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Abstract

We introduce and study Hopf monads on autonomous categories (i.e., monoidal categories with duals).
Hopf monads generalize Hopf algebras to a non-braided (and non-linear) setting. In particular, any monoidal
adjunction between autonomous categories gives rise to a Hopf monad. We extend many fundamental re-
sults of the theory of Hopf algebras (such as the decomposition of Hopf modules, the existence of integrals,
Maschke’s criterium of semisimplicity, etc.) to Hopf monads. We also introduce and study quasitriangular
and ribbon Hopf monads (again defined in a non-braided setting).
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0. Introduction

In 1991, Reshetikhin and Turaev [12] introduced a new 3-manifold invariant. Its construction
consists in representing the 3-manifold by surgery along a framed link and then assigning a scalar
to the link by applying a suitable algorithm involving simple representations of a quantum group
at a root of unity. Since then, this construction has been re-visited many times. In particular,
Turaev [14] introduced the notion of a modular category, which is a semisimple ribbon category
satisfying conditions of finiteness and non-degeneracy, and showed that such a category defines
a 3-manifold invariant and indeed a TQFT.

A more general setting for constructing quantum invariants of 3-manifolds has been subse-
quently developed in [8], and more recently in [7,16], where the input data is a (non-necessarily
semisimple) ribbon category C which admits a coend A = ∫ X∈C ∨X ⊗ X. This coend A is en-
dowed with a very rich algebraic structure. In particular, it is a Hopf algebra in C. In fact, in this
setting, the quantum invariants depend only on certain structural morphisms of the coend A (see
[2] for details).

Recall that a Hopf algebra in a braided category C is an object A of C which is both an algebra
and a coalgebra in C, and has an antipode. The structural morphisms satisfy the traditional axioms
of a Hopf algebra, except that one has to replace the usual flip of vector spaces with the braiding τ

of C. More precisely, the axiom expressing the compatibility between the product m :A⊗A → A

and the coproduct Δ :A → A ⊗ A of A becomes:

Δm = (m ⊗ m)(idA ⊗ τA,A ⊗ idA)(Δ ⊗ Δ).

Hopf algebras in braided categories have been extensively studied (see [1] and references
therein). Many results about Hopf algebras have been extended to this setting.

However, general (non-necessarily braided) monoidal categories also play an important role
in quantum topology. Firstly, they are the input data for another class of 3-manifold invariants,
the Turaev–Viro invariants (see [4,15]). Also, via the center construction due to Drinfeld, they
lead to a large class of braided categories: if C is a monoidal category, then its center Z(C) is a
braided category. Under mild hypotheses, the category Z(C) admits a coend A, which is a Hopf
algebra in Z(C). How can one describe this Hopf algebra A in terms of the category C? Note that,
if the coend of C exists, then it is a coalgebra but not a Hopf algebra (and in general not even an
algebra), and therefore is not sufficient to describe A. What we need is a suitable generalization
of the notion of Hopf algebra to a non-braided setting.

The aim of this paper is to provide such a generalization by introducing the notion of Hopf
monad. What is a Hopf monad? Fix a category C. Recall that the category End(C) of endofunctors
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of C is a monoidal category, with composition of endofunctors for monoidal product and trivial
endofunctor 1C for unit object. A monad on C is an algebra in the monoidal category End(C).
In other words, it is an endofunctor T of C endowed with natural transformations μ :T 2 → T

(the product) and η : 1C → C (the unit) such that, for any object X of C,

μXμT (X) = μXT (μX) and μXηT (X) = idT (X) = μXT (ηX).

Monads are a very general notion: every adjunction defines a monad (and every monad comes
from an adjunction). Let T be a monad on C. An action of T on an object M of C is a morphism
r :T (M) → M in C satisfying:

rT (r) = rμM and rηM = idM.

We call such a pair (M, r) a T -module in C or, by abuse, a T -module (since the traditional term
‘T -algebra’ would be awkward in our context). Denote T -C the category of T -modules in C, and
UT :T -C → C the forgetful functor defined by UT (M, r) = M .

Now suppose that C is monoidal, and denote ⊗ its monoidal product and 1 its unit object.
When does the monoidal structure of C lift to T -C? The answer lies in the notion of bimonad
introduced by Moerdijk [11]. A bimonad is a monad T which is comonoidal, that is, endowed
with a natural transformation

T2(X,Y ) :T (X ⊗ Y) → T (X) ⊗ T (Y )

(which plays the role of a coproduct) and a morphism T0 :T (1) → 1 (which plays the role of
a counit) satisfying certain compatibility axioms which generalize those of a bialgebra. For ex-
ample, the axiom which corresponds with the compatibility of the product and the coproduct
is:

T2(X,Y )μX⊗Y = (μX ⊗ μY )T2
(
T (X),T (Y )

)
T

(
T2(X,Y )

)
.

Note that no braiding is needed to write this down.
The next step is to define the notion of antipode for a bimonad. It comes out that the usual

axioms for an antipode cannot be generalized to bimonads in a straightforward way. In order
to bypass this difficulty, we use the categorical interpretation of an antipode in terms of duality.
Let C be an autonomous category, that is, a monoidal category where each object X has a left
dual ∨X and a right dual X∨. A Hopf monad on C is a bimonad T on C such that the category
T -C is autonomous. This condition turns out to be equivalent to the existence of certain natural
transformations

sl
X :T

(∨T (X)
) → ∨X and sr

X :T
(
T (X)∨

) → X∨.

These are called the left antipode and the right antipode as they encode respectively the left and
right autonomy of T -C. The left and right duals of a T -module (M, r) are then given by:

∨(M, r) = (∨M,sl
MT

(∨r
))

and (M, r)∨ = (
M∨, sr

MT
(
r∨))

.

The notion of Hopf monad is very general. Firstly Hopf monads generalize Hopf algebras in
braided autonomous categories. Indeed, every Hopf algebra A in a braided autonomous category
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C yields a Hopf monad T on C defined by T (X) = A ⊗ X. In particular a finite-dimensional
Hopf algebra H over a field k yields a Hopf monad T (V ) = H ⊗V on vect(k), and T - vect(k) =
H mod. Secondly, Hopf monads do exist in a non-braided setting. In fact, any monoidal adjunction
between autonomous categories gives rise to a Hopf monad. This general property allows us, for
example, to give a Tannaka reconstruction theorem in terms of Hopf monads for fiber functors
with values in a category of bimodules.

Quite surprisingly, many fundamental results of the theory of Hopf algebras (such as the de-
composition of Hopf modules, the existence of integrals, Maschke’s criterium of semisimplicity,
etc.) extend to Hopf monads, sometimes in a straightforward way, sometimes at the price of some
technical trick. Also, it turns out that many effective tools for the study of Hopf algebras have
a monadic counterpart. In particular, we introduce the notions of sovereign grouplike element,
R-matrix (and Drinfeld element), and twist for a Hopf monad T . These express the fact that the
category T -C of T -modules is sovereign, or braided, or ribbon (recall that C itself need not be
braided).

In a subsequent paper [3], we construct the double of a Hopf monad T on an autonomous
category C. This is a quasitriangular Hopf monad on C whose category of modules is canonically
isomorphic (as a braided category) to the center of T -C.

0.1. Organization of the paper

In Section 1, we review a few general facts about monads, which we use intensively through-
out the text. In Section 2, we recall the definition of bimonads. In Section 3, we define antipodes
and Hopf monads, and we establish their first properties. In Section 4, we introduce Hopf mod-
ules and prove the fundamental theorem for Hopf modules over a Hopf monad. We apply this in
Section 5 to prove a theorem on the existence of universal integrals for a Hopf monad. In Sec-
tion 6, we define semisimple and separable monads, and give a characterization of semisimple
Hopf monads (which generalizes Maschke’s theorem). In Section 7, we define sovereign group-
like elements and involutory Hopf monads. In Section 8, we define R-matrices and twists for a
Hopf monad. Finally, in Section 9, we give other examples which illustrate the generality of the
notion of Hopf monad, including a Tannaka reconstruction theorem.

0.2. Conventions and notations

Unless otherwise specified, categories are assumed to be small, and monoidal categories are
assumed to be strict.

If C is a category, we denote Ob(C) the set of objects of C and HomC(X,Y ) the set of mor-
phisms in C from an object X to an object Y . The identity functor of C will be denoted by 1C .
We denote Cop the opposite category (where arrows are reversed).

Let C, D be two categories. Functors from C to D are the objects of a category FUN(C,D).
Given two functors F,G :C → D, a morphism α :F → G is a family {αX :F(X) →
G(X)}X∈Ob(C) of morphisms in D satisfying the following naturality condition: αY F(f ) =
G(f )αX for every morphism f :X → Y in C. Such a morphism is called a natural trans-
formation (the term functorial morphism is also used). We denote HOM(F,G) the set
HomFUN(C,D)(F,G) of natural transformations from F to G.

If C, C′ are two categories, we denote σC,C′ the flip functor C × C′ → C′ × C defined by
(X,Y ) �→ (Y,X) and (f, g) �→ (g, f ).
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1. Monads

In this section, we review a few general facts about monads, which we use intensively through-
out the text.

1.1. Monads

Let C be a category. Recall that the category End(C) of endofunctors of C is strict monoidal
with composition for monoidal product and identity functor 1C for unit object. A monad on C
(also called a triple) is an algebra in End(C), that is, a triple (T ,μ,η), where T :C → C is a
functor, μ :T 2 → T and η : 1C → T are natural transformations, such that:

μXT (μX) = μXμT (X); (1)

μXηT (X) = idT (X) = μXT (ηX); (2)

for any object X of C.
Let (T ,μ,η) be a monad on C. An action of T on an object M of C is a morphism

r :T (M) → M in C such that:

rT (r) = rμM and rηM = idM. (3)

The pair (M, r) is then called a T -module in C, or just a T -module.3

Given two T -modules (M, r) and (N, s) in C, a morphism f ∈ HomC(M,N) is said to be
T -linear if f r = sT (f ). Such an f is called a morphism of T -modules from (M, r) to (N, s).
This gives rise to the category T -C of T -modules (with composition inherited from C).

We will denote UT :T -C → C the forgetful functor of T defined by UT (M, r) = M for any
T -module (M, r) and UT (f ) = f for any T -linear morphism f . Then UT admits a left adjoint
FT :C → T -C, which is given by FT (X) = (T (X),μX) for any object X of C and FT (f ) = T (f )

for any morphism f in C. Note that T = UT FT is the monad of this adjunction (see example
below).

Example 1.1 (Monad of an adjunction). Let C and D be categories. It is a standard fact (see [9])
that if (F :C → D,U :D → C) is a pair of adjoint functors, with adjunction morphisms η :
1C → UF and ε :FU → 1D , then T = UF is a monad on C, with product μ = U(εF ) :T 2 → T

and unit η. The monad (T ,μ,η) is called the monad of the adjunction (F,U). Also there exists
a unique functor K :D → T -C such that UT K = U and KF = FT . The functor K is given by
A �→ (U(A),U(εA)).

Example 1.2. Let C be a monoidal category and A be an object of C. Let A⊗ ? be the endofunctor
of C defined by (A⊗ ?)(X) = A⊗X and (A⊗ ?)(f ) = idA ⊗f . Let m :A⊗A → A and u :1 →
A be morphisms in C. Define μX = m ⊗ idX and ηX = u ⊗ idX . Then (A⊗ ?,μ,η) is a monad
on C if and only if (A,m,u) is an algebra in C. If such is the case, then (A⊗ ?)-C is nothing but

3 This is not standard terminology: pairs (M, r) are usually called T -algebras in the literature (see [9]). However,
throughout this paper, pairs (M, r) are considered as the analogues of modules over an algebra, and so the term ‘algebra’
would be awkward in this context (in particular we must distinguish ‘Hopf modules’ from ‘Hopf algebras’).
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the category of left A-modules in C. Similarly, the endofunctor ?⊗A is a monad on C if and only
if A is an algebra in C and, if such is the case, (? ⊗A)-C is the category of right A-modules in C.

The following classical lemma will be useful later on.

Lemma 1.3. Let T be a monad on a category C and UT :T -C → C be the forgetful functor. Let D
be a second category and F,G :C →D be two functors. Then we have a canonical bijection

?� : HOM(F,GT ) → HOM(FUT ,GUT ), f �→ f �

defined by f
�

(M,r) = G(r)fM for any T -module (M, r). Its inverse

?	 : HOM(FUT ,GUT ) → HOM(F,GT ), g �→ g	

is given by g
	
X = g(T (X),μX)F (ηX) for any object X of C. If F,G are contravariant functors (that

is, functors from Cop to D), then the bijection becomes:

?� : HOM
(
GT op,F

) → HOM
(
GU

op
T ,FU

op
T

)
with f

�

(M,r) = fMG(r) and g
	
X = F(ηX)g(T (X),μX).

Proof. Let us verify the covariant case. We first remark that ?� and ?	 are well-defined. In-
deed g	 is clearly natural, and f � is natural since, for any T -linear morphism h : (M, r) →
(N, s), we have f

�

(N,s)F (h) = G(s)fNF(h) = G(sT (h))fM = G(hr)fM = G(h)f
�

(M,r). Now

f
�	
X = G(μX)fT (X)F (ηX) = G(μX)GT (ηX)fX = fX for any object X of C, and g

	�

(M,r) =
G(r)g(T (M),μM)F (ηM) = g(M,r)F (r)F (ηM) = g(M,r) for any T -module (M, r). Hence ?� and ?	

are inverse to each other. The contravariant case is a mere reformulation. �
Given a functor F :C → D and a positive integer n, we denote Cn = C × · · · × C and

F×n :Cn → Dn the n-uple cartesian product of C and F . Note that if T is a monad on a cat-
egory C, then T ×n is a monad on Cn, and we have T ×n-Cn = (T -C)n and UT ×n = (UT )×n.
Re-writing Lemma 1.3 for this monad, we get:

Lemma 1.4. Let T be a monad on a category C and UT :T -C → C be the forgetful functor. Fix
an positive integer n. Let D be a second category and F,G :Cn → D be two functors. Then we
have a canonical bijection

?� : HOM
(
F,GT ×n

) → HOM
(
FU×n

T ,GU×n
T

)
, f �→ f �

defined by f
�

(M1,r1),...,(Mn,rn) = G(r1, . . . , rn)fM1,...,Mn . Its inverse

?	 : HOM
(
FU×n

T ,GU×n
T

) → HOM
(
F,GT ×n

)
, g �→ g	

is given by g
	
X1,...,Xn

= g(T (X1),μX1 ),...,(T (Xn),μXn )F (ηX1 , . . . , ηXn). The contravariant case can
be stated similarly (see Lemma 1.3).
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1.2. Convolution product

Let C, D be two categories and (T ,μ,η) be a monad on C. Let F,G,H be three functors
Cn →D. Given f ∈ HOM(F,GT ×n) and g ∈ HOM(G,HT ×n), define their convolution product
g ∗ f ∈ HOM(F,HT ×n) by setting, for any objects X1, . . . ,Xn of C,

(g ∗ f )X1,...,Xn = H(μX1 , . . . ,μXn)gT (X1),...,T (Xn) fX1,...,Xn . (4)

This convolution product reflects the composition of natural transformations in the category
FUN(Cn,D) via the canonical bijection HOM(F,GT ×n) 	 HOM(FU×n

T ,GU×n
T ) given by

Lemma 1.4.
We say that f ∈ HOM(F,GT ×n) is ∗-invertible if there exists g ∈ HOM(G,FT ×n) such

that g ∗ f = F(η×n) and f ∗ g = G(η×n). This means that f � is a natural isomorphism, with
inverse g�. If such a g exists, then it is unique and we denote it f ∗−1.

1.3. Central elements

Let T be a monad on a category C. By Section 1.2, the set HOM(1C, T ) is a monoid, with
unit η, for the convolution product ∗ defined, for any φ,ψ ∈ HOM(1C, T ), by

(φ ∗ ψ)X = μXφT (X)ψX = μXT (ψX)φX :X → T (X). (5)

Recall that, via the canonical bijection ?� : HOM(1C, T ) → HOM(UT ,UT ) of Lemma 1.3, this
convolution product corresponds with composition of natural endomorphisms of the forgetful
functor UT :T -C → T .

Define maps L,R : HOM(1C, T ) → HOM(T ,T ) as follows: given a ∈ HOM(1C, T ), let
La,Ra ∈ HOM(T ,T ) be the natural transformations defined, for any object X of C, by:

(La)X = μXaT (X) and (Ra)X = μXT (aX). (6)

Remark that Lab = a ∗ b and Rab = b ∗ a for all a, b ∈ HOM(1C, T ).
A central element of T is a natural transformation a ∈ HOM(1C, T ) such that La = Ra . For

example, by (2), the unit η of T is a central element. Notice that any central element of T is in
particular central in the monoid (HOM(1C, T ),∗, η).

Lemma 1.5. Let T be a monad on a category C and a ∈ HOM(1C, T ). The following conditions
are equivalent:

(i) The morphism a is a central element of T ;
(ii) For any T -module (M, r), the morphism a

�

(M,r) :M → M is T -linear;
(iii) There exists a (necessarily unique) natural transformation ã : 1T -C → 1T -C such that

UT (ã) = a�.

Proof. Clearly, (ii) is equivalent to (iii). Let (M, r) be a T -module. Then, using (3),

a
�

r = raMr = rT (r)aT (M) = rμMaT (M) = r(La)M
(M,r)
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and

rT
(
a

�

(M,r)

) = rT (r)T (aM) = rμMT (aM) = r(Ra)M.

Therefore (i) is equivalent to (ii) by Lemma 1.3. �
1.4. The adjoint action

Let T be a monad on a category C and consider the maps L,R : HOM(1C, T ) → HOM(T ,T )

defined as in (6).

Lemma 1.6. The maps L and R are respectively a homomorphism and an anti-homomorphism
of monoids from (HOM(1C, T ),∗, η) to (HOM(T ,T ),◦, idT ). Moreover LaRb = RbLa for all
a, b ∈ HOM(1C, T ).

Proof. For any object X of C, we have (Lη)X = μXηT (X) = idT (X) by (2) and, given a, b ∈
HOM(1C, T ),

(La∗b)X = μXμT (X)aT 2(X)bT (X)

= μXT (μX)aT 2(X)bT (X) by (1)

= μXaT (X)μXbT (X) = (La)X(Lb)X.

Therefore L is a homomorphism of monoids. Likewise one shows that R anti-homomorphism of
monoids. Finally, given a, b ∈ HOM(1C, T ) and an object X of C, we have:

(LaRb)X = μXaT (X)μXT (bX)

= μXT (μX)aT 2(X)T (bX)

= μXμT (X)T
2(bX)aT (X) by (1)

= μXT (bX)μXaT (X) = (Rb)X(La)X,

and so LaRb = RbLa . �
Given a ∈ HOM(1C, T ), we get from Lemma 1.6 that La (respectively Ra) is invertible if and

only if a is ∗-invertible and, if such the case, L−1
a = La∗−1 (respectively R−1

a = Ra∗−1 ). Denote
AUT(T ) the group of natural automorphisms of T and HOM(1C, T )× the group of ∗-invertible
elements of the monoid (HOM(1C, T ),∗, η). Define:

ad:
{

HOM(1C, T )× → AUT(T ),

a �→ ada = LaRa∗−1 = Ra∗−1La.
(7)

The map ad is a group morphism (by Lemma 1.6) and is called the adjoint action of T . Its kernel
is made of the ∗-invertible central elements of T .

Notice that ada b = a ∗ b ∗ a∗−1 for any b ∈ HOM(1C, T ).
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1.5. Morphisms of monads

A morphism of monads between two monads (T ,μ,η) and (T ′,μ′, η′) on a category C is a
natural transformation f :T → T ′ such that:

fXμX = μ′
XfT ′(X)T (fX) and fXηX = η′

X (8)

for any object X of C.

Lemma 1.7. Let T and T ′ be two monads on a category C. Let f :T → T ′ be a natural trans-
formation. The following conditions are equivalent:

(i) f :T → T ′ is a morphism of monads;
(ii) for any T ′-module (M, r), the pair (M, rfM) is a T -module.

Moreover, if f is a morphism of monads, then the assignment (M, r) �→ (M, rfM) defines a
functor f ∗ :T ′-C → T -C which satisfies UT f ∗ = UT ′ . Lastly, for any functor F :T ′-C → T -C
such that UT F = UT ′ , there exists a unique morphism of monads f :T → T ′ such that F = f ∗.

Proof. Let (M, r) be a T ′-module. The pair (M, rfM) is a T -module if and only if rfMμM =
rfMT (rfM) = rT ′(r)fT ′(M)T (fM) and rfMηM = idM . Using (3), this is equivalent to rfMμM =
rμ′

MfT ′(M)T (fM) and rfMηM = rηM . By Lemma 1.3, this holds for each T ′-module (M, r) if
and only if f is a morphism of monads. Clearly, if f is a morphism of monads, then f ∗ is
a well-defined functor. Let F :T ′-C → T -C be a functor such that UT F = UT ′ . Given a T ′-
module (M, r), denote ρ(M,r) the T -action on M such that F(M, r) = (M,ρ(M,r)). This defines
a natural transformation ρ ∈ HOM(T UT ′ ,UT ′). Let f = ρ	 ∈ HOM(T ,T ′) (see Lemma 1.3). We
have ρ = f �, that is, ρ(M,r) = rfM for each T ′-module (M, r). This shows simultaneously that
f is a morphism of monads and F = f ∗. �
2. Bimonads

In this section, we review the definition and properties of a bimonad. This notion was intro-
duced by Moerdijk in [11].

2.1. (Co-)monoidal functors

Let (C,⊗,1) and (D,⊗,1) be two monoidal categories. A monoidal functor from C to D is
a triple (F,F2,F0), where F :C → D is a functor, F2 :F ⊗ F → F⊗ is a morphism of functors,
and F0 :1 → F(1) is a morphism in D, such that:

F2(X,Y ⊗ Z)
(
idF(X) ⊗ F2(Y,Z)

) = F2(X ⊗ Y,Z)
(
F2(X,Y ) ⊗ idF(Z)

); (9)

F2(X,1)(idF(X) ⊗ F0) = idF(X) = F2(1,X)(F0 ⊗ idF(X)); (10)

for all objects X,Y,Z of C.
A comonoidal functor from C to D is a triple (F,F2,F0), where F :C → D is a functor,

F2 :F⊗ → F ⊗ F is a natural transformation, and F0 :F(1) → 1 is a morphism in D, such that:
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(
idF(X) ⊗ F2(Y,Z)

)
F2(X,Y ⊗ Z) = (

F2(X,Y ) ⊗ idF(Z)

)
F2(X ⊗ Y,Z); (11)

(idF(X) ⊗ F0)F2(X,1) = idF(X) = (F0 ⊗ idF(X))F2(1,X); (12)

for all objects X,Y,Z of C. Comonoidal functors are sometimes called opmonoidal in the litera-
ture.

A (co-)monoidal functor (F,F2,F0) is said to be strong (respectively strict) if F2 and F0
are isomorphisms (respectively identities). For example, the identity functor 1C of a monoidal
category C is a strict (co-)monoidal functor.

Given a functor F :C → D, a natural isomorphism F2 :F ⊗ F → F⊗, and an isomorphism
F0 :1 → F(1), the triple (F,F2,F0) is a monoidal functor if and only if (F,F−1

2 ,F−1
0 ) is a

comonoidal functor.

Lemma 2.1. Let F and G be two composable functors between monoidal categories.

(a) If F and G are monoidal functors, then GF is a monoidal functor with (GF)2 = G(F2)G2
and (GF)0 = G(F0)G0.

(b) If F and G are comonoidal functors, then GF is a comonoidal functor with (GF)2 =
G2G(F2) and (GF)0 = G0G(F0).

2.2. (Co-)monoidal natural transformations

A natural transformation ϕ :F → G between two monoidal functors F :C → D and G :C →
D is monoidal if it satisfies:

ϕX⊗Y F2(X,Y ) = G2(X,Y )(ϕX ⊗ ϕY ) and G0 = ϕ1F0 (13)

for all objects X,Y of C.
Likewise, a natural transformation ϕ :F → G between two comonoidal functors F :C → D

and G :C →D is comonoidal if it satisfies:

G2(X,Y )ϕX⊗Y = (ϕX ⊗ ϕY )F2(X,Y ) and G0ϕ1 = F0 (14)

for all objects X,Y of C.

2.3. Bimonads

A bimonad on a monoidal category C is a monad (T ,μ,η) on C such that the functor
T :C → C is comonoidal and the natural transformations μ :T 2 → T and η : 1C → T are
comonoidal. Here 1C is the (strict) comonoidal identity functor of C and T 2 is the comonoidal
functor obtained by composition of the comonoidal functor T with itself as in Lemma 2.1(b).
Explicitly, μ and η are comonoidal if they satisfy, for all objects X,Y of C,

T2(X,Y )μX⊗Y = (μX ⊗ μY )T2
(
T (X),T (Y )

)
T

(
T2(X,Y )

); (15)

T0μ1 = T0T (T0); (16)

T2(X,Y )ηX⊗Y = (ηX ⊗ ηY ); (17)

T0η1 = id1. (18)
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Our notion of bimonad coincides exactly with the notion of ‘Hopf monad’ introduced in [11].
However, by analogy with the notions of bialgebra and Hopf algebra, we prefer to reserve the
term ‘Hopf monad’ for bimonads with antipodes (see Section 3.3). This choice may be justified
by the following example:

Example 2.2. Let C be a braided category, with braiding τX,Y :X ⊗ Y → Y ⊗ X, and A be an
algebra in C. Let T = A⊗ ? be its associated monad on C, see Example 1.2. Let Δ :A → A ⊗ A

and ε :A → 1 be morphisms in C. Set

T2(X,Y ) = (idA ⊗ τA,X ⊗ idY )(Δ ⊗ idX⊗Y ) :T (X ⊗ Y) → T (X) ⊗ T (Y );
T0 = ε :T (1) → 1.

Then (T ,T2, T0) is a bimonad on C if and only if (A,Δ,ε) is a bialgebra in C. Similarly, given a
bialgebra A in C, the endofunctor ? ⊗ A is a bimonad on C with

(? ⊗ A)2(X,Y ) = (idX ⊗ τY,A ⊗ idA)(idX⊗Y ⊗ Δ) and (? ⊗ A)0 = ε.

In particular, any bialgebra H over a field k defines bimonads H ⊗k ? and ?⊗k H on the category
Vect(k) of k-vector spaces.

We can reformulate the main result of [11] as follows (see also [10]):

Theorem 2.3 (Moerdijk, 2002). Let T be a monad on a monoidal category C. If T is a bimonad,
then the category T -C of T -modules in C is monoidal by setting:

(M, r) ⊗T -C (N, s) = (
M ⊗ N, (r ⊗ s)T2(M,N)

)
and 1T -C = (1, T0).

Moreover this gives a bijective correspondence between:

• bimonad structures for the monad T ;
• monoidal structures of T -C such that the forgetful functor UT :T -C → C is strict monoidal.

Remark 2.4. Let T be a bimonad on a monoidal category C = (C,⊗,1). Then T can be viewed as
a bimonad T op on the monoidal category C⊗op = (C,⊗op,1), with comonoidal structure T

op
2 =

T2 σC,C and T
op
0 = T0 (where σC,C is the flip functor). The bimonad T op is called the opposite of

the bimonad T . We have T op-C⊗op = (T -C)⊗op.

Remark 2.5. Notice that the notion of bimonad is not ‘self-dual’: one may define a bi-comonad
on a monoidal category C to be a bimonad of the opposite category Cop.

2.4. Monoidal adjunctions and bimonads

In this section, we extend to the monoidal setting the link between adjunctions and monads
detailed in Example 1.1.
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Theorem 2.6. Let C,D be two monoidal categories and U :D → C be a strong monoidal functor.
Assume that the functor U has a left adjoint F :C → D, and denote T = UF the monad (on C)
of this adjunction. Then the functor F is a comonoidal functor, and so is T . Endowed with this
comonoidal structure, the monad T is a bimonad. Moreover the canonical functor K :D → T -C
is strong monoidal and satisfies UT K = U as monoidal functors and KF = FT as comonoidal
functors.

Remark 2.7. Any bimonad T is of the form of Theorem 2.6, since the forgetful functor UT is
strong monoidal, FT is left adjoint to UT , and T = UT FT .

Proof of Theorem 2.6. Denote η : 1C → UF and ε :FU → 1D the adjunction morphisms. De-
fine F2 :F⊗ → F ⊗ F by setting, for any objects X,Y of C,

F2(X,Y ) = εF(X)⊗F(Y )F
(
U2

(
F(X),F (Y )

))
F(ηX ⊗ ηY )

and set F0 = ε1DF(U0) :F(1C) → 1D . One verifies that (F,F2,F0) is a comonoidal func-
tor. Since U is strong monoidal, we may also view it as a strong comonoidal functor
(with comonoidal structure defined by U−1

2 and U−1
0 ). Therefore both T = UF and FU

are comonoidal functors by Lemma 2.1(b). One checks that η : 1C → T , ε :FU → 1D , and
μ = U(εF ) :T 2 → T are comonoidal natural transformations. As a result, the monad T = UF

is a bimonad.
For any object A of D, we have K(A) = (

U(A),U(εA)). For all objects A,B of D, the mor-
phism U2(A,B) :U(A)⊗U(B) → U(A⊗B) lifts to a (T -linear) morphism K2(A,B) :K(A)⊗
K(B) → K(A ⊗ B). Likewise, U0 :1C → U(1D) lifts to a (T -linear) morphism K0 :1T -C =
(1C, T0) → K(1D). Moreover, (K,K2,K0) is a strong monoidal functor such that UT K =
U as monoidal functors, because UT is strict monoidal, faithful, and conservative. We also
have KF = FT as comonoidal functors, since KF = (UF,U(εF )) = (T ,μ) = FT , (KF)2 =
U−1

2 (F,F )U(F2) = T2 = (FT )2, and (KF)0 = U−1
0 U(F0) = T0 = (FT )0. �

Example 2.8. Szlachányi has shown that (left) bialgebroid, as defined in [13], may be inter-
preted in terms of bimonads. More precisely, let k is a commutative ring and B a k-algebra.
Denote BModB the category of B-bimodules, which is monoidal with tensor product ⊗B and
unit object BBB . Then following data are equivalent:

• bimonads on BModB which commute with inductive limits;
• (left) bialgebroids with base B .

If A is a (left) bialgebroid, then the corresponding bimonad is T = A⊗B ? and the monoidal cat-
egories T -BModB and AMod are equivalent. Note that in general the monoidal category BModB

is not braided.

2.5. Morphisms of bimonads

A morphism of bimonads between two bimonads T and T ′ on a monoidal category C is a
morphism of monads f :T → T ′ (see Section 1.5) which is comonoidal.

Lemma 2.9. Let T and T ′ be two bimonads on a monoidal category C. Let f :T → T ′ be a
morphism of monads. Then f is a morphism of bimonads if and only if the functor f ∗ :T ′-C →
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T -C induced by f (see Lemma 1.7) is monoidal strict. Moreover, for any strict monoidal functor
F :T ′-C → T -C such that UT F = UT ′ , there exists a unique morphism of bimonads f :T → T ′
such that F = f ∗.

Proof. In view of Lemma 1.7, we have to show that the functor F = f ∗ is monoidal strict if and
only if f is comonoidal. We have F(1, T ′

0) = (1, T ′
0f1) and

F
(
(M, r) ⊗ (N, s)

) = (
M ⊗ N, (r ⊗ s)T ′

2(M,N)fM⊗N

)
,

F (M, r) ⊗ F(N, s) = (
M ⊗ N, (r ⊗ s)(fM ⊗ fN)T2(M,N)

)
,

for any T ′-bimodules (M, r) and (N, s). We conclude by Lemma 1.4. �
3. Hopf monads

Let T be a bimonad on a monoidal category C. By Theorem 2.3, the category T -C of T -
modules is monoidal and the forgetful functor UT :T -C → C is strict monoidal. Assuming C is
autonomous (i.e., has duals), when is T -C autonomous as well? The answer lies in the notions
of antipode and Hopf monad, which we introduce in this section. We first recall some properties
of autonomous categories.

3.1. Autonomous categories

Recall that a duality in a monoidal category C is a quadruple (X,Y, e, d), where X, Y are
objects of C, e :X ⊗Y → 1 (the evaluation) and d :1 → Y ⊗X (the coevaluation) are morphisms
in C, such that:

(e⊗ idX)(idX ⊗d) = idX and (idY ⊗ e)(d ⊗ idY ) = idY . (19)

Then (X, e, d) is a left dual of Y , and (Y, e, d) is a right dual of X.
If D = (X,Y, e, d) and D′ = (X′, Y ′, e′, d ′) are two dualities, two morphisms f :X → X′ and

g :Y ′ → Y are in duality with respect to D and D′ if

e′(f ⊗ idY ′) = e(idX ⊗g)
(
or, equivalently, (idY ′ ⊗f )d = (g ⊗ idX)d ′).

In that case we write f = ∨gD,D′ and g = f ∨
D,D′ , or simply f = ∨g and g = f ∨ if the context

justifies a more relaxed notation. Note that this defines a bijection between HomC(X,X′) and
HomC(Y ′, Y ).

Left and right duals, if they exist, are essentially unique: if (Y, e, d) and (Y ′, e′, d ′) are
right duals of some object X, then there exists a unique isomorphism u :Y → Y ′ such that
e′ = e(idX ⊗u−1) and d ′ = (u⊗ idX)d .

A left autonomous (respectively right autonomous, respectively autonomous) category is a
monoidal category for which every object admits a left dual (respectively a right dual, re-
spectively both a left and a right dual). Note that autonomous categories are also called rigid
categories in the literature.

Assume C is a left autonomous category and, for each object X, pick a left dual (∨X, evX,

coevX). This data defines a strong monoidal functor ∨? :Cop → C, where Cop is the opposite
category to C with opposite monoidal structure. This monoidal functor is called the left dual
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functor. Notice that the actual choice of left duals is innocuous in the sense that different choices
of left duals define canonically isomorphic left dual functors.

Likewise, if C is a right autonomous category, picking a right dual (X∨, ẽvX, c̃oevX) for each
object X defines a strong monoidal functor ?∨ :Cop → C, called the right dual functor.

Remark 3.1. Subsequently, when dealing with left or right autonomous categories, we shall
always assume tacitly that left duals or right duals have been chosen. Moreover, in formulae, we
will often abstain (by abuse) from writing down the following canonical isomorphisms:

∨?2(X,Y ) : ∨Y ⊗∨X → ∨(X ⊗Y), ∨?0 :1 → ∨1,

?∨
2 (X,Y ) :Y∨ ⊗X∨ → (X ⊗Y)∨, ?∨

0 :1 → 1∨.

Remark 3.2. If C is autonomous, then the functors ?∨op and ∨? are canonically quasi-inverse.
More precisely, for any object X of C, we have the following canonical natural isomorphisms:

(ẽvX ⊗ id∨(X∨))(idX ⊗ coevX∨) :X → ∨(
X∨)

,

(id(∨X)∨ ⊗ evX)(c̃oev∨X ⊗ idX) :X → (∨X
)∨

.

Again, we will often abstain from writing down these isomorphisms.

Let C, D be autonomous categories (with chosen left and right duals). For any functor
F :C →D, we define two functors !F :C →D and F ! :C →D by setting:

!F(X) = ∨F
(
X∨)

, !F(f ) = ∨F
(
f ∨)

, F !(X) = F
(∨X

)∨
, F !(f ) = F

(∨f
)∨

for all object X and morphism f in C. For any natural transformation α :F → G between func-
tors from C to D, we define two natural transformations !α : !G → !F and α! :G! → F ! by setting:

!αX = ∨(αX∨) : !G(X) → !F(X) and α!
X = (α∨X)∨ :G!(X) → F !(X)

for any object X of C. These assignments lead to functors

!? : FUN(C,D)op → FUN(C,D) and ?! : FUN(C,D)op → FUN(C,D).

Remark 3.3. The functors !? and ?! enjoy the following properties: given two composable
functors F :C → D and G :D → E between autonomous categories, we have !1C = 1C = 1C !,
!(FG) = !F !G and (FG)! = F !G! (up to the canonical isomorphisms of Remark 3.2). Moreover,
the functors !? and (?!)op are quasi-inverse to each other.

3.2. Strong monoidal functors and duality

Let F :C → D be a strong monoidal functor between monoidal categories. If D = (X,Y, e, d)

is a duality in C, then

F(D) = (
F(X),F (Y ),F−1F(e)F2(X,Y ),F2(Y,X)−1F(h)F0

)

0
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is a duality in D. In particular, if C and D are left (respectively right) autonomous, we have a
canonical isomorphism:

F l
1(X) :F

(∨X
) ∼−→ ∨F(X)

(
respectively F r

1 (X) :F
(
X∨) ∼−→ F(X)∨

)
.

Lemma 3.4. Let F,G :C → D be strong monoidal functors and α :F → G be a monoidal nat-
ural transformation. If C is left or right autonomous, then α is an isomorphism. More precisely,
if C is left (respectively right) autonomous then, for any object X of C,

α−1
X = (α∨X)∨G(D),F (D)

(
respectively α−1

X = ∨(αX∨)F (D),G(D)

)
where D is the duality (∨X,X, evX, coevX) (respectively (X,X∨, ẽvX, c̃oevX)). In particular, if
C is autonomous, then α−1 = α! = !α (up to the canonical isomorphisms of Remark 3.2), where
!? and ?! are the functors of Remark 3.3.

Proof. Let D = (X,Y, e, d) be a duality in C. Denote ∨αY :G(X) → F(X) the left dual of
αY :F(Y ) → G(Y) with respect to the dualities F(D) = (F (X),F (Y ), eF , dF ) and G(D) =
(G(X),G(Y ), eG, dG). We have

eG(αX ⊗αY ) = G−1
0 G(e)G2(X,Y )(αX ⊗αY ) = G−1

0 G(e)αX ⊗Y F2(X,Y )

= G−1
0 α1F(e)F2(X,Y ) = F−1

0 F(e)F2(X,Y ) = eF

and similarly (αY ⊗αX)dF = dG. Now

∨αY αX = (
eG(αX ⊗αY )⊗ idF(X)

)
(idF(X) ⊗dF )

= (eF ⊗ idF(X))(idF(X) ⊗dF ) = idF(X)

and

αX
∨αY = (eG ⊗ idG(X))

(
idG(X) ⊗(αY ⊗αX)dF

)
= (eG ⊗ idG(X))(idG(X) ⊗dG) = idG(X).

Hence ∨αY is inverse to αX . �
3.3. Antipodes

Let (T ,μ,η) be a bimonad on a monoidal category C.
If C is left autonomous, then a left antipode for T is a natural transformation sl =

{sl
X :T (∨T (X)) → ∨X}X∈Ob(C) satisfying:

T0T (evX)T
(∨ηX ⊗ idX

) = evT (X)

(
sl
T (X)T

(∨μX

)⊗ idT (X)

)
T2

(∨T (X),X
); (20)

(ηX ⊗ id∨X) coevX T0 = (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
T (coevT (X)); (21)

for every object X of C.
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If C is right autonomous, then a right antipode for T is a natural transformation sr =
{sr

X :T (T (X)∨) → X∨}X∈Ob(C) satisfying:

T0T (ẽvX)T
(
idX ⊗η∨

X

) = ẽvT (X)

(
idT (X) ⊗ sr

T (X)T
(
μ∨

X

))
T2

(
X,T (X)∨

); (22)

(idX∨ ⊗ηX)c̃oevXT0 = (
sr
X ⊗μX

)
T2

(
T (X)∨, T (X)

)
T (c̃oevT (X)); (23)

for every object X of C.

Remark 3.5. This apparently complicated definition is justified by Theorem 3.8. The notion
of left and right antipodes generalize the classical notion of an antipode and its inverse for a
bialgebra. For details, see Example 3.10 below.

Remark 3.6. Let T be a bimonad on a left autonomous category C, endowed with a left an-
tipode sl . Then sl is a right antipode for the bimonad T op on the right autonomous category C⊗op

(as defined in Remark 2.4). Likewise, if T is a bimonad on a right autonomous category C en-
dowed with a right antipode sr , then sr is a left antipode for T op.

The next theorem translates the fact that the antipode of a (classical) Hopf algebra is an anti-
homomorphism of bialgebras.

Theorem 3.7. Let T be a bimonad on a monoidal category C. If sl is a left antipode of T (as-
suming C is left autonomous), then we have:

sl
Xμ∨T (X) = sl

XT
(
sl
T (X)

)
T 2(∨μX

); (24)

sl
Xη∨T (X) = ∨ηX; (25)

sl
X ⊗Y T

(∨T2(X,Y )
) = (

sl
Y ⊗ sl

X

)
T2

(∨T (Y ),∨T (X)
); (26)

sl
1T

(∨T0
) = T0. (27)

Likewise, if sr is a right antipode of T (assuming C is right autonomous), then we have:

sr
XμT (X)∨ = sr

XT
(
sr
T (X)

)
T 2(μ∨

X

); (28)

sr
XηT (X)∨ = η∨

X; (29)

sr
X ⊗Y T

(
T2(X,Y )∨

) = (
sr
Y ⊗ sr

X

)
T2

(
T (Y )∨, T (X)∨

); (30)

sr
1T

(
T0

∨) = T0. (31)

Proof. The ‘right part’ can be deduced from the ‘left part’ by Remark 3.6. We prove here the
‘multiplicative’ assertions (24) and (25). The ‘comultiplicative’ assertions (26), (27) (and (30),
(31)), which are stated here for convenience, will be proved in Section 3.5. Note that we will not
use these assertions until then!

Assume C is left autonomous and T has a left antipode sl . Let us show (24). Fix an object
X of C. Setting LX = sl μ∨T (X) and RX = sl T (sl )T 2(∨μX), we must prove LX = RX .
X X T (X)
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Recall (see Lemma 2.1(b)) that T 2 is a comonoidal functor. Define μ
(2)
X : T 3(X) → T (X) and

DX :T 2(1) → T 3(X)⊗T 2(∨T (X)) by

μ
(2)
X = μXT (μX) and DX = T 2

2

(
T (X),∨T (X)

)
T 2(coevT (X)).

Firstly, we have:

(
μ

(2)
X ⊗LX

)
DX = (

μ
(2)
X ⊗RX

)
DX. (32)

Indeed

(
μ

(2)
X ⊗LX

)
DX

= (
μXμT (X) ⊗ sl

Xμ∨T (X)

)
T 2

2

(
T (X),∨T (X)

)
T 2(coevT (X)) by (1)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
μT (X)⊗∨T (X)T

2(coevT (X)) by (15)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
T (coevT (X))μ1

= (ηX ⊗ id∨X) coevX T0μ1 by (21)

= (ηX ⊗ id∨X) coevX T0T (T0) by (16)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
T (coevT (X) T0) by (21)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
T

(
(μXηT (X) ⊗ id∨T (X)) coevT (X) T0

)
by (2)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
◦ T

((
μXμT (X) ⊗ sl

T (X)

)
T2

(
T 2(X),∨T 2(X)

)
T (coevT 2(X))

)
by (21)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
◦ T

((
μXT (μX)⊗ sl

T (X)

)
T2

(
T 2(X),∨T 2(X)

)
T (coevT 2(X))

)
by (1)

= (
μXT (μX)⊗ sl

XT
(
sl
T (X)

)
T 2(∨μX

))
T2

(
T 2(X),T

(∨T (X)
))

◦ T
(
T2

(
T (X),∨T (X)

))
T 2(coevT (X))

= (
μ

(2)
X ⊗RX

)
DX.

Secondly, setting:

νX = sl
T (X)T

(∨μX

)
, ν

(2)
X = νXT (νX), and EX = evT (X)

(
ν

(2)
X ⊗μ

(2)
X

)
,

we have

(EX ⊗ idT 2(∨T (X)))(idT 2(∨T (X)) ⊗DX)T 2
2

(∨T (X),1
) = idT 2(∨T (X)). (33)

Indeed, on the one hand, we have:
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(idT 2(∨T (X)) ⊗DX)T 2
2

(∨T (X),1
)

= (
idT 2(∨T (X)) ⊗T 2

2

(
T (X),∨T (X)

))
◦ T 2

2

(∨T (X),T (X)⊗∨T (X)
)
T 2(id∨T (X) ⊗ coevT (X))

= (
T 2

2

(∨T (X),T (X)
)⊗ idT 3(X)

)
◦ T 2

2

(∨T (X)⊗T (X),∨T (X)
)
T 2(id∨T (X) ⊗ coevT (X)) by (11).

On the other hand, from (20) and (2), we obtain:

evT (X)(νX ⊗μX)T2
(∨T (X)⊗T (X)

) = T0T (evT (X))

and so, using this twice,

EXT 2
2

(∨T (X),T (X)
)

= evT (X)(νX ⊗μX)T2
(∨T (X),T (X)

)
T (νX ⊗μX)T

(
T2

(∨T (X),T (X)
))

= T0T (evTX
)T (νX ⊗μX)T

(
T2

(∨T (X),T (X)
)) = T 2

0 T 2(evT (X)).

Hence

(EX ⊗ idT 2(∨T (X)))(idT 2(∨T (X)) ⊗DX)T 2
2

(∨T (X),1
)

= (
T 2

0 T 2(evT (X))⊗ idT 2(∨T (X))

)
◦ T 2

2

(∨T (X)⊗T (X),∨T (X)
)
T 2(id∨T (X) ⊗ coevT (X))

= (
T 2

0 ⊗ idT 2(∨T (X))

)
T 2

2

(
1,∨T (X)

)
◦ T 2((evT (X) ⊗ id∨T (X))(id∨T (X) ⊗ coevT (X))

)
= idT 2(∨T (X)) by (12) and (19),

that is (33). Finally, we conclude:

LX = (EX ⊗LX)(idT 2(∨T (X)) ⊗DX)T 2
2

(∨T (X),1
)

by (33)

= (EX ⊗RX)(idT 2(∨T (X)) ⊗DX)T 2
2

(∨T (X),1
)

by (32)

= RX by (33).

Let us prove (25). For any object X of C, we have:(
idT (X) ⊗ ∨ηX

)
coevT (X) = (ηX ⊗ id∨X) coevX T0η1 by (18)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
T (coevT (X))η1 by (21)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
ηT (X)⊗∨T (X) coevT (X)

= (
μXηT (X) ⊗ sl

Xη∨T (X)

)
coevT (X) by (17)

= (
idT (X) ⊗ sl

Xη∨T (X)

)
coevT (X) by (2).

Hence sl η∨T (X) = ∨ηX by (19). �
X
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The following theorem relates the existence of a left (respectively right) antipode for a bi-
monad to the existence of left (respectively right) duals for the category of modules over the
bimonad.

Theorem 3.8. Let T be a bimonad on a monoidal category C.

(a) Assume C is left autonomous. Then T has a left antipode sl if and only if the category T -C of
T -modules is left autonomous. Moreover, if a left antipode exists, then it is unique. In terms
of a left antipode sl , left duals in T -C are given by:

∨(M, r) = (∨M,sl
MT

(∨r
))

, ev(M,r) = evM, coev(M,r) = coevM .

(b) Assume C is right autonomous. Then T has a right antipode sl if and only if the category
T -C of T -modules is right autonomous. Moreover, if a right antipode exists, then it is unique.
In terms of a right antipode sr , right duals in T -C are given by:

(M, r)∨ = (
M∨, sr

MT
(
r∨))

, ẽv(M,r) = ẽvM, c̃oev(M,r) = c̃oevM.

We prove Theorem 3.8 in the next section.

3.4. Proof of Theorem 3.8

Part (b) is just a re-writing of Part (a) applied to the bimonad T op (see Remark 3.6). Let us
show Part (a). Fix a left autonomous category C and a bimonad T on C. Each object X of C has
a left dual (∨X, evX, coevX). We first establish the following lemma:

Lemma 3.9. If a T -module (M, r) has a left dual, then there exists a unique action δ :T (∨M) →
∨M such that ((∨M,δ), evM, coevM) is a left dual of (M, r).

Proof. Assume (M, r) has a left dual ((N,ρ), e, d). The forgetful functor UT :T -C → C being
strict monoidal, (N, e, d) is a left dual of M in C. Hence there is a unique isomorphism u :N →
∨M such that e = evM(u⊗ idM) and d = (idM ⊗u−1) coevM . Define δ :T (∨M) → ∨M by δ =
uρT (u−1). Then clearly ((∨M,δ), evM, coevM) is a left dual of (M, r). Now if we have another
left dual of this form, say ((∨M,δ′), evM, coevM), then we have an isomorphism v : (∨M,δ) →
(∨M,δ′) such that evM = evM(v ⊗ idM), and so v = id∨M and δ′ = δ. �

Assume T -C is left autonomous. For any T -module (M, r), there exists a unique ac-
tion δ(M,r) :T (∨M) → ∨M such that ((∨M,δ(M,r)), evM, coevM) is a left dual of (M, r) (by
Lemma 3.9). If f :M → N is a T -linear morphism between two T -modules (M, r) and
(N, s), then ∨f : ∨N → ∨M is T -linear too. Hence δ satisfies the following naturality property:
∨f δ(N,s) = δ(M,r)T (∨f ). In other words, we have: δ ∈ HOM(T ∨?Uop

T ,∨?Uop
T ).

The conclusion of this discussion is that T -C is left autonomous if and only if there exits
δ ∈ HOM(T ∨?Uop

T ,∨?Uop
T ) such that, for any T -module (M, r), the triple ((∨M,δ(M,r)), evM,

coevM) is a left dual of (M, r).
Now consider an arbitrary element δ ∈ HOM(T ∨?Uop

T ,∨?Uop
T ). By Lemma 1.3 (contravariant

case) we have a canonical bijection:

?� : HOM
(
T ∨?T op,∨?

) → HOM
(
T ∨?Uop

,∨?Uop)
, f �→ f �.
T T
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Set sl = δ	 ∈ HOM(T ∨?T op,∨?), where ?	 is the inverse of ?�. Recall that sl
X = ∨ηXδ(T (X),μX)

for any object X in C. Moreover δ = (sl)� and so δ(M,r) = sl
MT (∨r) for any T -module (M, r).

We have the following equivalences:

(A) the pair (∨M,δ(M,r)) is a T -module for any T -module (M, r) if and only if sl satisfies (24)
and (25);

and, assuming the equivalent assertions of (A),

(B) the evaluation evM is T -linear for any T -module (M, r) if and only if sl satisfies (20);
(C) the coevaluation coevM is T -linear for any T -module (M, r) if and only if sl satisfies (21).

Let us show (A). Recall that (∨M,δ(M,r)) is a T -module if and only if both identities
δ(M,r)μ∨M = δ(M,r)T (δ(M,r)) and δ(M,r)η∨M = id∨M hold. Replacing δ(M,r) by sl

MT (∨r) in the
first identity, we get:

sl
MT

(∨r
)
μ∨M = sl

MT
(∨r

)
T

(
sl
M

)
T 2(∨r

)
.

The left-hand side may be rewritten as sl
Mμ∨T (M)T

2(∨r). The right-hand side may be rewritten
as sl

MT (sl
T (M))T

2(∨T (r)∨r) = sl
MT (sl

T (M))T
2(∨μM

∨r). Therefore we finally get:

sl
Mμ∨T (M)T

2(∨r
) = sl

MT
(
sl
T (M)

)
T 2(∨μM

)
T 2(∨r

)
,

which is equivalent to (24) by Lemma 1.3. Likewise, the second identity is equivalent to (25) by
a straightforward application of Lemma 1.3.

Let us show (B). Recall that evM is T -linear if an only if we have T0T (evM) =
evM(δ(M,r) ⊗ r)T2(

∨M,M). Replacing δ(M,r) by sl
MT (∨r), we get:

T0T (evM) = evM

(
sl
MT

(∨r
)⊗ r

)
T2

(∨M,M
)
. (34)

Now, we have:

evM

(
sl
MT

(∨r
)⊗ r

)
T2

(∨M,M
)

= evT (M)

(∨rsl
MT

(∨r
)⊗ idT (M)

)
T2

(∨M,M
)

= evT (M)

(
sl
T (M)T

(∨T (r)
)
T

(∨r
)⊗ idT (M)

)
T2

(∨M,M
)

= evT (M)

(
sl
T (M)T

(∨μM

)
T

(∨r
)⊗ idT (M)

)
T2

(∨M,M
)

by (3)

= evT (M)

(
sl
T (M)T

(∨μM

)⊗ idT (M)

)
T2

(∨T (M),M
)
T

(∨r ⊗ idM

)
.

On the other hand, T0T (evM) = T0T (evM)T (∨ηM ⊗ idM)T (∨r ⊗ idM) by (3). Therefore, by
Lemma 1.3 and duality, (34) is equivalent to Axiom (20).

Let us show (C). Recall that coevM is T -linear if and only if we have coevM T0 =
(r ⊗ δ(M,r))T2(M,∨M)T (coevM). By a computation similar to that of the proof of (B), this is
equivalent to:
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(r ⊗ id∨M)(ηM ⊗ id∨M) coevM T0

= (r ⊗ id∨M)(μM ⊗ sM)T2
(
T (M),∨T (M)

)
T (coevT (M)),

and so, by Lemma 1.3 and duality, to Axiom (21).
Let us conclude. If sl is a left antipode then, using only the ‘multiplicative’ part of The-

orem 3.7 (which we have already proved) and setting δ = sl�, we see by (A), (B), (C) that
((∨M,δ(M,r)), evM, coevM) is a left dual of (M, r) in T -C, and so T -C is left autonomous.
Conversely, if T -C is left autonomous, then there exists δ such that ((∨M,δ(M,r)), evM, coevM)

is a duality in T -C and so, by (B) and (C), sl = δ	 satisfies the axioms of a left antipode. By
Lemma 3.9, such a δ is unique. Hence the uniqueness of a left antipode, since the correspon-
dence δ ↔ sl is bijective. This completes the proof of Theorem 3.8.

3.5. End of the proof of Theorem 3.7

We still have to prove assertions (26) and (27) of Theorem 3.7 (from which (30) and (31) can
be deduced via Remark 3.6).

To show (26), let (M, r) and (N, s) be two T -modules. Recall that

∨(N, s)⊗∨(M, r) = (∨N ⊗∨M,
(
sl
NT

(∨s
)⊗ sl

MT
(∨r

))
T2

(∨N,∨M
))

and

∨(
(M, r)⊗(N, s)

) = (∨(M ⊗N), sl
M ⊗NT

(∨T2(M,N)∨(r ⊗ s)
))

are canonically isomorphic via the isomorphism ∨?2(M,N) : ∨N ⊗∨M → ∨(M ⊗N). By
Lemma 3.9, we get (up to suitable identifications):(

sl
N ⊗ sl

M

)
T2

(∨T (N),∨T (M)
)
T

(∨(r ⊗ s)
) = sl

M ⊗NT
(∨T2(M,N)

)
T

(∨(r ⊗ s)
)
.

Hence (26) by applying Lemma 1.3.
Finally, via the isomorphism ∨?0 :1 → ∨1, the T -modules (1, T0) and ∨(1, T0) =

(∨1, sl
1T (∨T0)) are isomorphic. Hence sl

1T (∨T0) = T0, that is, (27).

3.6. Hopf monads

A left (respectively right) Hopf monad is a bimonad on a left (respectively right) autonomous
category which has a left (respectively right) antipode.

A Hopf monad is a bimonad on an autonomous category which has a left antipode and a
right antipode. In particular, by Theorem 3.8, the category of modules over a Hopf monad is
autonomous.

Example 3.10. Let C be a braided autonomous category with braiding by τ . Let A be a bialge-
bra in C, with product m, unit u, coproduct Δ, and counit ε. Consider the bimonad A⊗ ? (see
Example 2.2). Firstly, let S :A → A be a morphism in C and define:

sl
X = (evA τ∨A,A ⊗ id∨X)

(
S ⊗ τ−1

∨ ∨
)

:A⊗∨X ⊗∨A → ∨X.

A, X
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Then sl is a left antipode for the bimonad A⊗ ? if and only if S is an antipode of the bialgebra
A, that is, if and only if S satisfies:

m(S ⊗ idA)Δ = uε = m(idA ⊗S)Δ.

Secondly, let S′ :A → A be another morphism in C and define:

sr
X = (ẽvA ⊗ idX∨)

(
S′ ⊗ τ−1

A∨,X∨
)

:A⊗X∨ ⊗A∨ → X∨.

Then sr is a right antipode for the bimonad A⊗ ? if and only if S′ is an ‘inverse of the antipode,’
that is, setting mop = mτ−1

A,A, if and only if S′ satisfies:

mop(S′ ⊗ idA)Δ = uε = mop(idA ⊗S′)Δ.

Thus A ⊗ ? is a Hopf monad if and only if A is a Hopf algebra in C with invertible antipode.
Similarly, a right antipode for the bimonad ? ⊗ A corresponds with an antipode for the bialgebra
A, and a left antipode for ?⊗A corresponds with an ‘inverse of the antipode’ for A. In particular,
any finite-dimensional Hopf algebra H over a field k yields Hopf monads H ⊗k ? and ? ⊗k H

on the category vect(k) of finite-dimensional k-vector spaces.

Proposition 3.11. Let T be a Hopf monad on an autonomous category C. Then its left antipode sl

and its right antipode sr are ‘inverse’ to each other in the sense:

idT (X) = sr∨T (X)T
((

sl
X

)∨) = sl
T (X)∨T

(∨(
sr
X

))
for any object X of C (up to the canonical isomorphisms of Remark 3.2).

Proof. Let (M, r) be a T -module. We have ∨(M, r) = (∨M,sl
MT (∨r)) and so (∨(M, r))

∨ =
((∨M)

∨
, sr∨M

T (T (∨r)
∨
)T ((sl

M)
∨
)). Via the canonical isomorphism of Remark 3.2, we have

r = sr∨M
T (T (∨r)

∨
)T ((sl

M)
∨
) = rsr∨T (M)

T ((sl
M)

∨
). So, by Lemma 1.3, we have idT (X) =

sr∨T (X)
T ((sl

X)
∨
). The second identity is obtained by replacing T with T op. �

Recall that any a functor F :C → D between autonomous categories gives rise to functors
!F :C → D and F ! :C → D defined by !F(X) = ∨F(X∨) and F !(X) = F(∨X)

∨ (see Sec-
tion 3.1).

Corollary 3.12. Let T be a Hopf monad on an autonomous category C. Then T ! is right-
adjoint to T , with adjunction morphisms e :T T ! → 1C and h : 1C → T !T given by eX =
sr∨X

:T (T !(X)) → (∨X)
∨ 	 X and hX = (sl

X)
∨

:X 	 (∨X)
∨ → T !(T (X)). Likewise the func-

tor !T is a right-adjoint to T .

Remark 3.13. An interesting consequence of Corollary 3.12 is that a Hopf monad always pre-
serves direct limits.
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3.7. Monoidal adjunctions and Hopf monads

In this section, we show that the bimonad of a monoidal adjunction between autonomous
categories is a Hopf monad.

Theorem 3.14. Let C,D be two monoidal categories and U :D → C be a strong monoidal functor
which admits a left adjoint F :C → D. Denote T = UF the bimonad of this adjunction (see
Theorem 2.6). Assume that the category C is left (respectively right) autonomous and that, for
any object X of C, F(X) has a left (respectively right) dual in D. Then T is a left (respectively
right) Hopf monad. In particular if C and D are both left (respectively right) autonomous, then
T is a left (respectively right) Hopf monad.

As an immediate consequence, we have:

Corollary 3.15. Let C,D be two autonomous categories and U :D → C be a strong monoidal
functor which admits a left adjoint F :C → D. Then T = UF is a Hopf monad on C.

Remark 3.16. Any Hopf monad T is of the form of Corollary 3.15, since the forgetful functor UT

is strong monoidal, FT is left adjoint to UT , and T = UT FT .

Proof of Theorem 3.14. Let us prove the “left” version, as left and right are exchanged by
taking the opposite monoidal products on C and D. We first prove it in the special case where D
is left autonomous by constructing a left antipode sl for the bimonad T . Denote η : 1C → UF and
ε :FU → 1D the adjunction morphisms, and set K(A) = (

U(A),U(εA)) for any object A of D.
Recall that K is strong monoidal. Let A be an object of D. Since A has a left dual in D and K is
strong monoidal, the T -module K(A) has a left dual in T -C. By Lemma 3.9, we may choose this
left dual of the form ((∨U(A),ρA), evU(A), coevU(A)), with ρA :T (∨U(A)) → ∨U(A) uniquely
determined. One verifies that ρA is natural in A. Note that the T -linearity of evU(A) and coevU(A)

translate respectively as:

T0T (evU(A)) = evU(A)

(
ρA ⊗U(εA)

)
T2

(∨U(A),U(A)
)
, (35)

coevU(A) T0 = (
U(εA)⊗ρA

)
T2

(
U(A),∨U(A)

)
T (coevU(A)). (36)

Now, for any object X of C, set sl
X = ∨ηXρF(X) :T (∨T (X)) → ∨X. Clearly sl is natural. Fix an

object X of C. By (2) and the naturality of ρ, we have:

ρF(X) = ∨ηT (X)
∨μXρF(X) = ∨ηT (X)

∨U(εF(X))ρF(X)

= ∨ηT (X)ρFT (X)T
(∨U(εF(X))

) = sl
T (X)T

(∨μX

)
.

Therefore we get:

T0T (evX)T
(∨ηX ⊗ idX

)
= T0T (evT (X))T (id∨T (X) ⊗ηX)

= evT (X)

(
sl
T (X)T

(∨μX

)⊗μX

)
T2

(∨T (X),T (X)
)
T (id∨T (X) ⊗ηX) by (35)

= evT (X)

(
sl
T (X)T

(∨μX

)⊗ idT (X)

)
T2

(∨T (X),X
)

by (2).



702 A. Bruguières, A. Virelizier / Advances in Mathematics 215 (2007) 679–733
Likewise we have:

(ηX ⊗ id∨X) coevX T0

= (
idT (X) ⊗∨ηX

)
coevT (X) T0

= (
μX ⊗∨ηXsl

T (X)T
(∨μX

))
T2

(
T (X),∨T (X)

)
T (coevT (X)) by (36)

= (
μX ⊗ sl

X

)
T2

(
T (X),∨T (X)

)
T (coevT (X)) by (2).

Hence sl satisfies (20) and (21), that is, sl is a left antipode for T .
Finally, let us prove the general case. Let D0 be the full subcategory of D formed by the

objects of D which admit a left dual. The category D0 is left autonomous (see Section 3.1). By
assumption, the functor F factors through D0. Denote F0 :C → D0 the resulting functor and
U0 :D0 → C the restriction of U to D0. Then U0 is strong monoidal, F0 is left adjoint to U0, and
T = U0F0. Hence T is a left Hopf monad by the previous case. �
3.8. Morphisms of Hopf monads

A morphism of Hopf monads on an autonomous category is a morphism of their underlying
bimonads (see Section 2.5).

Lemma 3.17. A morphism f :T → T ′ of Hopf monads preserves the antipodes. More precisely,
if T has a left antipode sl and T ′ has a left antipode s′ l , then sl

XT (∨fX) = s′ l
Xf∨T ′(X) for any

object X of C, and similarly for right antipodes.

Proof. Let f ∗ :T ′-C → T -C be the strict monoidal functor induced by f . Recall it is given by
f ∗(M, r) = (M, rfM). Let (M, r) be a T ′-module. Since f ∗ is monoidal strict, f ∗(∨(M, r)) =
(∨M,s′ l

MT ′(∨r)f∨M) is a left dual of (M, r) and so canonically isomorphic to ∨f ∗(M, r) =
(∨M,sl

MT (∨fM
∨r)). Therefore sl

MT (∨fM)T (∨r) = s′ l
Mf∨T ′(M)T (∨r) by Lemma 3.9. Hence,

by Lemma 1.3, we get sl
XT (∨fX) = s′ l

Xf∨T ′(X) for any object X of C. �
3.9. Convolution product and antipodes

Let T be a Hopf monad on an autonomous category C. Let ?� : HOM(1C, T ) → HOM(UT ,UT )

be the isomorphism of Lemma 1.3 (with inverse ?	) and let !?, ?! : End(C)op → End(C) be the
functors of Remark 3.3. Define two maps:

S:
{

HOM(1C, T ) → HOM(1C, T ),

f �→ S(f ) = (!(f �
))	

(37)

and

S−1:
{

HOM(1C, T ) → HOM(1C, T ),

f �→ S(f ) = ((
f �

)!)	
.

(38)
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Explicitly, using Theorem 3.8 and Lemma 1.3, we have:

S(f )X = (
sl
Xf∨T (X)

)∨
and S−1(f )X = ∨(

sr
XfT (X)∨

)
for any object X of C (up to the canonical isomorphisms of Remark 3.2), where sl and sr are the
left and right antipodes of T respectively.

Lemma 3.18. Let T be a Hopf monad on an autonomous category C. Then the map S is an
anti-automorphism of the monoid (HOM(1C, T ),∗, η), and S−1 is its inverse.

Proof. Since the convolution product ∗ corresponds to composition of endomorphisms of UT ,
and since the functors !?, ?! : End(C) → End(C)op are strong monoidal, the maps S and S−1 are
anti-endomorphisms of HOM(1C, T ). Since the functors !? and (?!)op are inverse to each other
(up to the canonical isomorphisms of Remark 3.2), the maps S and S−1 are inverse to each
other. �
Example 3.19. For the Hopf monad A⊗ ? (see Example 3.10), where A is a Hopf algebra in
an autonomous braided category, the maps S and S−1 are given by S(f ) = (SA ⊗1C)f and
S−1(f ) = (S−1

A ⊗1C)f , where SA is the antipode of A.

3.10. Grouplike elements

A grouplike element of a bimonad T on a monoidal category C is a natural transformation
g : 1C → T satisfying:

T2(X,Y )gX ⊗Y = gX ⊗gY ; (39)

T0g1 = id1. (40)

We will denote by G(T ) the set of grouplike elements of T . Using (15)–(18), we see that
(G(T ),∗, η) is a monoid, where ∗ is the convolution product (5).

Lemma 3.20. Let T be a bimonad on a monoidal category C. Via the canonical bijection
HOM(1C, T ) 	 HOM(UT ,UT ) of Lemma 1.3, grouplike elements of T correspond exactly with
monoidal endomorphisms of the strict monoidal functor UT .

Proof. Let g ∈ HOM(1C, T ). Then g� ∈ HOM(UT ,UT ) is monoidal if and only if, for all (M, r)

and (N, s) in T -C, we have (r ⊗ s)T2(X,Y )gX ⊗Y = (r ⊗ s)(gX ⊗gY ) and T0g1 = id1, which is
equivalent to g ∈ G(T ) by Lemma 1.3. �
Lemma 3.21. Let T be a Hopf monad on an autonomous category C. Then (G(T ),∗, η) is a
group. Moreover the inverse of g ∈ G(T ) is g∗−1 = S(g) = S−1(g), with S and S−1 as in (37)
and (38).

Proof. Let g ∈ G(T ). By Lemma 3.4, g� ∈ HOM(UT ,UT ) is a monoidal natural isomor-
phism with inverse !(g�) = (g�)!. Hence, by Lemma 3.20, g is invertible with inverse
S(g) = S−1(g). �
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4. Hopf modules

In this section, we introduce Hopf modules and prove the fundamental theorem for Hopf
modules over a Hopf monad.

4.1. Comodules

Let C be a coalgebra in a monoidal category C, with coproduct Δ :C → C ⊗C and counit
ε :C → 1. Recall that a right C-comodule is a pair (M,ρ), where M is an object of C and
ρ :M → M ⊗C is a morphism in C, satisfying:

(ρ ⊗ idC)ρ = (idM ⊗Δ)ρ and (idM ⊗ ε)ρ = idM. (41)

A morphism f : (M,ρ) → (N,�) of right C-comodules is a morphism f :M → N in C such that
�f = (f ⊗ idC)ρ. Thus the category of right C-comodules. Likewise one defines the category of
left C-comodules.

Lemma 4.1. Let C be a coalgebra in a monoidal category C. If (M,ρ) is a left C-comodule
and C is right autonomous, then (M,ρ)∨ = (M∨, �r) is a right C-comodule, where

�r = (idM∨ ⊗C ⊗ ẽvM)(idM∨ ⊗ρ ⊗ idM∨)(c̃oevM ⊗ idM∨).

Moreover, this construction defines a contravariant functor form the category of left C-
comodules to the category of right C-comodules. Similarly, if (M,ρ) is a right C-comodule
and C is left autonomous, then ∨(M,ρ) = (∨M,�l) is a left C-comodule, where

�l = (evM ⊗ idC ⊗∨M)(id∨M ⊗ρ ⊗ id∨M)(id∨M ⊗ coevM).

This construction is functorial too.

Proof. Left to the reader. �
Let T be a comonoidal endofunctor of a monoidal category C. By (11) and (12), the object

T (1) is a coalgebra in C, with coproduct T2(1,1) and counit T0. By a left (respectively right)
T -comodule, we mean a left (respectively right) T (1)-comodule.

Note that if T is a bimonad, then every object X becomes a left (respectively right) T -
comodule with trivial coaction given by η1 ⊗ idX (respectively idX ⊗η1).

4.2. Hopf modules

Let T be a bimonad on a monoidal category C. The axioms of a bimonad ensure that
(T (1),μ1) is a coalgebra in the category T -C of T -modules, with coproduct T2(1,1) and
counit T0. A right Hopf T -module is a right (T (1),μ1)-comodule in T -C, that is, a triple
(M, r,ρ) such that (M, r) is a T -module, (M,ρ) is a right T -comodule, and:

ρr = (r ⊗μ1)T2
(
M,T (1)

)
T (ρ). (42)
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A morphism of Hopf T -modules between two right Hopf T -modules (M, r,ρ) and (N, s, �) is a
morphism of (T (1),μ1)-comodules in T -C, that is, a morphism f :M → N in C such that

f r = sT (f ) and (f ⊗ idT (1))ρ = �f. (43)

Remark 4.2. As is the classical case, any morphism of Hopf T -modules which is an isomorphism
in C is an isomorphism of Hopf T -modules.

Similarly, one can define the notion of left Hopf T -module, which is a right Hopf T -module
for the bimonad T op (see Remark 2.4).

Lemma 4.3. Let T be a bimonad on a monoidal category C. If (M,ρ) is a right T -comodule
then, setting � = (idT (M) ⊗μ1)T2(M,T (1))T (ρ), the triple (T (M),μM,�) is a right Hopf T -
module. In particular (T (X),μX,T2(X,1)) is a right Hopf T -module for any object X of C.

Proof. Let (M,ρ) be a right T -comodule. Firstly, we have:

(�⊗ idT (1))� = (
(idT (M) ⊗μ1)T2

(
M,T (1)

)
T (ρ)⊗μ1

)
T2

(
M,T (1)

)
T (ρ)

= (
(idT (M) ⊗μ1)T2

(
M,T (1)

)⊗μ1
)
T2

(
M ⊗T (1), T (1)

)
T

(
(ρ ⊗ idT (1))ρ

)
= (

idT (M) ⊗(μ1 ⊗μ1)T2
(
T (1), T (1)

))
T2

(
M,T (1)⊗T (1)

)
× T

((
idM ⊗T2(1,1)

)
ρ
)

by (11) and (41)

= (
idT (M) ⊗(μ1 ⊗μ1)T 2

2 (1,1)
)
T2

(
M,T (1)

)
T (ρ)

= (
idT (M) ⊗T2(1,1)μ1

)
T2

(
M,T (1)

)
T (ρ) by (15)

= (
idT (M) ⊗T2(1,1)

)
�

and

(idT (M) ⊗T0)� = (idT (M) ⊗T0μ1)T2
(
M,T (1)

)
T (ρ)

= (
idT (M) ⊗T0T (T0)

)
T2

(
M,T (1)

)
T (ρ) by (16)

= (idT (M) ⊗T0)T2(M,1)T
(
(idM ⊗T0)ρ

)
= idT (M) by (12) and (41),

so that (T (M),�) is a right T -comodule. Secondly,

�μM = (idT (M) ⊗μ1)T2
(
M,T (1)

)
T (ρ)μM

= (idT (M) ⊗μ1)T2
(
M,T (1)

)
μM ⊗T (1)T

2(ρ)

= (μM ⊗μ1μT (1))T2
(
T (M),T 2(1)

)
T

(
T2(M,1)

)
T 2(ρ) by (15)

= (
μM ⊗μ1T (μ1)

)
T2

(
T (M),T 2(1)

)
T

(
T2(M,1)T (ρ)

)
by (1)

= (μM ⊗μ1)T2
(
T (M),T (1)

)
T (�).
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Hence (T (M),μM,�) is a right Hopf T -module. Now, for any object X of C, the pair
(X, idX ⊗η1) is a right T -comodule, so that (T (X),μX,�) is a right Hopf T -module, with

� = (idT (X) ⊗μ1)T2
(
X,T (1)

)
T (idX ⊗η1)

= (
idT (X) ⊗μ1T (η1)

)
T2(X,1) = T2(X,1)

by (2), which completes the proof of Lemma 4.3. �
Lemma 4.4. Let T be a right Hopf monad on a right autonomous category C. If M is a left
Hopf module, then M∨ is a right Hopf T -module, with the structure of T -module defined in
Theorem 3.8(b) and the structure of right T -comodule defined in Lemma 4.1. This defines a
contravariant functor from the category of left Hopf T -modules to the category of right Hopf
T -modules.

Proof. This results from Lemma 4.1. Indeed, recall that (T (1),μ1) is a coalgebra in T -C,
with coproduct T2(1,1) and counit T0. Let (M, r,ρ) be a left Hopf T -module. This means that
((M, r), ρ) is a left (T (1),μ1)-comodule, so ((M, r)∨, �l) is a right (T (1),μ1)-comodule, in
the notations of Lemma 4.1. In other words, (M, sl

MT (∨r), �l) is a right Hopf T -module. This
construction is functorial since morphisms of Hopf T -modules are nothing but morphisms of
(T (1),μ1)-comodules. �
4.3. Coinvariants

Let D be a category and f,g :X → Y be parallel morphisms in D. A morphism i :E → X

in D equalizes the pair (f, g) if f i = gi. An equalizer (also called difference kernel) of the pair
(f, g) is a morphism i :E → X which equalizes the pair (f, g) and which is universal for this
property in the following sense: for any morphism j :F → X in C equalizing the pair (f, g),
there exists a unique morphism p :F → E in C such that j = pi. We say that equalizers exist
in D if each pair of parallel morphisms in D admits an equalizer.

We say that a functor F :D →D′ preserves equalizers if, whenever i is an equalizer of a pair
(f, g) of parallel morphisms in D, then F(i) is an equalizer of the pair (F (f ),F (g)). Notice
that a left exact functor preserves equalizers.

Let T be a bimonad on a monoidal category C. We say that a right T -comodule (M,ρ) admits
coinvariants if the pair of parallel morphisms (ρ, idM ⊗η1) admits an equalizer:

N
i

M
ρ

idM ⊗η1

M ⊗T (1).

If such is the case, N is called the coinvariant part of M , and is denoted McoT . In fact McoT

is a right T -comodule (with trivial coaction) and i : (N, idN ⊗η1) → (M,ρ) is a morphism of
T -comodules.

Similarly, one defines the coinvariant part of a left T -comodule (M,ρ) which is, when it
exists, an equalizer of the pair (ρ, η1 ⊗ idM).

If a right or left T -comodule (M,ρ) admits a coinvariant part i :McoT → M , we say that T

preserves the coinvariant part of (M,ρ) if T (i) is an equalizer of the pair (T (ρ), T (idM ⊗η1))

or (T (ρ), T (η1 ⊗ idM)) respectively. Note this is the case when T preserves equalizers.
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We say that a right (respectively left) Hopf T -module (M, r,ρ) admits coinvariants if the
underlying right (respectively left) T -comodule (M,ρ) admits coinvariants. If such the case, the
coinvariant part of (M, r,ρ) is the coinvariant part of (M,ρ).

4.4. Decomposition of Hopf modules

In this section we show that, under certain assumptions on equalizers, Hopf modules can be
decomposed as in the classical case.

Theorem 4.5. Let T be a right Hopf monad on a right autonomous category. Let (M, r,ρ) be a
right Hopf T -module admitting a coinvariant part i :McoT → M which is preserved by T . Then

rT (i) : (M, r,ρ) → (
T

(
McoT

)
,μMcoT , T2

(
McoT ,1

))
is an isomorphism of right Hopf T -modules.

Proof. See Section 4.5. �
Recall that a functor F :C → D is said to be conservative if any morphism f in C such that

F(f ) is an isomorphism in D, is an isomorphism in C.

Theorem 4.6. Let T be a right Hopf monad on a right autonomous category C. Suppose that
right Hopf T -modules admit coinvariants which are preserved by T . Then the assignments

X �→ (
T (X),μX,T2(X,1)

)
, f �→ T (f )

define a functor from C to the category of right Hopf T -modules, which is an equivalence of
categories if and only if T is conservative.

Proof. See Section 4.6. �
Remark 4.7. For a left Hopf monad T over a left autonomous category, one may formulate a sim-
ilar decomposition theorem for left Hopf T -modules, which may be deduced from Theorem 4.6
applied to the Hopf monad T op, in virtue of Remark 3.6.

Example 4.8. Let A be a Hopf algebra in a braided right autonomous category C. Consider
the right Hopf monad T =?⊗A on C, see Example 2.2. A right Hopf T -module is noth-
ing but a right Hopf module over A in the usual sense, that is, a triple (M, r :M ⊗A → M,

ρ :M → M ⊗A) such that (M, r) is a right A-module, (M,ρ) is a right A-comodule, and
ρr = (m⊗ r)(idA ⊗ τA,A ⊗ idM)(ρ ⊗Δ), where τ is the braiding of C, m is the product of A,
and Δ is coproduct of A. Assume now that C splits idempotents (see [1]). Then M admits a coin-
variant part, which is the object splitting the idempotent r(SA ⊗ idM)ρ, where SA denotes the
antipode of A. Moreover, T preserves coinvariants (because ⊗ is exact) and T is conservative
(because A is a bialgebra). Therefore Theorems 4.5 and 4.6 apply in this setting: we obtain the
fundamental theorem of Hopf modules for categorical Hopf algebras. In the case where SA is
invertible, it was first stated in [1].
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4.5. Proof of Theorem 4.5

Let T be a right Hopf monad on a right autonomous category C, with right antipode sr . Our
proof will rely very strongly on the properties of the natural transformation ΓX :X ⊗T (1) →
T 2(X) defined by:

ΓX = (
ẽvX

(
idX ⊗ sr

X

)⊗ idT 2(X)

)(
idX ⊗T2

(
T (X)∨, T (X)

)
T (c̃oevT (X))

)
(44)

for any object X of C.
Notice that, if T is of the form ?⊗A, where A is a Hopf algebra in a braided autonomous

category (see Example 3.10), then ΓX = idX ⊗(S ⊗ idA)Δ.

Lemma 4.9. For any object X of C, we have

(a) μXΓX = ηX ⊗T0;
(b) T (μX)ΓT (X)T2(X,1) = T (ηX);
(c) T

(
(idT (X) ⊗μ1)T2(X,T (1))

)
ΓX ⊗T (1)(idX ⊗T2(1,1)) = T (idT (X) ⊗η1)ΓX ;

(d) ΓX(idX ⊗η1) = ηT (X)ηX .

Proof. Let us prove Part (a). We have:

μXΓX = (ẽvX ⊗ idT (X))
(
idX ⊗(

sr
X ⊗μX

)
T2

(
T (X)∨, T (X)

)
T (c̃oevT (X))

)
= (ẽvX ⊗ηX)(idX ⊗ c̃oevXT0) by (23)

= ηX ⊗T0.

Let us prove Part (b). We have:

T (μX)ΓT (X)T2(X,1)

= (
ẽvT (X)

(
idT (X) ⊗ sr

T (X)

)⊗T (μX)
)

◦ (
idT (X) ⊗T2

(
T 2(X)

∨
, T 2(X)

)
T (c̃oevT 2(X))

)
T2(X,1)

= (
ẽvT (X)

(
idT (X) ⊗ sr

T (X)T
(
μ∨

X

))⊗ idT 2(X)

)(
idT (X) ⊗T2

(
T (X)∨, T (X)

))
◦ T2

(
X,T (X)∨ ⊗T (X)

)
T (idX ⊗ c̃oevT (X))

= (
ẽvT (X)

(
idT (X) ⊗ sr

T (X)T
(
μ∨

X

))
T2

(
X,T (X)∨

)⊗ idT 2(X)

)
◦ T2

(
X ⊗T (X)∨, T (X)

)
T (idX ⊗ c̃oevT (X)) by (11)

= (
T0T (ẽvX)T

(
idX ⊗η∨

X

)⊗ idT 2(X)

)
◦ T2

(
X ⊗T (X)∨, T (X)

)
T (idX ⊗ c̃oevT (X)) by (22)

= (
T0 ⊗T (ηX)

)
T2(1,X)T

(
(ẽvX ⊗ idX)(idX ⊗ c̃oevT (X))

) = T (ηX).

Let us prove Part (c). Denote by LX the left-hand side of Part (c). Firstly, using the naturality
of T2, we have:
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LX = (
ẽvX ⊗T (1)(idX ⊗T (1) ⊗αX)⊗ idT (T (X)⊗T (1))

)
◦ (

idX ⊗T (1) ⊗T2
(
T (1)∨ ⊗T (X)∨, T (X)⊗T (1)

))
◦ (

idX ⊗T2
(
1, T (1)∨ ⊗T (X)∨ ⊗T (X)⊗T (1)

)
T

(
c̃oevT (X)⊗T (1)

))
where αX = sr

X ⊗T (1)T (T2(X,T (1))∨)T (μ∨
1 ⊗ idT (X)∨). Now

αX = (
sr
T (1) ⊗ sr

X

)
T2

(
T 2(1)

∨
, T (X)∨

)
T

(
μ∨

1 ⊗ idT (X)∨
)

by (30)

= (
sr
T (1)T

(
μ∨

1

)⊗ sr
X

)
T2

(
T (1)∨, T (X)∨

)
and, using (11), (

idX ⊗T (1) ⊗T2
(
T (1)∨, T (X)∨

)⊗ idT (X)⊗T (1)

)
◦ (

idX ⊗T (1) ⊗T2
(
T (1)∨ ⊗T (X)∨, T (X)⊗T (1)

))
◦ (

idX ⊗T2
(
1, T (1)∨ ⊗T (X)∨ ⊗T (X)⊗T (1)

))
= (

idX ⊗T2
(
1, T (1)∨

)⊗T2
(
T (X)∨, T (X)⊗T (1)

))
◦ (

idX ⊗T2
(
T (1)∨, T (X)∨ ⊗T (X)⊗T (1)

))
.

Therefore, since ẽvX ⊗T (1) = ẽvX(idX ⊗ ẽvT (1) ⊗ idX∨), we have:

LX = (
ẽvX

(
idX ⊗ sr

X

)⊗ idT (T (X)⊗T (1))

)
◦ (

idX ⊗ ẽvT (1)

(
idT (1) ⊗ sr

T (1)T
(
μ∨

1

))
T2

(
1, T (1)∨

)⊗T2
(
T (X)∨, T (X)⊗T (1)

))
◦ (

idX ⊗T2
(
T (1)∨, T (X)∨ ⊗T (X)⊗T (1)

)
T (c̃oevT (X)⊗T (1))

)
.

Now ẽvT (1)(idT (1) ⊗ sr
T (1)T (μ∨

1 ))T2(1, T (1)∨) = T0T (η∨
1 ) by (22). Hence, using (12),

LX = (
ẽvX

(
idX ⊗ sr

X

)⊗T (idT (X) ⊗η1)
)

◦ (
idX ⊗T2

(
T (X)∨, T (X)

)
T (c̃oevT (X))

)
= T (idT (X) ⊗η1)ΓX.

Let us prove Part (d). We have:

ΓX(idX ⊗η1)

= (
ẽvX

(
idX ⊗ sr

X

)⊗ idT 2(X)

)(
idX ⊗T2

(
T (X)∨, T (X)

)
T (c̃oevT (X))η1

)
= (

ẽvX

(
idX ⊗ sr

X

)⊗ idT 2(X)

)(
idX ⊗T2

(
T (X)∨, T (X)

)
ηT (X)∨ ⊗T (X)c̃oevT (X)

)
= (

ẽvX

(
idX ⊗ sr

XηT (X)∨
)⊗ηT (X)

)
(idX ⊗ c̃oevT (X)) by (17)

= (
ẽvX

(
idX ⊗η∨

X

)⊗ηT (X)

)
(idX ⊗ c̃oevT (X)) by (29)

= ηT (X)ηX. �
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Lemma 4.10. For any T -module (M, r), T (r)ΓM : (M, r)⊗(T (1),μ1) → (T (M),μM) is a
morphism of T -modules.

Proof. Since

T2
(
T (M)∨, T (M)

)
T (c̃oevT (M))μ1

= T2
(
T (M)∨, T (M)

)
μT (M)∨ ⊗T (M)T

2(c̃oevT (M))

= (μT (M)∨ ⊗μT (M))T
2
2

(
T (M)∨, T (M)

)
T 2(c̃oevT (M)) by (15),

we have

T (r)ΓM(r ⊗μ1)

= (
ẽvM

(
idM ⊗ sr

M

)⊗T (r)
)(

r ⊗T2
(
T (M)∨, T (M)

)
T (c̃oevT (M))μ1

)
= (

ẽvM

(
r ⊗ sr

MμT (M)∨
)⊗T (r)μT (M)

)
◦ (

idT (M) ⊗T 2
2

(
T (M)∨, T (M)

)
T 2(c̃oevT (M))

)
= (

ẽvM

(
r ⊗ sr

MT
(
sr
T (M)

)
T 2(μ∨

M

))⊗T (r)μT (M)

)
◦ (

idT (M) ⊗T 2
2

(
T (M)∨, T (M)

)
T 2(c̃oevT (M))

)
by (28)

= (
ẽvM

(
r ⊗ sr

MT
(
sr
T (M)

))⊗T (r)μT (M)T
2(μM)

)
◦ (

idT (M) ⊗T 2
2

(
T 2(M)

∨
, T 2(M)

)
T 2(c̃oevT 2(M))

)
.

Now (
T

(
sr
T (M)

)⊗ idT 3(M)

)
T 2

2

(
T 2(M)

∨
, T 2(M)

)
T 2(c̃oevT 2(M))

= T2
(
T (M)∨, T 3(M)

)
T

((
sr
T (M) ⊗ idT 3(M)

)
T2

(
T 2(M)

∨
, T 2(M)

)
T (c̃oevT 2(M))

)
= T2

(
T (M)∨, T 3(M)

)
T

(
(idT (M) ⊗ΓT (M))(c̃oevT (M) ⊗ idT (1))

)
= (

idT (T (M)∨) ⊗T (ΓT (M))
)
T2

(
T (M)∨, T (M)⊗T (1)

)
T (c̃oevT (M) ⊗ idT (1)),

and, using (3),

T (r)μT (M)T
2(μM) = μMT 2(rμM) = μMT 2(rT (r)

) = T (r)μT (M)T
3(r).

Therefore, we get

T (r)ΓM(r ⊗μ1)T2
(
M,T (1)

)
= (

ẽvM

(
r ⊗ sr

M

)⊗T (r)μT (M)T
3(r)T (ΓT (M))

)
◦ (

idT (M) ⊗T2
(
T (M)∨, T (M)⊗T (1)

)
T (c̃oevT (M) ⊗ idT (1))

)
T2

(
M,T (1)

)
= (

ẽvM

(
r ⊗ sr

M

)
T2

(
M,T (M)∨

)⊗T (r)μT (M)T
(
T 2(r)ΓT (M)

))
◦ T2

(
M ⊗T (M)∨, T (M)⊗T (1)

)
T (idM ⊗ c̃oevT (M) ⊗ idT (1)) by (11)
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= (
ẽvM

(
r ⊗ sr

MT
(
r∨))

T2
(
M,M∨)⊗T (r)μT (M)T (ΓM)

)
◦ T2

(
M ⊗M∨,M ⊗T (1)

)
T (idM ⊗ c̃oevM ⊗ idT (1)) by naturality of Γ

= (
T0T (ẽvM)⊗T (r)μT (M)T (ΓM)

)
◦ T2

(
M ⊗M∨,M ⊗T (1)

)
T (idM ⊗ c̃oevM ⊗ idT (1)) by Theorem 3.8(b)

= (
T0 ⊗μMT 2(r)T (ΓM)

)
T2

(
1,M ⊗T (1)

)
◦ T

((
ẽvM ⊗ idM ⊗T (1)

)
(idM ⊗ c̃oevM ⊗ idT (1))

)
= μMT

(
T (r)ΓM

)
by (12).

Hence T (r)ΓM is a morphism of T -modules. �
Now we are ready to prove Theorem 4.5. Let (M, r,ρ) be a right Hopf T -module and

i :McoT → M be an equalizer of the pair (ρ, idM ⊗η1). We will show that rT (i) is an iso-
morphism in C (by constructing an inverse) and we will check that rT (i) is a morphism of right
Hopf T -modules. By Remark 4.2, this will prove the theorem.

Set ψM = T (r)ΓMρ :M → T (M).

Lemma 4.11. The morphism ψM enjoys the following properties:

(a) rψM = idM ;
(b) ψMr = μMT (ψM);
(c) T (ρ)ψM = T (idM ⊗η1)ψM ;
(d) ψMi = ηMi.

Proof. Since M is a T -module and a right T -comodule, we have, by Lemma 4.9(a), rψM =
rT (r)ΓMρ = rμMΓMρ = r(ηM ⊗T0)ρ = rηM = idM . Hence Part (a). Moreover, we have:

ψMr = T (r)ΓMρr

= T (r)ΓM(r ⊗μ1)T2
(
M,T (1)

)
T (ρ) by (42)

= μMT
(
T (r)ΓM

)
T (ρ) by Lemma 4.10

= μMT (ψM).

Hence Part (b). Now, since M is a right Hopf T -module, we have, by Lemma 4.9(c),

T (ρ)ψM = T (ρr)ΓMρ

= T (r ⊗μ1)T
(
T2

(
M,T (1)

))
T 2(ρ)ΓMρ

= T (r ⊗μ1)T
(
T2

(
M,T (1)

))
ΓM ⊗T (1)(ρ ⊗ idT (1))ρ

= T (r ⊗ idT (1))T
(
(idT (M) ⊗μ1)T2

(
M,T (1)

))
ΓM ⊗T (1)

(
idM ⊗T2(1,1)

)
ρ

= T (r ⊗ idT (1))T (idT (M) ⊗η1)ΓMρ

= T (idM ⊗η1)ψM.
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Hence Part (c). Lastly, we have

ψMi = T (r)ΓMρi = T (r)ΓM(idM ⊗η1)i

= T (r)ηT (M)ηMi by Lemma 4.9(d)

= ηMrηMi = ηMi.

Hence Part (d). �
By Lemma 4.11(c), ψM equalizes the pair (T (ρ), T (idM ⊗η1)). Since, by assumption, T (i)

is an equalizer of the pair (T (ρ), T (idM ⊗η1)), there exists a (unique) map φM :M → T (McoT )

such that ψM = T (i)φM .
Let us check that φM is inverse to rT (i). We have rT (i)φM = rψM = idT (M) by Lem-

ma 4.11(a). In order to show that φMrT (i) = idMcoT , it is enough to check that T (i)φMrT (i) =
T (i) because T (i), being an equalizer, is a monomorphism. Now

T (i)φMrT (i) = ψMrT (i) = μMT (ψM)T (i) by Lemma 4.11(b)

= μMT (ηM)T (i) by Lemma 4.11(d)

= T (i).

Hence rT (i) is an isomorphism in C.
Finally, let us check that rT (i) is a morphism of right Hopf modules. Firstly, we have

rT (rT (i)) = rT (r)T 2(i) = rμMT 2(i) = rT (i)μMcoT . Therefore rT (i) is a morphism of T -
modules. Secondly, we have:

ρrT (i) = (r ⊗μ1)T2
(
M,T (1)

)
T (ρ)T (i)

= (r ⊗μ1)T2
(
M,T (1)

)
T (idM ⊗η1)T (i)

= (
r ⊗μ1T (η1)

)
T2(M,1)T (i)

= (
rT (i)⊗ idT (1)

)
T2

(
McoT ,1

)
.

So rT (i) is also a morphism of right T -comodules. This completes the proof of Theorem 4.5.

4.6. Proof of Theorem 4.6

Firstly, by Lemma 4.3 and naturality of μ and T2, the assignments X �→ (T (X),μX,T2(X,1))

and f �→ T (f ) define a functor, denoted T̃ , from C to the category of right Hopf T -modules.
Assume T̃ is an equivalence. In particular T̃ is conservative. If f is a morphism in C such that

T (f ) is an isomorphism in C, then T̃ (f ) is an isomorphism (by Remark 4.2) and so is f (since
T̃ is conservative). Hence T is conservative.

Let us prove the converse. Let (M, r,ρ) be a right Hopf T -module and McoT be its coinvariant
part, which exists by assumption. By the universal property of equalizers, any morphism of right
Hopf modules f : (M, r,ρ) → (M ′, r ′, ρ′) induces a morphism McoT → M ′ coT . This defines
a functor ?coT from the category of right Hopf T -modules to C. By Theorem 4.5, the functor
?coT is a right quasi-inverse of T̃ . Assume now that T is conservative. It is enough to prove
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that, for any object X of C, ηX :X → T (X) is the coinvariant part of the right T -comodule
(T (X),T2(X,1)). Indeed, if this is true, then ηX induces a natural isomorphism X

∼−→ T̃ (X)coT ,
so that ?coT is also a left quasi-inverse of T̃ . We have the following lemma:

Lemma 4.12. Let T be a right Hopf monad on a right autonomous category C. Then T (ηX) is
an equalizer of the pair (T (T2(X,1)), T (idT (X) ⊗η1)).

Proof. Let f :Y → T 2(X) be a morphism in C equalizing the morphisms T (T2(X,1)) and
T (idT (X) ⊗η1). If there exists g :Y → T 2(X) such that f = T (ηX)g, then g = μXT (ηX)g =
μXf , and so g is unique. All we have to check is that f = T (ηX)μXf . We have:

T 2(ηX)f = T
(
T (μX)ΓT (X)

)
T

(
T2(X,1)

)
f by Lemma 4.9(b)

= T
(
T (μX)ΓT (X)

)
T (idT (X) ⊗η1)f by assumption

= T
(
T (μX)ηT 2(X)ηT (X)

)
f by Lemma 4.9(d)

= T (ηT (X)μXηT (X))f

= T (ηT (X))f by (2).

Hence f = μT (X)T (ηT (X))f = μT (X)T
2(ηX)f = T (ηX)μXf . �

Now let X be an object of C. The right Hopf T -module (T (X),μX,T2(X,1)) admits
a coinvariant part i :T (X)coT → T (X) (by assumption) which is an equalizer of the pair
(T2(X,1), idX ⊗η1). Since ηX equalizes this pair by (17), there exists a unique morphism
j :X → T (X)coT such that ηX = ij . To prove that ηX is an equalizer, we need to show that j is an
isomorphism (since i is an equalizer). Now, applying T to this situation, we have two equalizers
for the pair (T (T2(X,1)), T (idX ⊗η1)), namely T (ηX) (by Lemma 4.12) and T (i) (because T

preserves coinvariants of right Hopf T -modules). Therefore, since T (ηX) = T (i)T (j), the mor-
phism T (j) is an isomorphism, and so is j because T is conservative. This completes the proof
of Theorem 4.6.

5. Integrals

In this section, we introduce integrals for bimonads and, using the decomposition theorem for
Hopf modules, we prove the existence of universal integrals of a Hopf monad.

5.1. Integrals

Let T be a bimonad on a monoidal category C and K be an endofunctor of C. A (K-valued )
left integral of T is a natural transformation c :T → K such that:

(idT (1) ⊗ cX)T2(1,X) = η1 ⊗ cX. (45)

A (K-valued ) right integral of T is a natural transformation c :T → K such that:

(cX ⊗ idT (1))T2(X,1) = cX ⊗η1. (46)
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Example 5.1. Let A be a bialgebra in a braided category C. Consider the bimonad T = A⊗ ?
on C, see Example 2.2. Let χ :A → k be a morphism in C. Set K = k ⊗? and define c :T → K

by cX = χ ⊗ idX . Then c is a K-valued left (respectively right) integral of T if and only if χ is a
k-valued left (respectively right) integral of A.

Let T be a bimonad on a monoidal category C. A left (respectively right) integral λ :T → I

of T is universal if, for any left (respectively right) integral c :T → K of T , there exists a unique
natural transformation f : I → K such that c = f λ.

Note that a universal left (respectively right) integral of T is unique up to unique natural iso-
morphism.

5.2. Existence of universal integrals

Recall that, according to Lemma 4.1, if T is a comonoidal endofunctor of an autonomous
category C and X an object of C, then we have a right T -comodule (T (X),T2(1,X))∨ and a left
T -comodule ∨(T (X),T2(X,1)).

Proposition 5.2. Let T be a bimonad on an autonomous category C.

(a) Assume that, for any object X of C, the right T -module (T (X),T2(1,X))∨ admits coinvari-
ants. Then T admits a universal left integral λl :T → Il , which is characterized by the fact
that (λl

X)
∨

: Il(X)∨ → T (X)∨ is the coinvariant part of (T (X),T2(1,X))∨ for each object
X of C.

(b) Assume that, for any object X of C, the left T -module ∨(T (X),T2(X,1)) admits coinvari-
ants. Then T admits a universal right integral λr :T → Ir , which is characterized by the fact
that ∨(λr

X) : ∨Ir (X) → ∨T (X) is the coinvariant part of ∨(T (X),T2(X,1)) for each object
X of C.

Proof. We prove Part (a), from which Part (b) can be deduced using the opposite bi-
monad. For an object X of C, we have (T (X),T2(1,X))∨ = (T (X)∨, ρr

X), with ρr
X =

T2(1,X)∨(idT (X)∨ ⊗ c̃oevT (1)).
Firstly, observe that a natural transformation c :T → K is a left K-valued integral of T if

and only if, for any object X of C, the morphism c∨
X :K(X)∨ → T (X)∨ equalizes the pair

(ρr
X, idT (X)∨ ⊗η1). Indeed, we have (idT (1) ⊗ cX)T2(1,X) = η1 ⊗ cX if and only if

(idT (X)∨ ⊗T (1) ⊗ ẽvK(X))(idT (1) ⊗ cX)T2(1,X)(c̃oevT (X) ⊗ idK(X)∨)

= (idT (X)∨ ⊗T (1) ⊗ ẽvK(X))(η1 ⊗ cX)(c̃oevT (X) ⊗ idK(X)∨),

that is, if and only if ρr
Xc∨

X = c∨
X ⊗η1.

Now assume that, for any object X of C, (T (X),T2(1,X))∨ admits a coinvariant part
iX :E(X) → T (X)∨. The morphism iX is an equalizer of the pair (ρr

X, idT (X)∨ ⊗η1). Define
λl

X = ∨iX :T (X) ∼= ∨(T (X)∨) → ∨E(X). Using the universal property of equalizers, one checks
easily that the assignment X �→ ∨E(X) defines an endofunctor Il = ∨E of C and that λl :T → Il

is a natural transformation. By the initial remark, λl is a left integral for T .
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Let K be an endofunctor of C and c be a left K-valued integral. Again by the initial remark,
there exists a unique morphism aX :K(X)∨ → E(X) such that cX

∨ = iXaX . Using the universal
property of equalizers, one checks that a :K∨ → E is a natural transformation. Dualizing, we
obtain that there exists a unique natural transformation f = ∨a : Il = ∨E → K such that c = f λl .
Hence λl is a universal left integral. �

Recall that, for any endofunctor K of an autonomous category C, we form two endofunc-
tors K ! = ?∨ ◦ Kop ◦ ∨?op and !K = ∨? ◦ Kop◦?∨op, see Section 3.1. This defines two functors
!?, ?! : End(C)op → End(C) such that !? and ?!op are quasi-inverse.

Theorem 5.3. Let T be a Hopf monad on an autonomous category C. Assume that left Hopf
T -modules and right Hopf T -modules admit coinvariants which are preserved by T (such is the
case if equalizers exist in C and are preserved by T ). Suppose moreover that T is conservative.
Then there exist two auto-equivalences Il and Ir of the category C, a universal Il-valued left
integral of T , and a universal Ir -valued right integral of T . Moreover I !

l is quasi-inverse to Ir

and !I r is quasi-inverse to Il .

Example 5.4. Let A be a Hopf algebra, with invertible antipode SA, in a braided autonomous
category C. Consider the Hopf monad T = A⊗ ? on C, and assume that C splits idempotents as
in Example 4.8. Then Theorem 5.3 applies, and there exists a universal left integral λl :T → Il

and a universal right integral λr :T → Ir on T , where Il and Ir are equivalences of C such that I !
l

is quasi-inverse to Ir . Moreover, by Proposition 5.2 and since ⊗ commutes with equalizers, there
exist objects kl and kr and morphisms

∫ l :A → kl and
∫ r :A → kr in C such that Il = kl ⊗?,

λl
X = ∫ l ⊗ idX , Ir = kr ⊗ ? and λr

X = ∫ r ⊗ idX . The morphisms
∫ l and

∫ r are universal left
and right integrals of the Hopf algebra A respectively. Since I !

l =?⊗kl
∨ is quasi-inverse to

Ir = kr ⊗ ?, we see that kr ⊗kl
∨ ∼= 1. Hence we may assume kr = kl and this object, denoted

Int, is ⊗-invertible. Let us summarize this discussion: there exists a ⊗-invertible object Int of C,
a universal left integral

∫ l :A → Int and a universal right integral
∫ r :A → Int on A. This result

was first proven in [1].

Remark 5.5. In Theorem 5.3, the auto-equivalences Il and Ir are in general not isomorphic to 1C .
Such is already the case in the setting of Example 5.4 (since in Example 3.1 of [1] the object Int
is not isomorphic to 1).

Proof of Theorem 5.3. By Proposition 5.2, T admits universal left and right integrals, which
we denote λl :T → Il and λr :T → Ir respectively.

Let X be an object of C. By Lemma 4.3, (T (X),μX,T2(X,1)) is a right Hopf T -module.
So ∨(T (X),μX,T2(X,1)) is a left Hopf T -module (by Lemma 4.4) whose coinvariant part
is ∨(λr

X) : ∨Ir(X) → ∨T (X) (by Proposition 5.2(b)). Therefore, by Theorem 4.5, we have an
isomorphism T (∨Ir (X)) → ∨T (X) of left Hopf T -modules. Applying the right dual func-
tor of Lemma 4.4 to this isomorphism, we obtain an isomorphism of right Hopf T -modules
T (X)

∼−→ T (∨Ir (X))
∨. Now, by Proposition 5.2(a), Il(Y )∨ is the coinvariant part of the right

Hopf T -module (T (Y ),μY ,T2(1, Y ))∨ for any object Y of C. Hence, using Theorem 4.6, we
deduce a natural isomorphism

X 	 T (X)coT ∼−→ (
T

(∨Ir(X)
)∨)coT 	 Il

(∨Ir(X)
)∨ = I !

l Ir (X).
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Similarly, applying the previous construction to T op, we obtain a natural isomorphism
1C

∼−→ !I rIl . Hence, using Remark 3.3, we conclude that Il and Ir are auto-equivalences of C,
I !
l is quasi-inverse to Ir and !I r is quasi-inverse to Il . �

5.3. Integrals and antipodes

In this section we show that, as in the classical case, left (respectively right) integrals are
transported to right (respectively left) integrals via the antipode. It turns out that this works only
for integrals with values in endofunctors admitting a right adjoint.

Proposition 5.6. Let T be a bimonad on an autonomous category C and J , K be endofunctors
of C.

(a) Assume T is a right Hopf monad. Let c :T → J be a left integral of T and suppose we have
a natural transformation ε :J !K → 1C . For any object X of C, set:

c
(ε)
X = sr∨K(X)T

(
c!

K(X)ε
!
X

)
:T (X) → K(X).

Then the natural transformation c(ε) :T → K is right integral of T .
(b) Assume T is a left Hopf monad. Let d :T → K be a right integral of T and suppose we have

a natural transformation ε′ :KJ ! → 1C . For any object X of C, set:

(ε′)dX = sl
J (X)∨T

(!dJ(X)
!ε′

X

)
:T (X) → J (X).

Then the natural transformation (ε′)d :T → J is a left integral of T .
(c) Assume that T is a Hopf monad. Suppose that !K is right adjoint to J , with adjunction mor-

phisms α :J !K → 1C and β : 1C → !KJ . Then the assignment c �→ c(α) defines a bijection
between J -valued left integrals of T and K-valued right integrals of T , whose inverse is
given by d �→ (β !)d .

Proof. Let us prove Part (a). Set d = c(ε). Let X be an object of C and set Y = ∨K(X) and
y = c!

K(X)ε
!
X . By (45), we have T2(1, Y )∨(y ⊗ idT (1)∨) = y ⊗η1

∨. Therefore:

dX ⊗T (c̃oev1)η1

= (dX ⊗η1c̃oev1T0)T2(X,1) by (12)

= (
sr
Y T (y)⊗(

sr
1 ⊗μ1

)
T2

(
T (1)∨, T (1)

)
T (c̃oevT (1))

)
T2(X,1) by (23)

= (
sr
Y ⊗(

sr
1 ⊗μ1

)
T2

(
T (1)∨, T (1)

))
T2

(
T (Y )∨, T (1)∨ ⊗T (1)

)
T (y ⊗ c̃oevT (1))

= ((
sr
Y ⊗ sr

1

)
T2

(
T (Y )∨, T (1)∨

)⊗μ1
)

◦ T2
(
T (Y )∨ ⊗T (1)∨, T (1)

)
T (y ⊗ c̃oevT (1)) by (11)

= (
sr
Y T

(
T2(1, Y )∨

)⊗μ1
)
T2

(
T (Y )∨ ⊗T (1)∨, T (1)

)
T (y ⊗ c̃oevT (1)) by (30)

and so
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dX ⊗T (c̃oev1)η1

= (
sr
Y ⊗μ1

)
T

(
T2(1, Y )∨

)
T2

(
T (Y )∨, T (1)

)
◦ T

((
T2(1, Y )∨ ⊗ idT (1)

)
(y ⊗ c̃oevT (1))

)
= (

sr
Y ⊗μ1

)
T

(
T2(1, Y )∨

)
T2

(
T (Y )∨, T (1)

)
◦ T

(
y ⊗(

η∨
1 ⊗ idT (1)

)
c̃oevT (1)

)
by (45)

= (
sr
Y ⊗μ1

)
T

(
T2(1, Y )∨

)
T2

(
T (Y )∨, T (1)

)
T (y ⊗η1c̃oev1)

= (
sr
Y T (y)⊗μ1T (η1)T (c̃oev1)

)
T (X,1)

= (
dX ⊗T (c̃oev1)

)
T (X,1) by (2).

Since c̃oev1 is an isomorphism, we get dX ⊗η1 = (dX ⊗ idT (1))T (X,1). Hence d is a K-valued
right integral of T .

Part (b) is obtained by applying Part (a) to the opposite Hopf monad. Let us prove Part (c).
Let c :T → J be a left integral of T . Let us check that (β !)(c(α)) = c. For any object X of C, we
have:

(β !)(c(α)
)
X

= sl
J (X)∨T

(∨(
sr
∨K(J (X)∨)

T
(
c!

K(J (X)∨)α
∨
J (X)

))
βX

)
= sl

J (X)∨T
(∨T

(
c!

K(J (X)∨)α
∨
J (X)

)∨(
sr
∨K

(
J (X)∨))βX

)
= sl

J (X)∨T
(∨T

(
T (βX)∨c!

K(J (X)∨)α
∨
J (X)

)∨sr
X

)
= αJ(X)c!KJ(X)T (βX)sl

T (X)∨T
(∨sr

X

)
= αJ(X)c!KJ(X)T (βX) by Proposition 3.11,

= αJ(X)J (βX)cX = cX by adjunction.

Finally, applying this to the opposite Hopf monad, we obtain that ((β
!)d)

(α) = d for any right
integral d :T → K . �
Proposition 5.7. Under the hypotheses of Theorem 5.3, in the bijective correspondence of Propo-
sition 5.6(c), a universal left integral of T is transformed into a universal right integral of T , and
conversely.

Proof. By Theorem 5.3, there exist a universal left integral λl :T → J of T and a universal right
integral λr :T → K of T such that !K is quasi-inverse (and, in particular, right adjoint) to J .
Denote α :J !K → 1C and β : 1C → !KJ the adjunction isomorphisms. Using Proposition 5.6,

define a right integral c : T → K and a left integral d : T → J by c = (λl)
(α)

and d = (β !)(λr).
We have to show that they are universal. Since λl and λr are universal, there exist unique natural
transformations f :K → K and g :J → J such that d = f λl and c = gλr . It is sufficient to
prove that f and g are isomorphisms. Since d(α) = λr by Proposition 5.6(c), we have, for any
object X of C,

λr
X = d

(α) = (
λl

)(α)
T

(
f !

K(X)

) = cXT
(
f !

K(X)

) = K
(
f !

K(X)

)
cX = K

(
f !

K(X)

)
gXλr

X.
X X
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Thus K(f !
K)g = idK by the universal property of λr . By naturality of g, we also have

gK(f !
K) = idK . Hence g is an isomorphism. Similarly one shows that f is an isomorphism. �

6. Semisimplicity

In this section, we define semisimple and separable monads, and give a characterization of
semisimple Hopf monads (which generalizes Maschke’s theorem).

6.1. Semisimple monads

Let T be a monad on a category C. Recall that for any object Y of C, (T (Y ),μY ) is a T -
module. Such a T -module is said to be free. If (M, r) is a T -module, then r is a T -linear
morphism from the free module (T (M),μM) to (M, r). Note that ηM :M → T (M) is a sec-
tion of r in C, but in general ηM is not T -linear. Recall that a section of a morphism f :X → Y

is a morphism g :Y → X such that fg = idY .

Proposition 6.1. Let T be a monad on a category C. The following conditions are equivalent:

(i) for any T -module (M, r), the T -linear morphism r has a T -linear section;
(ii) any T -linear morphism has a T -linear section if and only if the underlying morphism in C

has a section;
(iii) any T -module is a T -linear retract of a free T -module.

A semisimple monad is a monad satisfying the equivalent conditions of Proposition 6.1.

Remark 6.2. Assume that C is abelian semisimple, and T is additive. Then T is semisimple if
and only if the category T -C of T -modules is abelian semisimple.

Proof of Proposition 6.1. We have (ii) implies (i) since ηM is a section of r in C. Clearly (i)
implies (iii). Let us show that (iii) implies (ii). Let f : (M, r) → (N, s) be a T -linear morphism
between two T -modules and g :N → M be a section of f in C. By assumption, (N, s) is a
retract of (T (X),μX) for some object X of C. Let p :T (X) → N and i :N → T (X) be T -linear
morphisms such that pi = idN . Set g′ = rT (gpηX)i :N → M . We have:

g′s = rT (gpηX)is = rT (gpηX)μXT (i) = rμMT 2(gpηX)T (i)

= rT (r)T
(
T (gpηX)i

) = rT (g′)

and fg′ = f rT (gpηX)i = sT (fgpηX)i = sT (p)T (ηX)i = pμXT (ηX)i = pi = idN . Hence g′
is a T -linear section of f . �
6.2. Separable monads

Let A be an algebra in a monoidal category. In particular A⊗A is a A-bimodule, and the
multiplication m :A⊗A → A of A is a morphism of A-bimodules. Recall that A is separable if
m has a section ς :A → A⊗A as a morphism of A-bimodules, which means that:

(m⊗ idA)(idA ⊗ς) = ςm = (idA ⊗m)(ς ⊗ idA) and mς = idA.
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In this case, set γ = ςu :1 → A⊗A, where u :1 → A is the unit of A. Then the morphism γ

satisfies:

(m⊗ idA)(idA ⊗γ ) = (idA ⊗m)(γ ⊗ idA) and mγ = u.

Conversely if γ :1 → A⊗A satisfies the above equation, then A is separable and the section of
m is ς = (m⊗ idA)(idA ⊗γ ) :A → A⊗A. We extend this notion to monads.

Proposition 6.3. Let T be a monad on a category C. The following conditions are equivalent:

(i) one may choose naturally for each T -module (M, r) a T -linear section σ(M,r) of the
morphism r :T (M) → M . Here ‘naturally’ means that, for any T -linear morphism
f : (M, r) → (N, s), we have:

σ(N,s)f = T (f )σ(M,r);

(ii) there exists a natural transformation ς :T → T 2 such that:

T (μX)ςT (X) = ςXμX = μT (X)T (ςX) and μXςX = idT (X);

(iii) there exists a natural transformation γ : 1C → T 2 such that

T (μX)γT (X) = μT (X)T (γX) and μXγX = ηX.

A separable monad is a monad satisfying the equivalent conditions of Proposition 6.3.

Proof. Let us show that (i) implies (ii). Define ς = σ(T ,μ) :T → T 2, which is clearly a natural
transformation such that ςXμX = idT (X). Since μX is T -linear, the naturality of σ gives ςXμX =
T (μX)ςT (X). Finally, using the T -linearity of σ , we have ςXμX = μT (X)T (ςX).

Let us show that (ii) implies (iii). Set γ = ςη : 1C → T 2. Then

T (μX)γT (X) = T (μX)ςT (X)ηT (X) = ςXμXηT (X)

= ςXμXT (ηX) = μT (X)T (ςX)T (ηX) = μT (X)T (γX),

and μXγX = μXςXηX = ηX .
Let us show that (iii) implies (i). For any T -module (M, r), set σ(M,r) = T (r)γM . We have:

σ(M,r)r = T (r)γMr = T (r)T 2(r)γT (M) = T (r)T (μM)γT (M)

= T (r)μT (M)T (γM) = μMT 2(r)T (γM) = μMT (σ(M,r))

and rσ(M,r) = rT (r)γM = rμMγM = rηM = idM . Therefore σ(M,r) is a T -linear section of r .
Finally, for any T -linear morphism f : (M, r) → (N, s), we have:

σ(N,s)f = T (s)γNf = T (s)T 2(f )γM = T
(
sT (f )

)
γM = T (f r)γM = T (f )σ(M,r).

Hence σ is natural. �
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6.3. Cointegrals

Let (T ,μ,η) be a bimonad on a monoidal category C. A cointegral of T is a morphism
Λ :1 → T (1) satisfying:

μ1T (Λ) = ΛT0. (47)

This condition means that Λ is a morphism of T -modules from (1, T0) to (T (1),μ1).

Example 6.4. Let A be a bialgebra in a braided category C and Λ :1 → A be a morphism in C.
Then Λ is an cointegral of the bimonad A⊗ ? (respectively ?⊗A) of Example 2.2 if and only if
Λ is a left (respectively right) integral in A.

6.4. Maschke theorem

In this section, we extend the theorem of Maschke, which characterizes semisimple Hopf
algebras in terms of (co)integrals, to the (non-linear) setting of Hopf monads.

Theorem 6.5 (Maschke theorem for Hopf monads). Let T be a right Hopf monad on a right
autonomous category. The following assertions are equivalent:

(i) T is semisimple;
(ii) T is separable;

(iii) T admits a cointegral Λ :1 → T (1) such that T0Λ = id1.

Proof. We have (ii) implies (i) by Propositions 6.1 and 6.3.
Let us show that (i) implies (iii). Consider the T -module (1, T0). Since T is semisimple, there

exists a T -linear morphism Λ : (1, T0) → (T (1),μ1) such that T0Λ = id1. The T -linearity of Λ

means μ1T (Λ) = ΛT0, that is, Λ is a cointegral.
Finally, let us show that (iii) implies (ii). Consider the morphisms ΓX :X ⊗T (1) → T 2(X) as

defined in (44). Set γX = ΓX(idX ⊗Λ) :X → T 2(X). By Lemma 4.10 applied to the T -module
(T (X),μX), we have:

T (μX)ΓT (X)(μX ⊗μ1)T2
(
T (X),T (1)

) = μT (X)T
(
T (μX)ΓT (X)

)
. (48)

Composing the left-hand side of (48) with T (ηX ⊗Λ) gives:

T (μX)ΓT (X)(μX ⊗μ1)T2
(
T (X),T (1)

)
T (ηX ⊗Λ)

= T (μX)ΓT (X)

(
μXT (ηX)⊗μ1T (Λ)

)
T2(X,1)

= T (μX)ΓT (X)(idT (X) ⊗ΛT0)T2(X,1)

= T (μX)γT (X).

Composing the right-hand side of (48) with T (ηX ⊗Λ) gives:
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μT (X)T
(
T (μX)ΓT (X)

)
T (ηX ⊗Λ)

= μT (X)T
(
T (μX)T 2(ηX)ΓX(idX ⊗Λ)

)
= μT (X)T (γX).

Hence T (μX)γT (X) = μT (X)T (γX). Moreover, using Lemma 4.9(a) and since T0Λ = id1, we
have μXγX = μXΓX(idX ⊗Λ) = (ηX ⊗T0Λ) = ηX . We conclude that T is separable by Propo-
sition 6.3. �
7. Sovereign and involutory Hopf monads

In this section, we introduce and study sovereign and involutory Hopf monads.

7.1. Sovereign categories

Let C be a left autonomous category. Recall that the choice of a left dual (∨X, evX, coevX)

for each object X of C defines a left dual functor ∨? :Cop → C which is strong monoidal. Hence a
double left dual functor ∨∨?, defined by X �→ ∨(∨X) and f �→ ∨(∨f ), which is a strong monoidal
endofunctor of C.

The choice of left duals is innocuous in that different choices of left duals define canonically
isomorphic double left dual functors (see Section 3.1). Subsequently we will refer to the double
left dual functor ∨∨?.

A sovereign structure on a left autonomous category C is a monoidal natural transformation
φ : 1C → ∨∨?. By Lemma 3.4, such a φ is an isomorphism.

A sovereign category is a left autonomous category endowed with a sovereign structure. Note
that a sovereign category is autonomous. Indeed, let C be a sovereign category, with chosen left
duals (∨X, evX, coevX) and sovereign structure φX :X ∼−→ ∨∨X. For each object X of C, set:

ẽvX = ev∨X(φX ⊗ id∨X) :X ⊗∨X → 1,

c̃oevX = (
id∨X ⊗φ−1

X

)
coev∨X :1 → ∨X ⊗X.

Then (∨X, ẽvX, c̃oevX) is a right dual of X. Moreover the right dual functor ?∨ :Cop → C defined
by this choice of right duals coincides with ∨? as a strong monoidal functor.

Remark 7.1. Let C be a sovereign category, with sovereign structure φ : 1C → ∨∨?. Since C
is autonomous, we have φ−1 = !φ = φ! by Lemma 3.4. Explicitly, we have φ−1

X = ∨(φX∨) =
(φ∨X)∨ and ∨∨(φX∨∨) = (φ∨∨X)∨∨ = φX for any object X of C (up to the canonical isomorphisms
of Remark 3.2).

7.2. Sovereign functors

Let C, D be sovereign categories, with sovereign structures φ and φ′ respectively. Let
F :C →D be a strong monoidal functor. Recall (see Section 3.2) that F defines a natural isomor-
phism F l

1(X) :F(∨X) → ∨F(X). Hence a natural isomorphism F ll
1 (X) = ∨(F l

1(X)−1)F l
1(

∨X) :
F(∨∨X) → ∨∨F(X). We will say that the functor F is sovereign if

F ll
1 (X)F (φX) = φ′

F(X) (49)

for any object X of C.
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7.3. Square of the antipode

Let C be a sovereign category, with sovereign structure φ : 1C → ∨∨?, and T be a Hopf monad
on C. Define S2 ∈ HOM(T ,T ) by

S2
X = φ−1

T (X)s
l∨T (X)T

(∨(
sl
X

))
T (φX) (50)

for any object X of C. We call S2 the square of the antipode of T .
Note that S2 depends, in general, on the sovereign structure on C.

Example 7.2. Let A be a Hopf algebra in a braided sovereign category C, with braiding τ and
sovereign structure φ. Then the square of the antipode of the left Hopf monad A⊗ ? on C (see
Example 3.10) is given by S2

X = φ−1
A UA(SA)2 ⊗ idX for any object X of C, where SA is the

antipode of A and UA = (evA τA,∨A ⊗ id∨∨A)(idA ⊗ coev∨A) :A → ∨∨A is the Drinfeld isomor-
phism (see Section 8.1). Note that if C is ribbon with twist θ (see Section 8.1), then φA = UAθA

and so S2
X = θ−1

A (SA)2 ⊗ idX . In particular, if H is a finite-dimensional Hopf algebra over a
field k, then the square of the antipode of the left Hopf monad H ⊗k ? on vect(k) is given by
S2

X = (SH )2 ⊗ idX for any finite-dimensional k-vector space X.

Proposition 7.3. The natural transformation S2 :T → T is an automorphism of the Hopf
monad T (see Section 3.8). Moreover the inverse of S2, denoted S−2, is given by:

S−2
X = φT (X)∨∨sr

T (X)∨T
((

sr
X

)∨)
T

(
φ−1

X∨∨
)

for any object X of C (up to the canonical isomorphisms of Remark 3.2).

Remark 7.4. Recall that, in Section 3.9, we defined an anti-automorphism S of the monoid
(HOM(1C, T ),∗, η). Nevertheless, the notations are not in conflict since S2f = (S)2(f ) and
S−2(f ) = (S−1)2(f ) for every f ∈ HOM(1C, T ). In particular S2f does not depend on the
sovereign structure on C (unlike S2).

Proof of Proposition 7.3. Let (M, r) be a T -module. By Theorem 3.8(a), we have ∨∨(M, r) =
(∨∨M,∨∨rΣM), where ΣM = sl∨T (M)

T (∨(sl
M)). Also, if ϕ :N → M is an isomorphism in C,

then (M, r)ϕ = (N,ϕ−1rT (ϕ)) is a T -module. Define a functor F :T -C → T -C by

(M, r) �→ (∨∨(M, r)
)φM = (

M,φ−1
M

∨∨rΣMT (φM)
) = (

M,rS2
M

)
, f �→ f.

By the preliminary remarks, F is well-defined. Since φ : 1C → ∨∨? is monoidal, the functor F is
monoidal strict. Also UT F = UT . Therefore S2 is a morphism of bimonads by Lemma 2.9, and
so of Hopf monads.

Let us show that S2 is an automorphism. Remark that if (N, s) is a T -module and ϕ :N → M

is an isomorphism in C, then (N, s)ϕ = (M,ϕsT (ϕ−1)) is a T -module. Also ((M, r)ϕ)ϕ =
(M, r) and ((N, s)ϕ)ϕ = (N, s) for any T -modules (M, r), (N, s) and any isomorphism ϕ :N →
M in C. Therefore F is an autofunctor of T -C with inverse given by F−1(M, r) = ((M, r)φM

)∨∨
(up to the canonical isomorphisms of Remark 3.2). Now, by Theorem 3.8(b), (M, r)∨∨ =
(M∨∨, r∨∨Σ ′ ), where Σ ′ = sr ∨T ((sr )∨). Therefore:
M M T (M) M
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F−1(M, r) = (∨∨M,φMrT
(
φ−1

M

))∨∨

= (
M,φ∨∨

M r∨∨T
(
φ−1

M

)∨∨
Σ ′∨∨M

)
= (

M,rφ∨∨
T (M)Σ

′
MT

((
φ−1

M

)∨∨))
= (

M,rφT (M)∨∨Σ ′
MT

(
φ−1

M∨∨
))

by Remark 7.1

= (
M,rS−2

M

)
,

where S−2
M = φT (M)∨∨sr

T (M)∨T ((sr
M)∨)T (φ−1

M∨∨). Again by Lemma 2.9, we get that S−2 :T → T

is a morphism of Hopf monads and is an inverse of S2. �
Lemma 7.5. Let C be a sovereign category, with sovereign structure φ, and T be a Hopf monad
on C. Let a ∈ HOM(1C, T ) and a� ∈ HOM(UT ,UT ) as in Lemma 1.3. The following conditions
are equivalent:

(i) La = RaS
2, where La and Ra are defined as in (6);

(ii) φa� ∈ HOM(UT ,∨∨?UT ) = HOM(UT ,UT
∨∨?T -C) lifts to HOM(1T -C,∨∨?T -C).

Proof. Let (M, r) be a T -module. Recall that (φa�)(M,r) = φMraM . Also, by Theorem 3.8(a),
we have:

∨∨(M, r) = (∨∨M,∨∨rsl∨T (M)T
(∨(

sl
M

))) = (∨∨M,φMrS2
MT

(
φ−1

M

))
.

Therefore φa� lifts to a natural transformation 1T -C → ∨∨?T -C if and only if, for any T -
module (M, r), we have φMraMr = φMrS2

MT (φ−1
M )T (φMraM) or, equivalently, rμMaT (M) =

rμMT (aM)S2
M since φ is an isomorphism and rT (r) = rμM . By Lemma 1.3, this last condition

is equivalent to μXaT (X) = μXT (aX)S2
X for each object X of C, that is, La = RaS

2. �
7.4. Sovereign Hopf monads

Let T be a Hopf monad on a sovereign category. A sovereign element of T is a grouplike
element G (which is ∗-invertible by Lemma 3.21) satisfying:

S2 = adG . (51)

Here S2 is the square of the antipode of T (see Section 7.3) and ad is the adjoint action of T (see
Section 1.4).

A sovereign Hopf monad is a Hopf monad endowed with a sovereign element.

Proposition 7.6. Let C be a sovereign category and T be a Hopf monad on C. Then sovereign
elements of T are in bijection with sovereign structures on T -C.

Proof. Denote φ : 1C → ∨∨? the sovereign structure of C. Suppose that G is a sovereign element
of T . Since S2 = adG and so LG = RGS2, the natural transformation φG� lifts to a natural trans-
formation Φ : 1T -C → ∨∨?T -C by Lemma 7.5. Since φ and G� are monoidal (see Lemma 3.20),
so is the lift Φ of φG�, which hence defines a sovereign structure on T -C.



724 A. Bruguières, A. Virelizier / Advances in Mathematics 215 (2007) 679–733
Conversely, let Φ : 1T -C → ∨∨?T -C be a sovereign structure on T -C. Since the natural trans-
formation φ−1UT (Φ) is monoidal, there exists a (unique) grouplike element G of T such that
φ−1UT (Φ) = G� (by Lemma 3.20). Since φG� = UT (Φ) lifts to the natural transformation Φ ,
we have (by Lemma 7.5) that LG = RGS2, that is S2 = adG. Hence G is a sovereign element
of T . �
7.5. Involutory Hopf monads

A Hopf monad T on a sovereign category C is involutory if it satisfies S2 = idT , where S2

denotes the square of the antipode as defined in Section 7.3. Note that this notion depends on the
choice of a sovereign structure on C.

Proposition 7.7. Let C be a sovereign category and T a Hopf monad on C. The following condi-
tions are equivalent:

(i) T is involutory;
(ii) η is a sovereign element of T ;

(iii) there exists a sovereign structure on the category T -C such that the forgetful functor
UT :T -C → C is sovereign;

(iv) we have sr
X = φ−1

X∨sl
XT (φT (X)∨) for any object X of C (up to the canonical isomorphisms of

Remark 3.2), where φ is the sovereign structure of C.

Proof. Clearly (i) implies (ii) since η is grouplike and adη = idT . Assume (ii) and equip T -C
with the sovereign structure defined by η (see Proposition 7.6). Then the forgetful functor UT is
sovereign. Hence (ii) implies (iii).

Let us prove that (iii) implies (iv). By Theorem 3.8, we have preferred choices of left and right
duals of (M, r), namely ∨(M, r) = (∨M,sl

MT (∨r)) and (M, r)∨ = (M∨, sr
MT (r∨)). With this

choice of duals, (UT )l1(M, r) = id∨M . Let Φ be a sovereign structure on T -C such that UT is sov-
ereign. We have UT (Φ) = φUT

by (49). Let (M, r) be a T -module. We have Φ(M,r)∨sr
MT (r∨) =

sl
MT (∨r)T (Φ(M,r)∨) since Φ(M,r)∨ is T -linear, and so φM∨sr

MT (r∨) = sl
MT (φT (M)∨)T (r∨).

Hence (iv) by Lemma 1.3.
Finally, let us prove that (iv) implies (i). For any object X of C, we have:

S2
X = φ−1

T (X)s
l∨T (X)T

(∨(
sl
X

))
T (φX)

= φ−1
T (X)φT (X)s

r∨T (X)T
(
φ−1

T (∨T (X))∨
)
T

(∨(
sl
X

))
T (φX)

= sr∨T (X)T
((

sl
X

)∨) = idT (X) by Proposition 3.11.

Hence T is involutory. �
8. Quasi-triangular and ribbon Hopf monads

In this section, we define R-matrices and twists for a Hopf monad. They encode the facts
that the category of modules over the Hopf monad is braided or ribbon. We first review some
well-known properties of braided and ribbon categories.
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8.1. Braided categories, twists, and ribbon categories

Recall that a braiding on a monoidal category C is a natural isomorphism τ ∈ HOM(⊗,⊗op)

such that:

τX,Y ⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ); (52)

τX ⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z); (53)

for all objects X,Y,Z of C. A braided category is a monoidal category endowed with a braiding.
If τ is a braiding on C, then so is its mirror τ defined by τX,Y = τ−1

Y,X .
If C is a braided category, with braiding τ , and if (X,Y, e,h) is a duality in C, then

(Y,X, eτX,Y , τ−1
Y,Xh) is a duality too. In particular, a braided category which is left (respectively

right) autonomous is also right (respectively left) autonomous, and so is autonomous.
Let C be a braided autonomous category. Let U : 1C → ∨∨? be the natural transformation

defined, for any object X of C, by:

UX = (evX τX,∨X ⊗ id∨∨X)(idX ⊗ coev∨X). (54)

Lemma 8.1. The natural transformation U enjoys the following properties:

(a) UX ⊗Y = (UX ⊗UY )τ−1
X,Y τ−1

Y,X for all objects X,Y of C;
(b) U1 = (∨∨?)0 :1 ∼−→ ∨∨1;
(c) U is an isomorphism and, for any object X of C,

U−1
X = (ev∨X ⊗ idX)

(
id∨∨X ⊗ τ−1

∨X,X
coevX

)
.

We will refer to U as the Drinfeld isomorphism of C.

Remark 8.2. The Drinfeld isomorphism U is monoidal (and so is a sovereign structure on C) if
and only if the braiding τ is a symmetry, that is, τ = τ .

Recall that a twist on a braided category C, with braiding τ , is a natural isomorphism Θ ∈
HOM(1C,1C) satisfying:

ΘX ⊗Y = (ΘX ⊗ΘY )τY,XτX,Y (55)

for all objects X,Y of C. If C is autonomous, then a twist Θ on C is said to be self-dual if it
satisfies

∨?Θ = Θ∨? (or, equivalently, ?∨Θ = Θ?∨). (56)

A ribbon category is a braided autonomous category endowed with a self-dual twist.
The following proposition establishes a correspondence (via the Drinfeld isomorphism) be-

tween the notions of sovereign structure and twist in the context of an autonomous braided
category.
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Proposition 8.3 (Deligne). Let C be an autonomous braided category, and denote U its Drinfeld
isomorphism. The assignment Θ �→ UΘ defines a bijection between twists on C and sovereign
structures on C.

8.2. Quasi-triangular bimonads

Let T be a monad on a monoidal category C. Recall (see Section 1.2) that a natural transfor-
mation R ∈ HOM(⊗, T ⊗op T ) = HOM(⊗,⊗op ◦T ×2) is ∗-invertible if there exists a (necessar-
ily unique) natural transformation R∗−1 ∈ HOM(⊗op, T ⊗T ) = HOM(⊗op,⊗◦T ×2) such that
R∗−1 ∗ R = η⊗η and R ∗ R∗−1 = η⊗op η, where ∗ is the convolution product as defined in (4).

An R-matrix for a bimonad (T ,μ,η) on a monoidal category C is a ∗-invertible natural trans-
formation R ∈ HOM(⊗, T ⊗op T ) such that:

(μY ⊗μX)RT (X),T (Y )T2(X,Y ) = (μY ⊗μX)T2
(
T (Y ),T (X)

)
T (RX,Y ); (57)(

idT (Z) ⊗T2(X,Y )
)
RX ⊗Y,Z

= (μZ ⊗ idT (X)⊗T (Y ))(RX,T (Z) ⊗ idT (Y ))(idX ⊗RY,Z); (58)(
T2(Y,Z)⊗ idT (X)

)
RX,Y ⊗Z

= (idT (Y )⊗T (Z) ⊗μX)(idT (Y ) ⊗RT (X),Z)(RX,Y ⊗ idZ); (59)

for all objects X,Y,Z of C. A quasitriangular bimonad is a bimonad equipped with an R-matrix.

Example 8.4. Let H be a bialgebra over a field k. Let r = ∑
i ai ⊗bi ∈ H ⊗k H . For any k-

vector spaces X and Y , set:

RX,Y (x ⊗y) =
∑

i

bi ⊗y ⊗ai ⊗x ∈ H ⊗k Y ⊗k H ⊗k X.

Then R is an R-matrix for the bimonad H ⊗k ? on Vect(k) if and only if r is an R-matrix for H

(in the usual sense).

Theorem 8.5. Let T be a bimonad on a monoidal category C. Any R-matrix R for T yields a
braiding τ on T -C as follows:

τ(M,r),(N,s) = (s ⊗ t)RM,N : (M, r)⊗(N, s) → (N, s)⊗(M, r)

for any T -modules (M, r) and (N, s). This assignment gives a bijection between R-matrices
for T and braidings on T -C.

Proof. Let R ∈ HOM(⊗, T ⊗op T ) and set τ = R�, where the canonical bijection ?� :
HOM(⊗, T ⊗op T ) → HOM(UT ⊗UT ,UT ⊗op UT ) of Lemma 1.4 is given by f

�

(M,r),(N,s) =
(s ⊗ r)fM,N for all T -modules (M, r) and (N, s). In this correspondence, τ is an isomorphism
if and only if R is ∗-invertible, and τ is T -linear in each variable (and so lifts to an element of
HOM(⊗T -C,⊗op

T -C)) if and only if R satisfies (57). Moreover, τ satisfies (52) and (53) if and
only if R satisfies (58) and (59). Hence the bijection between R-matrices and braidings. �
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Corollary 8.6. If R is an R-matrix for a bimonad T , then R∗−1
21 = R∗−1σC,C is also an R-matrix

for T . Moreover, if τ is the braiding on T -C associated with R, then its mirror τ is the braiding
on T -C associated with R∗−1

21 .

Proof. Let R, R′ be two R-matrices for T and let τ , τ ′ be their associated braidings on T -C (see
Theorem 8.5). Given two T -modules (M, r) and (N, s), we have

τ(N,s),(M,r)τ
′
(M,r),(N,s) = (r ⊗ s)RN,M(s ⊗ r)R′

M,N

= (
rT (r)⊗ sT (s)

)
RT (N),T (M)R

′
M,N

= (rμr ⊗ sμs)(R2,1)T (M),T (N)R
′
M,N by (3)

= (r ⊗ s)(R2,1 ∗ R′)M,N = (R2,1 ∗ R′)�(N,s),(M,r).

As a result, by Lemma 1.4, τ ′ = τ if and only if R′ = R∗−1
2,1 . �

Corollary 8.7. Let T be a quasitriangular bimonad on a monoidal category C. Then its R-matrix
R verifies (id⊗T0)R1,X = ηX = (T0 ⊗ id)RX,1 as well as the following Yang–Baxter equation:

(μZ ⊗μY ⊗μX)(RT (Y ),T (Z) ⊗ idT 2(X))(idT (Y ) ⊗RT (X),Z)(RX,Y ⊗ idZ)

= (μZ ⊗μY ⊗μX)(idT 2(Z) ⊗RT (X),T (Y ))(RX,T (Z) ⊗ idT (Y ))(idX ⊗RY,Z).

Moreover, if C is left autonomous and T has a left antipode sl , then

R∗−1
X,Y = (

idT (X)⊗T (Y ) ⊗ evX

(
sl
X ⊗ idX

))
◦ (idT (X) ⊗R∨T (X),Y ⊗ idX)(coevT (X) ⊗ idY ⊗X);

∨RX,Y = (
sl
Y ⊗ sl

X

)
R∨T (X),∨T (Y ).

Likewise, if C is right autonomous and T has a right antipode sr , then

R∗−1
X,Y = (

ẽvY

(
idY ⊗ sr

Y

)⊗ idT (X)⊗T (Y )

)
◦ (idY ⊗RX,T (Y )∨ ⊗ idT (Y ))(idY ⊗X ⊗ c̃oevT (Y ));

R∨
X,Y = (

sr
Y ⊗ sr

X

)
RT (X)∨,T (Y )∨ .

Proof. The corollary results, by standard application of Lemma 1.4, from the facts that a braid-
ing τ satisfies τX,1 = idX = τ1,X , the Yang–Baxter equation, τ−1

X,Y = (id⊗ evX)(id⊗ τ∨X,Y ⊗ id)

(coevX ⊗ id) and ∨(τX,Y ) = τ∨X,∨Y when C is left autonomous, and τ−1
X,Y = (ẽvY ⊗ id)

(id⊗ τX,Y∨ ⊗ id)(id⊗ c̃oevY ) and (τX,Y )∨ = τX∨,Y∨ when C is right autonomous. �
Corollary 8.8. Let T be a quasitriangular bimonad on an autonomous category C. If T is a left
or right Hopf monad, then T is a Hopf monad.
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Proof. Suppose that T has a left antipode. Since T -C is left autonomous (by Theorem 3.8(a))
and braided (by Theorem 8.5), T -C is also right autonomous. Hence T has a right antipode (by
Theorem 3.8(b)). �
8.3. Drinfeld elements

In this section, T is a quasitriangular Hopf monad on a sovereign category C (see Section 7.1).
Let φ : 1C → ∨∨? be the sovereign structure of C and R be the R-matrix of T .

The Drinfeld element of T is the natural transformation u ∈ HOM(1C, T ) defined, for any
object X of C, by:

uX = (
evT (X)

(
sl
T (X) ⊗ idT (X)

)
RX,∨T 2(X) ⊗μXφ−1

T 2(X)

)
(idX ⊗ coev∨T 2(X)). (60)

Example 8.9. Let H be a finite-dimensional quasitriangular Hopf algebra over a field k. Recall
that H ⊗k ? is a quasitriangular Hopf monad on vect(k) (see Example 8.4). Then the Drinfeld
element u of H ⊗k ? is given by uX(x) = d ⊗x, where d is the (usual) Drinfeld element of H .
Recall that d = ∑

i S(bi)ai , where r = ∑
i ai ⊗bi ∈ H ⊗k H is the R-matrix of H .

Lemma 8.10. We have UT (U) = φu�, where UT :T -C → C is the forgetful functor, ?� :
HOM(1C, T ) → HOM(UT ,UT ) is the canonical bijection of Lemma 1.3, and U is the Drinfeld
isomorphism of T -C (see Section 8.1).

Proof. Let (M, r) be a T -module. By Theorems 3.8 and 8.5, we have

UT (U(M,r)) = UT

(
(ev(M,r) τ(M,r),∨(M,r) ⊗ id∨∨(M,r))(id(M,r) ⊗ coev∨(M,r))

)
= (

evM

(
sl
MT

(∨r
)⊗ r

)
RM,∨M ⊗ id∨∨M

)
(idM ⊗ coev∨M)

= (
evT (M)

(
sl
MT

(∨(
rT (r)

))⊗ idT (M)

)
RM,∨M ⊗ id∨∨M

)
(idM ⊗ coev∨M)

= (
evT (M)

(
sl
MT

(∨(rμM)
)⊗ idT (M)

)
RM,∨M ⊗ id∨∨M

)
(idM ⊗ coev∨M)

= (
evT (M)

(
sl
M ⊗ idT (M)

)
RM,∨T 2(M) ⊗∨∨(rμM)

)
(idM ⊗ coev∨T 2(M)).

Since φ−1
M

∨∨(rμM) = rμMφ−1
T 2(M)

, we get UT (U(M,r)) = φMruM = φMu
�

(M,r). �
Proposition 8.11. The Drinfeld element u of T satisfies:

(a) T2u⊗ = (u⊗u) ∗ R∗−1 ∗ R∗−1
21 , where (T2u⊗)X,Y = T2(X,Y )uX ⊗Y ;

(b) T0u1 = id1;
(c) u is ∗-invertible and, for any object X of C,

u∗−1
X = (ev∨X ⊗ idT (X))

(
φX ⊗(

sl
X ⊗μX

)
RT (X),∨T (X) coevT (X)

);
(d) S2 = adu, where S2 and adu are as in (7) and (50) respectively.

Proof. Denote τ the braiding of T -C induced by R. Let U be the Drinfeld isomorphism of
T -C (see Section 8.1) and ?� : HOM(1C, T ) → HOM(UT ,UT ) be the canonical bijection of
Lemma 1.3. Recall that UT (U) = φu� by Lemma 8.10.
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Let us prove Part (a). Let (M, r) and (N, s) be T -modules. By Lemma 8.1(a),

U(M,r)⊗(N,s) = (U(M,r) ⊗U(N,s))τ
−1
(M,r),(N,s)τ

−1
(N,s),(M,r).

Evaluating with UT , and since UT (U)(M,r) = φMu
�

(M,r) = φMruM , we get:

φM ⊗N(r ⊗ s)T2(M,N)uM ⊗N = (φMruM ⊗φNsuN)(r ⊗ s)R∗−1
M,N(s ⊗ r)R∗−1

N,M.

Therefore, since φ is a monoidal natural isomorphism,

(r ⊗ s)T2(M,N)uM ⊗N

= (ruM ⊗ suN)
(
rT (r)⊗ sT (s)

)
R∗−1

T (M),T (N)R
∗−1
N,M

= (
rT (r)uT (M) ⊗ sT (s)uT (N)

)
(μM ⊗μN)R∗−1

T (M),T (N)R
∗−1
N,M by (3)

= (rμMuT (M) ⊗ sμNuT (N))(μM ⊗μN)R∗−1
T (M),T (N)R

∗−1
N,M by (3)

= (r ⊗ s)
(
(u⊗u) ∗ R∗−1 ∗ R∗−1

21

)
M,N

.

Hence Part (a) by Lemma 1.4.
Let us prove Part (b). We have:

T0u1 = T0u
�

(T (1),μ1)
η1 by Lemma 1.3

= T0φ
−1
T (1)UT (U(T (1),μ1))η1

= φ−1
1

∨∨T0UT (U(T (1),μ1))η1

= φ−1
1 UT (U(1,T0))T0η1 since T0 is T -linear by (16)

= φ−1
1 UT (U(1,T0)) by (18)

= id1 by Lemma 8.1(b).

Let us prove Part (c). Set u′ = (UT (U−1)φ)	 ∈ HOM(1C, T ), that is,

u′
X = (ev∨X ⊗ idT (X))

(
φX ⊗(

sl
X ⊗μX

)
RT (X),T (X)∗ coevT (X)

)
.

Then u′�u� = UT (U−1)φφ−1UT (U) = idUT
and u�u′� = φ−1UT (U)UT (U−1)φ = idUT

. There-
fore u′ ∗ u = η = u ∗ u′ by Lemma 1.3, that is, u is ∗-invertible with inverse u′.

Finally, let us prove Part (d). The natural transformation φu� ∈ HOM(UT ,∨∨?UT ) lifts to
the natural transformation U ∈ HOM(1T -C,∨∨?T -C) by Lemma 8.10. Therefore Lu = RuS

2 by
Lemma 7.5, and so S2 = adu since u is ∗-invertible. �
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8.4. Ribbon Hopf monads

Let T be a monad on a monoidal category C. Recall (see Section 1.2) that θ ∈ HOM(1CT )

is ∗-invertible if there exists a (necessarily unique) natural transformation θ∗−1 ∈ HOM(1C, T )

such that θ∗−1 ∗ θ = η = θ ∗ θ∗−1, where ∗ is the convolution product as defined in (5). Recall
also (see Section 1.3) that θ ∈ HOM(1CT ) is central if μXθT (X) = μXT (θX) for each object X

of C.
A twist for a quasitriangular bimonad T on a monoidal category C is a central and ∗-invertible

natural transformation θ : 1C → T such that:

T2θ⊗ = (θ ⊗ θ) ∗ R21 ∗ R, (61)

where R is the R-matrix of T and R21 = RσC,C . Explicitly, (61) means that

T2(X,Y )θX ⊗Y = (μXθT (X)μX ⊗μY θT (Y )μY )RT (Y ),T (X)RX,Y

for all objects X,Y of C.
A twist of a quasitriangular Hopf monad on an autonomous category is said to be self-dual if

it satisfies:

S(θ) = θ, (62)

where S : HOM(1CT ) → HOM(1CT ) is the map defined in (37). Explicitly, (62) means that
∨θX = sl

Xθ∨T (X) (or, equivalently, θ∨
X = sr

XθT (X)∨ ) for every object X of C.
A ribbon Hopf monad is a quasitriangular Hopf monad on an autonomous category endowed

with a self-dual twist.

Example 8.12. Let H be a finite-dimensional quasitriangular Hopf algebra over a field k. Then
H ⊗k ? is a quasitriangular monad on vect(k), see Example 8.4. Let v ∈ H and set θX(x) = v ⊗x

for any finite-dimensional k-vector space X and x ∈ X. Then θ is self-dual twist for H ⊗k ? if
and only if v is a ribbon element for H .

Theorem 8.13. Let T be a quasitriangular Hopf monad on an autonomous category C. Any twist
θ for T yields a twist Θ on T -C as follows:

Θ(M,r) = rθM : (M, r) → (M, r)

for any T -module (M, r). This assignment gives a bijection between twists for T and twists on
T -C. Moreover, in this correspondence, θ is self-dual (and so T is ribbon) if and only if Θ is
self-dual (and so T -C is ribbon).

Proof. Let θ ∈ HOM(1C, T ) and set Θ = θ�, where ?� is the canonical bijection ?� :
HOM(1C, T ) → HOM(UT ,UT ) given by f

�

(M,r) = rfM for any T -module (M, r). In this cor-
respondence, Θ is an isomorphism if and only if θ is ∗-invertible, and Θ is T -linear (and so lifts
to a natural transformation 1T -C → 1T -C ) if and only if θ is central (by Lemma 1.5). Moreover
Θ satisfies (55) if and only if θ satisfies (61). Hence the bijection between twists for T and twists
on T -C. Finally, Θ satisfies (56) if and only if θ satisfies (62) by definition of S. �
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8.5. Ribbon and sovereign Hopf monads

By Theorem 8.13, given a ribbon Hopf monad T on a autonomous category C, the category
T -C of T -modules is ribbon and so sovereign. However C itself is not necessarily sovereign. If
C is sovereign, then the sovereign structure on T -C is encoded by a sovereign element of T (see
Section 7.4). In this case, we recover the usual relations between the Drinfeld element and the
twist.

Theorem 8.14. Let T be a quasitriangular Hopf monad on a sovereign category C. Let u be the
Drinfeld element of T . Then the map θ �→ G = u ∗ θ defines a bijection between twists of T and
sovereign elements of T . In this correspondence, a twist θ is self-dual (and so T is ribbon) if and
only if the sovereign element G = u ∗ θ satisfies S(u) = G∗−1 ∗ u ∗ G∗−1.

Proof. Let φ be the sovereign structure on C, U be the Drinfeld isomorphism of T -C (see Sec-
tion 8.1), ?� : HOM(1C, T ) → HOM(UT ,UT ) be the canonical bijection of Lemma 1.3, and ?	 be
the inverse of ?�. Recall that UT (U) = φu� by Lemma 8.10. By Proposition 8.3, the assignment
Θ �→ UΘ defines a bijection between twists on T -C and sovereign structures on T -C. By The-
orem 8.13, twists Θ on T -C are in bijection with twists θ for T . By Proposition 7.6, sovereign
structures on T -C are in bijection with sovereign elements G of T . Hence a bijection between
twists θ for T and sovereign elements G of T , which is given by:

θ �→ G = (
φ−1UT (UΘ)

)	 = (
u�θ�

)	 = u ∗ θ.

Via this correspondence, we have S(θ) = θ if and only if S(u∗−1 ∗G) = u∗−1 ∗G or, equivalently
(see Lemmas 3.18 and 3.21), S(u) = G∗−1 ∗ u ∗ G∗−1. �
Corollary 8.15. Let T be a ribbon Hopf monad on a sovereign category C, with twist θ and
Drinfeld element u. Then θ∗−2 = u ∗ S(u) = S(u) ∗ u.

Proof. Since G = u ∗ θ is grouplike by Theorem 8.14, we have G∗−1 = S(G) by Lemma 3.21.
Now S(G) = S(u ∗ θ) = S(θ) ∗ S(u) = θ ∗ S(u) by Lemma 3.18 and (62). Therefore θ∗−1 ∗
u∗−1 = θ ∗ S(u) and so θ∗−2 = S(u) ∗ u. Likewise, since we also have G = θ ∗ u (because θ is
central), we get θ∗−2 = u ∗ S(u). �
Corollary 8.16. Let T be a quasitriangular Hopf monad on a sovereign category C. Let u be the
Drinfeld element of T . Suppose that T is involutory (see Section 7.5). Then u∗−1 is a twist for T ,
which is self-dual if and only if S(u) = u.

Proof. Results directly from Theorem 8.14 since, when T is involutory, the unit η of T is a
sovereign element of T (by Proposition 7.7). �
9. Examples and applications

In this section, we give other examples of Hopf monads, so as to illustrate the generality of
the notion.
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9.1. Tannaka reconstruction

Fiber functors are an interesting source of examples of Hopf monads.
Let k be a field. Given a k-algebra B , we denote BModB the category of B-bimodules, BmodB

the category of finitely generated B-bimodules, BprojB the category of finitely generated projec-
tive B-bimodules, and Bmod the category of finitely generated left B-modules.

A tensor category over k is an autonomous category endowed with a structure of k-linear
abelian category such that ⊗ is bilinear and End(1) = k. Let C be a tensor category over k and B

be a k-algebra. A B-fiber functor for C is a k-linear exact strong monoidal functor C → BModB .
A B-fiber functor takes values in BprojB (because it preserves duality) and it is faithful if B is
non-trivial (that is, B 
= 0).

We say that a tensor category C is bounded if there exists a k-linear equivalence of cate-
gories Ξ :C → Emod for some finite-dimensional k-algebra E. By Proposition 2.14 of [5] due
to O. Gabber, this is equivalent to the more intrinsic following conditions:

• in C, all objects have finite length and Hom spaces are finite-dimensional;
• C admits a generator, i.e., an object X such that any object is a subquotient of X⊕n for some

integer n.

Theorem 9.1. Let C be a bounded tensor category over a field k, B be a non-trivial finite-
dimensional k-algebra, and ω be a B-fiber functor for C. Then the functor ω, viewed as a
functor C → BmodB , admits a left adjoint F . The endofunctor T = ωF is a bimonad on
BmodB and induces, by restriction, a Hopf monad T0 on BprojB . The categories T0-BprojB
and T -BmodB are isomorphic (as k-linear monoidal categories). Furthermore, the canonical
functor C → T -BmodB

∼= T0-BprojB is a k-linear strong monoidal equivalence.

Proof. Let R and E be two finite-dimensional k-algebras. Let G : Emod → Rmod be a k-linear
exact functor. Being right exact, G is of the form RM ⊗E? for some R–E-bimodule M . Since G

is left exact, M is flat, and it is also of finite type, hence projective. Let ∨M be the E–R-bimodule
HomR(RME,R RR). Then F =E

∨M ⊗R? is left adjoint to G. So T = GF is a monad on Rmod.
Moreover, the canonical functor K : Emod → T -Rmod is an equivalence if G is faithful (that is,
if M is faithfully flat as an E-module).

Via a k-linear equivalence Ξ :C → Emod, this applies to ω :C → BmodB (with R =
B ⊗k Bop), and shows that ω has a left adjoint F . Hence T = ωF is a bimonad on BmodB

by Theorem 3.14. The canonical functor K :C → T -BmodB is a k-linear strong monoidal equiv-
alence. Now ω, and so T , takes values in BprojB . Denote ω0 :C → BprojB and F0 : BprojB → C
the restrictions of ω and F . Then F0 is left adjoint to ω0 and T0 = F0ω0 is a Hopf monad on
BprojB (by Theorem 3.14). Lastly, consider a T -module (N, r), where N is an object of BmodB .
Since K is an equivalence, (N, r) is isomorphic to K(Y), for some Y in C, and so N 	 ω(Y ). In
particular N is in BprojB . Therefore we have T -BmodB = T0-BprojB , hence the theorem. �
Corollary 9.2. Let C be a semisimple tensor category over a field k. Assume the set Λ of isomor-
phy classes of simple objects of C is finite and End(V ) = k for each simple object V of C. Let B

be the k-algebra kΛ. Then there exist a k-linear Hopf monad T on BmodB and a k-linear strong
monoidal equivalence C → T -BmodB .
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Proof. By Theorem 4.1 of [6], we have a canonical B-fiber functor C → BmodB . Hence the
corollary by Theorem 9.1, noticing that BmodB = BprojB because B is semisimple. �
9.2. Double of Hopf monads

Let C be an autonomous category and T be a Hopf monad on C. Assume that the coend

ZT (X) =
Y∈C∫

∨T (Y )⊗X ⊗Y

exists for every object X of C. Then ZT is a Hopf monad on C and the composition DT = ZT ◦T

has an explicit structure of a quasitriangular Hopf monad such that

Z(T -C) ∼= DT -C

as braided categories, where Z(T -C) is the center of T -C. The Hopf monad DT is called the
double of T . See [3] for details.
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