, then H is unimodular if and only if v=¢, where v is the
distinguished grouplike element of H;'.

If 7 is finite, then a left (resp. right) integral for the Hopf algebra H =D, Hs
(see Section 1.3.5) must belong to H;, and so the spaces of left (resp. right) integrals
for H and H; coincide. Hence, when 7 is finite, H is unimodular if and only if His
unimodular.

One can remark that a semisimple finite type of Hopf m-coalgebra H ={H,},c,
is unimodular (since the finite-dimensional Hopf algebra H; is semisimple and so
unimodular). Note that a cosemisimple Hopf n-coalgebra is not necessarily unimodular.

7.2. m-traces

Let H=({H,},4,¢,S, @) be a crossed Hopf n-coalgebra. A n-trace for H is a family
of k-linear forms tr = (tr,),e € [[,, H, such that, for any o, f € 7 and x, y € H,,

aET
tr,(xy) = tr, (), (7.1)
tr,—1(Sy(x)) =try(x), (7.2)
trpapo (Pp(x)) = tr,(x). (73)

This notion is motivated mainly by topological purposes: 7m-traces are used in [20] to
construct Hennings-like invariants (see [4,6]) of principal n-bundles over link comple-
ments and over 3-mainfolds.
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Note that tr; is a (usual) trace for the Hopf algebra H;, invariant under the action
¢ of m.

In the next lemma, generalizing [4, Proposition 4.2], we give a characterization of
the m-traces.

Lemma 7.1. Let H={H,},cr be a finite type unimodular ribbon Hopf mn-coalgebra
with crossing @. Let 1= (y)acr be a non-zero right n-integral for H, G =(Gy)ycn
be the spherical m-grouplike element of H, and ¢ be as in Corollary 6.2. Let tr=
(try)uen € [ ,ep Hy. Then tr is a m-trace for H if and only if there exists a family
2= (2y)uen € [l e Hx satisfying, for all o,p €,

(a) try(x) = A4(Gyzox)  for all x € Hy;

(b) z, is central in Hy;

(€) Su(z2)=P(2)"z,-15

() 9p(z2) = G(B)zpopr-

Proof. We first show that, for all x € and x, y € H,,
A(Goxy) = 24(Gyyx), (7.4)
and

B(0) A1 (Su(x)) = 24(G3X). (7.5)

Indeed, let v be the distinguished grouplike element of H;. Since v=¢ (H is uni-
modular), Theorem 4.2(a) gives that 4,(Gyxy) = 4,(S,-1S,(y)G,x). Now, by Lemma
6.8(f), S,-18,(y)=G,yG; . Thus 2,(Guxy)=2A,(G,yx) and (7.4) is proven. More-
over, Corollary 6.10 gives that ¢()g, = G2h,, where g=(gy)ser is the distinguished
n-grouplike element of H and sy, = (idgy, ® v)(R,,1). Since v=¢ and by Lemma 6.4(a),
hy=(dp, @ £)(Ry1) = 1,. Thus G(2)g, = G2. Now 2,—1(Sy(x)) = Ay(gox) by Theorem
4.2(c). Hence ¢(a)Ay—1(Sy(x)) = 4,(G2x) and (7.5) is proven.

Let us suppose that there exists z=(z,)yer € [],, H, verifying conditions (a)—(d).
For any o, f€n and x, y € H,,

dSy 4

try(xy) = 4,(Gyzoxy) by Condition (a)
= 2.(Gyyz,x) by(74)
= A(Gyz,yx) since z, is central

=tr,(yx) by Condition (a),

tra—l(Sa(x))
:/lorl(Ga—lZa*ISa(x))
_ qb(oc))ufl(Sa(Ggl)Sa(Z%)S“(x)) by Condition (¢) and Lemma 6.8 (c)

= ()25 1(S,(x2,G; ")) by Lemma 1.1(a)
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=2.(Gxz,G, ') by (7.5)
=2(Gyz;, G xG Y since z, is central
= trx(Gmeofl)
=tr,(x) since tr, is symmetric,
and
trpp-1(@p(x))
= Apup—1(Gpaup—1Zpap—10p(x))
= (f)(ﬁ)_llmﬁ_l(goﬁ(Ga)(p/;(za)go[g(x)) by Condition (d) and Lemma 6.8(b)
=3(B) Apup—1(0p(Guzsx))
= @(B)~' ¢($)2o(G,z.x) by Corollary 6.2
=tr,(x).

Hence tr is a m-trace.
Conversely, suppose that tr is a n-trace. Recall that H is a right H,-module for the
action defined, for all f € H; and a,x € H,, by

(f = a)x)= f(ax).

By Corollary 3.7(b), (H,«) is free, its rank is 1 (resp. 0) if H,#0 (resp. H, =0),
and /, is a basis vector for (H,,—). Thus, for any « €, there exists w, € H, such
that tr, =4, — wy. Set z, =G "W,. Let us verify that the family z=(zy)yer verify
conditions (a)—(d). By the definition of z,, condition (a) is clearly verified. Let o € 7
and x € H,. For any y e H,,

(ia - Gotzocx)(y) = /loc(GatZath)

= troc(xy)
=tr,(yx) by(7.1)
= Ao(Gyzy yx)

= A(Gyxz,y) by(74)

= (Ao — Goxzy)(p).

Therefore A, — G,z,x = Ay — Gyuxz,. Hence Gyz,x = Gyuxz, (since A, is a basis vector
for (H;,~—)) and so z,x =xz,. Condition (b) is then verified. Let o € 7. For any x € H,,

(Ay—1 — G,—18:(24))(x)
= /lofl(GoFlS‘x(Zot)x)
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=y 1(S(S; '(x)z,G, ")) by Lemmas1.1(a) and 6.8(c)
=p(2) ' (G, ' (¥)z G 1) by (7.5)

= @p(0) ' 1(Gyz, S (x)) by (7.4) and sincez, is central
= P(2)~tro(S; 7' (%))

= @) 'tr,1(x) by (7.2)

=yt — Gy (o) 'z, )(x).

We conclude as above that S,(z,)=¢(«) 'z,-1, and so condition (c) is satisfied,
Finally, let o, § € n. For any x € H,,

(Ax — @(B)Gupp-1(zpup-1))(x)
= @(B)AAGapp—1(zZpup—1)x)
— Jpap-1 (9p(Gy@p-1(2gup-1)x)) by Corollary 6.2
= Zpop—1(Gpop—12pup-1 9p(x)) by Lemma 6.8(b)
=trp,p-1(@p(x))
=try(x) by(7.3)
= (fa — Gyzy )(X).

Thus Gyz, = G(B)Gupp-1(zp,p-1) and so @p(zy) = G(B)zp,p-1. Hence condition (d) is
verified and the lemma is proven. [J

In the setting of Lemma 7.1, constructing a n-trace from a right n-integral A = (4y )yen
reduces to finding a family z =(z,),c, Which satisfies conditions (b)—(d) of Lemma
7.1. Let us give two possible choices of the family z.

Let A be a left integral for H; such that 2;(A)=1. Set z; =4 and z,=0 if a# 1.
This family z = (z,),ec, verifies conditions (b)—(d) since H is unimodular (and so A is
central and Sj(A4)=A) and by Lemma 6.3(a). The n-trace obtained is given by tr; =¢
and tr, =0 if o #1.

If the homomorphism ¢ of Corollary 6.2 is trivial (that is @(x)=1 for all a € ),
then another possible choice is z,=1,. In the two next lemmas, we give sufficient
conditions for the homomorphism ¢ to be trivial.

Lemma 7.2. Let H be a finite type crossed Hopf m-coalgebra with crossing ¢. If H
is semisimple or cosemisimple or if @g|y, =idy, for all pen, then ¢=1.

Proof. Let fen. If H is semisimple, then H; is semisimple and thus there ex-
ists a left integral A for H; such that ¢(4)=1 (by Sweedler [17, Theorem 5.1.8]).
Now ¢g(A)=@(p)A by Lemma 6.3(a). Therefore, using (6.3), ¢(f)=@(f)e(A)=
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e(p(p)A)=epp(A)=¢e(A)=1. Suppose now that H is cosemisimple. By Theorem
5.4, there exists a right n-integral 4= (4y)yer for H such that 4;(1;)=1. Then ¢(f)=
A(B)21(11) = 21(@p(11)) = Z1(11) = 1. Suppose finally that @p|y, =idy,. Let A= (1y)ser
be a non-zero right n-integral for H. Then ¢(f)A =Ai¢p|n, =41 and thus ¢(f)=1
(since 41 #0 by Lemma 3.1). [

Lemma 7.3. Let H be a finite type ribbon Hopf m-coalgebra with crossing ¢ and
twist 0={0,}ycn. Let A= (Ay)uen be a right m-integral for H. If 7,(01)#0, then
o=1.

Proof. Let fcn. By (6.4.c) and Corollary 6.2, A1(01)=Ai(@p(01))=@(B)41(01).
Therefore ¢(f)=1 since 4;(6;)#0. O

We conclude with the following theorem, which follows directly from Lemma 7.1
(by choosing z, =1, for all & € ) and Lemmas 7.2 and 7.3.

Theorem 7.4. Let H be a finite type unimodular ribbon Hopf n-coalgebra with cross-
ing ¢ and twist 0 = {0,}ycr. Let 2= (Ay)uer be a right m-integral for H and
G =(Gy)yer be the spherical n-grouplike element of H. Suppose that at least one
of the following conditions is verified:

(a) H is semisimple;

(b) H is cosemisimple;

(c) 21(01)#0;

(d) @g|ln, =idp, for all pen.

Then tr = (try)yen, defined by try(x)=,(Gyx) for all o € and x € H,, is a n-trace
for H.
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