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KIRBY ELEMENTS AND QUANTUM INVARIANTS

ALEXIS VIRELIZIER

Introduction

During the last decade, deep connections between low-dimensional topology and the
purely algebraic theory of quantum groups or, more generally, of braided categories
were highlighted. In particular, this led to a new class of 3-manifold invariants,
called quantum invariants, defined in several ways.

The aim of the present paper is to give an, as general as possible, method of
constructing quantum invariants of 3-manifolds starting from a ribbon category or
a ribbon Hopf algebra. With this formalism, we recover the 3-manifold invariants
of Reshetikhin and Turaev [24, 26], of Hennings, Kauffman and Radford [9, 10],
and of Lyubashenko [16], when these are well defined.

Let k be a field and C be a k-linear ribbon category (not necessarily semisimple).
Under some technical assumption, namely the existence of a coend A € Ob(C) of
the functor (X,Y) € C°? xC — X* QY € C, a scalar 7¢(L; «) can be associated
to any framed link L in S® and any morphism o € Home(1, A); see [16]. Recall
(see [17]) that the object A of C is then a Hopf algebra in the category C.

By a Kirby element of C, we shall mean a morphism « € Home (1, A) such that
Te(L; ) is invariant under isotopies of L and under 2-handle slides. By the Kirby
theorem [12], we get that if a Kirby element « of C is normalizable, that is, such that
7e(OFa) # 0, then 7¢(L; @) can be normalized to an invariant 7¢(My; ) of 3-
manifolds. Here O*! is the unknot with framing +1 and M|, denotes the 3-manifold
obtained from S® by surgery along L.

In general, determining all the Kirby elements of C is quite a difficult problem.
In this paper we characterize a class AK(C) of Kirby elements of C, called the
algebraic Kirby elements of C, in terms of the structure maps of the categorical
Hopf algebra A. This class is sufficiently large to contain the Kirby elements
corresponding to the known quantum invariants.

If the categorical Hopf algebra A admits a two-sided integral A\: 1 — A, then A
is an algebraic Kirby element of C and the corresponding invariant 7¢(M; \) is the
Lyubashenko invariant [16].

When C is semisimple, we give sufficient conditions for being an algebraic Kirby
element of C. Moreover, we show that there exist (even in the non-modular case)
algebraic Kirby elements of C corresponding to the Reshetikhin—Turaev invariants
[24, 26] computed from finitely semisimple ribbon full subcategories of C. Note that
these elements are not in general two-sided integrals.

More generally, when C is not semisimple, we show that AK(C) contains Kirby
elements leading to the invariants defined from AK(B), where B is any finitely
semisimple ribbon subcategory of the semisimple quotient of C. Note that, in
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general, there exist algebraic Kirby elements of C which are not of this last form.
This means that the semisimplification process ‘misses’ some invariants.

Let H be a finite-dimensional ribbon Hopf algebra. Suppose that C is the category
repy of finite-dimensional left H-modules. We parameterize the algebraic Kirby
elements of repy by a subset AK(H) of H defined in purely algebraic terms. One
of the interests of such a description of AK(repy) is to avoid the representation
theory of H (which may be of wild type; see [2]).

If H is unimodular, then 1 € AK(H) and the corresponding invariant (g 1) is
the Hennings—Kauffman—Radford invariant [9, 10]. More generally, and even if H
is not unimodular, we show that the invariant 7(z ) of 3-manifolds corresponding
to z € AK(H) can be computed by using the Kauffman-Radford algorithm.

If V is a set of simple left H-modules which makes (H,V) a premodular Hopf
algebra, then there exists 2y € AK(H) such that 7(g.,) is the Reshetikhin-
Turaev invariant computed from (H,V), which hence can be computed by using
the Kauffman—Radford algorithm.

When H is semisimple and k is of characteristic 0, we show that the Hennings—
Kauffman—Radford invariant (computed from H) and the Reshetikhin-Turaev
invariant (computed from rep) are simultaneously well defined and coincide (even
in the non-modular case). In the modular case, this was first shown in [11].

We explicitly determine the algebraic Kirby elements of a family of non-
unimodular ribbon Hopf algebras which contains Sweedler’s Hopf algebra.

As an algebraic application, the operators involved in the description of
AK(repy) in algebraic terms allows us to parameterize all the traces on a finite-
dimensional ribbon Hopf algebra H. When H is unimodular, we recover the
parameterization given in [9, 23].

The paper is organized as follows. In §1, we review ribbon categories and
coends. In §2, we define and study Kirby elements. We focus, in §3, on the
case of semisimple ribbon categories and, in §4, on the case of categories of
representations of ribbon Hopf algebras. In §5, we treat an example in detail.
Finally, in the Appendix, we study traces on ribbon Hopf algebras.

1. Ribbon categories and coends
In this section, we review some basic definitions concerning ribbon categories and
coends. Throughout this paper, we let k be a field.
1.1. Ribbon categories

Let C be a strict monoidal category with unit object 1 (note that every monoidal
category is equivalent to a strict monoidal category in a canonical way; see [18]).
A left duality in C associates to any object U € C an object U* € C and two
morphisms evy: U* @ U — 1 and coevy: 1 — U ® U* such that

(idU ® evU)(coevU ® ldU) =idy and (evU X ldU*)(ldU* X COGVU) =idy-.
We can (and we always do) impose the following conditions:
1" =1, evy=1idy and coevy =idy.

By a braided category we shall mean a monoidal category C with left duality
and endowed with a braiding, that is, a system {cyv: U®V — V@ U}yvec of
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isomorphisms, natural in U and V, satisfying
cwevw = (cow @idy)(idy ® cvw), (L.1)
cuvew = (ldy @ cuw)(cv,v @ idw), (1.2)
for all objects U, V, W € C. Note that (1.1) and (1.2) imply that cyq = ¢q,0 = idy.
A ribbon category is a braided category C endowed with a twist, that is, a family
of natural isomorphisms {0y : U — U}yec satisfying
(fy ® idy~)coevy = (idy ® Oy~ )coevy, (1.3)
Ouev = cvu cuv(fu @ Oy), (14
for all objects U,V € C. It follows from (1.4) that 6; = id;.
A ribbon category C canonically has a right duality by associating to any object
U € C its left dual U* € C and two morphisms
evp: U®U* -1 and coevy:1—-U"QU
defined by
evy = evycy,u~ (0(] ® ldU*) and coevy = (ldU* & 0(}1)(CU*7U)71606VU.

Note that we have évy = id; and coevy = idj.
The dual morphism f*: V* — U* of a morphism f: U — V in a ribbon category
C is defined by

= (evy ®@idy~)(idy~ ® f ® idy+)(idy+ @ coevy)
= (idU* & &Iv)(ldU* ® f & idv*)(C/(%{lU (9 ldv*)
Tt is well known that (idy)* = idy- and (fg)* = ¢*f* for composable morphisms
f and g. Axiom (1.3) can be shown to be equivalent to 67, = 0.

Let C be a ribbon category. Note that Ende(1) is a monoid, with composition
as multiplication, which is commutative. The quantum trace of an endomorphism
f:U — U of an object U € C is defined by

trg(f) = evy(f ® idy-)coevy = evy (idy- ® f)coevy € Ende(1).

For any morphisms u: U — V and v: V — U and any endomorphisms f and g, we
have

trg(uv) = try(vu), try(f*) =try(f), and try(f ® g) = try(f)try(g).
The quantum dimension of an object U € C is defined by

dim, (U) = tr,(idy) = évy coevy = evy coevy € Ende(1).

Isomorphic objects have equal dimensions and dim,(U @ V) = dim,(U) dim,(V)
for any objects U,V € C. Note that dim, (1) = ids.

1.2. k-categories

Let k be a field. By a k-category, we shall mean a category for which the sets
of morphisms are k-spaces and the composition is k-bilinear. By a monoidal
k-category, we shall mean a k-category endowed with a monoidal structure whose
tensor product is k-bilinear. Note that if C is a monoidal k-category, then Ende (1)
is a commutative k-algebra (with composition as multiplication). A monoidal
k-category is said to be pure if Ende(1) = k.
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FIGURE 1. Plane diagrams of morphisms.

By a ribbon k-category, we shall mean a pure monoidal k-category endowed with
a ribbon structure.

1.3. Graphical calculus

Let C be a ribbon category. Any morphism in C can be graphically represented
by a plane diagram (we use the conventions of [26]). This pictorial calculus will
allow us to replace algebraic arguments involving commutative diagrams by simple
geometric reasoning. This is justified in, for example, [26].

A morphism f: V — W in C is represented by a box with two vertical arrows
oriented downwards, as in Figure 1(a). Here V and W should be regarded as ‘colors’
of the arrows and f should be regarded as a ‘color’ of the box. More generally, a
morphism f: Vi1 ®...9V,, - W1 ®...® W, may be represented as in Figure 1(b).

We also use vertical arrows oriented upwards under the convention that the
morphism sitting in a box attached to such an arrow involves not the color of the
arrow but rather the dual object. The identity endomorphism of an object V € C
or of its dual V* will be represented by a vertical arrow as depicted in Figure 1(c).
Note that a vertical arrow colored with 1 may be deleted from any picture without
changing the morphism represented by this picture. The symbol ‘=’ displayed in
the figures denotes equality of the corresponding morphisms in C.

The tensor product f® g of two morphisms f and g in C is represented by placing
a picture of f to the left of a picture of g. A picture for the composition g o f of
two (composable) morphisms g and f is obtained by putting a picture of g on the
top of a picture of f and by gluing the corresponding free ends of arrows.

The braiding cy,w: V@ W — W ® V and its inverse c‘_/}W: WeV-VeW,
the twist 0y : V — V and its inverse 9‘71: V — V, and the duality morphisms
evy: V*QV — 1, coevy: 1 = VRV* évy: VV* —1,and coevy : 1 — V¥V
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are represented as in Figures 1(d) and 1(e). The quantum trace of an endomorphism
f:V — Vin C and the quantum dimension of an object V € C may be depicted
as in Figure 1(f).

1.4. Negligible morphisms

Let C be a ribbon k-category. A morphism f € Home (X, Y) is said to be negligible
if try(gf) = 0 for all g € Home(Y, X). Denote by Negl:(X,Y) the k-subspace of
Hom¢ (X, Y) formed by the negligible morphisms.

It is important to note that Negl, is a two-sided ®-ideal of C. This means that
the composition (respectively the tensor product) of a negligible morphism with
any other morphism is negligible.

Note that a morphism f: 1 — X is negligible if and only if gf = 0 for all
morphisms g: X — 1.

1.5. Dinatural transformations and coends

Recall that to each category C is associated its opposite category C°P (by reversing
the arrows; see [18]).

Let C and B be two categories. A dinatural transformation between a functor
F:C° x C — B and an object B € B is a function d which assigns to each object
X € C a morphism dx: F(X,X) — B of B in such a way that the diagram

Py, x) 0 piyy)

F(f:idx)l idy

F(X,X)——B
dx
commutes for every morphism f: X — Y in C.

A coend of the functor F' is a pair (A4,) consisting of an object A of B and a
dinatural transformation i from F' to A which is universal among the dinatural
transformations from F' to a constant, that is, with the property that, to every
dinatural transformation d from F' to B, there exists a unique morphism r: A — B
such that dx = r oix for all objects X € C.

Note that a coend, if it exists, is unique up to unique isomorphism.

For examples of coends, see §§3.2 and 4.5.

1.6. Categorical Hopf algebras from coends
Let C be a ribbon category. Consider the functor F': C°P? x C — C defined by

F(X,Y)=X'®Y and F(f.g)=f" ®g (L5)

for all objects X,Y € C and all morphisms f and g in C.

Suppose that the functor F' admits a coend (A,i). Then the object A has a
structure of a Hopf algebra in the category C (see [17]). This means that there
exist morphisms ma: A® A — A, na: 1 — A Ap: A > ARQ A eq: A — 1,
and S4: A — A, which satisfy the same axioms as those of a Hopf algebra except
that the usual flip is replaced by the braiding c44: A ® A — A ® A. By using
the factorization property of the coend (use it twice for the multiplication m4), we
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define these structural morphisms as follows:

Apgix = (iX ® ix)(idx* X coevy & idx)t XX - ARA,
calx =evx: X" X - AR A,
ma(ix ®@iy) = iY@X(’YX,Y ®idygx)(idxs ® CX7y*®y)2 X'XQY*"QY — A,
nMa=i:1=1"®1 — A,

Saix = (evx ®ixs)(idx+ ® cx» x @idx+)(coevys Q@cx+ x): X @ X — A.
Here X and Y are objects of C, and yx y: X*®Y™ = (Y®X)* is the isomorphism
defined by vxy = (evx(idx- ® evy ® idx) ® id(ygx)+)({dx-gy- @ coevygx).

It can be shown that the antipode S4 is an isomorphism and that S% = 64;
see [17]. Moreover, as for Hopf algebras, the antipode is anti-(co)multiplicative:
Sama =ma(Sa® Sa)ca,a, Sana =na,
A Sa=caa(54®854)A4, €484 =¢a.
The Hopf algebra A is equipped with a Hopf pairing wa: A ® A — 1 (see [16])
defined by wa o (ix ® iy) = wx,y, where
wxy = (eVX (24 eVY)(idx* Ry« xexy+ ® idy): X*"XQY* Y — A.

This pairing is said to be non-degenerate if (ws ®id4-)(ida ® coevy): A — A* and
(ida» ® wa)(coevy ®idy): A — A* are isomorphisms.
Set
I'=(>G1da®@ma)(Aa®ida): AQA— AR A, (1.6)
IF=(ma®ids)(ida®A4): AR A — A® A. (1.7)

LEMMA 1.1. Fl(SA ®SA)CA7A = CA)A(SA ®SA)T,

Proof. By using the anti-(co)multiplicativity of the antipode, we have

I')(Sa®Sa)cas = (ida @ma)(AaSas® Sa)ca a
= (idsa @ma)(ca,a(Sa®S4)As R Sa)ca
(SA ® mA(SA ® SA))(CA AAA® idA)CA A
(SA ® SAmACA A)(CA AAL ® ldA)CA A

Then, by using (1.1) and (1.2), we get

I'/(Sa®Sa)caa=(Sa® SAmACZ}A)CA,A®A(idA ®@ca,ala)
(SA ® SAmA)(cAyA ® idA)(idA ® CA,A)(idA ® AA)
= (Sa®5ama)caga,a(ida @ Ay)
=c4,4(54®854)(ma®ida)(ids @ Aa)
— can(Sa® ST, 0

COROLLARY 1.2. Suppose that C is moreover a (monoidal) k-category. Let « €
Home(1, A). If Sy — o € Negl (1, A), then the following assertions are equivalent:
(a) Ti(a®@a) —a®a: 1 — AR® A is negligible;
(b) Tha®a) —a®a: 1 — A® A is negligible.
Moreover, if Sy = a, then Tj(a ® o) = a® o if and only if T (a® a) = a® a.
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Proof. This is an immediate consequence of Lemma 1.1 since Negl. is a two-
sided ®-ideal of C. O

2. Kirby elements of a ribbon category

In this section, we generalize Lyubashenko’s method [16] of constructing 3-
manifold invariants from ribbon categories.

2.1. Ribbon handles

Let n be a positive integer. By a ribbon n-handle we shall mean an oriented
ribbon tangle T C R? x [0,1] with 2n bottom endpoints and no top endpoints,
consisting of n arc components, without any closed component, such that:

— the kth arc joins the (2k — 1)th and 2kth bottom endpoints;

— the kth arc is oriented out of R? x [0, 1] near the 2kth bottom endpoint.
Diagrams of ribbon handles are drawn with blackboard framing. An example of a
ribbon 3-handle is depicted in Figure 2(a).

Let C be a ribbon category. Suppose that the functor (1.5) admits a coend (A4, 7).
Let T be a ribbon n-handle. For objects Xi,...,X, € C, let T(x,, . x,) be the
morphism X7 ® X; ®...® X} ® X, — 1in C graphically represented by a diagram
of T where the kth component of T" has been colored with the object Xj. Since the
braiding and twist of C are natural and by using the Fubini theorem for coends (see
[18]), we see that there exists a (unique) morphism ¢7: A®™ — 1 such that

T(le»-,Xn) :¢TO(iX1 ®®2Xn) (21)
for all objects X1,...,X,, € C. Figure 2(b) is an example for n = 3.

¢>T
A A
N C\ / \ L\ RIENIEN
N N v TN
X1 X1 X2 Xo X3 X3 X1 X1 X2 X2 X3 X3
(a) A ribbon 3-handle T’ (b) T(xy,x0,x5) = &7 © (ix, ®ix, ®ix;)

FIGURE 2.

In [6], we give a method for computing ¢ by using the Hopf algebra A.

2.2. Kirby elements

Let C be a ribbon category such that the functor (1.5) admits a coend (A4,3).
Let L be a framed link in $® with n components. Fix an orientation for L. There
always exists a (non-unique) ribbon n-handle 77 such that L is isotopic to
Tr, 0o (U® ... ® U), where U denote the cup with clockwise orientation; see
Figure 3(a). For o € Home(1, A), set

1e(L;a) = ¢p, 0 a®" € Ende(1),
where ¢, 1 A®™ — 1 is defined as in (2.1).
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DEFINITION 2.1. By a Kirby element of C, we shall mean a morphism a €
Home (1, A) such that, for any framed link L, 7¢(L; «) is well defined and invariant
under isotopies and 2-handle slides of L. A Kirby element « of C is said to be
normalizable if 7¢(O%!; @) is invertible in End¢ (1), where OF! denotes the unknot
with framing +1.

Note that the unit n4: 1 — A of the categorical Hopf algebra A is a normalizable
Kirby element. The invariant of framed links associated with 74 is the trivial one,
that is, 7¢(L;na) = 1 for any framed link L.

In the following, we will denote by ©+: A — 1 the morphisms defined by

Oiix = eVX(idx* ® tg)i(l) (2.2)
Remark that if o is a Kirby element of C, then 7¢(O*;a) = O4a.

LEMMA 2.2. Let a: 1 — A. Then 7¢(L U L';a) = 7¢(L;a) 7e(L'; ) for any
framed link L and L', where L U L' denotes the disjoint union of L and L.

Proof. Let T;, and 17 be ribbon handles such that L and L’ are isotopic to
Tro(U®...Q@U) and T1 o (U® ... ® U) respectively. Then T = Ty, ® T+ is a
ribbon handle such that the disjoint union L U L' is isotopic to T o (U® ... ® U).
Therefore ¢r = ¢1, ® ¢7,, and so 7¢(L U L'; o) = 7¢(L; ) ¢ (L' ). O

In this paper, all considered 3-manifolds are supposed to be closed, connected,
and oriented. Recall (see [15]) that every such 3-manifold can be obtained from 3
by surgery along a framed link L C S3. For any framed link L in S3, we will denote
by My, the 3-manifold obtained from S® by surgery along L, by ny, the number of
components of L, and by b_ (L) the number of negative eigenvalues of the linking
matrix of L.

Normalizable Kirby elements are of special interest due to the following result.

ProPOSITION 2.3. Let o be a normalizable Kirby element of C. Then
Te(Mp;a) = (@+a)b*(L)_"L (G,a)_b*(L) Te(L; @)

is an invariant of 3-manifolds. Moreover 7¢c(M#M';«) = 7¢(M;a) 7e(M'; o) for
any 3-manifolds M and M'.

REMARK 2.4. For any normalizable Kirby element « of C, we have 7¢(S%; o) =
and 7¢(S! x %) = (O 1a) teqa.

REMARK 2.5. The invariant of 3-manifolds associated with the unit n4: 1 — A
of the categorical Hopf algebra A (which is a normalizable Kirby element) is the
trivial one, that is, 7¢(M;n4) = 1 for any 3-manifold M.

Proof of Proposition 2.3. The fact that 7¢(Mp; «) is an invariant of 3-manifolds
follows from the Kirby theorem [12]. Indeed 7¢(L; ), b— (L) and ny, are invariant
under 2-handle slides and 7¢(O*! U L;a) = (©+a)7e(L;a) by Lemma 2.2,
b_(O'UL)=0b_(L),b_(O"'UL)=0b_(L)+ 1, and no+1, =ng + 1.

Let L and L’ be framed links in S3. The disjoint union L LI L’ is then a framed
link in S® such that My, ~ Mp#Mp,. Then the multiplicativity of 7¢(M;a)
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with respect to the connected sum of 3-manifolds follows from Lemma 2.2 and the
equalities b_(LU L") =b_(L)+b_(L') and npr =ng +npr. O

In general, determining when a morphism A®" — 1 is of the form ¢r for
some ribbon m-handle T is quite a difficult problem. Hence so is the problem of
determining all the (normalizable) Kirby elements of C. In the next section, we
characterize a class of (normalizable) Kirby elements of C by means of the structural
morphisms of the categorical Hopf algebra A. This class will be shown to be
sufficiently large to contain the Lyubashenko invariant (which is a categorical
version of the Hennings-Kauffman-Radford invariant) and the Reshetikhin-Turaev
invariant (computed from a semisimple quotient of C) when these are well defined.

2.3. Algebraic Kirby elements

Let C be a ribbon k-category such that the functor (1.5) admits a coend (A4,7).
Recall the notion of negligible morphisms (see § 1.4). Set

AK(C) = {a € Home¢ (1, A) | Saar — e € Negl (1, A) and
IMNa®a) —a®a € Negl.(1,A® A)},
AK(C)" ™ = {a € AK(C) | ©4a # 0 and O_a # 0},

where I';: AQ A — A® A and O4: A — 1 are defined in (1.6) and (2.2). Note that,
by Corollary 1.2, the morphism I'; used in the definition of AK(C) can be replaced
by the morphism I',. defined in (1.7).

Remark that the sets AK(C) and AK(C)™*™ always contain a non-zero element,
namely the unit n4: 1 — A.

THEOREM 2.6. The elements of AK(C) are Kirby elements of C. Moreover
AK(C)mem™ js made of the elements of AK(C) which are normalizable.

DEFINITION 2.7. The elements of AK(C) are called the algebraic Kirby elements
of C.

REMARK 2.8. It follows from Proposition 2.3 that any normalizable algebraic
Kirby element « of C leads to a 3-manifold invariant 7¢(M;«) with values in
End¢(1) = k. This invariant is multiplicative with respect to the connected sum.
Note that 7¢(S%;a) =1 and 7¢(St x §%a) = (01a) teqa.

REMARK 2.9. Let a € AK(C)™™, n € Negl.(1, A), and k € k*. Since Negl,
is a two-sided ®-ideal of C and Negl.(1,1) = 0, we have ka +n € AK(C)*°™ and
Te(M; ka +n) = 17¢(M; «) for any 3-manifold M.

REMARK 2.10. If C is 3-modular as in [16], then A admits a (non-zero) two-
sided integral A € Home(1, A), that is, ma(A ®@1ida) = Aea = ma(idg ® A), and
we have A\ € AK(C)*°™ and 7¢(M; A) is the Lyubashenko invariant of 3-manifolds.
Note that if C admits split idempotents, then X is unique (up to scalar multiples);
see [3]. Nevertheless, the condition that A possesses a (non-zero) two-sided integral
is quite limitative (for example, when C is the category repy of representations
of a finite-dimensional Hopf algebra H, this implies that H must be unimodular).
In §5, we give an example of a non-unimodular ribbon Hopf algebra H and of an
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N e i) |
I TBRTTT]

(a) L~Tro(U®...QU) (b) T

(c) Tt (d) T

FIGURE 3.

element o € AK(repy;) which is not a two-sided integral and leads to a non-trivial
invariant.

REMARK 2.11. In §3.5 (see Corollary 3.11), we show that AK(C) contains
elements corresponding to the Reshetikhin—-Turaev invariants defined using finitely
semisimple ribbon full subcategories of the semisimple quotient of C.

Proof of Theorem 2.6. Fix a € AK(C). Let L =Ly U...UL, be a framed link.
Firstly, since Sqa — v € Negl (1, A), then 7¢(L; ) does not depend on the choice
of Ty, nor on the orientation of L and is an isotopic invariant of the framed link
L. Indeed, this is proved in the case Sy = a in [16, Proposition 5.2.1]. The same
arguments work when Ssa — o € Neglo(1, A) since Negl, is a two-sided ®-ideal
of C.

Let us show that 7¢(L; «) is invariant under 2-handle slides. Choose an orientation
for L. Without loss of generality, we can suppose that the component L; slides over
Ls. Let LY be a copy of Ly (following the framing) and set

L= (L1#Ly) ULy U...UL,.

We have to show that 7¢(L’;a) = 7¢(L;a). Let Tp, be a ribbon n-handle such
that L is isotopic to Tp o (U® ... ® U), where the ith cup corresponds to the
component L;; see Figure 3(a). Let Ay(7TL) be the (2n + 2,0)-tangle obtained by
copying the 2nd component of T}, (following the framing) in such a way that the
endpoints of the new component are between the 2nd and 3rd bottom endpoints
of Ty, and between the 4th and 5th bottom endpoints of T7,. A ribbon n-handle
T’ such that L’ is isotopic to 7" o (U® ... ® U), where the ith cup corresponds to
the ith component of L', can be constructed from As(7}) as in Figure 3(b). For
example, if T, is the ribbon 3-handle depicted in Figure 3(c), then 7" is the ribbon
3-handle of Figure 3(d). By the equalities of Figure 4 where X;,...,X,, are any
objects of C, and by the uniqueness of the factorization through a coend, we get
¢ = ¢1, (T1 ® 1d gem-2)). Therefore, since I'j(a ® o) — o ® a € Neglo(1, A ® A),
we get

me(L;a) = pra®™ = ¢, (idge2 @ a®"N(a @ @) = ¢, " = 1e(L; a).
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X3 Xz Xn Xn

FIGURE 4.

Finally, let o € AK(C). Since 7¢(OF!;a) = O+a and Ende (1) =k is a field, we
see that « is normalizable if and only if O« # 0. Ul

2.4. Algebraic Kirby elements via ribbon functors

Let us see that algebraic Kirby elements can be ‘pulled back’ via ribbon functors.
Let A, B, and C be ribbon k-categories. Suppose that the functor (1.5) for A admits
a coend (A4, 14) and that the functor (1.5) for B admits a coend (B, j). Let 7: A — C
and ¢: B — C be ribbon functors. Since A and B are categorical Hopf algebras and
m and ¢ are ribbon functors, the objects m(A) and ¢(B) are Hopf algebras in C (with
structure maps induced by 7 and ¢ respectively).

PROPOSITION 2.12. Suppose that 7 is surjective, ¢ is full and faithful, and that
there exists a Hopf algebra morphism ¢: t(B) — m(A) such that w(ix) = ¢ o t(jy)
for all objects X € A and Y € B with m(X) = «(Y). Let 8 € Homg(1, B) and
a € Homy4 (1, A) such that w(a) = @ o t(f).

(a) If B € AK(B), then a € AK(A) and 74(L;a) = 78(L; 3) for any framed
link L.

(b) If 8 € AK(B)"™, then oo € AK(A)™™ and T4(M; ) = 78(M; 3) for any
3-manifold M.

Proof. Let us prove part (a). Suppose that § € AK(B). Since the structure
maps of m(A) and ¢(B) are induced by 7 and ¢ from those of A and B respectively,
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and since ¢: ((B) — m(A) is a Hopf algebra morphism, we have

m(Saq — a) = (Sra) — idray)m(@) = (Sra) — idx(a))ee(B)
= SO(SL(B) - idL(B))L(/B) = ou(SpB - B)
and
T a®a)—a®a) = (FZT(A) —id(aye2)(m(@) @ ()
= (07— idg(aye2)pu(B @ )
= (I} —id,(g)s2)u(8 © )
= w(FZB(ﬁw) - B®p).
Now, since Sg3 — 8 and I'?(8 ® 3) — B ® 8 are negligible in B, ¢ is full, and
tr5 = tr¢ o1, we get that 7(Saa — @) and W(FA( ® a) — a ® «) are negligible

q
in C. Hence since 7 is surjective and trq o = trq the morphisms Sgpa — « and

I'da®a) — a® a are negligible in A, that is, a € AK(A).

Let L = L; U...U L, be a framed link in S3. Let T, be a ribbon n-handle
such that L is isotopic to T o (U ® ... ® U), where the ith cup (with clockwise
orientation) corresponds to the component L;. Let Y7,...,Y,, be any objects of B.
Since = is surjective, there exist objects X7, ..., X, of A such that 7(Xj) = ¢(V%).
Recall that, by assumption, 7(ix,) = @t(jy, ). Since ¢ is full and the domain and
codomain of the morphism 7(¢7} )¢®" of C are (B®") and 1 = 1(1) respectively,
there exists a morphism £: B®™ — 1 in B such that +(¢) = w(¢7} )¢®". Then

L(F, o (v ® ... ® v, )
= L(TLB(Yl ..... Xn)) = TLC(L(Yl) ,,,,, W(Yn)) = Tf(w(xl) ..... w(Xn)) — W(Tﬁxl ,,,,, X,,))
= 1(¢7, )(n(ix,) ® ... @ 7(ix, ) = 7(¢7, ) (t(in) @ - .. © ey, )
= 7(¢7,)9%" 0 (i, ® ... @ jy,) = (0 (v, ® ... @ jy, ).

Therefore, since ¢ is faithful, ngL Uy, ®...®Jdy,) =E&0(jy, ®...® jy,) and so,
by the uniqueness of the factorization through a coend, we get (/)T = &, that is,
W) = m(¢7 )¢®". Hence, since the maps End4(1) = k — End¢(1) = k and
Endg(1) = k — Ende(1) = k induced by 7 and ¢ respectively are the identity of k,
we have

re(L; @) = m(1e(L; ) = m(d7, a®") = m(¢7, )= (B5™)
= (¥, B%) = u(18(L; B)) = T8(L; B).

Let us prove part (b). Suppose that 8 € AK(B)*™. Let Y be any object of B.
Since 7 is surjective, there exists an object X of A such that 7(X) = ¢(Y). Recall
that, by assumption, 7(ix) = @oi(jy). Since ¢ is full and the domain and codomain
of the morphism 7(04)p of C are +(B) and 1 = (1) respectively, there exists a
morphism ¢;: B — 1 in B such that ¢(cx) = 7(04)p. We have

st o (jy)) = m(O©D)p 0 L(jy) = m(OFix) = m(evi (idx- ® O5F))
= err(X)(idﬂ'(X)* ® 9%?)) = 1(evy) (u(idy-) ® (67)*)
= 1(evB (idy- @ 65E)) = (05 o jy).

Therefore, since ¢ is faithful, ©F o jy = ¢4 01(jy) and so, by the uniqueness of the
factorization through a coend, we get ©F = ¢y, that is, t(0%) = 7(04)¢. Then
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0%a = 1(04a) = 1(O1)pu(B) = (08 B) = 6% 3. Hence, since ©F3 # 0, we get
a € AK(A)™™ and 74(M;a) = 7(M; ) for any 3-manifold M. O

3. The case of semisimple ribbon categories

In this section, we focus on the case of semisimple categories B. We give sufficient
conditions for belonging to AK(B). In particular, we show that there exist (even
in the non-modular case) elements of AK(B) corresponding to Reshetikhin-Turaev
invariants computed with finitely semisimple ribbon subcategories of 3. Moreover,
we study Kirby elements coming from semisimplification of ribbon categories.

3.1. Semisimple categories

Recall that a category B admits (finite) direct sums if, for any finite set of objects
Xi,..., X, of B, there exist an object X and morphisms p;: X — X, such that, for
any object Y and morphisms f;: Y — X, there is a unique morphism f: Y — X
with p; o f = f; for all i. The object X is then unique up to isomorphism. We write

A k-category is abelian if it admits (finite) direct sums, every morphism has
a kernel and a cokernel, every monomorphism is the kernel of its cokernel, every
epimorphism is the cokernel of its kernel, and every morphism is expressible as
the composite of an epimorphism followed by a monomorphism. In particular, an
abelian category admits a null object (which is unique up to isomorphism). Note
that a morphism of an abelian k-category which is both a monomorphism and an
epimorphism is an isomorphism.

Let B be an abelian k-category. A non-null object U of B is said to be simple
if every non-zero monomorphism V' — U is an isomorphism, and every non-zero
epimorphism U — V is an isomorphism. Any non-zero morphism between simple
objects is an isomorphism. An object U of B is scalar if Endg(V) = k. Note that
if k is algebraically closed, then every simple object is scalar. An object of B is
indecomposable if it cannot be written as a direct sum of two non-null objects.
Note that every scalar or simple object is indecomposable.

By a semisimple k-category, we shall mean an abelian k-category for which
every object is a (finite) direct sum of simple objects. By a finitely semisimple
k-category, we shall mean a semisimple k-category which has finitely many
isomorphism classes of simple objects. Note that in a semisimple k-category,
every scalar or indecomposable object is simple.

Let B be a semisimple ribbon k-category. If the Hompg(X,Y) are all finite-
dimensional (this is the case for example when the simple objects are scalar), then
any negligible morphism of B is null (see [5]). Therefore, for every pair of objects
X, Y of B, the pairing

Homp(X,Y) @ Homp(Y, X) =k, f® g trg(gf) (3.1)

is non-degenerate. Note that this implies that the quantum dimension of a scalar
object of B is invertible.

LEMMA 3.1. Let B be a finitely semisimple ribbon k-category whose simple
objects are scalar. Let A be a (finite) set of representatives of isomorphism classes
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of simple objects of B. Fix an object X of B. For any \ € A, set
ny = dim]k Homg()\ X) = dimk HOIHB(X )\)

and let {f} | 1 < i < ny} be a basis of Homp(\, X) and {g} | 1 <i < ny} be a
basis of Homp (X, \) such that g; f/\ =0;,;idy forall 1 <i,j < ny (such bases exist
since the pairing (3.1) is non- degenerate) Then

AEA 1<i<ny

Proof. Since the category B is semisimple, the composition induces a k-linear
isomorphism EB)\GA Hompg(X,\) ® Homp(\, X) — Endg(X). Therefore, for all
A€ A and 1<14,j < ny, there exist ay ;,; € k such that

idy =2 > i flg)-
AEA 1K, j<ny
Let A€ A and 1 <4, < ny. Then
Sijidy =g} =gMdx £} =Y Y aukig flol'f}

REA 1<k, I<ny

= E g Qu kel Ox 0k 05,0 1d, = ax ;5 1dy,

REA 1<k, 1<y

_ 5 1o — AA
and 5o ay i ; = 0; ;. Hence idx = >, o5 Zlgigm a2 O

3.2. Algebraic Kirby elements of finitely semisimple ribbon categories

Let B be a finitely semisimple ribbon k-category whose simple objects are scalar.
Note that the assumptions on B imply that the k-spaces Homp(X,Y') are finite-
dimensional. Denote by A a (finite) set of representatives of isomorphism classes
of simple objects of B. We can suppose that 1 € A. For any A € A, there exists a
unique AV € A such that \* ~ \V. The map ¥V: A — A is an involution and 1V = 1.
Recall that dimg(A) # 0 for any A € A. Set

B=@PrereB
A€EA
In particular, there exist morphisms py: B — A* ® A and gy: A\* ® A — B such
that idg = Z/\EA gxpx and prg, = 0y, idr-gr. Let X be an object of B. Since B is
semisimple, we can write X = @, .; A\;, where I is a finite set and \; € A. We set

jx =Y _ano(@Q®P): X*®X — B,
el

where P;: X — )\; and Q;: A\; — X are morphisms in B such that
ldX = ZQZPZ and PZQJ = 5i,j ld)\1

iel
Note that jx does not depend on the choice of such morphisms P; and @Q;. Remark
that jy = ¢, for any A € A. One easily verifies that (B, j) is a coend of the functor
(1.5) for B. By §1.6, the object B is a Hopf algebra in B.
For any A € A, set ey = jycoevy: 1 — B and f) = evapy: B — 1. Note that we
have fre, = 0y, dimg(X) for any A, u € A.
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(b) (idp ® fu)Ap(ex) = dx uex

FIGURE 5.

LEMMA 3.2. (a) The family (ex)xena Is a basis of the k-space Homg(1, B).

(b) The family (fx)xea is a basis of the k-space Homg(B, 1).

(c) For any A, u € A, we have Sg(ex) = exv, ng = eq, eg(er) = dimy(N),
(idp ® fu)Agp(ex) = dxpuex, and mp(ex ® ey) = >, NY v, where NY =
dimy Homg (A @ p, v).

Proof. Let us prove part (a). For any A € A, the k-space Hompg(1, A\* ® A) is one-
dimensional (since A is scalar) with basis coevy. Therefore, for any g € Homg(1, B),
there exists x) € k such that pyg = xx coevy, and so g = idpg = D \cp OAPAG =
> xea Zxaex. Hence the family (ex)aea generates Homp (1, B). To show that it is free,
suppose that ), .\ zxex = 0. Then, for any p € A, 0= 3", zafuex = dimg(p)z,
and so x,, = 0 since dimg () # 0.

Part (b) can be shown similarly. Let us prove part (c). Let \,u € A. By
definition, ng = j; = jy coevy = e; (since coevy = idy) and eg(ey) = epjr coevy =
evy coevy = dimg (). The equalities Sg(ex) = exv and (idp ® f,)Ap(ex) = dx e
are shown in Figures 5(a) and 5(b) respectively. Write A @ p = @,c; Ai. In
particular, there exist morphisms P;: A ® p — A; and Q;: A\; — A ® u such that
id)\@w = Zie[ QiPi and Pin = 6i,jid)\,~ Recall that jA@M = Eie] j)\i (Q: ®P1) For

any v € A, since Homp(A @ p,v) = @, Homp(A;, v), we have

N = dimg Homp(A ® u, v Z Ox -
iel

Then the equality mp(ex ® e,) = >_,cp NX ,€v is shown in Figure 6. O

Since B is semisimple with scalar simple objects, the negligible morphisms of 5
are null. Therefore a morphism o € Hompg(1, B) is an algebraic Kirby element of
B if and only if it satisfies Spa = a and I'j(a ®@ @) = a ® a.
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FIGURE 6. mp(ex ®e,) = ZuGA Ni/,#ew

LEMMA 3.3. Let a = ), ) axex € Homp(1, B), where a € k. Suppose that
a € AK(B). Set Ao ={X € A | ax # 0}. Then a = ay )y, dimg(A)ex. Moreover
we have A = A, and mp(a ® ey) = dimg(A) a = mp(ey @ a) for all X € A,.

Proof. By Lemma 3.2(c), since Sp(a) = o, we have ay = v for all A € A and
so AY = A,. Let p,v € A. Since I'(a ® @) = a ® a and by using Lemma 3.2(c),
we have

dimq(:u)dimq(y)al/au = (fu ® f)\)(OZ ® Oé) = (fl/ ® fu)rr(a ® OZ)

Z arxey (fu ® fu)Tr(ex ®ey)

A wEA

= Z axay, fump(ex ® (idp ® fu)Ag(ew))
A wEA

=Y ana, fumpler ®ey)
AEA

= Z ara, Ny | foew = ZakaﬂNi“dimq(u),
AwEA AEA

and so
dimg(p)a,a, = ay, Z N . (3.2)

AEA



490 ALEXIS VIRELIZIER

Note that Ng\l# = dimg Homg(A®pu, 1) = dimg Homg (A, p*) = dx,,v forall A, p € A.
Hence (3.2) gives dim, (), = oopv = a2 and so oy, = agdimg(u) whenever
o, # 0, that is, a = ag Y 0\ dimg(A)ex. Finally, for any p € Aq,

mp(a®e,) = E aymp(er®e,) = E NY jaxe,

AEA AVEA
= Z dimg(1)aye, (by (3.2) since oy, # 0)
veA
= dimg (p)cv.
Likewise, using I'j(a ® @) = a ® a, one gets mp(e, ® o) = dim,(p)cv. O

By Lemma 3.3, determining AX(B) resumes to find the subsets E of A for which
Y rep dimg(A)ey belongs to AK(B). In the next theorem, we show that among
these subsets, there are those corresponding to monoidal subcategories of B.

THEOREM 3.4. Let D be a semisimple ribbon full subcategory of 3. Let Ap be
a (finite) set of representatives of isomorphism classes of simple objects of D. We
can suppose that Ap C A. Then Z)\eAD dimg(A)ey is an algebraic Kirby element
of B.

REMARK 3.5. We do not know if every algebraic Kirby element of B is of this
form (up to scalar multiples). Nevertheless, in Corollary 3.8, we explore some cases
where this holds.

REMARK 3.6. In Section 3.3, we verify that > ,., dim,(N)ey leads to the
Reshetikhin—Turaev invariant defined using D.

REMARK 3.7. If B is modular in the sense that the pairing wp: B® B — 1
is non-degenerate (see §1.6) or, equivalently, that the S-matrix is invertible, then
Y orea dimg(A)ey is a two-sided integral of B (see [11]) and so belongs to AK(B).
Nevertheless, ., dimg(A)ey is not in general a two-sided integral of B.

Proof of Theorem 3.4. Firstly, since A}, = Ap and by Lemma 3.2(c), we have

Z dlmq SB 6)\ Z dlmq e>\v = ap.

AEAD AEAD

Secondly, to show I',.(apR@ap) = ap®ap, it suffices to show I'.(ap®ey) = apRey
for any A € Ap. Fix A € Ap. Let p,v € Ap and set n,, = dimy Homp(v @ A, p).
Since the pairing ¢ ® f € Homg(v ® A, ) ® Homg(p, v ® A) — try(gf) € k is
non-degenerate, there exist a basis {f/"" | 1 <i < ny,} of Homg(p, v ® \) and a
basis {g;"" | 1 <i < ny,} of Homp(v ®@ A, p) such that g}"" f"* = ¢; jid,, for all
1<, <nyu,. By Lemma 3.1, we have

ST e =idypa (3.3)
HEAN 1INy
Let p,v € Ap. For any 1 <14 < ny,, set
= (¢! ®@idy«)(id, ® coevy): v — u @ \*,
G”“:(ld Rev)(fI @idy): p@ N — 1.
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One easily checks that {F}"" | 1 < i < n,,} is a basis for Homg(v, p ® \*) and
{G7" |1 <i<mny,}isabasis for Homg(p ® A*,v). For any 1 < 4,5 < n,,, since
GPMF" € Endp(v) and v is scalar, we have

dim, (v) G F/M = trg (GYPFYM)id, = trg (FY*GYM) id,
= try((gf"" ®idy)(idy ® coevy)(id, ® évy)(f1" ®@idy)) id,,
= trg(g"" fi"")id,, = try(d; 5 1d,,) id, = &; j dimg(p) id,.

Therefore, by Lemma 3.1,
S dimg(v) FPHGYH = dimg (1) id e (3.4)

Ve 1<i<n,

Finally one gets I'.(ap ® e)) = ap ® ey by the equalities depicted in Figure 7,
where d, = dim,(v). Note that, in Figure 7, the dinaturality of j, the definition of
mp and Ap, and equalities (3.3) and (3.4) are used. O

Recall that an object X of B is invertible if X* ® X is isomorphic to 1.

COROLLARY 3.8. Suppose that either every simple object of B is invertible,
or the field k = R or C and the quantum dimensions of the simple objects are
positive. Then every algebraic Kirby element of B is a scalar multiple of ap =
> xeap dimg(A)ex, where D is some semisimple ribbon full subcategory of B and
Ap C A is a (finite) set of representatives of isomorphism classes of simple objects
of D.

Proof. By Theorem 3.4, each ap (and so its scalar multiples) is an algebraic
Kirby element of B. Conversely, let a = » 7, axex be a non-zero algebraic Kirby
element of B. By Lemma 3.3, oq # 0 and ax = oq dimg(\) whenever oy # 0. Set
Ao ={X € A | ax # 0} and let D be full subcategory of B additively generated by
A.. Note that A, is then a set of representatives of isomorphism classes of simple
objects of D. Firstly, let us show that D is closed under the tensor product. Fix
v € Ay, and let A € A be a direct factor of u ® v. We have to show that A € A,
that is, ay # 0. Equation (3.2) gives

dimg (v)ay = Z N(j‘yyaw =y Z Nu’},ydimq(w). (3.5)
wEA, weA,

Suppose that every simple object of B is invertible. Note that this implies that the
tensor product of two simple objects is simple. Therefore A ~ u®v and N37V = Oupu-
We get, from (3.5), dim,(v)ay = ¢, # 0. Hence ay # 0.

Suppose that k = R or C and the quantum dimensions of the simple objects are
positive. Since dimg(w) > 0, N3, > 0, and N;i\,u = dimg Homp(p @ v, ) > 1, we
see from (3.5) that dimg(v)ax > N, dimg(p) > 0. Hence ay # 0.

In all cases, we get that D is closed under tensor product. Moreover, D is closed
under duality since AY = A, by Lemma 3.3. Hence D is a semisimple ribbon full
subcategory of B, and a = ay ZAeAQ dimg(Nex = agap. |

3.3. On the Reshetikhin—Turaev invariant

Let B be a finitely semisimple ribbon k-category whose simple objects are scalar.
Let A be a set of representatives of isomorphism classes of simple objects of B.
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:Zd,j

n,vEAD
1<i<ny, v

-y Y

pEAp vEAD
1<isny

FIGURE 7. ' (ap ® ex) = ap R ey.

Set AL =3 \ca Ufldimq()\)2 € k, where vy € k is the (invertible) scalar defined
by 6\ = vy idy. Recall (see [26, 4]) that the Reshetikhin—Turaev invariant of 3-
manifolds is well defined when A, # 0 # A_. Moreover, if L is a framed link in
S3, it is given by

RTs(Mp) = Ay P Az §° <H dimq(c(Lj))) F(L,c) €k.
c€Col(L) Vj=1
Here Col(L) is the set of functions c¢: {L1,...,L,} — A, where Lq,..., L, are the
components of L, and F(L,c) € Endg(1) = k is the morphism represented by a
plane diagram of L where the component L; is colored with the object ¢(L;).
By Theorem 3.4, ap = ), dimg(N)ex € AK(B), where ey, is defined as in § 3.2.



KIRBY ELEMENTS AND QUANTUM INVARIANTS 493

COROLLARY 3.9. Suppose that Ay # 0. Then ap is a normalizable algebraic
Kirby element of B and 75(M; ap) = RTg(M) for any 3-manifold M.

Proof. We have
Oiap = Z dimg(A) evy(idy- @ 9 Dcoevy = Z v/j\ﬂdimq(/\)2 =AL #£0.
AeA AEA

Therefore, since ap € AK(B), one gets ap € AKX(B)"™.

Let L = L; U...U L, be a framed link in S3. Let T}, be a ribbon n-handle
such that L is isotopic to T, o (U® ... ® U), where the ith cup corresponds to the
component L;. Then F(L,c) = ¢, o (jc(Ll) CB\é;/c(Ll) ® o ® Je(Ln) c/o\ejvc(Ln)) =
o1, 0 (ec(ny) ® - ®egr,)) for any ¢ € Col(L). Therefore

ZL)<H dim,(c )F(L A)

ceCol( j=1

= > ¢n, o (dimg(c(L1)) eg(zy) @ - - @ dimg(e(Ln))ecr,))
ceCol(L)

= ¢p, © (Z dimg(M)er, ® ... ® Z dimg (A 6)\71)

A1EA An €EA
=o¢r, o (ap®...® ap).

Hence

RTs(Mp) = A P Az 3 (H dimg (A ) (L, \)
AeCol(L) “j=1
= (@+(X3)b_(L)_nL (@_QB)_b_(L) o1, © (a{lg ®...0ap)
= TB(ML;QB). O

3.4. Semisimplification of ribbon categories

Let C be a ribbon k-category. For any objects X,Y € C, recall that Negl.(X,Y)
denotes the k-space of negligible morphisms of C from X to Y (see §1.4). Let C*
be the category whose objects are the same as in C, and whose morphisms are

Homes (X,Y) = Home (X, YY) /Negl(X,Y)

for any objects X,Y € C®. The composition, monoidal structure, braiding, twist,
and duality of C® are induced by those of C.

When C has finite-dimensional Hom’s k-spaces, the category C*® is a semisimple
ribbon k-category, called the semisimplification of C, and the simple objects of C*
are the indecomposable objects of C with non-zero quantum dimension; see [5].

Let m: C — C? be the functor defined by 7(X) = X and n(f) = f + Neglo(X,Y)
for any object X and any morphism f: X — Y in C. This is a surjective ribbon
functor. Note that 7 is bijective on the objects.

3.5. Algebraic Kirby elements from semisimplification

Let C be a ribbon k-category which admits a coend (A4,4) for the functor (1.5)
and whose Hom'’s spaces are finite-dimensional. Denote by C* the semisimplification
of C and let m: C — C* be its associated surjective ribbon functor (see §3.4).
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Let B be a finitely semisimple ribbon full subcategory of C* whose simple objects
are scalar. Let A be a (finite) set of representatives of isomorphism classes of simple
objects of B containing 1. For any object X of C*, we denote by 7~ (X) the (unique)
object of C such that 7(7~1(X)) = X.

Let B =@,c, A" ® A In particular, there exist morphisms py: B — A* ® A and
gr: A" ® X — B of B such that idp = ), ¢apx and prq, = 0, idr-gx. For any
object X of B, we let jx: X*® X — B as in §3.2. Recall that (B, j) is a coend of
the functor (1.5) for B, and that j), = g\ for any A € A (see §3.2).

Since B is a ribbon full subcategory of C* and 7 is a ribbon functor, the objects
B and 7(A) are Hopf algebras in C*. Set

p= Z T(ix—10x))pa € Homes (B, 7(A)). (3.6)
AEA

LEMMA 3.10. The map ¢: B — w(A) is a Hopf algebra morphism such that
n(ix) = @jr(x) for all objects X of C with n(X) € B.

Proof. Let X be an object of C such that 7(X) € B. Since B is semisimple, we
can write 7(X) = @),c x Ak, where K is a finite set and A\, € A. Recall that j(x) =
Y oker O (Qf ® Py), where Py: m(X) — A\x and Qp: Ap — 7(X) are morphisms in
B such that id,r(X) == ZkeK P.Qr and P,Q; = 51@,[ idy, . For any k € K, since 7
is surjective, there exist morphisms fz: X — 7~ 1(\x) and gz: 77 1(\x) — X in C
such that 7(fx) = Pr and 7(gx) = Qk. Then, using the dinaturality of ¢ and since
the functor 7 is ribbon, we have

Cin(x) = Z Z T(ir-100))PA0, (Qf ® Pr) = Z Z (i1 ) (QF @ Py)

N ke NeA keK
Ak A
=3 3wl @ ) = Y > wlix(idx- @ gifr))
AEA kEK AEA kEK

— w(ix)(idw(x)* Y QkPk) = m(ix)(idn(x) @idp(x)) = 7(ix)-
keK

Let us verify that ¢ is a Hopf algebra morphism. Let A\, u € A. Set U = 7= ()
and V = 7~ (u). We have Ex(a)pix = T(eaiy) = m(evy) = evy = B,
AW(A)QOj)\ =7m(Aaiy) = 7((iy ® iy)(idy+ ® coevy ®idy))
= (@jr ® @jx)(idr+ ® coevy ®@idy) = (¢ ® ¢)AJa,

M) (PIr @ ju) = m(maliv @ iv)) = n(iver(yo,v ® idver)(idv: @ cuv-gv))
80]'/@)\(7)\,# ® idu®/\)(id>\* ® CA,M*@M)) = @mB(jA ® ju)7

and
Sxayeir = T(Saiv) = 7((evy ® i) (idy~ ® cy=- v ® idy-)(coevy- & cy-v))
= (ev>\ (4 ng)\*)(id)\* Q = \ ® id)\*)(COGVA* X C,\*,>\) = QOSB]')\.

Therefore, since idp = Y525 JaPa, We get exayp = €8, Arayp = (p ® p)Ap,
Mra) (P ®¢) = emp, and Srayp = ¢Sp. Finally, we conclude by remarking that

ene = @j1 = 7(i1) = T(Na) = Nr(a)- O

From Lemma 3.10 and Proposition 2.12, we get the following result.
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COROLLARY 3.11. Let § € Homp(1, B) and o € Home (1, A) with m(a) = 0.

(a) If B € AK(B), then a € AK(C) and 7¢(L;) = 75(L;3) for any framed
link L.

(b) If B € AK(B)™™ then o € AK(C)*™ and 1¢(M;«) = 78(M;3) for any
3-manifold M.

REMARK 3.12. By Corollaries 3.9 and 3.11, we get, in particular, the fact that
the Reshetikhin—Turaev invariant defined from a finitely semisimple ribbon full
subcategory of the semisimple quotient of a ribbon category C can be directly
defined in C by picking its corresponding algebraic Kirby element.

REMARK 3.13. By Corollary 3.11, we have
U7r ¢s(AK(B))) C AK(C) and Uw Pr(AK(B)™™)) C AK(C)™™,

Where B runs over finitely semisimple I‘lbeIl full subcategories of C* whose simple
objects are scalar, and g is the morphism (3.6) corresponding to B. We will see
in §4 that these inclusions may be strict (see Remark 4.11). This means that the
semisimplification process ‘lacks’ some invariants.

4. The case of categories of representations

In this section, we focus on the case of the category repy of representations of
a finite-dimensional ribbon Hopf algebra H. In particular, we describe AK(repy)
in purely algebraic terms. One of the interests of such a description is to avoid the
representation theory of H, which may be of wild type. Moreover, we show that
the 3-manifolds invariants obtained with these Kirby elements can be computed by
using the Kauffman-Radford algorithm (even in the non-unimodular case).

4.1. Finite-dimensional Hopf algebras

All considered algebras are supposed to be over the field k. Let H be a finite-
dimensional Hopf algebra. Recall that a left (respectively right) integral for H
is an element A € H such that A = e(z)A (respectively Az = e(z)A) for all
x € H. A left (respectively right) integral for H* is then an element A € H* such
that z(1)A(z(2)) = A(x) 1 (respectively A(z(1))z2) = A(x)1) for all z € H. Since
H is finite-dimensional, the space of left (respectively right) integrals for H is one-
dimensional, and there always exist a non-zero right integral A for H* and a non-zero
left integral A for H such that A(A) = A(S(A)) = 1; see [20, Proposition 3].

By [23, Corollary 2], the space H* endowed with the right H-action defined, for
any f € H* and h,x € H, by

(f - h,x) = (f, hx), (4.1)

is a free H-module of rank 1 with basis every non-zero right integral A for H*.
Likewise, H endowed with the right H*-action < defined, for any f € H* and
x € H, by

v f=flza)re), (4.2)

is a free H*-module of rank 1 with basis S(A), where A is a non-zero left integral
for H.
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LEMMA 4.1. Let X be a right integral for H* and A be a left integral for H such
that A(A) = A\(S(A)) =1. Let a € H and f € H*. Then

(a) a = )\(GA(l)) S(A(g)) = )\(S(A(g))a) A(l)’

(b) f=A-a ifand only if a = (f ® S)A(A).

Proof. Let us prove part (a). Since A is a right integral for H* and A is a left
integral for H such that A\(A) = 1, we have

Aah 1)) S(A@)) = Ma@)Aq)) a@)Ae) S(A))
= MamAa)) a@e(A@)
= AMamA) a@) = A(A) e(aq))ae) =
The second equality of part (a) can be proved similarly.
Let us prove part (b). If f = A - a then, by part (a), we have
= MaA)) S(A)) = f(Aq)) S(A@) = (f @ S)A(A).
Conversely, if a = (f ® S)A(A) then, by part (a), we have

Aaz) = A(f(Aq)) S(A@)z) = FIMS(A@)z)Aq)) = fz)
forallz € H,and so f =\ -a. |

Recall that an element h € H is grouplike if A(g) = g®g and £(g) = 1. We denote
by G(H) the space of grouplike elements of H. Recall (see [1]) that there exist a
unique grouplike element g of H such that x(;)A(z(2)) = A(x) g for any x € H and
any right integral A € H*, and a unique grouplike element v € G(H*) = Alg(H, k)
such that Az = v(z)A for any x € H and any left integral A € H. The element
g € H (respectively v € H*) is called the distinguished grouplike element of H
(respectively of H*). The Hopf algebra H is said to be unimodular if its integrals
are two-sided, that is, if v = e.

By [23, Theorem 3 and Proposition 3], right integrals for H* and distinguished
grouplike elements of H and H* are related, for all x,y € H, by

Aay) = N(S*(y = 1)2) = M(S°(y) = v)z) and A(S(x) = A(ga).  (4.3)

4.2. Quasitriangular Hopf algebras

Following [8], a Hopf algebra H is quasitriangular if it is endowed with an
invertible element R € H ® H (the R-matrix) such that RA(zx) = oA(x)R for
any ¢ € H, where 0: H® H — H ® H denotes the usual flip map, and

(ldH X A)(R) = Ri3R12 and (A ® ldH)(R) = Ri3Rs3.
The R-matrix satisfies
(e ®idg)(R) = (idg ® &) (R) = 1, (4.4)
(S®idy)(R) = R~! = (idg ® S™Y)(R). (4.5)
The Drinfeld element u associated to R is u = m(S ® idg)o(R) € H. It is
invertible, with u=! = m(idy ® S?)(Ra1) and satisfies S?(z) = uzu™! for allz € H.
Let H be a finite-dimensional quasitriangular Hopf algebra and let v € H* be

the distinguished grouplike element of H*. Set h, = (idy ® v)(R) € H. One easily
verifies that h, is grouplike.
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4.3. Ribbon Hopf algebras

Following [24], we say that a ribbon Hopf algebra is a quasitriangular Hopf
algebra H endowed with a central invertible element 6 € H (the twist) such that
S(0) =0 and A(f) = (0 ® 0)R21 R. Note that the twist satisfies

072 =uS(u) = S(u)u and £(0;) = 1.
Set G = 0u € H. Then G is grouplike and satisfies
S(u) =G 'uG™! and S%*(x) = GaG™! forallz € H. (4.6)

The element G is called the special grouplike element of H. By [21, Theorem 2] and
(4.6), the special grouplike element G of a finite-dimensional ribbon Hopf algebra
H is related to the distinguished grouplike element g of H and to h, by g = G?h,,.
Together with (4.3), this implies that

A(S(x)) = M(G?h,x) forallx € H. (4.7)

4.4. Category of representations of a ribbon Hopf algebra

Let H be a ribbon Hopf algebra with R-matrix R and twist §. Denote by repy
the k-category of finite-dimensional left H-modules and H-linear homomorphisms.
The category repy is a monoidal k-category with tensor product and unit object
defined in the usual way using the comultiplication and counit of H. The category
repy possesses a left duality: for any module M € repy, set M* = Homyg (M, k),
where h € H acts as the transpose of z € M +— S(h)x € M. The duality
morphism evy: M* @ M — 1 = k is the evaluation pairing and, if (ex); is a
basis of M with dual basis (e} )x, then coev(ly) = >, exr ® e;. The category repy
is braided: for modules M, N € repy, the braiding cpynv: M @ N — N ® M is the
composition of multiplication by R and the flip map oy n: M @ N — N ®@ M.
The category repy is ribbon: for any module M € repy, the twist 0p,: M — M
is the multiplication by 6. Recall, see §1.1, that rep; possesses a right duality
M € repy — (M*,évy,coevyr). Finally, the k-category repy is pure, that is,
End,ep, (k) = k. Hence repy is a ribbon k-category in the sense of §1.2.

LEMMA 4.2. Let G be the special grouplike element of H and M be a finite-
dimensional left H-module. Then:

(a) vy (m® f) = f(Gm) for any f € M* and m € M;
(b) coevyy = (ldM* ® Gilid]V[)O']M,M*COGVM.

Proof. Write R=)",a; ® b;. Recall that uw = )", S(b;)a,;. Then
eNVM(m X f) = eV CM,M* (9]\/[ & 1dM*)(m ® f)
= ZevM(bif ® a;0m) = Zf(S(bi)aiHm)
— J(ubm) = f(Gm).

Let (ex)r be a basis of M and (e})x be its dual basis. Note that if g is any k-linear
endomorphism of M, then Y, g*(e}) ®er =D, e ® g(ex). For any h € H, denote
by p(h) the k-linear endomorphism of M defined by m € M — hm € M. Recall
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that R~ = 3", 5(a;) ® b; and = = >, b;5%(a;). Then

coevs(1x) = (idar- ® 03) (ear= ar) " coevar(1x)
= ZS(ai)eZ ®07'h; - e

ki
= 3 Gidar- @ p(0~00)) (3 e © (5 () ex)
i k
= (1dM* ® p(9_1 Z biS2(a¢)>> (Z er ® ek)
i k

= (idM* (%9 p(ailuil))O’MVM*COGVM(IIC)

= (ldM* (9 G_lidM)O'M)M*COGVM(lk).

This completes the proof of the lemma. Ul

We immediately deduce from Lemma 4.2 that, in the category rep, we have
try(f) = Tr(Gf) = Te(G1f) and  dimy(M) = Tr(Gidyr) = Tr(G tid )

for all modules M € repy and all H-linear endomorphisms f of M, where Tr
denotes the usual trace of k-linear endomorphisms.

4.5. Braided Hopf algebra associated to ribbon Hopf algebras

Let H be a finite-dimensional ribbon Hopf algebra. The ribbon k-category repy
of finite-dimensional left H-modules possesses a coend (A, ) for the functor (1.5).
More precisely, A = H* = Homg(H,k) as a k-space and is endowed with the
coadjoint left H-action > given, for any f € A and h,x € H, by

(ho f,x) = (f, S(h(wy)Th(2)), (4.8)

where ( , ) denotes the usual pairing between a k-space and its dual. Given a
module M € repy, the map ip: M* ® M — A is given by

forallle M*, me M, and x € H.

LEMMA 4.3. If¢ is a dinatural transformation from the functor (1.5) for repy
to a module Z € repy;, then the (unique) morphism r: A — Z such that £y = ripg
for all M € repyy is given by f € A= H* — r(f) =&u(f @ 1n).

Recall (see §1.6) that A is a Hopf algebra in repy. Using Lemma 4.3, one can
describe the structural morphisms of A explicitly in terms of the structure maps of
the Hopf algebra H. Nevertheless, it is more convenient to write down its pre-dual
structural morphisms: for example, since A = H* as a k-space and H is finite-
dimensional, the pre-dual of the multiplication m4: A® A — A of A is a morphism
ABd: H — H ® H such that (AB4)* = m,. This yields a k-space HBY = H
endowed with a comultiplication ABd: HBd — HBd@ B4 3 counit eBd: HPY — k,
a unit nB4: k — HB a multiplication mPd: HBd @ HBY — HBI and an antipode
SBd. gBd _, HBd These structure maps, described in the following lemma, satisfy
the same axioms as those of a Hopf algebra except that the usual flip maps are
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replaced by the braiding of repy. The space HPY is called the braided Hopf algebra
associated to H; see [19, 17].

LEMMA 4.4 (cf. [16]). The braided Hopf algebra H24 associated to H can be
described as follows: HBY = H as an algebra, ¢4 = ¢, and

ABd(g Zm(z a; ® S(bi1))w1)bi ZS ai(1))T)ai2) ® S(bi)T(2),
SBd (g Z S(a;)0*S (x)ub; = ZS(ai)S(x)S(u)_lbi,

for any x € H, where R =Y. a; ® b; is the R-matrix, u the Drinfeld element, and
0 the twist of H.

4.6. Algebraic Kirby elements of ribbon Hopf algebras

Throughout this section, H will denote a finite-dimensional ribbon Hopf algebra
with R-matrix R € H® H and twist § € H. Let u € H be the Drinfeld element of H,
G = Ou be the special grouplike element of H, A € H* be a non-zero right integral
for H*, A € H be a non-zero left integral for H such that A(A) = A(S(A)) = 1,
g € G(H) be the distinguished grouplike element of H, v € G(H*) = Alg(H, k)
be the distinguished grouplike element of H*, and h, = (idyg ® v)(R) € G(H).
Let (A,4) be the coend of the functor (1.5) for repy, and let HP4 be the braided
Hopf algebra associated to H. By §4.5, A = H* is endowed with the coadjoint left
H-action > and A is a Hopf algebra in the category rep;; whose structure maps are
dual to those of HB4, Recall that - denotes the right action of H on H* defined in
(4.1) and < denotes the right H*-action on H defined in (4.2).

Let ¢: H — Homy(k, H*), T: H — H, and +: H®" — Homy(H*®" k) be the
maps defined, for z € H, X € H®", and F € H*®" by

¢(lx) =A-z, T(2) =(S(z) = v)hy, and Px(F)=(FX).
Denote by < be the right action of H on H®" given by
(11 ®...@x,) <h = S(hay)z1h2) @ ... @ S(h2n-1))Tnhen)
for any h € H and z4,...,2z, € H. Set
LH)={2€ H|(z —v)z=zz for any z € H},
N(H)={z¢€ L(H) | Mza) =0 for any a € Z(H)},
Vo(H)={X € H*" | X a<h = ¢(h)X for any h € H}.

Note that if H is unimodular, then L(H) = Z(H) and T(z) = S(z) for all z € H.
By the definition of L(H) and by (4.3), we have

Mzzy) = M2S8%(y)r) (4.10)
for all z € L(H) and z,y € H.

LEMMA 4.5. We have the following.
(a) The map ¢ is a k-isomorphism with inverse given by

a € Homy(k, H*) — ¢ (o) = (1) ® S)A(A) € H.
(b) The map ¢ induces a k-isomorphism between L(H) and Hom,,, (k, A).
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(c) The map ¢ induces a k-isomorphism between N(H) and Negl,.,, (k, A).
(d) The map 1 induces a k-isomorphism between V,,(H) and HomrepH(A®" k).
() Vi(H) = Z(H).

Proof. Let us prove part (a). Since (H*, ) is a free right H-module of rank 1 with
basis ), ¢ is an isomorphism. The expression of ¢! follows from Lemma 4.1(b).

Let us prove part (b). Let z € H. We have to show that z € L(H) if and only if
¢, is H-linear. Suppose first that ¢, is H-linear. For all a,h € H,

e(h) A(za) = ((S7H(h) ¢:(1k),a) = (STH(h) > ¢= (LK), )
= MzhaS™ ! (h))) = M(S(h)) = v)zhg)a) by (4.3),
and so, since (H*,-) is a free right H-module of rank 1 with basis A,
e(h)z = (S(hq)) — v)zhe) = v (k) S(hay)zhes) (4.11)
for all h € H. Hence, for any « € H,
(x = v)z =v(zn)) 20202 = V(2(1)) T(2)€(T(3)) 2
=v(zq)v 71(56(4)) 2(2)S(x(3))2w(5)  (by (4.11))
= v(z)) v (2m) e(@() 2204) = V() v (@) 22(3)
=e(x)) 222y = 22,
and so z € L(H). Conversely, suppose that z € L(H). Then, for any x,h € H,
A(zS(hy)zh(z) = A28 (h2))S(hay)z)  (by (4.10))
= AMzS8(h1)S(hz)))z) = e(h) Mzz),
and so ¢, is H-linear.

Let us prove part (d). Note that ¢ is an isomorphism since H is finite-dimensional.
Let X € H®". For all h € H and F € H*®" we have ¥x (h>F) = (F, X <h) and
e(h)Yx(F) = (F,e(h) X). Therefore ¢ x is H-linear if and only if X € V,,(H).

Let us prove part (e). Let a € Z(H). For all h € H,

a<h = S(h@y)ahig) = S(ha))hza=c(h)a
and so a € V1 (H). Conversely, let a € Vi(H). For all z € H,

ra = x(l)e(x@)) a = m(l)(a < x(g)) = x(l)S(.Z‘(Q))al‘(g,) = E(.’L‘(l)) arg) = ar,
and so a € Z(H).
Finally, let us prove part (c). Let z € L(H). Since End,cp,, (k) =k, we have that
¢ is negligible if and only if ¢,¢, = A(za) =0 for all a € V1(H) = Z(H), that is,
if and only if z € N(H). (I

LEMMA 4.6. We have the following:
(a) L(H) is a commutative algebra with product * defined by

T *zZ = )\(1‘5(2(2))) 2(1) = )\(ZS({E(Q))) Z(1)
= Az)S™H(2)) 22) = Mz(1)S™H(2)) 2(2)
for any x,z € L(H), and with S(A) as unit element;
(

(b) for any z € L(H), Sa¢. = ¢r(.), where Sy denotes the antipode of the
categorical Hopf algebra A;
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(¢) T induces on L(H) an involutory algebra automorphism, that is, T?(z) = x,
T(xxz)=T(z)*T(z), and T(S(A)) = S(A) for all z,z € L(H).

Proof. Let us prove part (a). Since A is a Hopf algebra in repy, the space
Homyep, , (k, A) is an algebra for the convolution product ax 3 = ma(a®3) and with
unit element 74. This algebra structure transports to L(H) via the k-isomorphism
¢: L(H) — Homyep, (k, A). Let z,2z € L(H). Then

Tk z= ¢71<¢m * ¢z) = Qbil(mA(Qbm & ¢z))
= (ma(ds ® ¢:)(1k), A1) S(Az)) (by Lemma 4.5(a))
=N z®@N\ 2 ABd(A(l)» S(A2))-

Write R =), a; ® b;. By using Lemma 4.4, (4.4) and (4.10), we have
T*z= Z /\(IA(Q)az‘) A(ZS(bi(l))A(l)bi(Q)) S(A(3))

= " MaA)a:) A5 (bi2)) S (bia)) M) S(As))

= Z M@ Ayaie(b:) MzAx)) S(A)),

Likewise

= ZA (5% (ai(2))S (@i1y) Aay) A(2S(b;)A2)) S(Az))
—ZA zA)) M=zS(e(ai) bi)A2)) S(Ag)),
Now, by Lemma 4.1(a),
z=AzA@y) S(Aw)), (4.14)
so that
Z(1) ® S~ (Z ) /\(ZA(l)) S(A(g)) & A(g), (4.16)
1) ®ST (JJ ) /\(xA(l)) S(A(g)) ® Aa)- (4.17)
Hence

Txz = )\(x/\(g ) A(zAy) S(Ags))  (by (4.12))
= ANzS~ (2(2 ) 2(1) (by (4.16))
= Az S(Z(z))) 2(1) (by (4.10)),

= AMzA ) MzayA@)) 22y A3y S(Aw))
= Mzq)S™H(2) z@ (by (4.14)),
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and
r*z = MNxAny) AMzA@) S(A@))  (by (4.13))
= Az5" (x2) z1y (by (4.17))
= AN2S8(z(2))) z) (by (4.10)),

= MzAm) Az)Ae) 22 A3 S (Aw)
= )\(z(l)S_l(w)) Z(2) (by (4.15)).

Note that these expressions of the product of L(H) show that L(H) is commutative.
Moreover, by Lemma 4.5(a), the unit element of L(H) is

¢~ (na) = (na(1) ® S)A(A) = (¢ ® S)A(A) = S(A).
Let us prove part (b). Let z € L(H). Write R =), a; ® b;. For any x € H,
<SA¢Z(1]1<)7$> = <>‘ T2, SBd($)>
= Z)\ 25(a;)0?S(z)ub;) (by Lemma 4.4)

= Z)\ 28%(u)S%(b;)S(a:)6S(x))  (by (4.10))
/\(zu2025( ) (since S*(u) = u and (S ® S)(R) = R)
= AM2G?S(x)) = M(G? = v)25(x)) = v(G*) N(G*=S ()
V(G NG?h, xS H(2)G™2)  (by (4.7))
=v(G)M(G? = v)G?h,aS™ (z)) (by (4.3))
=v(G*v(G?) Mh,2S™(2))
AM(S(2) = v)hyz)  (by (4.3))
= MT(2)x) = (dr(z)(1x), T),

that is, Sx¢, = ¢T(z)-

Let us prove part (c). Let z € L(H). Firstly T(z) € L(H) since ¢py = Sag.
is H-linear. Moreover, since 5% = 04 and the twist of repy is natural and satisfies
Ox = idyg, we have

T?(2) = ¢~ (9r2(2)) = 671 (S20:) = ¢ (0482) = 67 (0:0) = 67} (¢2) = 2.
For any z,z € L(H), we have
OT(2xz) = SAPrsz = Sa(@z * ¢2) = Sama(d, ® ¢2)
=ma(Sa® Sa)can(de ® ¢2) =ma(Sa ®Sa)(¢: @ dr)crk
=ma(Sad. ® Sads) = O1(2) * OT(2) = PT(2)T(x)>
and so T(z * z) = T(z) * T(x) = T(x) x T(z). Finally, T(S(A)) = S(A) since
dr(s(a)) = Sadsa)y = Sana =na = dsa)- U

In the next theorem, we describe the sets AK(repy) and AK(repy )™ in
algebraic terms. Set

AK(H) = ¢~ (AK(repy)) and  AK(H)™™ = ¢~ (AK(repy)"™),
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where ¢: L(H) — Homyep, (k, A) is as in Lemma 4.5. The elements of AK(H) are
called the algebraic Kirby elements of H. Note that AK(H)™™ C AK(H) and,
since n4 € AK(repy )™ and by Lemma 4.6, we have S(A) € AK(H )™,

THEOREM 4.7. The set AK(H) is constituted by the element z € L(H)
satisfying:

(a) T(z2) —z € N(H), that is, A(T'(z)a) = A(za) for all a € Z(H);

(b) D2, Mzziry)) M zzi2)yi) = Do Mzaa)Mzy;) forall X =3 2 @ y; € Vo(H).
In particular, AK(H) contains the elements z € L(H) satisfying T(z) = z and
A(zz(1))2z2(2) = M(22)z for all z € H. Moreover, an element z € AK(H) belongs to
AK(H)" o™ if and only if A\(260) # 0 # M\(z071).

Note that the sets AK(H) and AK(H)™"™ do not depend on the choice of the
non-zero right integral A for H*. In § 5, we give an example of the determination of
these sets for a family of non-unimodular ribbon Hopf algebras.

Proof. Let z € L(H). By Lemma 4.6(b), we have Sa¢. = ¢ (). Therefore, using
Lemma 4.5(c), we get Sa, — ¢, € Negl,, (k, A) if and only if T'(z) — 2 € N(H),
that is, if and only if A\(T'(z)a) = A(za) for all a € Z(H). Note that this last property
is, in particular, satisfied when T'(2) = z.

Since End,ep,, (k) = k, the morphism I',.(¢. ®¢.) —¢.®¢. : k — A® A is negligible
if and only if G o (I‘T(gi)z R b)) — . ® (bz) = 0 for any G € Homyep, (A ® A, k).
By Lemma 4.5(d), this is equivalent to ¢¥x(I'y(¢. ® ¢.) — ¢, ® ¢,) = 0 for all
X € Va(H). Now, writing R =), a; ® b; and using Lemma 4.4, we have, for any
x,y € H,

(T2 @ ¢2)(1lk), 2 ®@y)
= ((ma ®ida)(ida @ Aa)(XA- 2@ X - 2),2®Y)
:((1dA®AA)()\-z®)\-z),ABd(x)®y)
= Z<(idA @ AA)A 2@\ 2),S(ai))ryaie) @ S(bi)ze) @y)

:Z(A-z@)\-z,S(ai(l )T (1)@i2) @ S(bi)z(2)Y)

= Z A(zS(ai))z i) Mz5(bi)x2)y)

_ Z A5 (s Slas) o) AS(b)ay)  (by (410))
= Z Az (1)) A(25(e(ai)bi)z(2)y)

= Azz1)) Mzz(2)y) (by (4.4)).
Therefore the morphism I';. (¢, ® ¢, ) — ¢, ® ¢, : k — A® A is negligible if and only if
Mzzi1)) M2wi2)yi) = Mzwi) Mzy;) for all X = > x; @ y; € Vo(H). Note that this
last property is, in particular, satisfied when A(zz (1)) AM(zz(2)y) = A(27) A(2y) for
all x,y € H, that is (since (H*,-) is a free right H-module of rank 1 with basis \),
when A(zz(1)) 222y = A(2x) 2 for all x € H. Finally, by using Lemma 4.3, we have

01, = evy(idg ® 0E) (6. (1x) @ 1) = evg (N - 2@ 651 = A(26F1). O
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COROLLARY 4.8. We have 1 € AK(H) if and only if H is unimodular.

Proof.  Suppose H is unimodular. Therefore L(H) = Z(H) and T(z) = S(z) for
all z € Z(H). In particular, 1 € L(H) and T'(1) = 1. Moreover, A(z(1))z(2) = A(z)1
for all z € H (since A is a right integral for H*). Hence 1 € AK(H) by Theorem 4.7.

Conversely, suppose that 1 € AK(H). In particular, 1 € L(H) and so z — v = 2
for all z € H. Therefore £(z) = e(z < v) = v(21))e(2(2)) = v(z) for all z € H, that
is, H is unimodular. |

4.7. Algebraic Kirby elements from semisimplification

Let H be a finite-dimensional ribbon Hopf algebra. Let (A,7) be the coend of
the functor (1.5) for repy (as in §4.5). Denote by rep$; the semisimplification of
repy and by 7 its associated surjective ribbon functor rep — rep$; (see §3.4). Let
¢: L(H) — Homyep, (k, A) be as in §4.6. Set

ARH)* = o™ (7 (e5(AK(B)))),
B

where B runs over (equivalence classes of) finitely semisimple ribbon full sub-
categories of rep$; whose simple objects are scalar, and ¢p is the morphism (3.6)
corresponding to B. By Corollary 3.11, we have AK(H)® C AKX(H). Note that this
inclusion may be strict (see Remark 4.11).

Let V be a set of representatives of isomorphism classes of indecomposable
finite-dimensional left H-modules with non-zero quantum dimension. Note that
7(V) ={n(V) | V € V} is a set of representatives of isomorphism classes of simple
objects of rep%;. Let A be a non-zero right integral for H*. Since H* is a free right
H-module with basis A (see §4.1), there exists a (unique) element zy € H such
that

Mzyz) = Tr(G 'z idy) (4.18)

for all x € H, where G is the special grouplike element of H. Recall that
dim, (V) = Tr(G~tidy) denotes the quantum dimension of V' (see Lemma 4.2).

COROLLARY 4.9. (a) If z € AK(H)®, then z = k) ., dimy (V') 2y for some
finite subset W of V and some scalar k € k.

(b) Let W be a set of representatives of isomorphism classes of simple objects of a
finitely semisimple ribbon full subcategory of rep%;. We can suppose that W C (V).
If the objects of W are scalar, then

> dimg(V) 2y € AK(H).

Ver—1(W)

Proof. Let B be finitely semisimple ribbon full subcategory of rep}; whose
simple objects are scalar, and let (B,j) be the coend of the functor (1.5) for
B (as in §3.2). We can suppose that there exists a (finite) subset W of V such
that (W) is a set of representatives of isomorphism classes of simple objects of
B. Recall that B = @y )y, 7(V)* @ (V). In particular, there exist morphisms
pv: B — 7a(V)* @ n(V) and gy: #(V)* @ m(V) — B of B such that idg =
Zvew qvpyv and pyqw = dv,w idr(v)«gr(v)- Recall that jy = gy for any V € W.
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Let ¢: L(H) — Homyep, (k, A) be as in §4.6. As in (3.6), we set

¥YB = Z 7-‘-(’L.V)pV € Homrepfq (Baﬂ-(A))
Vew
Let V € W. Let (e;); be a basis of V' with dual basis (e});. By Lemma 4.2(b) and
(4.9) we have

<iv C/O\e/V\/(lk), .T> = <i\/(idv* ® Gilidv) oy, v+ COGVV(lk), .CE>

= Z(iv(ef ® G tey),x) = Z(ef,mGileﬁ

= Tr(zG tidy) = Tr(G'zidy) = Azve) = (62, (1x), 2),
for any « € H, that is, iy coevy = ¢,,,. Moreover,

OB (V) COCV () = Z T(iw ) pw Jr(v) COCVr(v) = T(iy coevy ) = m(¢z, ).
Wew

Hence part (a) follows from Lemma 3.3 and Corollary 3.11(a), and part (b) follows
from Theorem 3.4 and Corollary 3.11(a). O

LEMMA 4.10. If H is not semisimple, then £(z) = 0 for any z € AK(H)?®.

REMARK 4.11. When H is not semisimple, it is possible that AK(H)® C

AK(H). For example, if H is unimodular but not semisimple, then 1 € AK(H)
(by Corollary 4.8) and 1 ¢ AKX(H)® (by Lemma 4.10, since ¢(1) = 1).

Proof of Lemma 4.10. Let A be a left integral for H such that A\(A) = 1. Since H
is not semisimple, we have €(A) = 0 (by [1, Theorem 3.3.2]) and A? = g(A)A = 0.
Now, if M is a finite-dimensional left H-module, then (Aidys)? = A%idy; = 0 and
so Tr(Aidy) = 0. Let 2 € AK(H)*. By Corollary 4.9(a), there exist k¥ € k and a
finite subset W of V such that z = k) ), dim,(V) zy. Then

AzA) =k Y dimg (V) Te(G ' Addy) =k Y dimg(V)e(G™1) Tr(Aidy) = 0.
vew Vew
Hence £(z) = e(2)A(A) = A(e(2)A) = A(zA) = 0. O

Recall (see [7]) that k is a splitting field for a k-algebra A if every simple
finite-dimensional left A-module is scalar. Note that this is always the case if k
is algebraically closed.

COROLLARY 4.12. If H is semisimple and k is a splitting field for H, then
AK(H)®* = AK(H) and this set is composed by elements z € Z(H) satisfying
S(z) = z and MN(zx(1))2w(2) = A(2w)z for all z € H.

Proof. Since H is semisimple and finite-dimensional, we have rep}; = repy and
that V is finite. Moreover, since k is a splitting field for H, every V € V is scalar.
Then AK(H) = ¢~ 1(AK(repy)) C AK(H)* and so AK(H)* = AK(H). Moreover,
since H is unimodular (because it is semisimple), we have L(H) = Z(H), N(H) = 0,
and T'(x) = S(z) for all x € H (see §4.6). Therefore, by using Theorem 4.7, we get
that z € AKC(H) if and only if z € Z(H), S(z) = 2z, and A(zz(1))22(2) = A(22)z for
all z € H. U
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PROPOSITION 4.13. Suppose that H is semisimple and that k is a splitting field
for H of characteristic 0. Then Z(H) = @, cykzy and ) ., dimg (V) 2y € k*1.

Proof. Note that H is cosemisimple since any finite-dimensional semisimple
Hopf algebra over a field of characteristic 0 is cosemisimple (see [14, Theorem
3.3]). Then S? = idy by [13, Theorem 4] and A(1) # 0 by [1, Theorem 3.3.2].

Note that V is finite (since H is finite-dimensional). By [7, Theorem 25.10], any
simple left ideal of H is isomorphic (as a left H-module) to a (unique) element of V.
For any V € V, let Hy C H be the sum of all the simple left ideals of H which are
isomorphic to V. By [7, Theorem 25.15], Hy is a two-sided ideal of H, Hy is a simple
k-algebra (the operations being those induced by H), HyHy =0 for VAW €V,
H =@y Hv, and H is isomorphic (as an algebra) to [ [ ., Hy. Moreover, if ey
denotes the unit of Hy, then 1=}y, ey, Hy = Hey, and eyew = dy,w ey for
all VW € V. By [7, Theorem 26.4], since Hy is a simple k-algebra, V' is a simple
left Hy-module, and Endy, (V) = k (because V' is a scalar H-module), we have
that Hy is isomorphic (as an algebra) to Endg (V') and that dimg (V') is the number
of simple left ideals appearing in a direct sum decomposition of Hy as such a
sum. Then Z(Hy) = key (since Z(Endy(V)) = kidy) and so Z(H) = @y, key.
Moreover, for any x € H, we have

Tr(zidy) = Z Tr(zidg, ) Z dimg (V) Tr(z idy). (4.19)
vey vey

The map z € H — Tr((zidy) o S?) € k is a right integral for H* (by [23,
Proposition 2(b)] applied to H°P). Therefore, since S? = idg and, by the uniqueness
of integrals, there exists k € k such that Tr(xidg) = kA(x) for all x € H. Then
k = dimg(H)/A(1) and so, by (4.19) we get, for all z € H,

Z dim (V) Tr(zidy). (4.20)
vey

Let V € V. By (4.6) and since S? = idy, the special grouplike element G of H is
central and so G~lidy is H-linear. Therefore, since V is scalar and G is invertible,
there exists a (unique) vy € k* such that G~lidy = 4yidy. Since H and H* are
semisimple and so unimodular, their special grouplike elements are trivial. Then
G* =1 (since g = G?h,) and so 4% = 1. Hence, for all z € H,

dim, (V) Tr(G~'zidy) = Tr(G~tidy) Tr(xG~tdy)
= 42 Tr(idy ) Tr(zidy) = dimy (V) Tr(zidy). (4.21)
For any x € H, we have

Mdimg, (V) zyz) = dim, (V) Tr(Gzidy)  (by (4.18))
= dimg (V) Tr(zidy) (by (4.21))
= Z dimg (W) Tr(zey idw) (since ey idw = dy,w idy)

Wwev
—Mkeva) (by (4.20)),
and so dimy (V) zy = key (since H* is a free right H-module with basis ).
Finally, since k = dimy(H)/A(1) # 0 (because the characteristic of k is 0) and

dimy (V') # 0 (because repy; is semisimple, see §3.1), we get Z(H) = Py cy, key =
Dyey kev and )y o, dimg (V) 2y = k) oy ev = k1 € k™1 (I
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4.8. HKR-type invariants

Let H be a finite-dimensional ribbon Hopf algebra. We use the notation of §4.6.
By Theorem 2.6 and Proposition 2.3, for any z € AKC(H )™,

T(#,2) (M) = Trep, (M ¢2) € k (4.22)

is an invariant of 3-manifolds. Note that the choice of the normalization in
the definition of Tyep,(M;¢.) (see Proposition 2.3) implies that 7z .)(M) does
not depend on the choice of the non-zero right integral A for H* used to define
TrepH(M; (rbz)

By Remark 2.8, for any z € AK(H)"™, we have 7y .)(S%) = 1 and 7y )
is multiplicative with respect to the connected sum. Moreover, by Remark 2.9, if
z € AK(H)™™ n € N(H), and k € k*, then kz + n € AK(H)™"™ and, for all
3-manifolds M,

T(H,kz-i—n)(M) = 7-(H,z)(]\4)' (423)

DEFINITION 4.14. An invariant of closed 3-manifolds I with values in k is said
to be of HKR-type if there exist a finite-dimensional ribbon Hopf algebra H (over k)
and z € AKC(H)""™ such that I(M) = 7y .)(M) for all 3-manifolds M.

In Proposition 4.17, we show that the Reshetikhin—Turaev invariants defined from
premodular Hopf algebras (as quantum groups) are of HKR-type.

Let us show that any HKR-type invariant can be computed by using the
Kauffman—Radford algorithm (which is given in [10] for the case H unimodular
and for z = 1). Fix a finite-dimensional ribbon Hopf algebra H, a non-zero right
integral A for H*, and an element z € AK(H)*™. Let M be a 3-manifold and
L =1L,U...UL, be a framed link in S2 such that M ~ M. Let us recall the
Kauffman—Radford algorithm (the algorithm given here corresponds to that of [10]
when using the ribbon Hopf algebra opposite to H).

(A) Consider a diagram D of L (with blackboard framing). Each crossing of D is
decorated with the R-matrix R =), a; ® b; as in Figure 8. The diagram obtained
after this step is called the flat diagram of D. Note that the flat diagram of D is
composed by n closed plane curves, each of them arising from a component of L.

FIGURE 8.

(B) On each component of the flat diagram of D, the algebraic decoration is
concentrated in an arbitrary point (other than extrema and crossings) according to
the rules of Figure 9, where a,b € H.

In that way we get an element >, v¥ ® ... ® vk € H®" where v} corresponds
to the component of the flat diagram of D arising from L;; see Figure 10.
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For 1 < i < n, let d; be the Whitney degree of the flat diagram of L; obtained
by traversing it upwards from the point where the algebraic decorations have been
concentrated. The Whitney degree is the total turn of the tangent vector to the
curve when one traverses it in the given direction; see Figure 11.

Ot O o

FIGURE 11.
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ProprosITION 4.15. We have
T(H,2) (M) = A(20)0- D)=L \(z~1)~0-(F) Z AzGBHIk) L N(2GE TR,
k

Proof. Choose an orientation for L. Let T" be a ribbon n-handle such that L
is isotopic to T o (U® ... ® U), where the ith cup (with clockwise orientation)
corresponds to the component L;. Let Dy be a diagram of T. Note that D =
Dro(U®...®U) is a diagram of L. Apply steps (A) and (B) to Dr as in Figure 12.
Note that, in this case, d; = —1.

U P e

FIGURE 12.

-~
-

From the definition of the monoidal structure, duality, braiding and twist of
repy (see §4.4), it is not difficult to verify that, for any finite-dimensional left
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H-modules M, ..., M,,

T(Ml,-u,Mn) = Zele (1(11\41k [ v,i 1dM1) ®...Q evM"(idM;{ X 1}2 id]wn).
k

Then, by Lemma 4.3,

Trepy(L; 02) = ¢ 0 95" = ZGVH(@(lk) Q) @ ... ®@evi(p.(lk) @ v))
k
= Z Azvf) . A (z0F) = Z AzGUTLR) N (2Go k).
k k
Hence the result follows since O, ¢, = A(z6%1!). U

COROLLARY 4.16. Suppose that H is unimodular and \(f) # 0 # X(071).
Then 1 € AK(H)"™ and 7(g,1)(M) is the Hennings-Kauffman-Radford invariant
of 3-manifolds defined with the opposite ribbon Hopf algebra H°P to H.

Proof. This is an immediate consequence of Corollary 4.8, Proposition 4.15,
and the definition of the Hennings—Kauffman—Radford invariant given, for example,
in [10]. O

4.9. Reshetikhin—Turaev from premodular Hopf algebras

Let (H,V) be a finite-dimensional premodular Hopf algebra. This means that
(see [26]) H is a finite-dimensional ribbon Hopf algebra and V is a finite set of
finite-dimensional pairwise non-isomorphic simple left H-modules such that:

(i) each V €V is non-negligible and scalar;

(ii) the trivial left H-module k belongs to V;

(iii) for any V €V, there exists W € V such that V* ~ W;

(iv) for any V.W € V, V @ W splits as a (finite) direct sum of certain modules
of V (possibly with multiplicities) and a negligible H-module.

By a negligible H-module we mean a finite-dimensional left H-module N such that

try(f) = 0 for any f € End,cp, (N) or, equivalently, such that dim4(N) = 0.

Consider the semisimplification rep3; of repy (see §3.4) and let © be the ribbon
functor repy — rep}; associated to this semisimplification.

Let By be the full subcategory of rep7; whose objects are finite direct sums of
objects of 7(V) = {n(V) | V € V}. By the definition of a premodular Hopf algebra,
By is a ribbon full subcategory of repj;. Note that By is finitely semisimple with
scalar simple objects and has 7(V) as a (finite) set of representatives of isomorphism
classes of simple objects. Recall that the Reshetikhin—-Turaev invariant RTs,, (M)
of 3-manifolds is well defined when A5V # 0 (see §3.3).

Let A be a non-zero right integral for H*. For any V € V, as in (4.18), we let
2y € H such that A\(zyz) = Tr(Gzidy) for all z € H. Set

zZy = Z dlmq(V) 2V,
Vey

where dim, (V) = Tr(G~'idy). By Corollary 4.9(b), we have 2y € AK(H).

PROPOSITION 4.17. If ABY # 0, then zy € AK(H)"™™ and 7(j .., (M) =
RTg,, (M) for all 3-manifolds M.



510 ALEXIS VIRELIZIER

Note that Proposition 4.17 says that the Reshetikhin—Turaev invariant defined
from a premodular Hopf algebra is of HKR-type.

Proof. Let (A,i) be the coend of the functor (1.5) for repy (as in §4.5), let
(B, j) be the coend of the functor (1.5) for By (as in §3.2). Set

ap, = dimg(V)jr(v) C0eva(y).
Vevy
Suppose Ai" # 0. By Corollary 3.9, we have ag,, € AK(By)""™ and RTg, (M) =
78, (M; ap,,) for all 3-manifolds M. Set ¢p,,: B — 7(A) asin (3.6). As in the proof
of Corollary 4.9, we have 7(¢.,) = ¢B,jrv)c0eVy(yv). Then 7(d.,) = s, as,-
Since ap, € AK(By)™™ and 7(¢,,) = pag,, Corollary 3.11(b) gives ¢,,, €
AK (repg)"™ and 75, (M;ap,) = Trep,(M;¢.,,) for all 3-manifolds M. Hence
2y € AK(H)™™ and 7., (M) = RTp,, (M) for all 3-manifolds M. O

Note that if H is a semisimple finite-dimensional ribbon Hopf algebra, k is a
splitting field for H, and V is a set of representatives of isomorphism classes of
simple left H-modules, then (H,V) is a premodular Hopf algebra and By = repy.

COROLLARY 4.18. Let H be a finite-dimensional semisimple ribbon Hopf
algebra. Suppose that the base field k is of characteristic 0 and is a splitting field
for H. Then the Hennings—Kauffman—Radford invariant of 3-manifolds computed
with H°P and the Reshetikhin—Turaev invariant of 3-manifolds computed with
repy are simultaneously well defined (that is, A" # 0 if and only if 1 €
AK(H)™™). Moreover, if they are well defined, then they coincide, that Is,
7,1y (M) = RTep, (M) for any 3-manifold M.

REMARK 4.19. The conclusions of Corollary 4.18 may no longer be true when
H is not semisimple (see Remark 4.11). Moreover, in the modular case (in the
sense of Remark 3.7), Corollary 4.18 was first shown in [11].

Proof of Corollary 4.18. By Proposition 4.17, the Reshetikhin—Turaev invariant
of 3-manifolds computed from repy is well defined if

zy = Z dimy (V) 2y € AK(H)" o™
\42%
and is equal to T(p,.,). By Corollary 4.16, the Hennings-Kauffman-Radford
invariant of 3-manifolds computed with H°P is well defined if 1 € AK(H)"o™

and is equal to 7z 1). Now, by Proposition 4.13, } 7 ., dimg(V) 2y = k1 for some
k € k*. We conclude by using (4.23). O

5. A non-unimodular example

Let us examine the case of a family of non-unimodular ribbon Hopf algebras,
defined by Radford [22], which includes Sweedler’s Hopf algebra.

Let n be an odd positive integer and k be a field whose characteristic does not
divide 2n. Let H,, be the k-algebra generated by a and = with the following relations:

QTL:1

a , x2:0, ar = —zxa.
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The algebra H,, is a Hopf algebra for the following structure maps:
Aa) = a® a, g(a) =1, S(a) =a*,
Alz) =z®ad"+ 1z, e(x) =0, S(z) =a™x.

The set B = {a'a™ | 0 <1 < 2n, 0 < m < 1} is a basis for H,. The dual basis of B
is {akz" | 0 < k < 2n, 0 < r < 1}, where akz"(ala™) = 6 O S

A=(1+a+a*+...+a®™ Yz and \=a"z.

Then A is a left integral for H,, and X is a right integral for H such that A\(A) =
A(S(A)) = 1. The distinguished grouplike element of H, is ¢ = a" € G(H,) and
the distinguished grouplike element v € G(H;) = Alg(H,, k) of H} is given by
v(a) = —1 and v(z) = 0.

Suppose that k has a primitive 2n-root of unity w. Let s be an odd integer with
1<$<2nandlet6€k Then

w = — Z w—zl az ® asl + ﬁ Z w—zl (Lll' ® asl-i—nx
0<ll<2n 0<ll<2n

is an R-matrix for H,, and h, = (idg, @ v)(Ru s 8) = a

Let x: k* — kla] be the algebra map defined by x(a) = > 5<;<0, o’ e, for all
a € k*, where ¢; = (1/2n) Zogi<2n“’_“ai- Note that (e;)o<i<2n is a basis of k[a].
The quasitriangular Hopf algebra (H,,, R, s 3) is ribbon with twist 8 = a™x(w?).
The special grouplike element of H,, is then G = a”.

Let T: H, — H,, and let L(H,,), N(H,), Va(H,), AK(H,) and AK(H,)"°"™ be
as in §4.6. It is not difficult to verify that

T(a*) = (=1)*a"* and T(a*z)=a""z forall 0 <k < 2n,

L(H,) = kla]z, Z(H,) = k[a?], N(H,) = k[a*]z,
Vo(H,) = @ k(a?? ® a®?) @ @ k(afz @ a'z).
0<p,g<n 0Lk, l<2n

For any divisor d of n, set
n/d—1

24 = E a2y,
k=0

LEMMA 5.1.  We have
AK(H,) = U (kzq @ k[a®]z) and AK(H,)"™ = U (k*2q @ k[a®]z).

d|n d|n

Proof. Let z € L(H,). Since a®" = 1, we can write z = > okez/onz apafz for

some function a: Z/2nZ — k. Using Theorem 4.7, we have z € AK(H,,) if and only
if a_, = ay and agagi—n = apaq for all k,1 odd. Set

_ § : 2k+n+1
w = A2k4+n+10 Z.

kGZ/nZ

Then z — w = ZkeZ/nZ Yea?* Tz where v: Z/nZ — k is defined by v, = qapin-
Since n is odd, we have w € ]k[ %lz = N(H,). Then z € AK(H,) if and only
if z—w € AK(H,), and so if and only if y_; = v and Ygyer = Yy for all
k,l € Z/nZ.
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Suppose that z € AK(H,) and z # 0. We get 170 = Yy—k = 7 for all k. In
particular, vy # 0 and v, = v whenever v; # 0. Set d = min{l < k < n |y # 0}
(recall that v, = v # 0). Note that 7, = 0 for all 1 < k < d and, by the
above, Vgrq = 7 for all k. The integer d divides n. Indeed, let r be such that
rd<n<rd+d Then 0 <n—rd <nand vp_rqg = ¥n = Yo # 0. Therefore, by
definition of d, we get n —rd = 0 and so d | n. Hence z = ypzq +w with w € k[a?]x.

Conversely, one easily verifies that z4 € AK(H,,) and so kzq ®k[a?]x C AK(H,,).

Let d divide n. For any « € k and w € k[a*]z, we have

2d—1

s 2 .

A((avzq + w)eil) = % Z (wn/d):b (n/d)k*+nk
k=0

The sum of the right-hand sum of this equality is a Gauss sum which is non-zero
if and only if the enhancement k € Z/2dZ — (k) = +s(n/d)k? + nk € Z/2dZ is
tame, that is, ¥(z) = 0 for any x € Z/2dZ such that ¢¥(z + y) = ¥(z) + ¥ (y) for
all y € Z/2dZ; see [25]. Since n and s are odd, it is not difficult to verify that ¢ is
tame. Therefore \((azq + w)0*!) # 0 if and only if o # 0. Hence

k*zq ® K[a%)z C AK(H, )", O

In conclusion, by Lemma 5.1 and (4.23), the ribbon Hopf algebra H,, leads
to D(n) HKR-type invariants of 3-manifolds, where D(n) denotes the number of
positive divisors of n, which are (g, .,y with 1 <d < n and d | n.

Note that H,, is not unimodular (and so is not semisimple) since v # . Therefore
1 ¢ AK(H,) (by Corollary 4.8), that is, the Hennings—Kauffman-Radford invariant
is not defined for H,,. Moreover, the categorical Hopf algebra A = H; of repy; does
not possess any non-zero two-sided integral (since H,, is not unimodular), and so
the Lyubashenko invariant of 3-manifolds is not defined for repy .

Acknowledgement. The author thanks A. Bruguieres for helpful comments and
enlightening discussions.

Appendix. Traces on ribbon Hopf algebras

Recall that a trace on a Hopf algebra H is a form ¢ € H* such that t(zy) = t(yx)
and t(S(z)) =t(z) for all z,y € H.

Let H be a finite-dimensional ribbon Hopf algebra. Let A € H* be a non-zero
right integral for H*, v € G(H*) = Alg(H,k) be the distinguished grouplike
element of H*, and G be the special grouplike element of H. Recall that -
denotes the right action of H on H* defined in (4.1), that «— denotes the right
H*-action on H defined in (4.2), that L(H) denotes the k-subspace of H
constituted by the elements z € H satisfying (z — v)z = zz for all z € H, and
that T' denotes the k-endomorphism of H defined by z — T(z) = (S(z) — v)h,,
where h, = (idg @ V)(R) € G(H).

The next proposition gives an algebraic description of the space of traces on H.

PROPOSITION A.1. The space {z € L(H) | T(z) = z} is k-isomorphic to the
space of traces on H via the map z — X - (2G).
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If H is unimodular, then L(H) = Z(H) and T = S, and so we recover the
parameterization of traces on H given in [23, 9].

Proof. Let z € L(H) such that T'(z) = z. Set t = X\ - (2G) € H*. By using
(4.10) and (4.6), we have t(zy) = A\(2Gzy) = MN(25?(y)Gz) = M(2Gyzx) = t(yz) for
any x,y € H. Moreover, for any x € H,

t(S(z)) = )\(zGS( ) = MG?h,2G71S71(2)) (by (4.7))
A(S(2) — 1)G2h,aG™Y)  (by (4.3))
)\(z J1G?h,xG™Y)  (since T(z) = 2)
= A(z8*(G™1)hy, ' G*hyx)  (by (4.10))
= \2G7'h, ' G?h, )
= AzGS™*(h, Hh,x) (by (4.6))
= MzGh 'h,x) = M2Gx) = t(z).

Conversely, let ¢ € H* be a trace on H. Since (H*,-) is a free right H-module
of rank 1 with basis A and G is invertible, there exists a (unique) z € H such that
t=X-(2G).Let x € H. For ally € H,

NzaGy) = M=GS™*(x)y) (by (4.6))
= t(S7*(2)y) = t(yS~>(v)) = AM=GyS™*(x))
= A(z — v)zGy) (by (4.3)).
Therefore, since (H*,-) is a free right H-module of rank 1 with basis A, we have
(x — v)2G = za2G and so (z — v)z = zx. Hence z € L(H). Now, for all z € H,
Az2Gx) = t(x) =t(S(z)) = AM(2GS(x))
= MG?h,zG~'S7(2)) (by (4.7))
MG?h,xS™1(2@G))
MG?h,zS™H(G ~— v)z)) (since z € L(H))
M(S((G = v)z) = v)G?hyx)  (by (4.3)).

AAA,.\

Therefore, since (H*,-) is a free right H-module of rank 1 with basis A,

= (S((G = v)z) = v)G?hy,

= (S(2) = V)(S(G = v) = v)GS*(h,)G  (by (4.6))

= (S(2) = v)v(G)v(GHG*Gh,G = (S(2) — v)h,G =T(2)G

and so T'(z) = z. O
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