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KIRBY ELEMENTS AND QUANTUM INVARIANTS

ALEXIS VIRELIZIER

Introduction

During the last decade, deep connections between low-dimensional topology and the
purely algebraic theory of quantum groups or, more generally, of braided categories
were highlighted. In particular, this led to a new class of 3-manifold invariants,
called quantum invariants, defined in several ways.

The aim of the present paper is to give an, as general as possible, method of
constructing quantum invariants of 3-manifolds starting from a ribbon category or
a ribbon Hopf algebra. With this formalism, we recover the 3-manifold invariants
of Reshetikhin and Turaev [24, 26], of Hennings, Kauffman and Radford [9, 10],
and of Lyubashenko [16], when these are well defined.

Let k be a field and C be a k-linear ribbon category (not necessarily semisimple).
Under some technical assumption, namely the existence of a coend A ∈ Ob(C) of
the functor (X,Y ) ∈ Cop × C �→ X∗ ⊗ Y ∈ C, a scalar τC(L;α) can be associated
to any framed link L in S3 and any morphism α ∈ HomC(1, A); see [16]. Recall
(see [17]) that the object A of C is then a Hopf algebra in the category C.

By a Kirby element of C, we shall mean a morphism α ∈ HomC(1, A) such that
τC(L;α) is invariant under isotopies of L and under 2-handle slides. By the Kirby
theorem [12], we get that if a Kirby element α of C is normalizable, that is, such that
τC(©±1;α) �= 0, then τC(L;α) can be normalized to an invariant τC(ML;α) of 3-
manifolds. Here ©±1 is the unknot with framing ±1 and ML denotes the 3-manifold
obtained from S3 by surgery along L.

In general, determining all the Kirby elements of C is quite a difficult problem.
In this paper we characterize a class AK(C) of Kirby elements of C, called the
algebraic Kirby elements of C, in terms of the structure maps of the categorical
Hopf algebra A. This class is sufficiently large to contain the Kirby elements
corresponding to the known quantum invariants.

If the categorical Hopf algebra A admits a two-sided integral λ : 1 → A, then λ
is an algebraic Kirby element of C and the corresponding invariant τC(M ;λ) is the
Lyubashenko invariant [16].

When C is semisimple, we give sufficient conditions for being an algebraic Kirby
element of C. Moreover, we show that there exist (even in the non-modular case)
algebraic Kirby elements of C corresponding to the Reshetikhin–Turaev invariants
[24, 26] computed from finitely semisimple ribbon full subcategories of C. Note that
these elements are not in general two-sided integrals.

More generally, when C is not semisimple, we show that AK(C) contains Kirby
elements leading to the invariants defined from AK(B), where B is any finitely
semisimple ribbon subcategory of the semisimple quotient of C. Note that, in
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general, there exist algebraic Kirby elements of C which are not of this last form.
This means that the semisimplification process ‘misses’ some invariants.

Let H be a finite-dimensional ribbon Hopf algebra. Suppose that C is the category
repH of finite-dimensional left H-modules. We parameterize the algebraic Kirby
elements of repH by a subset AK(H) of H defined in purely algebraic terms. One
of the interests of such a description of AK(repH) is to avoid the representation
theory of H (which may be of wild type; see [2]).

If H is unimodular, then 1 ∈ AK(H) and the corresponding invariant τ(H,1) is
the Hennings–Kauffman–Radford invariant [9, 10]. More generally, and even if H
is not unimodular, we show that the invariant τ(H,z) of 3-manifolds corresponding
to z ∈ AK(H) can be computed by using the Kauffman–Radford algorithm.

If V is a set of simple left H-modules which makes (H,V) a premodular Hopf
algebra, then there exists zV ∈ AK(H) such that τ(H,zV) is the Reshetikhin–
Turaev invariant computed from (H,V), which hence can be computed by using
the Kauffman–Radford algorithm.

When H is semisimple and k is of characteristic 0, we show that the Hennings–
Kauffman–Radford invariant (computed from H) and the Reshetikhin–Turaev
invariant (computed from repH) are simultaneously well defined and coincide (even
in the non-modular case). In the modular case, this was first shown in [11].

We explicitly determine the algebraic Kirby elements of a family of non-
unimodular ribbon Hopf algebras which contains Sweedler’s Hopf algebra.

As an algebraic application, the operators involved in the description of
AK(repH) in algebraic terms allows us to parameterize all the traces on a finite-
dimensional ribbon Hopf algebra H. When H is unimodular, we recover the
parameterization given in [9, 23].

The paper is organized as follows. In § 1, we review ribbon categories and
coends. In § 2, we define and study Kirby elements. We focus, in § 3, on the
case of semisimple ribbon categories and, in § 4, on the case of categories of
representations of ribbon Hopf algebras. In § 5, we treat an example in detail.
Finally, in the Appendix, we study traces on ribbon Hopf algebras.

1. Ribbon categories and coends

In this section, we review some basic definitions concerning ribbon categories and
coends. Throughout this paper, we let k be a field.

1.1. Ribbon categories

Let C be a strict monoidal category with unit object 1 (note that every monoidal
category is equivalent to a strict monoidal category in a canonical way; see [18]).
A left duality in C associates to any object U ∈ C an object U∗ ∈ C and two
morphisms evU : U∗ ⊗ U → 1 and coevU : 1 → U ⊗ U∗ such that

(idU ⊗ evU )(coevU ⊗ idU ) = idU and (evU ⊗ idU∗)(idU∗ ⊗ coevU ) = idU∗ .

We can (and we always do) impose the following conditions:

1∗ = 1, ev1 = id1 and coev1 = id1.

By a braided category we shall mean a monoidal category C with left duality
and endowed with a braiding, that is, a system {cU,V : U ⊗ V → V ⊗ U}U,V ∈C of
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isomorphisms, natural in U and V , satisfying

cU⊗V,W = (cU,W ⊗ idV )(idU ⊗ cV,W ), (1.1)
cU,V ⊗W = (idV ⊗ cU,W )(cU,V ⊗ idW ), (1.2)

for all objects U, V,W ∈ C. Note that (1.1) and (1.2) imply that cU,1 = c1,U = idU .
A ribbon category is a braided category C endowed with a twist, that is, a family

of natural isomorphisms {θU : U → U}U∈C satisfying

(θU ⊗ idU∗)coevU = (idU ⊗ θU∗)coevU , (1.3)
θU⊗V = cV,U cU,V (θU ⊗ θV ), (1.4)

for all objects U, V ∈ C. It follows from (1.4) that θ1 = id1.
A ribbon category C canonically has a right duality by associating to any object

U ∈ C its left dual U∗ ∈ C and two morphisms

ẽvU : U ⊗ U∗ → 1 and c̃oevU : 1 → U∗ ⊗ U

defined by

ẽvU = evUcU,U∗(θU ⊗ idU∗) and c̃oevU = (idU∗ ⊗ θ−1
U )(cU∗,U )−1coevU .

Note that we have ẽv1 = id1 and c̃oev1 = id1.
The dual morphism f∗ : V ∗ → U∗ of a morphism f : U → V in a ribbon category

C is defined by

f∗ = (evV ⊗ idU∗)(idV ∗ ⊗ f ⊗ idU∗)(idV ∗ ⊗ coevU )
= (idU∗ ⊗ ẽvV )(idU∗ ⊗ f ⊗ idV ∗)(c̃oevU ⊗ idV ∗).

It is well known that (idU )∗ = idU∗ and (fg)∗ = g∗f∗ for composable morphisms
f and g. Axiom (1.3) can be shown to be equivalent to θ∗U = θU∗ .

Let C be a ribbon category. Note that EndC(1) is a monoid, with composition
as multiplication, which is commutative. The quantum trace of an endomorphism
f : U → U of an object U ∈ C is defined by

trq(f) = ẽvU (f ⊗ idU∗)coevU = evU (idU∗ ⊗ f)c̃oevU ∈ EndC(1).

For any morphisms u : U → V and v : V → U and any endomorphisms f and g, we
have

trq(uv) = trq(vu), trq(f∗) = trq(f), and trq(f ⊗ g) = trq(f) trq(g).

The quantum dimension of an object U ∈ C is defined by

dimq(U) = trq(idU ) = ẽvU coevU = evU c̃oevU ∈ EndC(1).

Isomorphic objects have equal dimensions and dimq(U ⊗ V ) = dimq(U) dimq(V )
for any objects U, V ∈ C. Note that dimq(1) = id1.

1.2. k-categories

Let k be a field. By a k-category, we shall mean a category for which the sets
of morphisms are k-spaces and the composition is k-bilinear. By a monoidal
k-category, we shall mean a k-category endowed with a monoidal structure whose
tensor product is k-bilinear. Note that if C is a monoidal k-category, then EndC(1)
is a commutative k-algebra (with composition as multiplication). A monoidal
k-category is said to be pure if EndC(1) = k.
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Figure 1. Plane diagrams of morphisms.

By a ribbon k-category, we shall mean a pure monoidal k-category endowed with
a ribbon structure.

1.3. Graphical calculus

Let C be a ribbon category. Any morphism in C can be graphically represented
by a plane diagram (we use the conventions of [26]). This pictorial calculus will
allow us to replace algebraic arguments involving commutative diagrams by simple
geometric reasoning. This is justified in, for example, [26].

A morphism f : V → W in C is represented by a box with two vertical arrows
oriented downwards, as in Figure 1(a). Here V and W should be regarded as ‘colors’
of the arrows and f should be regarded as a ‘color’ of the box. More generally, a
morphism f : V1 ⊗ . . .⊗Vm → W1 ⊗ . . .⊗Wn may be represented as in Figure 1(b).

We also use vertical arrows oriented upwards under the convention that the
morphism sitting in a box attached to such an arrow involves not the color of the
arrow but rather the dual object. The identity endomorphism of an object V ∈ C
or of its dual V ∗ will be represented by a vertical arrow as depicted in Figure 1(c).
Note that a vertical arrow colored with 1 may be deleted from any picture without
changing the morphism represented by this picture. The symbol ‘=’ displayed in
the figures denotes equality of the corresponding morphisms in C.

The tensor product f⊗g of two morphisms f and g in C is represented by placing
a picture of f to the left of a picture of g. A picture for the composition g ◦ f of
two (composable) morphisms g and f is obtained by putting a picture of g on the
top of a picture of f and by gluing the corresponding free ends of arrows.

The braiding cV,W : V ⊗ W → W ⊗ V and its inverse c−1
V,W : W ⊗ V → V ⊗ W ,

the twist θV : V → V and its inverse θ−1
V : V → V , and the duality morphisms

evV : V ∗⊗V → 1, coevV : 1 → V ⊗V ∗, ẽvV : V ⊗V ∗ → 1, and c̃oevV : 1 → V ∗⊗V
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are represented as in Figures 1(d) and 1(e). The quantum trace of an endomorphism
f : V → V in C and the quantum dimension of an object V ∈ C may be depicted
as in Figure 1(f).

1.4. Negligible morphisms

Let C be a ribbon k-category. A morphism f ∈ HomC(X,Y ) is said to be negligible
if trq(gf) = 0 for all g ∈ HomC(Y,X). Denote by NeglC(X,Y ) the k-subspace of
HomC(X,Y ) formed by the negligible morphisms.

It is important to note that NeglC is a two-sided ⊗-ideal of C. This means that
the composition (respectively the tensor product) of a negligible morphism with
any other morphism is negligible.

Note that a morphism f : 1 → X is negligible if and only if gf = 0 for all
morphisms g : X → 1.

1.5. Dinatural transformations and coends

Recall that to each category C is associated its opposite category Cop (by reversing
the arrows; see [18]).

Let C and B be two categories. A dinatural transformation between a functor
F : Cop × C → B and an object B ∈ B is a function d which assigns to each object
X ∈ C a morphism dX : F (X,X) → B of B in such a way that the diagram

F (Y,X)

F (f,idX )

��

F (idY ,f) �� F (Y, Y )

dY

��
F (X,X)

dX

�� B

commutes for every morphism f : X → Y in C.
A coend of the functor F is a pair (A, i) consisting of an object A of B and a

dinatural transformation i from F to A which is universal among the dinatural
transformations from F to a constant, that is, with the property that, to every
dinatural transformation d from F to B, there exists a unique morphism r : A → B
such that dX = r ◦ iX for all objects X ∈ C.

Note that a coend, if it exists, is unique up to unique isomorphism.
For examples of coends, see §§ 3.2 and 4.5.

1.6. Categorical Hopf algebras from coends

Let C be a ribbon category. Consider the functor F : Cop × C → C defined by

F (X,Y ) = X∗ ⊗ Y and F (f, g) = f∗ ⊗ g (1.5)

for all objects X,Y ∈ C and all morphisms f and g in C.
Suppose that the functor F admits a coend (A, i). Then the object A has a

structure of a Hopf algebra in the category C (see [17]). This means that there
exist morphisms mA : A ⊗ A → A, ηA : 1 → A, ∆A : A → A ⊗ A, εA : A → 1,
and SA : A → A, which satisfy the same axioms as those of a Hopf algebra except
that the usual flip is replaced by the braiding cA,A : A ⊗ A → A ⊗ A. By using
the factorization property of the coend (use it twice for the multiplication mA), we
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define these structural morphisms as follows:

∆AiX = (iX ⊗ iX)(idX∗ ⊗ coevX ⊗ idX) : X∗ ⊗ X → A ⊗ A,

εAiX = evX : X∗ ⊗ X → A ⊗ A,

mA(iX ⊗ iY ) = iY ⊗X(γX,Y ⊗ idY ⊗X)(idX∗ ⊗ cX,Y ∗⊗Y ) : X∗ ⊗ X ⊗ Y ∗ ⊗ Y → A,

ηA = i1 : 1 = 1∗ ⊗ 1 → A,

SAiX = (evX ⊗ iX∗)(idX∗ ⊗ cX∗∗,X ⊗ idX∗)(coevX∗ ⊗ cX∗,X) : X∗ ⊗ X → A.

Here X and Y are objects of C, and γX,Y : X∗⊗Y ∗ �−→ (Y ⊗X)∗ is the isomorphism
defined by γX,Y = (evX(idX∗ ⊗ evY ⊗ idX) ⊗ id(Y ⊗X)∗)(idX∗⊗Y ∗ ⊗ coevY ⊗X).

It can be shown that the antipode SA is an isomorphism and that S2
A = θA;

see [17]. Moreover, as for Hopf algebras, the antipode is anti-(co)multiplicative:

SAmA = mA(SA ⊗ SA)cA,A, SAηA = ηA,

∆ASA = cA,A(SA ⊗ SA)∆A, εASA = εA.

The Hopf algebra A is equipped with a Hopf pairing ωA : A ⊗ A → 1 (see [16])
defined by ωA ◦ (iX ⊗ iY ) = ωX,Y , where

ωX,Y = (evX ⊗ evY )(idX∗ ⊗ cY ∗,XcX,Y ∗ ⊗ idY ) : X∗ ⊗ X ⊗ Y ∗ ⊗ Y → A.

This pairing is said to be non-degenerate if (ωA ⊗ idA∗)(idA ⊗ coevA) : A → A∗ and
(idA∗ ⊗ ωA)(c̃oevA ⊗ idA) : A → A∗ are isomorphisms.

Set

Γl = (idA ⊗ mA)(∆A ⊗ idA) : A ⊗ A → A ⊗ A, (1.6)
Γr = (mA ⊗ idA)(idA ⊗ ∆A) : A ⊗ A → A ⊗ A. (1.7)

Lemma 1.1. Γl(SA ⊗ SA)cA,A = cA,A(SA ⊗ SA)Γr.

Proof. By using the anti-(co)multiplicativity of the antipode, we have

Γl(SA ⊗ SA)cA,A = (idA ⊗ mA)(∆ASA ⊗ SA)cA,A

= (idA ⊗ mA)(cA,A(SA ⊗ SA)∆A ⊗ SA)cA,A

= (SA ⊗ mA(SA ⊗ SA))(cA,A∆A ⊗ idA)cA,A

= (SA ⊗ SAmAc−1
A,A)(cA,A∆A ⊗ idA)cA,A.

Then, by using (1.1) and (1.2), we get

Γl(SA ⊗ SA)cA,A = (SA ⊗ SAmAc−1
A,A)cA,A⊗A(idA ⊗ cA,A∆A)

= (SA ⊗ SAmA)(cA,A ⊗ idA)(idA ⊗ cA,A)(idA ⊗ ∆A)
= (SA ⊗ SAmA)cA⊗A,A(idA ⊗ ∆A)
= cA,A(SA ⊗ SA)(mA ⊗ idA)(idA ⊗ ∆A)
= cA,A(SA ⊗ SA)Γr.

Corollary 1.2. Suppose that C is moreover a (monoidal) k-category. Let α ∈
HomC(1, A). If SAα−α ∈ NeglC(1, A), then the following assertions are equivalent:

(a) Γl(α ⊗ α) − α ⊗ α : 1 → A ⊗ A is negligible;
(b) Γr(α ⊗ α) − α ⊗ α : 1 → A ⊗ A is negligible.

Moreover, if SAα = α, then Γl(α ⊗ α) = α ⊗ α if and only if Γr(α ⊗ α) = α ⊗ α.
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Proof. This is an immediate consequence of Lemma 1.1 since NeglC is a two-
sided ⊗-ideal of C.

2. Kirby elements of a ribbon category

In this section, we generalize Lyubashenko’s method [16] of constructing 3-
manifold invariants from ribbon categories.

2.1. Ribbon handles

Let n be a positive integer. By a ribbon n-handle we shall mean an oriented
ribbon tangle T ⊂ R2 × [0, 1] with 2n bottom endpoints and no top endpoints,
consisting of n arc components, without any closed component, such that:

– the kth arc joins the (2k − 1)th and 2kth bottom endpoints;
– the kth arc is oriented out of R2 × [0, 1] near the 2kth bottom endpoint.

Diagrams of ribbon handles are drawn with blackboard framing. An example of a
ribbon 3-handle is depicted in Figure 2(a).

Let C be a ribbon category. Suppose that the functor (1.5) admits a coend (A, i).
Let T be a ribbon n-handle. For objects X1, . . . , Xn ∈ C, let T(X1,...,Xn ) be the
morphism X∗

1 ⊗X1 ⊗ . . .⊗X∗
n ⊗Xn → 1 in C graphically represented by a diagram

of T where the kth component of T has been colored with the object Xk. Since the
braiding and twist of C are natural and by using the Fubini theorem for coends (see
[18]), we see that there exists a (unique) morphism φT : A⊗n → 1 such that

T(X1,...,Xn ) = φT ◦ (iX1 ⊗ . . . ⊗ iXn
) (2.1)

for all objects X1, . . . , Xn ∈ C. Figure 2(b) is an example for n = 3.

(a) A ribbon 3-handle T

iX1 iX2 iX3

X1X1 X1X1

AAA

X2 X2 X2 X2X3X3 X3X3

φT

=

(b) T(X1,X2,X3) = φT ◦ (iX1 ⊗ iX2 ⊗ iX3 )

Figure 2.

In [6], we give a method for computing φT by using the Hopf algebra A.

2.2. Kirby elements

Let C be a ribbon category such that the functor (1.5) admits a coend (A, i).
Let L be a framed link in S3 with n components. Fix an orientation for L. There
always exists a (non-unique) ribbon n-handle TL such that L is isotopic to
TL ◦ (∪ ⊗ . . . ⊗ ∪), where ∪ denote the cup with clockwise orientation; see
Figure 3(a). For α ∈ HomC(1, A), set

τC(L;α) = φTL
◦ α⊗n ∈ EndC(1),

where φTL
: A⊗n → 1 is defined as in (2.1).



kirby elements and quantum invariants 481

Definition 2.1. By a Kirby element of C, we shall mean a morphism α ∈
HomC(1, A) such that, for any framed link L, τC(L;α) is well defined and invariant
under isotopies and 2-handle slides of L. A Kirby element α of C is said to be
normalizable if τC(©±1;α) is invertible in EndC(1), where ©±1 denotes the unknot
with framing ±1.

Note that the unit ηA : 1 → A of the categorical Hopf algebra A is a normalizable
Kirby element. The invariant of framed links associated with ηA is the trivial one,
that is, τC(L; ηA) = 1 for any framed link L.

In the following, we will denote by Θ± : A → 1 the morphisms defined by

Θ±iX = evX(idX∗ ⊗ θ±1
X ). (2.2)

Remark that if α is a Kirby element of C, then τC(©±1;α) = Θ±α.

Lemma 2.2. Let α : 1 → A. Then τC(L 	 L′;α) = τC(L;α) τC(L′;α) for any
framed link L and L′, where L 	 L′ denotes the disjoint union of L and L′.

Proof. Let TL and TL′ be ribbon handles such that L and L′ are isotopic to
TL ◦ (∪ ⊗ . . . ⊗ ∪) and TL′ ◦ (∪ ⊗ . . . ⊗ ∪) respectively. Then T = TL ⊗ TL′ is a
ribbon handle such that the disjoint union L 	 L′ is isotopic to T ◦ (∪ ⊗ . . . ⊗ ∪).
Therefore φT = φTL

⊗ φTL ′ and so τC(L 	 L′;α) = τC(L;α) τC(L′;α).

In this paper, all considered 3-manifolds are supposed to be closed, connected,
and oriented. Recall (see [15]) that every such 3-manifold can be obtained from S3

by surgery along a framed link L ⊂ S3. For any framed link L in S3, we will denote
by ML the 3-manifold obtained from S3 by surgery along L, by nL the number of
components of L, and by b−(L) the number of negative eigenvalues of the linking
matrix of L.

Normalizable Kirby elements are of special interest due to the following result.

Proposition 2.3. Let α be a normalizable Kirby element of C. Then

τC(ML;α) = (Θ+α)b−(L)−nL (Θ−α)−b−(L) τC(L;α)

is an invariant of 3-manifolds. Moreover τC(M#M ′;α) = τC(M ;α) τC(M ′;α) for
any 3-manifolds M and M ′.

Remark 2.4. For any normalizable Kirby element α of C, we have τC(S3;α) = 1
and τC(S1 × S2;α) = (Θ+α)−1 εAα.

Remark 2.5. The invariant of 3-manifolds associated with the unit ηA : 1 → A
of the categorical Hopf algebra A (which is a normalizable Kirby element) is the
trivial one, that is, τC(M ; ηA) = 1 for any 3-manifold M .

Proof of Proposition 2.3. The fact that τC(ML;α) is an invariant of 3-manifolds
follows from the Kirby theorem [12]. Indeed τC(L;α), b−(L) and nL are invariant
under 2-handle slides and τC(©±1 	 L;α) = (Θ±α) τC(L;α) by Lemma 2.2,
b−(©1 	 L) = b−(L), b−(©−1 	 L) = b−(L) + 1, and n©±1�L = nL + 1.

Let L and L′ be framed links in S3. The disjoint union L 	 L′ is then a framed
link in S3 such that ML�L′ 
 ML#ML′ . Then the multiplicativity of τC(M ;α)
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with respect to the connected sum of 3-manifolds follows from Lemma 2.2 and the
equalities b−(L 	 L′) = b−(L) + b−(L′) and nL�L′ = nL + nL′ .

In general, determining when a morphism A⊗n → 1 is of the form φT for
some ribbon n-handle T is quite a difficult problem. Hence so is the problem of
determining all the (normalizable) Kirby elements of C. In the next section, we
characterize a class of (normalizable) Kirby elements of C by means of the structural
morphisms of the categorical Hopf algebra A. This class will be shown to be
sufficiently large to contain the Lyubashenko invariant (which is a categorical
version of the Hennings–Kauffman–Radford invariant) and the Reshetikhin–Turaev
invariant (computed from a semisimple quotient of C) when these are well defined.

2.3. Algebraic Kirby elements

Let C be a ribbon k-category such that the functor (1.5) admits a coend (A, i).
Recall the notion of negligible morphisms (see § 1.4). Set

AK(C) = {α ∈ HomC(1, A) | SAα − α ∈ NeglC(1, A) and
Γl(α ⊗ α) − α ⊗ α ∈ NeglC(1, A ⊗ A)},

AK(C)norm = {α ∈ AK(C) | Θ+α �= 0 and Θ−α �= 0},
where Γl : A⊗A → A⊗A and Θ± : A → 1 are defined in (1.6) and (2.2). Note that,
by Corollary 1.2, the morphism Γl used in the definition of AK(C) can be replaced
by the morphism Γr defined in (1.7).

Remark that the sets AK(C) and AK(C)norm always contain a non-zero element,
namely the unit ηA : 1 → A.

Theorem 2.6. The elements of AK(C) are Kirby elements of C. Moreover
AK(C)norm is made of the elements of AK(C) which are normalizable.

Definition 2.7. The elements of AK(C) are called the algebraic Kirby elements
of C.

Remark 2.8. It follows from Proposition 2.3 that any normalizable algebraic
Kirby element α of C leads to a 3-manifold invariant τC(M ;α) with values in
EndC(1) = k. This invariant is multiplicative with respect to the connected sum.
Note that τC(S3;α) = 1 and τC(S1 × S2;α) = (Θ+α)−1 εAα.

Remark 2.9. Let α ∈ AK(C)norm, n ∈ NeglC(1, A), and k ∈ k∗. Since NeglC
is a two-sided ⊗-ideal of C and NeglC(1,1) = 0, we have kα + n ∈ AK(C)norm and
τC(M ; kα + n) = τC(M ;α) for any 3-manifold M .

Remark 2.10. If C is 3-modular as in [16], then A admits a (non-zero) two-
sided integral λ ∈ HomC(1, A), that is, mA(λ ⊗ idA) = λ εA = mA(idA ⊗ λ), and
we have λ ∈ AK(C)norm and τC(M ;λ) is the Lyubashenko invariant of 3-manifolds.
Note that if C admits split idempotents, then λ is unique (up to scalar multiples);
see [3]. Nevertheless, the condition that A possesses a (non-zero) two-sided integral
is quite limitative (for example, when C is the category repH of representations
of a finite-dimensional Hopf algebra H, this implies that H must be unimodular).
In § 5, we give an example of a non-unimodular ribbon Hopf algebra H and of an
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TL
L ∼

L1 L2 Ln

(a) L ∼ TL ◦ (∪ ⊗ . . . ⊗ ∪)

∆2(TL)

(b) T ′

(c) TL (d) T ′

Figure 3.

element α ∈ AK(repH) which is not a two-sided integral and leads to a non-trivial
invariant.

Remark 2.11. In § 3.5 (see Corollary 3.11), we show that AK(C) contains
elements corresponding to the Reshetikhin–Turaev invariants defined using finitely
semisimple ribbon full subcategories of the semisimple quotient of C.

Proof of Theorem 2.6. Fix α ∈ AK(C). Let L = L1 ∪ . . .∪Ln be a framed link.
Firstly, since SAα − α ∈ NeglC(1, A), then τC(L;α) does not depend on the choice
of TL nor on the orientation of L and is an isotopic invariant of the framed link
L. Indeed, this is proved in the case SAα = α in [16, Proposition 5.2.1]. The same
arguments work when SAα − α ∈ NeglC(1, A) since NeglC is a two-sided ⊗-ideal
of C.

Let us show that τC(L;α) is invariant under 2-handle slides. Choose an orientation
for L. Without loss of generality, we can suppose that the component L1 slides over
L2. Let L′

2 be a copy of L2 (following the framing) and set

L′ = (L1#L′
2) ∪ L2 ∪ . . . ∪ Ln.

We have to show that τC(L′;α) = τC(L;α). Let TL be a ribbon n-handle such
that L is isotopic to TL ◦ (∪ ⊗ . . . ⊗ ∪), where the ith cup corresponds to the
component Li; see Figure 3(a). Let ∆2(TL) be the (2n + 2, 0)-tangle obtained by
copying the 2nd component of TL (following the framing) in such a way that the
endpoints of the new component are between the 2nd and 3rd bottom endpoints
of TL and between the 4th and 5th bottom endpoints of TL. A ribbon n-handle
T ′ such that L′ is isotopic to T ′ ◦ (∪ ⊗ . . . ⊗ ∪), where the ith cup corresponds to
the ith component of L′, can be constructed from ∆2(TL) as in Figure 3(b). For
example, if TL is the ribbon 3-handle depicted in Figure 3(c), then T ′ is the ribbon
3-handle of Figure 3(d). By the equalities of Figure 4 where X1, . . . , Xn are any
objects of C, and by the uniqueness of the factorization through a coend, we get
φT ′ = φTL

(Γl ⊗ idA⊗(n−2)). Therefore, since Γl(α ⊗ α) − α ⊗ α ∈ NeglC(1, A ⊗ A),
we get

τC(L′;α) = φT ′α⊗n = φTL
(idA⊗2 ⊗ α⊗(n−2))Γl(α ⊗ α) = φTL

α⊗n = τC(L;α).
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T ′
(X1,...,Xn ) TL(X1,X2⊗X1,X3,...,Xn )

X1X1 X1X1

X1X1X1X1

X1

X1

X2X2

X2X2X2X2

X3X3

X3X3X3X3

XnXn XnXn

XnXnXnXn

X2⊗X1

X2⊗X1

X2⊗X1

X2⊗X1

idX2⊗X1

idX2⊗X1

idX2⊗X1

idX2⊗X1 iX1

iX1

φTL
φTL

iX2

iX3

iX3

iXn

iXniX2⊗X1 Γl

==

=

. . .. . .

. . . . . .

A

A

AA
A

A

A

AA
A

Figure 4.

Finally, let α ∈ AK(C). Since τC(©±1;α) = Θ±α and EndC(1) = k is a field, we
see that α is normalizable if and only if Θ±α �= 0.

2.4. Algebraic Kirby elements via ribbon functors

Let us see that algebraic Kirby elements can be ‘pulled back’ via ribbon functors.
Let A, B, and C be ribbon k-categories. Suppose that the functor (1.5) for A admits
a coend (A, i) and that the functor (1.5) for B admits a coend (B, j). Let π : A → C
and ι : B → C be ribbon functors. Since A and B are categorical Hopf algebras and
π and ι are ribbon functors, the objects π(A) and ι(B) are Hopf algebras in C (with
structure maps induced by π and ι respectively).

Proposition 2.12. Suppose that π is surjective, ι is full and faithful, and that
there exists a Hopf algebra morphism ϕ : ι(B) → π(A) such that π(iX) = ϕ ◦ ι(jY )
for all objects X ∈ A and Y ∈ B with π(X) = ι(Y ). Let β ∈ HomB(1, B) and
α ∈ HomA(1, A) such that π(α) = ϕ ◦ ι(β).

(a) If β ∈ AK(B), then α ∈ AK(A) and τA(L;α) = τB(L;β) for any framed
link L.

(b) If β ∈ AK(B)norm, then α ∈ AK(A)norm and τA(M ;α) = τB(M ;β) for any
3-manifold M .

Proof. Let us prove part (a). Suppose that β ∈ AK(B). Since the structure
maps of π(A) and ι(B) are induced by π and ι from those of A and B respectively,
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and since ϕ : ι(B) → π(A) is a Hopf algebra morphism, we have

π(SAα − α) = (Sπ(A) − idπ(A))π(α) = (Sπ(A) − idπ(A))ϕι(β)
= ϕ(Sι(B) − idι(B))ι(β) = ϕι(SBβ − β)

and

π(ΓA
l (α ⊗ α) − α ⊗ α) = (Γπ(A)

l − idπ(A)⊗2)(π(α) ⊗ π(α))

= (Γπ(A)
l − idπ(A)⊗2)ϕι(β ⊗ β)

= ϕ(Γι(B)
l − idι(B)⊗2)ι(β ⊗ β)

= ϕι(ΓB
l (β ⊗ β) − β ⊗ β).

Now, since SBβ − β and ΓB
l (β ⊗ β) − β ⊗ β are negligible in B, ι is full, and

trBq = trCq ◦ ι, we get that π(SAα − α) and π(ΓA
l (α ⊗ α) − α ⊗ α) are negligible

in C. Hence, since π is surjective and trCq ◦ π = trAq , the morphisms SAα − α and
ΓA

l (α ⊗ α) − α ⊗ α are negligible in A, that is, α ∈ AK(A).
Let L = L1 ∪ . . . ∪ Ln be a framed link in S3. Let TL be a ribbon n-handle

such that L is isotopic to TL ◦ (∪ ⊗ . . . ⊗ ∪), where the ith cup (with clockwise
orientation) corresponds to the component Li. Let Y1, . . . , Yn be any objects of B.
Since π is surjective, there exist objects X1, . . . , Xn of A such that π(Xk) = ι(Yk).
Recall that, by assumption, π(iXk

) = ϕι(jYk
). Since ι is full and the domain and

codomain of the morphism π(φA
TL

)ϕ⊗n of C are ι(B⊗n) and 1 = ι(1) respectively,
there exists a morphism ξ : B⊗n → 1 in B such that ι(ξ) = π(φA

TL
)ϕ⊗n. Then

ι
(
φB

TL
◦ (jY1 ⊗ . . . ⊗ jYn

)
)

= ι(TB
L(Y1,...,Xn )) = T C

L(ι(Y1),...,ι(Yn )) = T C
L(π(X1),...,π(Xn )) = π(TA

L(X1,...,Xn ))

= π(φA
TL

)(π(iX1) ⊗ . . . ⊗ π(iXn
)) = π(φA

TL
)(ϕι(jY1) ⊗ . . . ⊗ ϕι(jYn

))

= π(φA
TL

)ϕ⊗n ◦ ι(jY1 ⊗ . . . ⊗ jYn
) = ι

(
ξ ◦ (jY1 ⊗ . . . ⊗ jYn

)
)
.

Therefore, since ι is faithful, φB
TL

◦ (jY1 ⊗ . . . ⊗ jYn
) = ξ ◦ (jY1 ⊗ . . . ⊗ jYn

) and so,
by the uniqueness of the factorization through a coend, we get φB

TL
= ξ, that is,

ι(φB
TL

) = π(φA
TL

)ϕ⊗n. Hence, since the maps EndA(1) = k → EndC(1) = k and
EndB(1) = k → EndC(1) = k induced by π and ι respectively are the identity of k,
we have

τC(L;α) = π(τC(L;α)) = π(φA
TL

α⊗n) = π(φA
TL

)ϕ⊗nι(β⊗n)

= ι(φB
TL

β⊗n) = ι(τB(L;β)) = τB(L;β).

Let us prove part (b). Suppose that β ∈ AK(B)norm. Let Y be any object of B.
Since π is surjective, there exists an object X of A such that π(X) = ι(Y ). Recall
that, by assumption, π(iX) = ϕ◦ι(jY ). Since ι is full and the domain and codomain
of the morphism π(ΘA

±)ϕ of C are ι(B) and 1 = ι(1) respectively, there exists a
morphism ς± : B → 1 in B such that ι(ς±) = π(ΘA

±)ϕ. We have

ι(ς± ◦ ι(jY )) = π(ΘA
±)ϕ ◦ ι(jY ) = π(ΘA

±iX) = π(evA
X(idX∗ ⊗ θA±1

X ))

= evC
π(X)(idπ(X)∗ ⊗ θC±1

π(X)) = ι(evB
Y )(ι(idY ∗) ⊗ ι(θBY )±1)

= ι(evB
Y (idY ∗ ⊗ θB±1

Y )) = ι(ΘB
± ◦ jY ).

Therefore, since ι is faithful, ΘB
± ◦ jY = ς± ◦ ι(jY ) and so, by the uniqueness of the

factorization through a coend, we get ΘB
± = ς±, that is, ι(ΘB

±) = π(ΘA
±)ϕ. Then
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ΘC
±α = π(ΘA

±α) = π(ΘA
±)ϕι(β) = ι(ΘB

±β) = ΘB
±β. Hence, since ΘB

±β �= 0, we get
α ∈ AK(A)norm and τA(M ;α) = τB(M ;β) for any 3-manifold M .

3. The case of semisimple ribbon categories

In this section, we focus on the case of semisimple categories B. We give sufficient
conditions for belonging to AK(B). In particular, we show that there exist (even
in the non-modular case) elements of AK(B) corresponding to Reshetikhin–Turaev
invariants computed with finitely semisimple ribbon subcategories of B. Moreover,
we study Kirby elements coming from semisimplification of ribbon categories.

3.1. Semisimple categories

Recall that a category B admits (finite) direct sums if, for any finite set of objects
X1, . . . , Xn of B, there exist an object X and morphisms pi : X → Xi such that, for
any object Y and morphisms fi : Y → Xi, there is a unique morphism f : Y → X
with pi ◦ f = fi for all i. The object X is then unique up to isomorphism. We write
X =

⊕
i Xi and f =

⊕
i fi.

A k-category is abelian if it admits (finite) direct sums, every morphism has
a kernel and a cokernel, every monomorphism is the kernel of its cokernel, every
epimorphism is the cokernel of its kernel, and every morphism is expressible as
the composite of an epimorphism followed by a monomorphism. In particular, an
abelian category admits a null object (which is unique up to isomorphism). Note
that a morphism of an abelian k-category which is both a monomorphism and an
epimorphism is an isomorphism.

Let B be an abelian k-category. A non-null object U of B is said to be simple
if every non-zero monomorphism V → U is an isomorphism, and every non-zero
epimorphism U → V is an isomorphism. Any non-zero morphism between simple
objects is an isomorphism. An object U of B is scalar if EndB(V ) = k. Note that
if k is algebraically closed, then every simple object is scalar. An object of B is
indecomposable if it cannot be written as a direct sum of two non-null objects.
Note that every scalar or simple object is indecomposable.

By a semisimple k-category, we shall mean an abelian k-category for which
every object is a (finite) direct sum of simple objects. By a finitely semisimple
k-category, we shall mean a semisimple k-category which has finitely many
isomorphism classes of simple objects. Note that in a semisimple k-category,
every scalar or indecomposable object is simple.

Let B be a semisimple ribbon k-category. If the HomB(X,Y ) are all finite-
dimensional (this is the case for example when the simple objects are scalar), then
any negligible morphism of B is null (see [5]). Therefore, for every pair of objects
X,Y of B, the pairing

HomB(X,Y ) ⊗ HomB(Y,X) → k, f ⊗ g �→ trq(gf) (3.1)

is non-degenerate. Note that this implies that the quantum dimension of a scalar
object of B is invertible.

Lemma 3.1. Let B be a finitely semisimple ribbon k-category whose simple
objects are scalar. Let Λ be a (finite) set of representatives of isomorphism classes
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of simple objects of B. Fix an object X of B. For any λ ∈ Λ, set

nλ = dimk HomB(λ,X) = dimk HomB(X,λ)

and let {fλ
i | 1 � i � nλ} be a basis of HomB(λ,X) and {gλ

i | 1 � i � nλ} be a
basis of HomB(X,λ) such that gλ

i fλ
j = δi,j idλ for all 1 � i, j � nλ (such bases exist

since the pairing (3.1) is non-degenerate). Then

idX =
∑
λ∈Λ

∑
1�i�nλ

fλ
i gλ

i .

Proof. Since the category B is semisimple, the composition induces a k-linear
isomorphism

⊕
λ∈Λ HomB(X,λ) ⊗ HomB(λ,X) → EndB(X). Therefore, for all

λ ∈ Λ and 1 � i, j � nλ, there exist aλ,i,j ∈ k such that

idX =
∑
λ∈Λ

∑
1�i,j�nλ

aλ,i,j fλ
i gλ

j .

Let λ ∈ Λ and 1 � i, j � nλ. Then

δi,j idλ = gλ
i fλ

j = gλ
i idX fλ

j =
∑
µ∈Λ

∑
1�k,l�nλ

aµ,k,l g
λ
i fµ

k gµ
l fλ

j

=
∑
µ∈Λ

∑
1�k,l�nλ

aµ,k,l δλ,µ δi,k δj,l idµ = aλ,i,j idλ,

and so aλ,i,j = δi,j . Hence idX =
∑

λ∈Λ

∑
1�i�nλ

fλ
i gλ

i .

3.2. Algebraic Kirby elements of finitely semisimple ribbon categories

Let B be a finitely semisimple ribbon k-category whose simple objects are scalar.
Note that the assumptions on B imply that the k-spaces HomB(X,Y ) are finite-
dimensional. Denote by Λ a (finite) set of representatives of isomorphism classes
of simple objects of B. We can suppose that 1 ∈ Λ. For any λ ∈ Λ, there exists a
unique λ∨ ∈ Λ such that λ∗ 
 λ∨. The map ∨ : Λ → Λ is an involution and 1∨ = 1.
Recall that dimq(λ) �= 0 for any λ ∈ Λ. Set

B =
⊕
λ∈Λ

λ∗ ⊗ λ ∈ B.

In particular, there exist morphisms pλ : B → λ∗ ⊗ λ and qλ : λ∗ ⊗ λ → B such
that idB =

∑
λ∈Λ qλpλ and pλqµ = δλ,µ idλ∗⊗λ. Let X be an object of B. Since B is

semisimple, we can write X =
⊕

i∈I λi, where I is a finite set and λi ∈ Λ. We set

jX =
∑
i∈I

qλi
◦ (Q∗

i ⊗ Pi) : X∗ ⊗ X → B,

where Pi : X → λi and Qi : λi → X are morphisms in B such that

idX =
∑
i∈I

QiPi and PiQj = δi,j idλi
.

Note that jX does not depend on the choice of such morphisms Pi and Qi. Remark
that jλ = qλ for any λ ∈ Λ. One easily verifies that (B, j) is a coend of the functor
(1.5) for B. By § 1.6, the object B is a Hopf algebra in B.

For any λ ∈ Λ, set eλ = jλ c̃oevλ : 1 → B and fλ = evλpλ : B → 1. Note that we
have fλeµ = δλ,µ dimq(λ) for any λ, µ ∈ Λ.
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B

B

B

B

B

λ∗

λ∗

λ∗

λ∗

λ

λ

idλ∗

idλ∗

SB

eλ

eλ∨jλ∗

jλ∗

= = =

(a) SB (eλ) = eλ∨

B B

B

B

B

B

B

µ

λ
λ

λ

pµ

= δλ,µ = δλ,µ
eλ

eλ

∆B

fµ

jλ

jλ

qλ

=

(b) (idB ⊗ fµ)∆B (eλ) = δλ,µeλ

Figure 5.

Lemma 3.2. (a) The family (eλ)λ∈Λ is a basis of the k-space HomB(1, B).
(b) The family (fλ)λ∈Λ is a basis of the k-space HomB(B,1).
(c) For any λ, µ ∈ Λ, we have SB(eλ) = eλ∨ , ηB = e1, εB(eλ) = dimq(λ),

(idB ⊗ fµ)∆B(eλ) = δλ,µeλ, and mB(eλ ⊗ eµ) =
∑

ν∈Λ Nν
λ,µeν , where Nν

λ,µ =
dimk HomB(λ ⊗ µ, ν).

Proof. Let us prove part (a). For any λ ∈ Λ, the k-space HomB(1, λ∗⊗λ) is one-
dimensional (since λ is scalar) with basis c̃oevλ. Therefore, for any g ∈ HomB(1, B),
there exists xλ ∈ k such that pλg = xλ c̃oevλ, and so g = idBg =

∑
λ∈Λ qλpλg =∑

λ∈Λ xλeλ. Hence the family (eλ)λ∈Λ generates HomB(1, B). To show that it is free,
suppose that

∑
λ∈Λ xλeλ = 0. Then, for any µ ∈ Λ, 0 =

∑
λ∈Λ xλfµeλ = dimq(µ)xµ

and so xµ = 0 since dimq(µ) �= 0.
Part (b) can be shown similarly. Let us prove part (c). Let λ, µ ∈ Λ. By

definition, ηB = j1 = j1 c̃oev1 = e1 (since c̃oev1 = id1) and εB(eλ) = εBjλ c̃oevλ =
evλ c̃oevλ = dimq(λ). The equalities SB(eλ) = eλ∨ and (idB ⊗ fµ)∆B(eλ) = δλ,µeλ

are shown in Figures 5(a) and 5(b) respectively. Write λ ⊗ µ =
⊕

i∈I λi. In
particular, there exist morphisms Pi : λ ⊗ µ → λi and Qi : λi → λ ⊗ µ such that
idλ⊗µ =

∑
i∈I QiPi and PiQj = δi,j idλi

. Recall that jλ⊗µ =
∑

i∈I jλi
(Q∗

i ⊗Pi). For
any ν ∈ Λ, since HomB(λ ⊗ µ, ν) ∼=

⊕
i∈I HomB(λi, ν), we have

Nν
λ,µ = dimk HomB(λ ⊗ µ, ν) =

∑
i∈I

δλi ,ν .

Then the equality mB(eλ ⊗ eµ) =
∑

ν∈Λ Nν
λ,µeν is shown in Figure 6.

Since B is semisimple with scalar simple objects, the negligible morphisms of B
are null. Therefore a morphism α ∈ HomB(1, B) is an algebraic Kirby element of
B if and only if it satisfies SBα = α and Γl(α ⊗ α) = α ⊗ α.
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∑
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i∈I
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)
=

∑
ν∈Λ

Nν
λ,µ

= =

Figure 6. mB (eλ ⊗ eµ) =
∑

ν∈Λ Nν
λ,µeν .

Lemma 3.3. Let α =
∑

λ∈Λ αλeλ ∈ HomB(1, B), where αλ ∈ k. Suppose that
α ∈ AK(B). Set Λα = {λ ∈ Λ | αλ �= 0}. Then α = α1

∑
λ∈Λα

dimq(λ)eλ. Moreover
we have Λ∨

α = Λα and mB(α ⊗ eλ) = dimq(λ)α = mB(eλ ⊗ α) for all λ ∈ Λα.

Proof. By Lemma 3.2(c), since SB(α) = α, we have αλ = αλ∨ for all λ ∈ Λ and
so Λ∨

α = Λα. Let µ, ν ∈ Λ. Since Γr(α ⊗ α) = α ⊗ α and by using Lemma 3.2(c),
we have

dimq(µ)dimq(ν)αναµ = (fν ⊗ fλ)(α ⊗ α) = (fν ⊗ fµ)Γr(α ⊗ α)

=
∑

λ,ω∈Λ

αλαω (fν ⊗ fµ)Γr(eλ ⊗ eω)

=
∑

λ,ω∈Λ

αλαω fνmB(eλ ⊗ (idB ⊗ fµ)∆B(eω))

=
∑
λ∈Λ

αλαµ fνmB(eλ ⊗ eµ)

=
∑

λ,ω∈Λ

αλαµNω
λ,µ fνeω =

∑
λ∈Λ

αλαµNν
λ,µdimq(ν),

and so

dimq(µ)αµαν = αµ

∑
λ∈Λ

Nν
λ,µαλ. (3.2)
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Note that N1
λ,µ = dimk HomB(λ⊗µ,1) = dimk HomB(λ, µ∗) = δλ,µ∨ for all λ, µ ∈ Λ.

Hence (3.2) gives dimq(µ)αµα1 = αµαµ∨ = α2
µ and so αµ = α1dimq(µ) whenever

αµ �= 0, that is, α = α1
∑

λ∈Λα
dimq(λ)eλ. Finally, for any µ ∈ Λα,

mB(α ⊗ eµ) =
∑
λ∈Λ

αλ mB(eλ ⊗ eµ) =
∑

λ,ν∈Λ

Nν
λ,µαλ eν

=
∑
ν∈Λ

dimq(µ)ανeν (by (3.2) since αµ �= 0)

= dimq(µ)α.

Likewise, using Γl(α ⊗ α) = α ⊗ α, one gets mB(eµ ⊗ α) = dimq(µ)α.

By Lemma 3.3, determining AK(B) resumes to find the subsets E of Λ for which∑
λ∈E dimq(λ)eλ belongs to AK(B). In the next theorem, we show that among

these subsets, there are those corresponding to monoidal subcategories of B.

Theorem 3.4. Let D be a semisimple ribbon full subcategory of B. Let ΛD be
a (finite) set of representatives of isomorphism classes of simple objects of D. We
can suppose that ΛD ⊂ Λ. Then

∑
λ∈ΛD

dimq(λ)eλ is an algebraic Kirby element
of B.

Remark 3.5. We do not know if every algebraic Kirby element of B is of this
form (up to scalar multiples). Nevertheless, in Corollary 3.8, we explore some cases
where this holds.

Remark 3.6. In Section 3.3, we verify that
∑

λ∈ΛD
dimq(λ)eλ leads to the

Reshetikhin–Turaev invariant defined using D.

Remark 3.7. If B is modular in the sense that the pairing ωB : B ⊗ B → 1
is non-degenerate (see § 1.6) or, equivalently, that the S-matrix is invertible, then∑

λ∈Λ dimq(λ)eλ is a two-sided integral of B (see [11]) and so belongs to AK(B).
Nevertheless,

∑
λ∈Λ dimq(λ)eλ is not in general a two-sided integral of B.

Proof of Theorem 3.4. Firstly, since Λ∨
D = ΛD and by Lemma 3.2(c), we have

SB(αD) =
∑

λ∈ΛD

dimq(λ)SB(eλ) =
∑

λ∈ΛD

dimq(λ∨)eλ∨ = αD.

Secondly, to show Γr(αD⊗αD) = αD⊗αD, it suffices to show Γr(αD⊗eλ) = αD⊗eλ

for any λ ∈ ΛD. Fix λ ∈ ΛD. Let µ, ν ∈ ΛD and set nµ,ν = dimk HomB(ν ⊗ λ, µ).
Since the pairing g ⊗ f ∈ HomB(ν ⊗ λ, µ) ⊗ HomB(µ, ν ⊗ λ) �→ trq(gf) ∈ k is
non-degenerate, there exist a basis {fµ,ν

i | 1 � i � nµ,ν} of HomB(µ, ν ⊗ λ) and a
basis {gµ,ν

i | 1 � i � nµ,ν} of HomB(ν ⊗ λ, µ) such that gµ,ν
j fµ,ν

i = δi,j idµ for all
1 � i, j � nµ,ν . By Lemma 3.1, we have∑

µ∈Λ

∑
1�i�nµ,ν

fµ,ν
i gµ,ν

i = idν⊗λ. (3.3)

Let µ, ν ∈ ΛD. For any 1 � i � nµ,ν , set

F ν,µ
i = (gµ,ν

i ⊗ idλ∗)(idν ⊗ coevλ) : ν → µ ⊗ λ∗,

Gν,µ
i = (idν ⊗ ẽvλ)(fµ,ν

i ⊗ idλ) : µ ⊗ λ∗ → ν.
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One easily checks that {F ν,µ
i | 1 � i � nµ,ν} is a basis for HomB(ν, µ ⊗ λ∗) and

{Gν,µ
i | 1 � i � nµ,ν} is a basis for HomB(µ ⊗ λ∗, ν). For any 1 � i, j � nµ,ν , since

Gν,µ
j F ν,µ

i ∈ EndB(ν) and ν is scalar, we have

dimq(ν)Gν,µ
j F ν,µ

i = trq(G
ν,µ
j F ν,µ

i ) idν = trq(F
ν,µ
i Gν,µ

j ) idν

= trq

(
(gµ,ν

i ⊗ idλ)(idν ⊗ coevλ)(idν ⊗ ẽvλ)(fµ,ν
j ⊗ idλ)

)
idν

= trq(g
µ,ν
i fµ,ν

j ) idν = trq(δi,j idµ) idν = δi,j dimq(µ) idν .

Therefore, by Lemma 3.1,∑
ν∈Λ

∑
1�i�nµ,ν

dimq(ν)F ν,µ
i Gν,µ

i = dimq(µ) idµ⊗λ∗ . (3.4)

Finally one gets Γr(αD ⊗ eλ) = αD ⊗ eλ by the equalities depicted in Figure 7,
where dν = dimq(ν). Note that, in Figure 7, the dinaturality of j, the definition of
mB and ∆B , and equalities (3.3) and (3.4) are used.

Recall that an object X of B is invertible if X∗ ⊗ X is isomorphic to 1.

Corollary 3.8. Suppose that either every simple object of B is invertible,
or the field k = R or C and the quantum dimensions of the simple objects are
positive. Then every algebraic Kirby element of B is a scalar multiple of αD =∑

λ∈ΛD
dimq(λ)eλ, where D is some semisimple ribbon full subcategory of B and

ΛD ⊂ Λ is a (finite) set of representatives of isomorphism classes of simple objects
of D.

Proof. By Theorem 3.4, each αD (and so its scalar multiples) is an algebraic
Kirby element of B. Conversely, let α =

∑
λ∈Λ αλeλ be a non-zero algebraic Kirby

element of B. By Lemma 3.3, α1 �= 0 and αλ = α1 dimq(λ) whenever αλ �= 0. Set
Λα = {λ ∈ Λ | αλ �= 0} and let D be full subcategory of B additively generated by
Λα. Note that Λα is then a set of representatives of isomorphism classes of simple
objects of D. Firstly, let us show that D is closed under the tensor product. Fix
µ, ν ∈ Λα, and let λ ∈ Λ be a direct factor of µ⊗ ν. We have to show that λ ∈ Λα,
that is, αλ �= 0. Equation (3.2) gives

dimq(ν)αλ =
∑

ω∈Λα

Nλ
ω,ναω = α1

∑
ω∈Λα

Nλ
ω,νdimq(ω). (3.5)

Suppose that every simple object of B is invertible. Note that this implies that the
tensor product of two simple objects is simple. Therefore λ 
 µ⊗ν and Nλ

ω,ν = δω,µ.
We get, from (3.5), dimq(ν)αλ = αµ �= 0. Hence αλ �= 0.

Suppose that k = R or C and the quantum dimensions of the simple objects are
positive. Since dimq(ω) > 0, Nλ

ω,ν � 0, and Nλ
µ,ν = dimk HomB(µ ⊗ ν, λ) � 1, we

see from (3.5) that dimq(ν)αλ � Nλ
µ,νdimq(µ) > 0. Hence αλ �= 0.

In all cases, we get that D is closed under tensor product. Moreover, D is closed
under duality since Λ∨

α = Λα by Lemma 3.3. Hence D is a semisimple ribbon full
subcategory of B, and α = α1

∑
λ∈Λα

dimq(λ)eλ = α1αD.

3.3. On the Reshetikhin–Turaev invariant

Let B be a finitely semisimple ribbon k-category whose simple objects are scalar.
Let Λ be a set of representatives of isomorphism classes of simple objects of B.
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Figure 7. Γr(αD ⊗ eλ) = αD ⊗ eλ .

Set ∆± =
∑

λ∈Λ v±1
λ dimq(λ)2 ∈ k, where vλ ∈ k is the (invertible) scalar defined

by θλ = vλ idλ. Recall (see [26, 4]) that the Reshetikhin–Turaev invariant of 3-
manifolds is well defined when ∆+ �= 0 �= ∆−. Moreover, if L is a framed link in
S3, it is given by

RTB(ML) = ∆b−(L)−nL

+ ∆−b−(L)
−

∑
c∈Col(L)

( n∏
j=1

dimq(c(Lj))
)

F (L, c) ∈ k.

Here Col(L) is the set of functions c : {L1, . . . , Ln} → Λ, where L1, . . . , Ln are the
components of L, and F (L, c) ∈ EndB(1) = k is the morphism represented by a
plane diagram of L where the component Lj is colored with the object c(Lj).

By Theorem 3.4, αB =
∑

λ∈Λ dimq(λ)eλ ∈ AK(B), where eλ is defined as in § 3.2.
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Corollary 3.9. Suppose that ∆± �= 0. Then αB is a normalizable algebraic
Kirby element of B and τB(M ;αB) = RTB(M) for any 3-manifold M .

Proof. We have

Θ±αB =
∑
λ∈Λ

dimq(λ) evλ(idλ∗ ⊗ θ±1
λ )c̃oevλ =

∑
λ∈Λ

v±1
λ dimq(λ)2 = ∆± �= 0.

Therefore, since αB ∈ AK(B), one gets αB ∈ AK(B)norm.
Let L = L1 ∪ . . . ∪ Ln be a framed link in S3. Let TL be a ribbon n-handle

such that L is isotopic to TL ◦ (∪ ⊗ . . . ⊗ ∪), where the ith cup corresponds to the
component Li. Then F (L, c) = φTL

◦ (jc(L1) c̃oevc(L1) ⊗ . . . ⊗ jc(Ln ) c̃oevc(Ln )) =
φTL

◦ (ec(L1) ⊗ . . . ⊗ ec(Ln )) for any c ∈ Col(L). Therefore

∑
c∈Col(L)

( n∏
j=1

dimq(c(Lj))
)

F (L, λ)

=
∑

c∈Col(L)

φTL
◦

(
dimq(c(L1)) ec(L1) ⊗ . . . ⊗ dimq(c(Ln))ec(Ln )

)

= φTL
◦

( ∑
λ1∈Λ

dimq(λ1)eλ1 ⊗ . . . ⊗
∑

λn ∈Λ

dimq(λn)eλn

)

= φTL
◦ (αB ⊗ . . . ⊗ αB).

Hence

RTB(ML) = ∆b−(L)−nL

+ ∆−b−(L)
−

∑
λ∈Col(L)

( n∏
j=1

dimq(λ(Lj))
)

F (L, λ)

= (Θ+αB)b−(L)−nL (Θ−αB)−b−(L) φTL
◦ (αB ⊗ . . . ⊗ αB)

= τB(ML;αB).

3.4. Semisimplification of ribbon categories

Let C be a ribbon k-category. For any objects X,Y ∈ C, recall that NeglC(X,Y )
denotes the k-space of negligible morphisms of C from X to Y (see § 1.4). Let Cs

be the category whose objects are the same as in C, and whose morphisms are

HomCs (X,Y ) = HomC(X,Y )/NeglC(X,Y )

for any objects X,Y ∈ Cs. The composition, monoidal structure, braiding, twist,
and duality of Cs are induced by those of C.

When C has finite-dimensional Hom’s k-spaces, the category Cs is a semisimple
ribbon k-category, called the semisimplification of C, and the simple objects of Cs

are the indecomposable objects of C with non-zero quantum dimension; see [5].
Let π : C → Cs be the functor defined by π(X) = X and π(f) = f + NeglC(X,Y )

for any object X and any morphism f : X → Y in C. This is a surjective ribbon
functor. Note that π is bijective on the objects.

3.5. Algebraic Kirby elements from semisimplification

Let C be a ribbon k-category which admits a coend (A, i) for the functor (1.5)
and whose Hom’s spaces are finite-dimensional. Denote by Cs the semisimplification
of C and let π : C → Cs be its associated surjective ribbon functor (see § 3.4).
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Let B be a finitely semisimple ribbon full subcategory of Cs whose simple objects
are scalar. Let Λ be a (finite) set of representatives of isomorphism classes of simple
objects of B containing 1. For any object X of Cs, we denote by π−1(X) the (unique)
object of C such that π(π−1(X)) = X.

Let B =
⊕

λ∈Λ λ∗ ⊗ λ. In particular, there exist morphisms pλ : B → λ∗ ⊗ λ and
qλ : λ∗ ⊗ λ → B of B such that idB =

∑
λ∈Λ qλpλ and pλqµ = δλ,µ idλ∗⊗λ. For any

object X of B, we let jX : X∗ ⊗ X → B as in § 3.2. Recall that (B, j) is a coend of
the functor (1.5) for B, and that jλ = qλ for any λ ∈ Λ (see § 3.2).

Since B is a ribbon full subcategory of Cs and π is a ribbon functor, the objects
B and π(A) are Hopf algebras in Cs. Set

ϕ =
∑
λ∈Λ

π(iπ−1(λ))pλ ∈ HomCs (B, π(A)). (3.6)

Lemma 3.10. The map ϕ : B → π(A) is a Hopf algebra morphism such that
π(iX) = ϕjπ(X) for all objects X of C with π(X) ∈ B.

Proof. Let X be an object of C such that π(X) ∈ B. Since B is semisimple, we
can write π(X) =

⊕
k∈K λk, where K is a finite set and λk ∈ Λ. Recall that jπ(X) =∑

k∈K qλk
(Q∗

k ⊗Pk), where Pk : π(X) → λk and Qk : λk → π(X) are morphisms in
B such that idπ(X) =

∑
k∈K PkQk and PkQl = δk,l idλk

. For any k ∈ K, since π
is surjective, there exist morphisms fk : X → π−1(λk) and gk : π−1(λk) → X in C
such that π(fk) = Pk and π(gk) = Qk. Then, using the dinaturality of i and since
the functor π is ribbon, we have

ϕjπ(X) =
∑
λ∈Λ

∑
k∈K

π(iπ−1(λ))pλqλk
(Q∗

k ⊗ Pk) =
∑
λ∈Λ

∑
k∈K
λk =λ

π(iπ−1(λ))(Q∗
k ⊗ Pk)

=
∑
λ∈Λ

∑
k∈K
λk =λ

π
(
iπ−1(λ)(g∗k ⊗ fk)

)
=

∑
λ∈Λ

∑
k∈K
λk =λ

π
(
iX(idX∗ ⊗ gkfk)

)

= π(iX)
(
idπ(X)∗ ⊗

∑
k∈K

QkPk

)
= π(iX)(idπ(X)∗ ⊗ idπ(X)) = π(iX).

Let us verify that ϕ is a Hopf algebra morphism. Let λ, µ ∈ Λ. Set U = π−1(λ)
and V = π−1(µ). We have επ(A)ϕjλ = π(εAiU ) = π(evU ) = evλ = εBjλ,

∆π(A)ϕjλ = π(∆AiU ) = π((iU ⊗ iU )(idU∗ ⊗ coevU ⊗ idU ))
= (ϕjλ ⊗ ϕjλ)(idλ∗ ⊗ coevλ ⊗ idλ) = (ϕ ⊗ ϕ)∆Bjλ,

mπ(A)(ϕjλ ⊗ ϕjµ) = π(mA(iU ⊗ iV )) = π(iV ⊗U (γU,V ⊗ idV ⊗U )(idU∗ ⊗ cU,V ∗⊗V ))
= ϕjµ⊗λ(γλ,µ ⊗ idµ⊗λ)(idλ∗ ⊗ cλ,µ∗⊗µ)) = ϕmB(jλ ⊗ jµ),

and

Sπ(A)ϕjλ = π(SAiU ) = π((evU ⊗ iU∗)(idU∗ ⊗ cU∗∗,U ⊗ idU∗)(coevU∗ ⊗ cU∗,U ))
= (evλ ⊗ ϕjλ∗)(idλ∗ ⊗ cλ∗∗,λ ⊗ idλ∗)(coevλ∗ ⊗ cλ∗,λ) = ϕSBjλ.

Therefore, since idB =
∑

λ∈Λ jλpλ, we get επ(A)ϕ = εB , ∆π(A)ϕ = (ϕ ⊗ ϕ)∆B ,
mπ(A)(ϕ⊗ϕ) = ϕmB , and Sπ(A)ϕ = ϕSB . Finally, we conclude by remarking that
ϕηB = ϕj1 = π(i1) = π(ηA) = ηπ(A).

From Lemma 3.10 and Proposition 2.12, we get the following result.
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Corollary 3.11. Let β ∈ HomB(1, B) and α ∈ HomC(1, A) with π(α) = ϕβ.
(a) If β ∈ AK(B), then α ∈ AK(C) and τC(L;α) = τB(L;β) for any framed

link L.
(b) If β ∈ AK(B)norm, then α ∈ AK(C)norm and τC(M ;α) = τB(M ;β) for any

3-manifold M .

Remark 3.12. By Corollaries 3.9 and 3.11, we get, in particular, the fact that
the Reshetikhin–Turaev invariant defined from a finitely semisimple ribbon full
subcategory of the semisimple quotient of a ribbon category C can be directly
defined in C by picking its corresponding algebraic Kirby element.

Remark 3.13. By Corollary 3.11, we have⋃
B

π−1
(
ϕB(AK(B))

)
⊂ AK(C) and

⋃
B

π−1
(
ϕB(AK(B)norm)

)
⊂ AK(C)norm,

where B runs over finitely semisimple ribbon full subcategories of Cs whose simple
objects are scalar, and ϕB is the morphism (3.6) corresponding to B. We will see
in § 4 that these inclusions may be strict (see Remark 4.11). This means that the
semisimplification process ‘lacks’ some invariants.

4. The case of categories of representations

In this section, we focus on the case of the category repH of representations of
a finite-dimensional ribbon Hopf algebra H. In particular, we describe AK(repH)
in purely algebraic terms. One of the interests of such a description is to avoid the
representation theory of H, which may be of wild type. Moreover, we show that
the 3-manifolds invariants obtained with these Kirby elements can be computed by
using the Kauffman–Radford algorithm (even in the non-unimodular case).

4.1. Finite-dimensional Hopf algebras

All considered algebras are supposed to be over the field k. Let H be a finite-
dimensional Hopf algebra. Recall that a left (respectively right) integral for H
is an element Λ ∈ H such that xΛ = ε(x)Λ (respectively Λx = ε(x)Λ) for all
x ∈ H. A left (respectively right) integral for H∗ is then an element λ ∈ H∗ such
that x(1)λ(x(2)) = λ(x) 1 (respectively λ(x(1))x(2) = λ(x) 1) for all x ∈ H. Since
H is finite-dimensional, the space of left (respectively right) integrals for H is one-
dimensional, and there always exist a non-zero right integral λ for H∗ and a non-zero
left integral Λ for H such that λ(Λ) = λ(S(Λ)) = 1; see [20, Proposition 3].

By [23, Corollary 2], the space H∗ endowed with the right H-action defined, for
any f ∈ H∗ and h, x ∈ H, by

〈f · h, x〉 = 〈f, hx〉, (4.1)

is a free H-module of rank 1 with basis every non-zero right integral λ for H∗.
Likewise, H endowed with the right H∗-action ↼ defined, for any f ∈ H∗ and
x ∈ H, by

x ↼ f = f(x(1))x(2), (4.2)

is a free H∗-module of rank 1 with basis S(Λ), where Λ is a non-zero left integral
for H.
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Lemma 4.1. Let λ be a right integral for H∗ and Λ be a left integral for H such
that λ(Λ) = λ(S(Λ)) = 1. Let a ∈ H and f ∈ H∗. Then

(a) a = λ(aΛ(1))S(Λ(2)) = λ(S(Λ(2))a) Λ(1),
(b) f = λ · a if and only if a = (f ⊗ S)∆(Λ).

Proof. Let us prove part (a). Since λ is a right integral for H∗ and Λ is a left
integral for H such that λ(Λ) = 1, we have

λ(aΛ(1))S(Λ(2)) = λ(a(1)Λ(1)) a(2)Λ(2) S(Λ(3))
= λ(a(1)Λ(1)) a(2)ε(Λ(2))
= λ(a(1)Λ) a(2) = λ(Λ) ε(a(1))a(2) = a.

The second equality of part (a) can be proved similarly.
Let us prove part (b). If f = λ · a then, by part (a), we have

a = λ(aΛ(1))S(Λ(2)) = f(Λ(1))S(Λ(2)) = (f ⊗ S)∆(Λ).

Conversely, if a = (f ⊗ S)∆(Λ) then, by part (a), we have

λ(ax) = λ(f(Λ(1))S(Λ(2))x) = f(λ(S(Λ(2))x)Λ(1)) = f(x)

for all x ∈ H, and so f = λ · a.

Recall that an element h ∈ H is grouplike if ∆(g) = g⊗g and ε(g) = 1. We denote
by G(H) the space of grouplike elements of H. Recall (see [1]) that there exist a
unique grouplike element g of H such that x(1)λ(x(2)) = λ(x) g for any x ∈ H and
any right integral λ ∈ H∗, and a unique grouplike element ν ∈ G(H∗) = Alg(H, k)
such that Λx = ν(x)Λ for any x ∈ H and any left integral Λ ∈ H. The element
g ∈ H (respectively ν ∈ H∗) is called the distinguished grouplike element of H
(respectively of H∗). The Hopf algebra H is said to be unimodular if its integrals
are two-sided, that is, if ν = ε.

By [23, Theorem 3 and Proposition 3], right integrals for H∗ and distinguished
grouplike elements of H and H∗ are related, for all x, y ∈ H, by

λ(xy) = λ(S2(y ↼ ν)x) = λ((S2(y) ↼ ν)x) and λ(S(x)) = λ(gx). (4.3)

4.2. Quasitriangular Hopf algebras

Following [8], a Hopf algebra H is quasitriangular if it is endowed with an
invertible element R ∈ H ⊗ H (the R-matrix) such that R∆(x) = σ∆(x)R for
any x ∈ H, where σ : H ⊗ H → H ⊗ H denotes the usual flip map, and

(idH ⊗ ∆)(R) = R13R12 and (∆ ⊗ idH)(R) = R13R23.

The R-matrix satisfies

(ε ⊗ idH)(R) = (idH ⊗ ε)(R) = 1, (4.4)

(S ⊗ idH)(R) = R−1 = (idH ⊗ S−1)(R). (4.5)

The Drinfeld element u associated to R is u = m(S ⊗ idH)σ(R) ∈ H. It is
invertible, with u−1 = m(idH ⊗S2)(R21) and satisfies S2(x) = uxu−1 for all x ∈ H.

Let H be a finite-dimensional quasitriangular Hopf algebra and let ν ∈ H∗ be
the distinguished grouplike element of H∗. Set hν = (idH ⊗ ν)(R) ∈ H. One easily
verifies that hν is grouplike.
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4.3. Ribbon Hopf algebras

Following [24], we say that a ribbon Hopf algebra is a quasitriangular Hopf
algebra H endowed with a central invertible element θ ∈ H (the twist) such that
S(θ) = θ and ∆(θ) = (θ ⊗ θ)R21R. Note that the twist satisfies

θ−2 = uS(u) = S(u)u and ε(θ1) = 1.

Set G = θu ∈ H. Then G is grouplike and satisfies

S(u) = G−1uG−1 and S2(x) = GxG−1 for all x ∈ H. (4.6)

The element G is called the special grouplike element of H. By [21, Theorem 2] and
(4.6), the special grouplike element G of a finite-dimensional ribbon Hopf algebra
H is related to the distinguished grouplike element g of H and to hν by g = G2hν .
Together with (4.3), this implies that

λ(S(x)) = λ(G2hνx) for all x ∈ H. (4.7)

4.4. Category of representations of a ribbon Hopf algebra

Let H be a ribbon Hopf algebra with R-matrix R and twist θ. Denote by repH

the k-category of finite-dimensional left H-modules and H-linear homomorphisms.
The category repH is a monoidal k-category with tensor product and unit object
defined in the usual way using the comultiplication and counit of H. The category
repH possesses a left duality: for any module M ∈ repH , set M∗ = Homk(M, k),
where h ∈ H acts as the transpose of x ∈ M �→ S(h)x ∈ M . The duality
morphism evM : M∗ ⊗ M → 1 = k is the evaluation pairing and, if (ek)k is a
basis of M with dual basis (e∗k)k, then coev(1k) =

∑
k ek ⊗ e∗k. The category repH

is braided: for modules M,N ∈ repH , the braiding cM,N : M ⊗ N → N ⊗ M is the
composition of multiplication by R and the flip map σM,N : M ⊗ N → N ⊗ M .
The category repH is ribbon: for any module M ∈ repH , the twist θM : M → M
is the multiplication by θ. Recall, see § 1.1, that repH possesses a right duality
M ∈ repH �→ (M∗, ẽvM , c̃oevM ). Finally, the k-category repH is pure, that is,
EndrepH

(k) = k. Hence repH is a ribbon k-category in the sense of § 1.2.

Lemma 4.2. Let G be the special grouplike element of H and M be a finite-
dimensional left H-module. Then:

(a) ẽvM (m ⊗ f) = f(Gm) for any f ∈ M∗ and m ∈ M ;
(b) c̃oevM = (idM∗ ⊗ G−1idM )σM,M∗coevM .

Proof. Write R =
∑

i ai ⊗ bi. Recall that u =
∑

i S(bi)ai. Then

ẽvM (m ⊗ f) = evM cM,M∗(θM ⊗ idM∗)(m ⊗ f)

=
∑

i

evM (bif ⊗ aiθm) =
∑

i

f(S(bi)aiθm)

= f(uθm) = f(Gm).

Let (ek)k be a basis of M and (e∗k)k be its dual basis. Note that if g is any k-linear
endomorphism of M , then

∑
k g∗(e∗k)⊗ ek =

∑
k e∗k ⊗ g(ek). For any h ∈ H, denote

by ρ(h) the k-linear endomorphism of M defined by m ∈ M �→ hm ∈ M . Recall
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that R−1 =
∑

i S(ai) ⊗ bi and u−1 =
∑

i biS
2(ai). Then

c̃oevM (1k) = (idM∗ ⊗ θ−1
M )(cM∗,M )−1coevM (1k)

=
∑
k,i

S(ai)e∗k ⊗ θ−1bi · ek

=
∑

i

(
idM∗ ⊗ ρ(θ−1bi)

)(∑
k

e∗k ⊗ ρ(S2(ai))(ek)
)

=
(
idM∗ ⊗ ρ

(
θ−1

∑
i

biS
2(ai)

))(∑
k

e∗k ⊗ ek

)
=

(
idM∗ ⊗ ρ(θ−1u−1)

)
σM,M∗coevM (1k)

= (idM∗ ⊗ G−1idM )σM,M∗coevM (1k).

This completes the proof of the lemma.

We immediately deduce from Lemma 4.2 that, in the category repH , we have

trq(f) = Tr(Gf) = Tr(G−1f) and dimq(M) = Tr(G idM ) = Tr(G−1idM )

for all modules M ∈ repH and all H-linear endomorphisms f of M , where Tr
denotes the usual trace of k-linear endomorphisms.

4.5. Braided Hopf algebra associated to ribbon Hopf algebras

Let H be a finite-dimensional ribbon Hopf algebra. The ribbon k-category repH

of finite-dimensional left H-modules possesses a coend (A, i) for the functor (1.5).
More precisely, A = H∗ = Homk(H, k) as a k-space and is endowed with the
coadjoint left H-action � given, for any f ∈ A and h, x ∈ H, by

〈h � f, x〉 = 〈f, S(h(1))xh(2)〉, (4.8)

where 〈 , 〉 denotes the usual pairing between a k-space and its dual. Given a
module M ∈ repH , the map iM : M∗ ⊗ M → A is given by

〈iM (l ⊗ m), x〉 = 〈l, xm〉, (4.9)

for all l ∈ M∗, m ∈ M , and x ∈ H.

Lemma 4.3. If ξ is a dinatural transformation from the functor (1.5) for repH

to a module Z ∈ repH , then the (unique) morphism r : A → Z such that ξM = riM
for all M ∈ repH is given by f ∈ A = H∗ �→ r(f) = ξH(f ⊗ 1H).

Recall (see § 1.6) that A is a Hopf algebra in repH . Using Lemma 4.3, one can
describe the structural morphisms of A explicitly in terms of the structure maps of
the Hopf algebra H. Nevertheless, it is more convenient to write down its pre-dual
structural morphisms: for example, since A = H∗ as a k-space and H is finite-
dimensional, the pre-dual of the multiplication mA : A⊗A → A of A is a morphism
∆Bd : H → H ⊗ H such that (∆Bd)∗ = mA. This yields a k-space HBd = H
endowed with a comultiplication ∆Bd : HBd → HBd⊗HBd, a counit εBd : HBd

1 → k,
a unit ηBd : k → HBd, a multiplication mBd : HBd ⊗HBd → HBd, and an antipode
SBd : HBd → HBd. These structure maps, described in the following lemma, satisfy
the same axioms as those of a Hopf algebra except that the usual flip maps are
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replaced by the braiding of repH . The space HBd is called the braided Hopf algebra
associated to H; see [19, 17].

Lemma 4.4 (cf. [16]). The braided Hopf algebra HBd associated to H can be
described as follows: HBd = H as an algebra, εBd = ε, and

∆Bd(x) =
∑

i

x(2)ai ⊗ S(bi(1))x(1)bi(2) =
∑

i

S(ai(1))x(1)ai(2) ⊗ S(bi)x(2),

SBd
α (x) =

∑
i

S(ai)θ2S(x)ubi =
∑

i

S(ai)S(x)S(u)−1bi,

for any x ∈ H, where R =
∑

i ai ⊗ bi is the R-matrix, u the Drinfeld element, and
θ the twist of H.

4.6. Algebraic Kirby elements of ribbon Hopf algebras

Throughout this section, H will denote a finite-dimensional ribbon Hopf algebra
with R-matrix R ∈ H⊗H and twist θ ∈ H. Let u ∈ H be the Drinfeld element of H,
G = θu be the special grouplike element of H, λ ∈ H∗ be a non-zero right integral
for H∗, Λ ∈ H be a non-zero left integral for H such that λ(Λ) = λ(S(Λ)) = 1,
g ∈ G(H) be the distinguished grouplike element of H, ν ∈ G(H∗) = Alg(H, k)
be the distinguished grouplike element of H∗, and hν = (idH ⊗ ν)(R) ∈ G(H).
Let (A, i) be the coend of the functor (1.5) for repH , and let HBd be the braided
Hopf algebra associated to H. By § 4.5, A = H∗ is endowed with the coadjoint left
H-action � and A is a Hopf algebra in the category repH whose structure maps are
dual to those of HBd. Recall that · denotes the right action of H on H∗ defined in
(4.1) and ↼ denotes the right H∗-action on H defined in (4.2).

Let φ : H → Homk(k,H∗), T : H → H, and ψ : H⊗n → Homk(H∗⊗n, k) be the
maps defined, for z ∈ H, X ∈ H⊗n, and F ∈ H∗⊗n, by

φz(1k) = λ · z, T (z) = (S(z) ↼ ν)hν , and ψX(F ) = 〈F,X〉.
Denote by � be the right action of H on H⊗n given by

(x1 ⊗ . . . ⊗ xn) � h = S(h(1))x1h(2) ⊗ . . . ⊗ S(h(2n−1))xnh(2n)

for any h ∈ H and x1, . . . , xn ∈ H. Set

L(H) = {z ∈ H | (x ↼ ν)z = zx for any x ∈ H},
N(H) = {z ∈ L(H) | λ(za) = 0 for any a ∈ Z(H)},
Vn(H) = {X ∈ H⊗n | X � h = ε(h)X for any h ∈ H}.

Note that if H is unimodular, then L(H) = Z(H) and T (z) = S(z) for all z ∈ H.
By the definition of L(H) and by (4.3), we have

λ(zxy) = λ(zS2(y)x) (4.10)

for all z ∈ L(H) and x, y ∈ H.

Lemma 4.5. We have the following.
(a) The map φ is a k-isomorphism with inverse given by

α ∈ Homk(k,H∗) �→ φ−1(α) = (α(1k) ⊗ S)∆(Λ) ∈ H.

(b) The map φ induces a k-isomorphism between L(H) and HomrepH
(k, A).
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(c) The map φ induces a k-isomorphism between N(H) and NeglrepH
(k, A).

(d) The map ψ induces a k-isomorphism between Vn(H) and HomrepH
(A⊗n, k).

(e) V1(H) = Z(H).

Proof. Let us prove part (a). Since (H∗, ·) is a free right H-module of rank 1 with
basis λ, φ is an isomorphism. The expression of φ−1 follows from Lemma 4.1(b).

Let us prove part (b). Let z ∈ H. We have to show that z ∈ L(H) if and only if
φz is H-linear. Suppose first that φz is H-linear. For all a, h ∈ H,

ε(h)λ(za) = 〈ε(S−1(h))φz(1k), a〉 = 〈S−1(h) � φz(1k), a〉
= λ(zh(2)aS−1(h(1))) = λ((S(h(1)) ↼ ν)zh(2)a) by (4.3),

and so, since (H∗, ·) is a free right H-module of rank 1 with basis λ,

ε(h)z = (S(h(1)) ↼ ν)zh(2) = ν−1(h(2))S(h(1))zh(3) (4.11)

for all h ∈ H. Hence, for any x ∈ H,

(x ↼ ν)z = ν(x(1))x(2)z = ν(x(1))x(2)ε(x(3))z

= ν(x(1)) ν−1(x(4))x(2)S(x(3))zx(5) (by (4.11))

= ν(x(1)) ν−1(x(3)) ε(x(2)) zx(4) = ν(x(1)) ν−1(x(2)) zx(3)

= ε(x(1)) zx(2) = zx,

and so z ∈ L(H). Conversely, suppose that z ∈ L(H). Then, for any x, h ∈ H,

λ(zS(h(1))xh(2)) = λ(zS2(h(2))S(h(1))x) (by (4.10))
= λ(zS(h(1)S(h(2)))x) = ε(h)λ(zx),

and so φz is H-linear.
Let us prove part (d). Note that ψ is an isomorphism since H is finite-dimensional.

Let X ∈ H⊗n. For all h ∈ H and F ∈ H∗⊗n, we have ψX(h � F ) = 〈F,X � h〉 and
ε(h)ψX(F ) = 〈F, ε(h)X〉. Therefore ψX is H-linear if and only if X ∈ Vn(H).

Let us prove part (e). Let a ∈ Z(H). For all h ∈ H,

a � h = S(h(1))ah(2) = S(h(1))h(2)a = ε(h) a

and so a ∈ V1(H). Conversely, let a ∈ V1(H). For all x ∈ H,

xa = x(1)ε(x(2)) a = x(1)(a � x(2)) = x(1)S(x(2))ax(3) = ε(x(1)) ax(2) = ax,

and so a ∈ Z(H).
Finally, let us prove part (c). Let z ∈ L(H). Since EndrepH

(k) = k, we have that
φz is negligible if and only if ψaφz = λ(za) = 0 for all a ∈ V1(H) = Z(H), that is,
if and only if z ∈ N(H).

Lemma 4.6. We have the following:
(a) L(H) is a commutative algebra with product ∗ defined by

x ∗ z = λ(xS(z(2))) z(1) = λ(zS(x(2)))x(1)

= λ(z(1)S
−1(x)) z(2) = λ(x(1)S

−1(z))x(2)

for any x, z ∈ L(H), and with S(Λ) as unit element;
(b) for any z ∈ L(H), SAφz = φT (z), where SA denotes the antipode of the

categorical Hopf algebra A;
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(c) T induces on L(H) an involutory algebra automorphism, that is, T 2(x) = x,
T (x ∗ z) = T (x) ∗ T (z), and T (S(Λ)) = S(Λ) for all x, z ∈ L(H).

Proof. Let us prove part (a). Since A is a Hopf algebra in repH , the space
HomrepH

(k, A) is an algebra for the convolution product α∗β = mA(α⊗β) and with
unit element ηA. This algebra structure transports to L(H) via the k-isomorphism
φ : L(H) → HomrepH

(k, A). Let x, z ∈ L(H). Then

x ∗ z = φ−1(φx ∗ φz) = φ−1(mA(φx ⊗ φz))
= 〈mA(φx ⊗ φz)(1k),Λ(1)〉S(Λ(2)) (by Lemma 4.5(a))

= 〈λ · x ⊗ λ · z,∆Bd(Λ(1))〉S(Λ(2)).

Write R =
∑

i ai ⊗ bi. By using Lemma 4.4, (4.4) and (4.10), we have

x ∗ z =
∑

i

λ(xΛ(2)ai)λ(zS(bi(1))Λ(1)bi(2))S(Λ(3))

=
∑

i

λ(xΛ(2)ai)λ(zS2(bi(2))S(bi(1))Λ(1))S(Λ(3))

=
∑

i

λ(xΛ(2)aiε(bi))λ(zΛ(1))S(Λ(3)),

= λ(xΛ(2))λ(zΛ(1))S(Λ(3)). (4.12)

Likewise

x ∗ z =
∑

i

λ(xS(ai(1))Λ(1)ai(2))λ(zS(bi)Λ(2))S(Λ(3))

=
∑

i

λ(xS2(ai(2))S(ai(1))Λ(1))λ(zS(bi)Λ(2))S(Λ(3))

=
∑

i

λ(xΛ(1))λ(zS(ε(ai) bi)Λ(2))S(Λ(3)),

= λ(xΛ(1))λ(zΛ(2))S(Λ(3)). (4.13)

Now, by Lemma 4.1(a),

z = λ(zΛ(1))S(Λ(2)), (4.14)
x = λ(xΛ(1))S(Λ(2)), (4.15)

so that

z(1) ⊗ S−1(z(2)) = λ(zΛ(1))S(Λ(3)) ⊗ Λ(2), (4.16)

x(1) ⊗ S−1(x(2)) = λ(xΛ(1))S(Λ(3)) ⊗ Λ(2). (4.17)

Hence

x ∗ z = λ(xΛ(2))λ(zΛ(1))S(Λ(3)) (by (4.12))

= λ(xS−1(z(2))) z(1) (by (4.16))
= λ(xS(z(2))) z(1) (by (4.10)),

x ∗ z = λ(zΛ(1))λ(xΛ(2))S(Λ(3)) (by (4.12))
= λ(zΛ(1))λ(x(1)Λ(2))x(2)Λ(3)S(Λ(4))

= λ(x(1)S
−1(z))x(2) (by (4.14)),
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and

x ∗ z = λ(xΛ(1))λ(zΛ(2))S(Λ(3)) (by (4.13))

= λ(zS−1(x(2)))x(1) (by (4.17))
= λ(zS(x(2)))x(1) (by (4.10)),

x ∗ z = λ(xΛ(1))λ(zΛ(2))S(Λ(3)) (by (4.13))
= λ(xΛ(1))λ(z(1)Λ(2)) z(2)Λ(3)S(Λ(4))

= λ(z(1)S
−1(x)) z(2) (by (4.15)).

Note that these expressions of the product of L(H) show that L(H) is commutative.
Moreover, by Lemma 4.5(a), the unit element of L(H) is

φ−1(ηA) = (ηA(1) ⊗ S)∆(Λ) = (ε ⊗ S)∆(Λ) = S(Λ).

Let us prove part (b). Let z ∈ L(H). Write R =
∑

i ai ⊗ bi. For any x ∈ H,

〈SAφz(1k), x〉 = 〈λ · z, SBd(x)〉
=

∑
i

λ(zS(ai)θ2S(x)ubi) (by Lemma 4.4)

=
∑

i

λ(zS2(u)S2(bi)S(ai)θ2S(x)) (by (4.10))

= λ(zu2θ2S(x)) (since S2(u) = u and (S ⊗ S)(R) = R)

= λ(zG2S(x)) = λ((G2 ↼ ν)zS(x)) = ν(G2)λ(G2zS(x))

= ν(G2)λ(G2hνxS−1(z)G−2) (by (4.7))

= ν(G2)λ((G−2 ↼ ν)G2hνxS−1(x)) (by (4.3))

= ν(G2) ν(G−2)λ(hνxS−1(z))
= λ((S(z) ↼ ν)hνx) (by (4.3))
= λ(T (z)x) = 〈φT (z)(1k), x〉,

that is, SAφz = φT (z).
Let us prove part (c). Let z ∈ L(H). Firstly T (z) ∈ L(H) since φT (z) = SAφz

is H-linear. Moreover, since S2
A = θA and the twist of repH is natural and satisfies

θk = idk, we have

T 2(z) = φ−1(φT 2(z)) = φ−1(S2
Aφz) = φ−1(θAφz) = φ−1(φzθk) = φ−1(φz) = z.

For any x, z ∈ L(H), we have

φT (x∗z) = SAφx∗z = SA(φx ∗ φz) = SAmA(φx ⊗ φz)
= mA(SA ⊗ SA)cA,A(φx ⊗ φz) = mA(SA ⊗ SA)(φz ⊗ φx)ck,k

= mA(SAφz ⊗ SAφx) = φT (z) ∗ φT (x) = φT (z)∗T (x),

and so T (x ∗ z) = T (z) ∗ T (x) = T (x) ∗ T (z). Finally, T (S(Λ)) = S(Λ) since
φT (S(Λ)) = SAφS(Λ) = SAηA = ηA = φS(Λ).

In the next theorem, we describe the sets AK(repH) and AK(repH)norm in
algebraic terms. Set

AK(H) = φ−1(AK(repH)) and AK(H)norm = φ−1(AK(repH)norm),
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where φ : L(H) → HomrepH
(k,A) is as in Lemma 4.5. The elements of AK(H) are

called the algebraic Kirby elements of H. Note that AK(H)norm ⊂ AK(H) and,
since ηA ∈ AK(repH)norm and by Lemma 4.6, we have S(Λ) ∈ AK(H)norm.

Theorem 4.7. The set AK(H) is constituted by the element z ∈ L(H)
satisfying:

(a) T (z) − z ∈ N(H), that is, λ(T (z)a) = λ(za) for all a ∈ Z(H);
(b)

∑
i λ(zxi(1))λ(zxi(2)yi) =

∑
i λ(zxi)λ(zyi) for all X =

∑
i xi ⊗ yi ∈ V2(H).

In particular, AK(H) contains the elements z ∈ L(H) satisfying T (z) = z and
λ(zx(1))zx(2) = λ(zx)z for all x ∈ H. Moreover, an element z ∈ AK(H) belongs to
AK(H)norm if and only if λ(zθ) �= 0 �= λ(zθ−1).

Note that the sets AK(H) and AK(H)norm do not depend on the choice of the
non-zero right integral λ for H∗. In § 5, we give an example of the determination of
these sets for a family of non-unimodular ribbon Hopf algebras.

Proof. Let z ∈ L(H). By Lemma 4.6(b), we have SAφz = φT (z). Therefore, using
Lemma 4.5(c), we get SAφz − φz ∈ NeglrepH

(k, A) if and only if T (z) − z ∈ N(H),
that is, if and only if λ(T (z)a) = λ(za) for all a ∈ Z(H). Note that this last property
is, in particular, satisfied when T (z) = z.

Since EndrepH
(k) = k, the morphism Γr(φz⊗φz)−φz⊗φz : k → A⊗A is negligible

if and only if G ◦
(
Γr(φz ⊗ φz) − φz ⊗ φz

)
= 0 for any G ∈ HomrepH

(A ⊗ A, k).
By Lemma 4.5(d), this is equivalent to ψX(Γr(φz ⊗ φz) − φz ⊗ φz) = 0 for all
X ∈ V2(H). Now, writing R =

∑
i ai ⊗ bi and using Lemma 4.4, we have, for any

x, y ∈ H,

〈Γr(φz ⊗ φz)(1k), x ⊗ y〉
= 〈(mA ⊗ idA)(idA ⊗ ∆A)(λ · z ⊗ λ · z), x ⊗ y〉
= 〈(idA ⊗ ∆A)(λ · z ⊗ λ · z),∆Bd(x) ⊗ y〉
=

∑
i

〈(idA ⊗ ∆A)(λ · z ⊗ λ · z), S(ai(1))x(1)ai(2) ⊗ S(bi)x(2) ⊗ y〉

=
∑

i

〈λ · z ⊗ λ · z, S(ai(1))x(1)ai(2) ⊗ S(bi)x(2)y〉

=
∑

i

λ(zS(ai(1))x(1)ai(2))λ(zS(bi)x(2)y)

=
∑

i

λ(zS2(ai(2))S(ai(1))x(1))λ(zS(bi)x(2)y) (by (4.10))

=
∑

i

λ(zx(1))λ(zS(ε(ai)bi)x(2)y)

= λ(zx(1))λ(zx(2)y) (by (4.4)).

Therefore the morphism Γr(φz⊗φz)−φz⊗φz : k → A⊗A is negligible if and only if
λ(zxi(1))λ(zxi(2)yi) = λ(zxi)λ(zyi) for all X =

∑
xi ⊗ yi ∈ V2(H). Note that this

last property is, in particular, satisfied when λ(zx(1))λ(zx(2)y) = λ(zx)λ(zy) for
all x, y ∈ H, that is (since (H∗, ·) is a free right H-module of rank 1 with basis λ),
when λ(zx(1)) zx(2) = λ(zx) z for all x ∈ H. Finally, by using Lemma 4.3, we have

Θ±φz = evH(idH∗ ⊗ θ±1
H )(φz(1k) ⊗ 1H) = evH(λ · z ⊗ θ±1) = λ(zθ±1).
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Corollary 4.8. We have 1 ∈ AK(H) if and only if H is unimodular.

Proof. Suppose H is unimodular. Therefore L(H) = Z(H) and T (z) = S(z) for
all z ∈ Z(H). In particular, 1 ∈ L(H) and T (1) = 1. Moreover, λ(x(1))x(2) = λ(x)1
for all x ∈ H (since λ is a right integral for H∗). Hence 1 ∈ AK(H) by Theorem 4.7.

Conversely, suppose that 1 ∈ AK(H). In particular, 1 ∈ L(H) and so z ↼ ν = z
for all z ∈ H. Therefore ε(z) = ε(z ↼ ν) = ν(z(1))ε(z(2)) = ν(z) for all z ∈ H, that
is, H is unimodular.

4.7. Algebraic Kirby elements from semisimplification

Let H be a finite-dimensional ribbon Hopf algebra. Let (A, i) be the coend of
the functor (1.5) for repH (as in § 4.5). Denote by reps

H the semisimplification of
repH and by π its associated surjective ribbon functor repH → reps

H (see § 3.4). Let
φ : L(H) → HomrepH

(k, A) be as in § 4.6. Set

AK(H)s =
⋃
B

φ−1
(
π−1

(
ϕB(AK(B))

))
,

where B runs over (equivalence classes of) finitely semisimple ribbon full sub-
categories of reps

H whose simple objects are scalar, and ϕB is the morphism (3.6)
corresponding to B. By Corollary 3.11, we have AK(H)s ⊂ AK(H). Note that this
inclusion may be strict (see Remark 4.11).

Let V be a set of representatives of isomorphism classes of indecomposable
finite-dimensional left H-modules with non-zero quantum dimension. Note that
π(V) = {π(V ) | V ∈ V} is a set of representatives of isomorphism classes of simple
objects of reps

H . Let λ be a non-zero right integral for H∗. Since H∗ is a free right
H-module with basis λ (see § 4.1), there exists a (unique) element zV ∈ H such
that

λ(zV x) = Tr(G−1x idV ) (4.18)

for all x ∈ H, where G is the special grouplike element of H. Recall that
dimq(V ) = Tr(G−1idV ) denotes the quantum dimension of V (see Lemma 4.2).

Corollary 4.9. (a) If z ∈ AK(H)s, then z = k
∑

V ∈W dimq(V ) zV for some
finite subset W of V and some scalar k ∈ k.

(b) Let W be a set of representatives of isomorphism classes of simple objects of a
finitely semisimple ribbon full subcategory of reps

H . We can suppose that W ⊂ π(V).
If the objects of W are scalar, then∑

V ∈π−1(W)

dimq(V ) zV ∈ AK(H)s.

Proof. Let B be finitely semisimple ribbon full subcategory of reps
H whose

simple objects are scalar, and let (B, j) be the coend of the functor (1.5) for
B (as in § 3.2). We can suppose that there exists a (finite) subset W of V such
that π(W) is a set of representatives of isomorphism classes of simple objects of
B. Recall that B =

⊕
V ∈W π(V )∗ ⊗ π(V ). In particular, there exist morphisms

pV : B → π(V )∗ ⊗ π(V ) and qV : π(V )∗ ⊗ π(V ) → B of B such that idB =∑
V ∈W qV pV and pV qW = δV,W idπ(V )∗⊗π(V ). Recall that jV = qV for any V ∈ W.
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Let φ : L(H) → HomrepH
(k, A) be as in § 4.6. As in (3.6), we set

ϕB =
∑

V ∈W
π(iV )pV ∈ Homreps

H
(B, π(A)).

Let V ∈ W. Let (ei)i be a basis of V with dual basis (e∗i )i. By Lemma 4.2(b) and
(4.9) we have

〈iV c̃oevV (1k), x〉 = 〈iV (idV ∗ ⊗ G−1idV )σV,V ∗ coevV (1k), x〉
=

∑
i

〈iV (e∗i ⊗ G−1ei), x〉 =
∑

i

〈e∗i , xG−1ei〉

= Tr(xG−1idV ) = Tr(G−1x idV ) = λ(zV x) = 〈φzV
(1k), x〉,

for any x ∈ H, that is, iV c̃oevV = φzV . Moreover,

ϕBjπ(V ) c̃oevπ(V ) =
∑

W∈W
π(iW )pW jπ(V ) c̃oevπ(V ) = π(iV c̃oevV ) = π(φzV

).

Hence part (a) follows from Lemma 3.3 and Corollary 3.11(a), and part (b) follows
from Theorem 3.4 and Corollary 3.11(a).

Lemma 4.10. If H is not semisimple, then ε(z) = 0 for any z ∈ AK(H)s.

Remark 4.11. When H is not semisimple, it is possible that AK(H)s �

AK(H). For example, if H is unimodular but not semisimple, then 1 ∈ AK(H)
(by Corollary 4.8) and 1 �∈ AK(H)s (by Lemma 4.10, since ε(1) = 1).

Proof of Lemma 4.10. Let Λ be a left integral for H such that λ(Λ) = 1. Since H
is not semisimple, we have ε(Λ) = 0 (by [1, Theorem 3.3.2]) and Λ2 = ε(Λ)Λ = 0.
Now, if M is a finite-dimensional left H-module, then (Λ idM )2 = Λ2idM = 0 and
so Tr(Λ idM ) = 0. Let z ∈ AK(H)s. By Corollary 4.9(a), there exist k ∈ k and a
finite subset W of V such that z = k

∑
V ∈W dimq(V ) zV . Then

λ(zΛ) = k
∑

V ∈W
dimq(V )Tr(G−1Λ idV ) = k

∑
V ∈W

dimq(V )ε(G−1) Tr(Λ idV ) = 0.

Hence ε(z) = ε(z)λ(Λ) = λ(ε(z)Λ) = λ(zΛ) = 0.

Recall (see [7]) that k is a splitting field for a k-algebra A if every simple
finite-dimensional left A-module is scalar. Note that this is always the case if k

is algebraically closed.

Corollary 4.12. If H is semisimple and k is a splitting field for H, then
AK(H)s = AK(H) and this set is composed by elements z ∈ Z(H) satisfying
S(z) = z and λ(zx(1))zx(2) = λ(zx)z for all x ∈ H.

Proof. Since H is semisimple and finite-dimensional, we have reps
H = repH and

that V is finite. Moreover, since k is a splitting field for H, every V ∈ V is scalar.
Then AK(H) = φ−1(AK(repH)) ⊂ AK(H)s and so AK(H)s = AK(H). Moreover,
since H is unimodular (because it is semisimple), we have L(H) = Z(H), N(H) = 0,
and T (x) = S(x) for all x ∈ H (see § 4.6). Therefore, by using Theorem 4.7, we get
that z ∈ AK(H) if and only if z ∈ Z(H), S(z) = z, and λ(zx(1))zx(2) = λ(zx)z for
all x ∈ H.
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Proposition 4.13. Suppose that H is semisimple and that k is a splitting field
for H of characteristic 0. Then Z(H) =

⊕
V ∈VkzV and

∑
V ∈V dimq(V ) zV ∈ k∗1.

Proof. Note that H is cosemisimple since any finite-dimensional semisimple
Hopf algebra over a field of characteristic 0 is cosemisimple (see [14, Theorem
3.3]). Then S2 = idH by [13, Theorem 4] and λ(1) �= 0 by [1, Theorem 3.3.2].

Note that V is finite (since H is finite-dimensional). By [7, Theorem 25.10], any
simple left ideal of H is isomorphic (as a left H-module) to a (unique) element of V.
For any V ∈ V, let HV ⊂ H be the sum of all the simple left ideals of H which are
isomorphic to V . By [7, Theorem 25.15], HV is a two-sided ideal of H, HV is a simple
k-algebra (the operations being those induced by H), HV HW = 0 for V �= W ∈ V,
H =

⊕
V ∈V HV , and H is isomorphic (as an algebra) to

∏
V ∈V HV . Moreover, if eV

denotes the unit of HV , then 1 =
∑

V ∈V eV , HV = HeV , and eV eW = δV,W eV for
all V,W ∈ V. By [7, Theorem 26.4], since HV is a simple k-algebra, V is a simple
left HV -module, and EndHV

(V ) = k (because V is a scalar H-module), we have
that HV is isomorphic (as an algebra) to Endk(V ) and that dimk(V ) is the number
of simple left ideals appearing in a direct sum decomposition of HV as such a
sum. Then Z(HV ) = keV (since Z(Endk(V )) = k idV ) and so Z(H) =

⊕
V ∈V keV .

Moreover, for any x ∈ H, we have

Tr(x idH) =
∑
V ∈V

Tr(x idHV
) =

∑
V ∈V

dimk(V )Tr(x idV ). (4.19)

The map x ∈ H �→ Tr((x idH) ◦ S2) ∈ k is a right integral for H∗ (by [23,
Proposition 2(b)] applied to Hop). Therefore, since S2 = idH and, by the uniqueness
of integrals, there exists k ∈ k such that Tr(x idH) = k λ(x) for all x ∈ H. Then
k = dimk(H)/λ(1) and so, by (4.19), we get, for all x ∈ H,

k λ(x) =
∑
V ∈V

dimk(V )Tr(x idV ). (4.20)

Let V ∈ V. By (4.6) and since S2 = idH , the special grouplike element G of H is
central and so G−1idV is H-linear. Therefore, since V is scalar and G is invertible,
there exists a (unique) γV ∈ k∗ such that G−1idV = γV idV . Since H and H∗ are
semisimple and so unimodular, their special grouplike elements are trivial. Then
G2 = 1 (since g = G2hν) and so γ2

V = 1. Hence, for all x ∈ H,

dimq(V )Tr(G−1x idV ) = Tr(G−1idV )Tr(xG−1idV )

= γ2
V Tr(idV )Tr(x idV ) = dimk(V )Tr(x idV ). (4.21)

For any x ∈ H, we have

λ(dimq(V ) zV x) = dimq(V )Tr(G−1x idV ) (by (4.18))
= dimk(V )Tr(x idV ) (by (4.21))

=
∑

W∈V
dimk(W )Tr(xeV idW ) (since eV idW = δV,W idV )

= λ(k eV x) (by (4.20)),

and so dimq(V ) zV = k eV (since H∗ is a free right H-module with basis λ).
Finally, since k = dimk(H)/λ(1) �= 0 (because the characteristic of k is 0) and

dimq(V ) �= 0 (because repH is semisimple, see § 3.1), we get Z(H) =
⊕

V ∈V keV =⊕
V ∈V kzV and

∑
V ∈V dimq(V ) zV = k

∑
V ∈V eV = k 1 ∈ k∗1.
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4.8. HKR-type invariants

Let H be a finite-dimensional ribbon Hopf algebra. We use the notation of § 4.6.
By Theorem 2.6 and Proposition 2.3, for any z ∈ AK(H)norm,

τ(H,z)(M) = τrepH
(M ;φz) ∈ k (4.22)

is an invariant of 3-manifolds. Note that the choice of the normalization in
the definition of τrepH

(M ;φz) (see Proposition 2.3) implies that τ(H,z)(M) does
not depend on the choice of the non-zero right integral λ for H∗ used to define
τrepH

(M ;φz).
By Remark 2.8, for any z ∈ AK(H)norm, we have τ(H,z)(S3) = 1 and τ(H,z)

is multiplicative with respect to the connected sum. Moreover, by Remark 2.9, if
z ∈ AK(H)norm, n ∈ N(H), and k ∈ k∗, then kz + n ∈ AK(H)norm and, for all
3-manifolds M ,

τ(H,kz+n)(M) = τ(H,z)(M). (4.23)

Definition 4.14. An invariant of closed 3-manifolds I with values in k is said
to be of HKR-type if there exist a finite-dimensional ribbon Hopf algebra H (over k)
and z ∈ AK(H)norm such that I(M) = τ(H,z)(M) for all 3-manifolds M .

In Proposition 4.17, we show that the Reshetikhin–Turaev invariants defined from
premodular Hopf algebras (as quantum groups) are of HKR-type.

Let us show that any HKR-type invariant can be computed by using the
Kauffman–Radford algorithm (which is given in [10] for the case H unimodular
and for z = 1). Fix a finite-dimensional ribbon Hopf algebra H, a non-zero right
integral λ for H∗, and an element z ∈ AK(H)norm. Let M be a 3-manifold and
L = L1 ∪ . . . ∪ Ln be a framed link in S3 such that M 
 ML. Let us recall the
Kauffman–Radford algorithm (the algorithm given here corresponds to that of [10]
when using the ribbon Hopf algebra opposite to H).

(A) Consider a diagram D of L (with blackboard framing). Each crossing of D is
decorated with the R-matrix R =

∑
i ai ⊗ bi as in Figure 8. The diagram obtained

after this step is called the flat diagram of D. Note that the flat diagram of D is
composed by n closed plane curves, each of them arising from a component of L.

ai
bibi

∑
i

∑
i

S(ai)

Figure 8.

(B) On each component of the flat diagram of D, the algebraic decoration is
concentrated in an arbitrary point (other than extrema and crossings) according to
the rules of Figure 9, where a, b ∈ H.

In that way we get an element
∑

k vk
1 ⊗ . . . ⊗ vk

n ∈ H⊗n, where vk
i corresponds

to the component of the flat diagram of D arising from Li; see Figure 10.
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a a
aa

a S(a) a
a
b ab 1S(a)

G−1G

Figure 9.

vk
1 vk

2

vk
n

L1 L2 Ln

∑
k

Figure 10.

For 1 � i � n, let di be the Whitney degree of the flat diagram of Li obtained
by traversing it upwards from the point where the algebraic decorations have been
concentrated. The Whitney degree is the total turn of the tangent vector to the
curve when one traverses it in the given direction; see Figure 11.

d = 1 d = −1 di = −2vk
i

Figure 11.

Proposition 4.15. We have

τ(H,z)(M) = λ(zθ)b−(L)−nL λ(zθ−1)−b−(L)
∑

k

λ(zGd1+1vk
1 ) . . . λ(zGdn +1vk

n).

Proof. Choose an orientation for L. Let T be a ribbon n-handle such that L
is isotopic to T ◦ (∪ ⊗ . . . ⊗ ∪), where the ith cup (with clockwise orientation)
corresponds to the component Li. Let DT be a diagram of T . Note that D =
DT ◦(∪⊗ . . .⊗∪) is a diagram of L. Apply steps (A) and (B) to DT as in Figure 12.
Note that, in this case, di = −1.

vk
1 vk

n

T

∑
k

Figure 12.

From the definition of the monoidal structure, duality, braiding and twist of
repH (see § 4.4), it is not difficult to verify that, for any finite-dimensional left
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H-modules M1, . . . ,Mn,

T(M1,...,Mn ) =
∑

k

evM1(idM∗
1
⊗ v1

k idM1) ⊗ . . . ⊗ evMn
(idM∗

n
⊗ vn

k idMn
).

Then, by Lemma 4.3,

τrepH
(L;φz) = φT ◦ φ⊗n

z =
∑

k

evH(φz(1k) ⊗ v1
k) ⊗ . . . ⊗ evH(φz(1k) ⊗ vn

k )

=
∑

k

λ(zvk
1 ) . . . λ(zvk

n) =
∑

k

λ(zGd1+1vk
1 ) . . . λ(zGdn +1vk

n).

Hence the result follows since Θ±φz = λ(zθ±1).

Corollary 4.16. Suppose that H is unimodular and λ(θ) �= 0 �= λ(θ−1).
Then 1 ∈ AK(H)norm and τ(H,1)(M) is the Hennings–Kauffman–Radford invariant
of 3-manifolds defined with the opposite ribbon Hopf algebra Hop to H.

Proof. This is an immediate consequence of Corollary 4.8, Proposition 4.15,
and the definition of the Hennings–Kauffman–Radford invariant given, for example,
in [10].

4.9. Reshetikhin–Turaev from premodular Hopf algebras

Let (H,V) be a finite-dimensional premodular Hopf algebra. This means that
(see [26]) H is a finite-dimensional ribbon Hopf algebra and V is a finite set of
finite-dimensional pairwise non-isomorphic simple left H-modules such that:

(i) each V ∈ V is non-negligible and scalar;
(ii) the trivial left H-module k belongs to V;
(iii) for any V ∈ V, there exists W ∈ V such that V ∗ 
 W ;
(iv) for any V,W ∈ V, V ⊗ W splits as a (finite) direct sum of certain modules

of V (possibly with multiplicities) and a negligible H-module.
By a negligible H-module we mean a finite-dimensional left H-module N such that
trq(f) = 0 for any f ∈ EndrepH

(N) or, equivalently, such that dimq(N) = 0.
Consider the semisimplification reps

H of repH (see § 3.4) and let π be the ribbon
functor repH → reps

H associated to this semisimplification.
Let BV be the full subcategory of reps

H whose objects are finite direct sums of
objects of π(V) = {π(V ) | V ∈ V}. By the definition of a premodular Hopf algebra,
BV is a ribbon full subcategory of reps

H . Note that BV is finitely semisimple with
scalar simple objects and has π(V) as a (finite) set of representatives of isomorphism
classes of simple objects. Recall that the Reshetikhin–Turaev invariant RTBV (M)
of 3-manifolds is well defined when ∆BV

± �= 0 (see § 3.3).
Let λ be a non-zero right integral for H∗. For any V ∈ V, as in (4.18), we let

zV ∈ H such that λ(zV x) = Tr(G−1x idV ) for all x ∈ H. Set

zV =
∑
V ∈V

dimq(V ) zV ,

where dimq(V ) = Tr(G−1idV ). By Corollary 4.9(b), we have zV ∈ AK(H).

Proposition 4.17. If ∆BV
± �= 0, then zV ∈ AK(H)norm and τ(H,zV)(M) =

RTBV (M) for all 3-manifolds M .
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Note that Proposition 4.17 says that the Reshetikhin–Turaev invariant defined
from a premodular Hopf algebra is of HKR-type.

Proof. Let (A, i) be the coend of the functor (1.5) for repH (as in § 4.5), let
(B, j) be the coend of the functor (1.5) for BV (as in § 3.2). Set

αBV =
∑
V ∈V

dimq(V )jπ(V ) c̃oevπ(V ).

Suppose ∆BV
± �= 0. By Corollary 3.9, we have αBV ∈ AK(BV)norm and RTBV (M) =

τBV (M ;αBV ) for all 3-manifolds M . Set ϕBV : B → π(A) as in (3.6). As in the proof
of Corollary 4.9, we have π(φzV

) = ϕBV jπ(V ) c̃oevπ(V ). Then π(φzV ) = ϕBVαBV .
Since αBV ∈ AK(BV)norm and π(φzV ) = ϕαBV , Corollary 3.11(b) gives φzV ∈
AK(repH)norm and τBV (M ;αBV ) = τrepH

(M ;φzV ) for all 3-manifolds M . Hence
zV ∈ AK(H)norm and τ(H,zV)(M) = RTBV (M) for all 3-manifolds M .

Note that if H is a semisimple finite-dimensional ribbon Hopf algebra, k is a
splitting field for H, and V is a set of representatives of isomorphism classes of
simple left H-modules, then (H,V) is a premodular Hopf algebra and BV = repH .

Corollary 4.18. Let H be a finite-dimensional semisimple ribbon Hopf
algebra. Suppose that the base field k is of characteristic 0 and is a splitting field
for H. Then the Hennings–Kauffman–Radford invariant of 3-manifolds computed
with Hop and the Reshetikhin–Turaev invariant of 3-manifolds computed with
repH are simultaneously well defined (that is, ∆repH

± �= 0 if and only if 1 ∈
AK(H)norm). Moreover, if they are well defined, then they coincide, that is,
τ(H,1)(M) = RTrepH

(M) for any 3-manifold M .

Remark 4.19. The conclusions of Corollary 4.18 may no longer be true when
H is not semisimple (see Remark 4.11). Moreover, in the modular case (in the
sense of Remark 3.7), Corollary 4.18 was first shown in [11].

Proof of Corollary 4.18. By Proposition 4.17, the Reshetikhin–Turaev invariant
of 3-manifolds computed from repH is well defined if

zV =
∑
V ∈V

dimq(V ) zV ∈ AK(H)norm

and is equal to τ(H,zV). By Corollary 4.16, the Hennings–Kauffman–Radford
invariant of 3-manifolds computed with Hop is well defined if 1 ∈ AK(H)norm

and is equal to τ(H,1). Now, by Proposition 4.13,
∑

V ∈V dimq(V ) zV = k 1 for some
k ∈ k∗. We conclude by using (4.23).

5. A non-unimodular example

Let us examine the case of a family of non-unimodular ribbon Hopf algebras,
defined by Radford [22], which includes Sweedler’s Hopf algebra.

Let n be an odd positive integer and k be a field whose characteristic does not
divide 2n. Let Hn be the k-algebra generated by a and x with the following relations:

a2n = 1, x2 = 0, ax = −xa.
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The algebra Hn is a Hopf algebra for the following structure maps:

∆(a) = a ⊗ a, ε(a) = 1, S(a) = a−1,

∆(x) = x ⊗ an + 1 ⊗ x, ε(x) = 0, S(x) = anx.

The set B = {alxm | 0 � l < 2n, 0 � m � 1} is a basis for Hn. The dual basis of B
is {akxr | 0 � k < 2n, 0 � r � 1}, where akxr(alxm) = δl,k δm,r. Set

Λ = (1 + a + a2 + . . . + a2n−1)x and λ = anx.

Then Λ is a left integral for Hn and λ is a right integral for H∗
n such that λ(Λ) =

λ(S(Λ)) = 1. The distinguished grouplike element of Hn is g = an ∈ G(Hn) and
the distinguished grouplike element ν ∈ G(H∗

n) = Alg(Hn, k) of H∗
n is given by

ν(a) = −1 and ν(x) = 0.
Suppose that k has a primitive 2n-root of unity ω. Let s be an odd integer with

1 � s < 2n and let β ∈ k. Then

Rω,s,β =
1
2n

∑
0�i,l<2n

w−il ai ⊗ asl +
β

2n

∑
0�i,l<2n

w−il aix ⊗ asl+nx

is an R-matrix for Hn and hν = (idHn
⊗ ν)(Rω,s,β) = an.

Let χ : k∗ → k[a] be the algebra map defined by χ(α) =
∑

0�l<2n αl2el for all
α ∈ k∗, where el = (1/2n)

∑
0�i<2n ω−ilai. Note that (el)0�l<2n is a basis of k[a].

The quasitriangular Hopf algebra (Hn, Rω,s,β) is ribbon with twist θ = anχ(ωs).
The special grouplike element of Hn is then G = an.

Let T : Hn → Hn, and let L(Hn), N(Hn), V2(Hn), AK(Hn) and AK(Hn)norm be
as in § 4.6. It is not difficult to verify that

T (ak) = (−1)kan−k and T (akx) = a−kx for all 0 � k < 2n,

L(Hn) = k[a]x, Z(Hn) = k[a2], N(Hn) = k[a2]x,

V2(Hn) =
⊕

0�p,q<n

k(a2p ⊗ a2q) ⊕
⊕

0�k,l<2n

k(akx ⊗ alx).

For any divisor d of n, set

zd =
n/d−1∑
k=0

a2dk+nx.

Lemma 5.1. We have

AK(Hn) =
⋃
d|n

(
kzd ⊕ k[a2]x

)
and AK(Hn)norm =

⋃
d|n

(
k∗zd ⊕ k[a2]x

)
.

Proof. Let z ∈ L(Hn). Since a2n = 1, we can write z =
∑

k∈Z/2nZ
αkakx for

some function α : Z/2nZ → k. Using Theorem 4.7, we have z ∈ AK(Hn) if and only
if α−k = αk and αkαk+l−n = αkαl for all k, l odd. Set

w =
∑

k∈Z/nZ

α2k+n+1a
2k+n+1x.

Then z − w =
∑

k∈Z/nZ
γka2k+nx where γ : Z/nZ → k is defined by γk = α2k+n.

Since n is odd, we have w ∈ k[a2]x = N(Hn). Then z ∈ AK(Hn) if and only
if z − w ∈ AK(Hn), and so if and only if γ−k = γk and γkγk+l = γkγl for all
k, l ∈ Z/nZ.
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Suppose that z ∈ AK(Hn) and z �= 0. We get γkγ0 = γkγ−k = γ2
k for all k. In

particular, γ0 �= 0 and γk = γ0 whenever γk �= 0. Set d = min{1 � k � n | γk �= 0}
(recall that γn = γ0 �= 0). Note that γk = 0 for all 1 � k < d and, by the
above, γk+d = γk for all k. The integer d divides n. Indeed, let r be such that
rd � n < rd + d. Then 0 � n − rd � n and γn−rd = γn = γ0 �= 0. Therefore, by
definition of d, we get n− rd = 0 and so d | n. Hence z = γ0zd +w with w ∈ k[a2]x.

Conversely, one easily verifies that zd ∈ AK(Hn) and so kzd ⊕k[a2]x ⊂ AK(Hn).
Let d divide n. For any α ∈ k and w ∈ k[a2]x, we have

λ((αzd + w)θ±1) =
α

2d

2d−1∑
k=0

(
ωn/d

)±s(n/d)k2+nk
.

The sum of the right-hand sum of this equality is a Gauss sum which is non-zero
if and only if the enhancement k ∈ Z/2dZ �→ ψ(k) = ±s(n/d)k2 + nk ∈ Z/2dZ is
tame, that is, ψ(x) = 0 for any x ∈ Z/2dZ such that ψ(x + y) = ψ(x) + ψ(y) for
all y ∈ Z/2dZ; see [25]. Since n and s are odd, it is not difficult to verify that ψ is
tame. Therefore λ((αzd + w)θ±1) �= 0 if and only if α �= 0. Hence

k∗zd ⊕ k[a2]x ⊂ AK(Hn)norm.

In conclusion, by Lemma 5.1 and (4.23), the ribbon Hopf algebra Hn leads
to D(n) HKR-type invariants of 3-manifolds, where D(n) denotes the number of
positive divisors of n, which are τ(Hn,zd ) with 1 � d � n and d | n.

Note that Hn is not unimodular (and so is not semisimple) since ν �= ε. Therefore
1 �∈ AK(Hn) (by Corollary 4.8), that is, the Hennings–Kauffman–Radford invariant
is not defined for Hn. Moreover, the categorical Hopf algebra A = H∗

n of repHn
does

not possess any non-zero two-sided integral (since Hn is not unimodular), and so
the Lyubashenko invariant of 3-manifolds is not defined for repHn

.

Acknowledgement. The author thanks A. Bruguières for helpful comments and
enlightening discussions.

Appendix. Traces on ribbon Hopf algebras

Recall that a trace on a Hopf algebra H is a form t ∈ H∗ such that t(xy) = t(yx)
and t(S(x)) = t(x) for all x, y ∈ H.

Let H be a finite-dimensional ribbon Hopf algebra. Let λ ∈ H∗ be a non-zero
right integral for H∗, ν ∈ G(H∗) = Alg(H, k) be the distinguished grouplike
element of H∗, and G be the special grouplike element of H. Recall that ·
denotes the right action of H on H∗ defined in (4.1), that ↼ denotes the right
H∗-action on H defined in (4.2), that L(H) denotes the k-subspace of H
constituted by the elements z ∈ H satisfying (x ↼ ν)z = zx for all x ∈ H, and
that T denotes the k-endomorphism of H defined by z �→ T (z) = (S(z) ↼ ν)hν ,
where hν = (idH ⊗ ν)(R) ∈ G(H).

The next proposition gives an algebraic description of the space of traces on H.

Proposition A.1. The space {z ∈ L(H) | T (z) = z} is k-isomorphic to the
space of traces on H via the map z �→ λ · (zG).
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If H is unimodular, then L(H) = Z(H) and T = S, and so we recover the
parameterization of traces on H given in [23, 9].

Proof. Let z ∈ L(H) such that T (z) = z. Set t = λ · (zG) ∈ H∗. By using
(4.10) and (4.6), we have t(xy) = λ(zGxy) = λ(zS2(y)Gx) = λ(zGyx) = t(yx) for
any x, y ∈ H. Moreover, for any x ∈ H,

t(S(x)) = λ(zGS(x)) = λ(G2hνxG−1S−1(z)) (by (4.7))

= λ((S(z) ↼ ν)G2hνxG−1) (by (4.3))

= λ(zh−1
ν G2hνxG−1) (since T (z) = z)

= λ(zS2(G−1)h−1
ν G2hνx) (by (4.10))

= λ(zG−1h−1
ν G2hνx)

= λ(zGS−4(h−1
ν )hνx) (by (4.6))

= λ(zGh−1
ν hνx) = λ(zGx) = t(x).

Conversely, let t ∈ H∗ be a trace on H. Since (H∗, ·) is a free right H-module
of rank 1 with basis λ and G is invertible, there exists a (unique) z ∈ H such that
t = λ · (zG). Let x ∈ H. For all y ∈ H,

λ(zxGy) = λ(zGS−2(x)y) (by (4.6))

= t(S−2(x)y) = t(yS−2(x)) = λ(zGyS−2(x))
= λ((x ↼ ν)zGy) (by (4.3)).

Therefore, since (H∗, ·) is a free right H-module of rank 1 with basis λ, we have
(x ↼ ν)zG = zxG and so (x ↼ ν)z = zx. Hence z ∈ L(H). Now, for all x ∈ H,

λ(zGx) = t(x) = t(S(x)) = λ(zGS(x))

= λ(G2hνxG−1S−1(z)) (by (4.7))

= λ(G2hνxS−1(zG))

= λ(G2hνxS−1((G ↼ ν)z)) (since z ∈ L(H))

= λ((S((G ↼ ν)z) ↼ ν)G2hνx) (by (4.3)).

Therefore, since (H∗, ·) is a free right H-module of rank 1 with basis λ,

zG = (S((G ↼ ν)z) ↼ ν)G2hν

= (S(z) ↼ ν)(S(G ↼ ν) ↼ ν)GS2(hν)G (by (4.6))

= (S(z) ↼ ν)ν(G)ν(G−1)G−1GhνG = (S(z) ↼ ν)hνG = T (z)G

and so T (z) = z.
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