
Author's personal copy

Advances in Mathematics 227 (2011) 745–800
www.elsevier.com/locate/aim

Hopf monads on monoidal categories

Alain Bruguières a, Steve Lack b, Alexis Virelizier a,∗

a Département de Mathématiques, Université Montpellier 2, 34000 Montpellier, France
b Department of Mathematics, Macquarie University, NSW 2109, Australia

Received 31 May 2010; accepted 15 February 2011

Available online 26 February 2011

Communicated by Ross Street

Abstract

We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières
and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal
monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf ad-
junctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with
internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode.

Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids
(which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any
finite tensor category is the category of finite-dimensional modules over a Hopf algebroid.

Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C. The Hopf
monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract
of a Hopf monad P , then P is a cross product of T by a Hopf algebra of the center of the category of
T -modules (generalizing the Radford–Majid bosonization of Hopf algebras).

We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommu-
tative central coalgebra. As a corollary, we obtain an extension of Sweedler’s Hopf module decomposition
theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).
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0. Introduction

Hopf monads on autonomous categories (that is, monoidal categories with duals) were in-
troduced in [5] as a tool for understanding and comparing quantum invariants of 3 manifolds,
namely the Reshetikhin–Turaev invariant associated with a modular category and the Turaev–
Viro invariant associated with a spherical category (as revisited by Barrett–Westbury).

In this paper we extend the notion of Hopf monad to any monoidal category. Hopf monads
generalize classical Hopf algebras, as well as Hopf algebras in a braided category. Hopf algebras
are bialgebras with an extra condition: the existence of an invertible antipode. Similarly, one
expects Hopf monads to be bimonads satisfying some extra condition.

The concept of bimonad (also called opmonoidal monad) was introduced by Moerdijk
in [18].1 Recall that if T is a monad on a category C, then one defines a category CT of T -
modules in C (often called T -algebras). A bimonad on a monoidal category C is a monad
on C such that CT is monoidal and the forgetful functor UT :CT → C is strict monoidal. This
means that T is a comonoidal monad: it comes with a coassociative natural transformation
T2(X,Y ) :T (X ⊗ Y) → T X ⊗ T Y and a counit T0 :T 1 → 1. For example, a bialgebra A in
a braided category B gives rise to bimonads A ⊗ ? and ?⊗ A on B. More generally, bialgebroids
in the sense of Takeuchi are also examples of bimonads. More generally still, any comonoidal
adjunction defines a bimonad, so that bimonads exist in many settings.

The ‘extra condition’ a bimonad should satisfy in order to deserve the title of Hopf monad
is not obvious, as there is no straightforward generalization of the notion of antipode to the
monoidal setting. When C is autonomous, according to Tannaka theory, one expects that a bi-
monad T be Hopf if and only if CT is autonomous. This turns out to be equivalent to the existence
of a left antipode and a right antipode, which are natural transformations sl

X :T (∨T (X)) → ∨X

and sr
X :T (T (X)∨) → X∨. That was precisely the definition of a Hopf monad given in [5]. While

it is satisfactory for applications to quantum topology, as the categories involved are autonomous,
this definition has some drawbacks for other applications: for instance, it doesn’t encompass
infinite-dimensional Hopf algebras since the category of vector spaces of arbitrary dimension is
not autonomous. Therefore one is prompted to ask several questions:

1 Bimonads were introduced in [18] under the name ‘Hopf monads’, which we prefer to reserve for bimonads with
antipodes by analogy with Hopf algebras.
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• What are Hopf monads on arbitrary monoidal categories?
• What are Hopf monads on closed monoidal categories (with internal Homs)?
• Is it possible to characterize Hopf monads obtained from Hopf algebras?
• Can one extend classical results of the theory of Hopf algebras to Hopf monads on monoidal

categories?
• When does a bialgebroid define a Hopf monad?

The aim of this paper is to answer these questions.
In Section 2, we define Hopf monads on an arbitrary monoidal category. Our definition is

inspired by the fact that a bialgebra A is a Hopf algebra if and only if its fusion morphisms
Hl,Hr :A ⊗ A → A ⊗ A, defined by Hl(x ⊗ y) = x(1) ⊗ x(2)y and Hr(x ⊗ y) = x(2)y ⊗ x(1),
are invertible. If T is a bimonad, we introduce the fusion operators Hl and Hr , which are natural
transformations

Hl
X,Y = (T X ⊗ μY )T2(X,T Y ) :T (X ⊗ T Y ) → T X ⊗ T Y,

Hr
X,Y = (μX ⊗ T Y )T2(T X,Y ) :T (T X ⊗ Y) → T X ⊗ T Y,

and decree that T is a Hopf monad if Hl and Hr are invertible. We also introduce the related
notion of Hopf adjunction. The monad of a Hopf adjunction is a Hopf monad, and a bimonad
is a Hopf monad if and only if its adjunction is a Hopf adjunction. It turns out that certain clas-
sical results on Hopf algebras extend naturally to Hopf monads (or more generally to pre-Hopf
monads), such as Maschke’s semisimplicity criterion and Sweedler’s theorem on the structure of
Hopf modules (see Section 6).

In Section 3, we study Hopf monads on closed monoidal categories. Hopf monads on such
categories can be characterized, as in the autonomous case, in categorical terms and also in
terms of antipodes. More precisely, let T be a bimonad on a closed monoidal category C, that
is, a monoidal category with internal Homs. We show that T is a Hopf monad if and only if its
category of modules CT is closed and the forgetful functor UT preserves internal Homs. Also
T is a Hopf monad if and only if it admits a left antipode and right antipode, that is, natural
transformations in two variables:

sl
X,Y :T [T X,Y ]l → [X,T Y ]l and sr

X,Y :T [T X,Y ]r → [X,T Y ]r

where [−,−]l and [−,−]r denote the left and right internal Homs, each of them satisfying two
axioms as expected. The proof of these results relies on a classification of adjunction liftings. In
the special case where C is autonomous, we show that the definition of a Hopf monad given in
this paper specializes to the one given in [5]. In the special case where C is ∗-autonomous (and
so monoidal closed), a Hopf monad in the sense of [8] is a Hopf monad in our sense (but the
converse is not true).

In Section 5, we study the relations between Hopf algebras and Hopf monads. Given a lax cen-
tral bialgebra of a monoidal category C, that is, a bialgebra A in the lax center Z lax(C) of C, with
lax2 half braiding σ :A⊗? → ?⊗A, the endofunctor A⊗? of C is a bimonad, denoted by A⊗σ ?
on C. This bimonad is augmented, that is, endowed with a bimonad morphism A ⊗σ ? → 1C . It

2 Here lax means that σ need not be invertible.
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is a Hopf monad if and only if A is a Hopf algebra in the center Z(C) of C. The main result of
the section is that this construction defines an equivalence of categories between central Hopf
algebras of C (that is, Hopf algebras in the center Z(C)) and augmented Hopf monads on C.
More generally, given a Hopf monad T on C and a central Hopf algebra (A, σ ) of the category of
T -modules, we construct a Hopf monad A �σ T on C of which T is a retract. Conversely, under
suitable exactness conditions (involving reflexive coequalizers), any Hopf monad P of which T

is a retract is of the form A �σ T . The proof of this result is based on two general constructions
involving Hopf monads: the cross product and the cross quotient, which are studied in Section 4.

In Section 6, we show that the comonoidal comonad of a pre-Hopf adjunction is canoni-
cally represented by a cocommutative central coalgebra. Combining this with a descent result for
monads, we obtain a generalization of Sweedler’s Hopf module decomposition theorem to Hopf
monads (in fact to pre-Hopf monads). We study the close relationships between Hopf adjunc-
tions, Hopf monads, and cocommutative central coalgebras.

Finally, in Section 7, we study bialgebroids which, according to Szlachányi [21], are linear
bimonads on categories of bimodules admitting a right adjoint. A bialgebroid corresponds with
a Hopf monad if and only if it is a Hopf algebroid in the sense of Schauenburg [20]. We also use
Hopf monads to prove that any finite tensor category is naturally equivalent (as a tensor category)
to the category of finite-dimensional modules over some finite-dimensional Hopf algebroid.

1. Preliminaries and notations

Unless otherwise specified, categories are small, and monoidal categories are strict. We denote
by Cat the category of small categories (which is not small).

If C is a category, we denote by Ob(C) the set of objects of C and by HomC(X,Y ) the set of
morphisms in C from an object X to an object Y . The identity functor of C is denoted by 1C .

If C is a category and c an object of C, the category of objects of C over c is the category C/c

whose objects are pairs (a,φ), with a ∈ Ob(C) and φ ∈ HomC(a, c). Morphisms from (a,φ) to
(b,ψ) in C/c are morphism f :a → b in C satisfying the condition ψf = φ. They are called
morphisms over c.

Similarly the category of objects of C under c is the category c\C whose objects are pairs
(a,φ), with a ∈ Ob(C) and φ ∈ HomC(c, a).

A pair of parallel morphisms

X

f

g
Y

is reflexive (resp. coreflexive) if f and g have a common section (resp. a common retraction),
that is, if there exists a morphism h :Y → X such that f h = gh = idY (resp. hf = hg = idX).
A reflexive coequalizer is a coequalizer of a reflexive pair. Similarly a coreflexive equalizer is an
equalizer of a coreflexive pair.

1.1. Monoidal categories and functors

Given an object X of a monoidal category C, we denote by X ⊗? the endofunctor of C defined
on objects by Y �→ X ⊗ Y and on morphisms by f �→ X ⊗ f = idX ⊗ f . Similarly one defines
the endofunctor ? ⊗ X of C.
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Let (C,⊗,1) and (D,⊗,1) be two monoidal categories. A monoidal functor from C to D is a
triple (F,F2,F0), where F :C → D is a functor, F2 :F ⊗ F → F⊗ is a natural transformation,
and F0 :1 → F(1) is a morphism in D, such that:

F2(X,Y ⊗ Z)
(
idF(X) ⊗ F2(Y,Z)

) = F2(X ⊗ Y,Z)
(
F2(X,Y ) ⊗ idF(Z)

);
F2(X,1)(idF(X) ⊗ F0) = idF(X) = F2(1,X)(F0 ⊗ idF(X));

for all objects X,Y,Z of C.
A monoidal functor (F,F2,F0) is said to be strong (resp. strict) if F2 and F0 are isomorphisms

(resp. identities).
A natural transformation ϕ :F → G between monoidal functors is monoidal if it satisfies

ϕX⊗Y F2(X,Y ) = G2(X,Y )(ϕX ⊗ ϕY ) and G0 = ϕ1F0.

We denote by MonCat the category of small monoidal categories, morphisms being strong
monoidal functors.

1.2. Comonoidal functors

Let (C,⊗,1) and (D,⊗,1) be two monoidal categories. A comonoidal functor (also called
opmonoidal functor) from C to D is a triple (F,F2,F0), where F :C → D is a functor,
F2 :F⊗ → F ⊗ F is a natural transformation, and F0 :F(1) → 1 is a morphism in D, such
that:

(
idF(X) ⊗ F2(Y,Z)

)
F2(X,Y ⊗ Z) = (

F2(X,Y ) ⊗ idF(Z)

)
F2(X ⊗ Y,Z);

(idF(X) ⊗ F0)F2(X,1) = idF(X) = (F0 ⊗ idF(X))F2(1,X);

for all objects X,Y,Z of C.
A comonoidal functor (F,F2,F0) is said to be strong (resp. strict) if F2 and F0 are isomor-

phisms (resp. identities). In that case, (F,F−1
2 ,F−1

0 ) is a strong (resp. strict) monoidal functor.
A natural transformation ϕ :F → G between monoidal functors is comonoidal if it satisfies

G2(X,Y )ϕX⊗Y = (ϕX ⊗ ϕY )F2(X,Y ) and G0ϕ1 = F0.

Note that the notions of comonoidal functor and comonoidal natural transformation are dual
to the notions of monoidal functor and monoidal natural transformation.

2. Hopf monads

In this section, we define Hopf monads on an arbitrary monoidal category: they are the bi-
monads whose fusion operators are invertible. We also introduce the related notion of Hopf
adjunction: the monad of a Hopf adjunction is a Hopf monad, and a bimonad is a Hopf monad if
and only if its adjunction is a Hopf adjunction.
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2.1. Monads

Let C be a category. Recall that the category End(C) of endofunctors of C is strict monoidal
with composition for monoidal product and identity functor 1C for unit object. A monad on C is
an algebra in End(C), that is, a triple (T ,μ,η), where T :C → C is a functor, μ :T 2 → T and
η : 1C → T are natural transformations, such that:

μXT (μX) = μXμT X and μXηT X = idT X = μXT (ηX)

for any object X of C.
Monads on C form a category Mon(C), a morphism from a monad (T ,μ,η) to a monad

(T ′,μ′, η′) being a natural transformation f :T → T ′ such that f η = η′ and f μ = μ′T (f )fT .
The identity functor 1C is a monad (with the identity for product and unit) and it is an initial
object in Mon(C).

2.2. Modules over a monad

Let (T ,μ,η) be a monad on a category C. An action of T on an object M of C is a morphism
r :T (M) → M in C such that:

rT (r) = rμM and rηM = idM.

The pair (M, r) is then called a T -module in C, or just a T -module.3

Given two T -modules (M, r) and (N, s) in C, amorphism of T -modules from (M, r) to (N, r)

is a morphism f ∈ HomC(M,N) which is T -linear, that is, such that f r = sT (f ). This gives
rise to the category of T -modules (in C), with composition inherited from C. We denote this
category by CT (the notation T -C is used in [5]).

The forgetful functor UT :CT → C of T is defined by UT (M, r) = M for any T -module (M, r)

and UT (f ) = f for any T -linear morphism f . It has a left adjoint FT :C → CT , called the free
module functor, defined by FT (X) = (T X,μX) for any object X of C and FT (f ) = Tf for any
morphism f of C.

2.3. Monads, adjunctions, and monadicity

Let (F :C→D,U :D→C) be an adjunction, with unit η : 1C →UF and counit ε :FU →1D .
Then T = UF is a monad with product μ = U(εF ) and unit η. There exists a unique functor
K :D → CT such that UT K = U and KF = FT . This functor K , called the comparison functor
of the adjunction (F,U), is defined by K(d) = (Ud,Uεd).

An adjunction (F,U) is monadic if its comparison functor K is an equivalence of categories.
For example, if T is a monad on C, the adjunction (FT ,UT ) has monad T and comparison functor
K = 1CT , and so is monadic.

A functor U is monadic if it admits a left adjoint F and the adjunction (F,U) is monadic. If
such is the case, the monad T = UF of the adjunction (F,U) is called the monad of U . It is well
defined up to unique isomorphism of monads (as the left adjoint F is unique up to unique natural
isomorphism).

3 Pairs (M, r) are usually called T -algebras in the literature (see [14]).
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Theorem 2.1 (Beck). An adjunction (F :C → D,U :D → C) is monadic if and only if the func-
tor U satisfies the following conditions:

(a) The functor U is conservative, that is, U reflects isomorphisms;
(b) Any reflexive pair of morphisms in D whose image by U has a split coequalizer has a co-

equalizer, which is preserved by U .

Moreover, if (F,U) is monadic, the comparison functor K is an isomorphism if and only if the
functor U satisfies the transport of structure condition:

(c) For any isomorphism f :U(d) → c in C, where c ∈ Ob(C) and d ∈ Ob(D), there exist
a unique c̃ ∈ Ob(D) and a unique isomorphism f̃ :d → c̃ in D such that U(f̃ ) = f .

2.4. Bimonads

A bimonad on a monoidal category C is a monad (T ,μ,η) on C such that the functor
T :C → C is comonoidal and the natural transformations μ :T 2 → T and η : 1C → T are
comonoidal. In other words, T is endowed with a natural transformation T2 :T ⊗ → T ⊗ T and
a morphism T0 :T (1) → 1 in C such that:

(
T X ⊗ T2(Y,Z)

)
T2(X,Y ⊗ Z) = (

T2(X,Y ) ⊗ T Z
)
T2(X ⊗ Y,Z),

(T X ⊗ T0)T2(X,1) = idT X = (T0 ⊗ T X)T2(1,X),

T2(X,Y )μX⊗Y = (μX ⊗ μY )T2(T X,T Y )T
(
T2(X,Y )

)
,

T0μ1 = T0T (T0), T2(X,Y )ηX⊗Y = ηX ⊗ ηY , T0η1 = id1.

Remark 2.2. A bimonad T on a monoidal category C = (C,⊗,1) may be viewed as a bimonad
T cop on the monoidal category C⊗op = (C,⊗op,1), with comonoidal structure T

cop
2 (X,Y ) =

T2(Y,X) and T
cop
0 = T0. The bimonad T cop is called the coopposite of the bimonad T . We have:

(C⊗op)
T cop = (CT )⊗op.

Remark 2.3. The dual notion of a bimonad is that of a bicomonad, that is, a monoidal comonad.
An endofunctor T of a monoidal category C = (C,⊗,1) is a bicomonad if and only if the opposite
endofunctor T op is a bimonad on Cop = (Cop,⊗,1).

Bimonads on C form a category BiMon(C), morphisms of bimonads being comonoidal mor-
phisms of monads. The identity functor 1C is a bimonad on C, which is an initial object of
BiMon(C).

2.5. Bimonads and comonoidal adjunctions

A comonoidal adjunction is an adjunction (F :C → D,U :D → C), where C and D are
monoidal categories, F and U are comonoidal functors, and the adjunction unit η : 1C → UF

and counit ε :FU → 1D are comonoidal natural transformations.
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If (F,U) is a comonoidal adjunction, then U is in fact a strong comonoidal functor, which
we may view as a strong monoidal functor. Conversely, if a strong monoidal functor U :D → C
admits a left adjoint F , then F is comonoidal, with comonoidal structure given by

F2(X,Y ) = εFX⊗FY FU2(FX,FY)F (ηX ⊗ ηY ) and F0 = ε1F(U0),

and (F,U) is a comonoidal adjunction (viewing U as a strong comonoidal functor), see [17].
A comonoidal adjunction is an instance of a doctrinal adjunction in the sense of [11].

The monad T = UF of a comonoidal adjunction (U,F ) is a bimonad, and the comparison
functor K :D → CT is strong monoidal and satisfies UT K = U as monoidal functors and KF =
FT as comonoidal functors (see for instance [5, Theorem 2.6]).

The comonad T̂ = FU of a comonoidal adjunction (U,F ) is a comonoidal comonad, that
is, a comonad whose underlying endofunctor is endowed with a comonoidal structure so that its
coproduct and counit are comonoidal.

Example 2.4. The adjunction (FU ,UT ) of a bimonad T is a comonoidal adjunction (because UT

is strong monoidal).

Remark 2.5. Comonoidal adjunctions are somewhat misleadingly called monoidal adjunctions
in [5].

2.6. Fusion operators

Let T be a bimonad on a monoidal category C. The left fusion operator of T is the natural
transformation Hl :T (1C ⊗ T ) → T ⊗ T defined by

Hl
X,Y = (T X ⊗ μY )T2(X,T Y ) :T (X ⊗ T Y ) → T X ⊗ T Y.

The right fusion operator of T is the natural transformation Hr :T (T ⊗ 1C) → T ⊗ T defined
by

Hr
X,Y = (μX ⊗ T Y )T2(T X,Y ) :T (T X ⊗ Y) → T X ⊗ T Y.

From the axioms of a bimonad, we easily deduce

Proposition 2.6. The left fusion operator Hl of a bimonad T satisfies:

Hl
X,Y T (X ⊗ μY ) = (T X ⊗ μY )H l

X,T Y ,

H l
X,Y T (X ⊗ ηY ) = T2(X,Y ), H l

X,Y ηX⊗T Y = ηX ⊗ T Y,(
T2(X,Y ) ⊗ T Z

)
Hl

X⊗Y,Z = (
T X ⊗ Hl

Y,Z

)
T2(X,Y ⊗ T Z),

(T0 ⊗ T X)H l
1,X = μX, (T X ⊗ T0)H

l
X,1 = T (X ⊗ T0),

and the left pentagon equation:(
T X ⊗ Hl

Y,Z

)
Hl

X,Y⊗T Z = (
Hl

X,Y ⊗ T Z
)
Hl

X⊗T Y,ZT
(
X ⊗ Hl

Y,Z

)
.
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Similarly the right fusion operator Hr of T satisfies:

Hr
X,Y T (μX ⊗ Y) = (μX ⊗ T Y )Hr

T X,Y ,

Hr
X,Y T (ηX ⊗ Y) = T2(X,Y ), Hr

X,Y ηT X⊗Y = T X ⊗ ηY ,(
T X ⊗ T2(Y,Z)

)
Hr

X,Y⊗Z = (
Hr

X,Y ⊗ T Z
)
T2(T X ⊗ Y,Z),

(T X ⊗ T0)H
r
X,1 = μX, (T0 ⊗ T X)Hr

1,X = T (T0 ⊗ X),

and the right pentagon equation:(
Hr

X,Y ⊗ T Z
)
Hr

T X⊗Y,Z = (
T X ⊗ Hr

Y,Z

)
Hr

X,T Y⊗ZT
(
Hl

X,Y ⊗ Z
)
.

Remark 2.7. A bimonad can be recovered from its left (or right) fusion operator. More pre-
cisely, let T be an endofunctor of a monoidal category C endowed with a natural transformation
HX,Y :T (X ⊗ T Y ) → T X ⊗ T Y satisfying the left pentagon equation:

(T X ⊗ HY,Z)HX,Y⊗T Z = (HX,Y ⊗ T Z)HX⊗T Y,ZT (X ⊗ HY,Z),

and with a morphism T0 :T 1 → 1 and a natural transformation ηX :X → T X satisfying:

HX,Y ηX⊗T Y = ηX ⊗ T Y, T0η1 = id1,

(T X ⊗ T0)HX,1 = T (X ⊗ T0), (T0 ⊗ T X)H1,XT (ηX) = idT X.

Then T admits a unique bimonad structure (T ,μ,η,T2, T0) having left fusion operator H .
The product μ and comonoidal structural morphism T2 are given by

μX = (T0 ⊗ T X)H1,X and T2(X,Y ) = HX,Y T (X ⊗ ηY ).

2.7. Hopf monads and pre-Hopf monads

Let C be a monoidal category. A left (resp. a right)Hopf monad on C is a bimonad on C whose
left fusion operator Hl (resp. right fusion operator Hr ) is an isomorphism.

A Hopf monad on C is a bimonad on C such that both left and right fusion operators are iso-
morphisms. Hopf monads on C form a full subcategory HopfMon(C) of the category BiMon(C)

of bimonads. The identity functor 1C is a Hopf monad on C, which is an initial object of
HopfMon(C).

It is convenient to consider a weaker notion: a left (resp. right) pre-Hopf monad on C is a
bimonad on C such that, for any object X of C, the morphism Hl

1,X (resp. Hr
X,1) is invertible.

A pre-Hopf monad is a bimonad which is a left and a right pre-Hopf monad. Clearly any Hopf
monad is a pre-Hopf monad, but the converse is false:

Example 2.8. We provide an example of a pre-Hopf monad on a monoidal (even autonomous)
category which is not a Hopf monad. Let Z-vectk be the autonomous category of finite-
dimensional Z-graded vector spaces on a field k, and let N-vectk be its full subcategory of graded
vector spaces with support in N. The inclusion functor ι :N-vectk → Z-vectk has a left adjoint π ,
which sends a Z-graded vector space to its non-negative part. The adjunction (π, ι) is monoidal.
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The bimonad T = ιπ on Z-vectk of this adjunction (see Section 2.5) is a pre-Hopf monad but
not a Hopf monad.

Remark 2.9. Certain general results on Hopf algebras extend naturally to pre-Hopf monads,
such as Sweedler’s theorem on the structure of Hopf modules (see Section 6). Also, Maschke’s
semisimplicity theorem for Hopf monads on autonomous categories given in [5, Theorem 6.5]
holds word for word for pre-Hopf monads in arbitrary monoidal categories. Indeed the proof
given in [5], which relied on the properties of a certain natural transformation ΓX :X ⊗ T 1 →
T 2X, extends in a straightforward way, observing that ΓX = Hr−1

X,1(ηX ⊗ T 1).

Example 2.10. Given a Hopf algebra A in a braided category, we depict its product m, unit u,
coproduct �, counit ε, and invertible antipode S as follows:

m = , u = , � = , ε = , S = , S−1 = .

Let B be a braided category with braiding τ , and A a bialgebra in B. As shown in [5], the endo-
functor A ⊗ ? of B is a bimonad on B, with structure maps:

μX = , ηX = , (A ⊗ ?)2(X,Y ) = , (A ⊗ ?)0 = .

Its fusion operators are

Hl
X,Y = and Hr

X,Y = .

If A is a Hopf algebra with invertible antipode S, then A⊗ ? is a Hopf monad, the inverses of the
fusion operators being:

Hl−1

X,Y = and Hr−1

X,Y = .

Similarly, if A is a Hopf algebra in B with invertible antipode, then ?⊗A is a Hopf monad on B.
Thus Hopf monads generalize Hopf algebras in braided categories. In particular, a Hopf algebra
over a commutative ring k defines a Hopf monad on the category of k-modules. See Section 5
for a detailed discussion of Hopf monads associated with Hopf algebras.

Remark 2.11. Let T be a bimonad on a monoidal category C. Then T is a right (pre-)Hopf
monad if and only if its opposite bimonad T cop on C⊗op (see Remark 2.2) is a left (pre-)Hopf
monad.
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2.8. Hopf monads and Hopf adjunctions

In view of the relation between bimonads and comonoidal adjunctions recalled in Section 2.5,
it is natural to look for a characterization of Hopf monads in terms of adjunctions. This leads to
the notion of a Hopf adjunction.

Let (F :C → D,U :D → C) be a comonoidal adjunction between monoidal categories (see
Section 2.5). The left Hopf operator and the right Hopf operator of (F,U) are the natural trans-
formations

Hl :F(1C ⊗ U) → F ⊗ 1D and Hr :F(U ⊗ 1C) → 1D ⊗ F

defined by

Hl
c,d = (Fc ⊗ εd)F2(c,Ud) :F(c ⊗ Ud) → Fc ⊗ d,

Hr
d,c = (εd ⊗ Fc)F2(Ud, c) :F(Ud ⊗ c) → d ⊗ Fc,

for c ∈ Ob(C) and d ∈ Ob(D).

Remark 2.12. Hopf adjunctions were initially introduced by Lawvere in the context of cartesian
categories under the name of Frobenius adjunctions [12].

Remark 2.13. Let T = UF be the bimonad of the comonoidal adjunction (F,U). The fusion
operators Hl and Hr of T are related to the Hopf operators Hl and Hr of (F,U) as follows:

Hl
X,Y = U2(FX,FY)U

(
Hl

X,FY

)
and Hr

X,Y = U2(FX,FY)U
(
Hr

FX,Y

)
for all X,Y ∈ Ob(C).

A left (resp. right) Hopf adjunction is a comonoidal adjunction (F,U) such that Hl (resp. Hr )
is invertible. A Hopf adjunction is a comonoidal adjunction such that both Hl and Hr are invert-
ible.

A left (resp. right) pre-Hopf adjunction is a comonoidal adjunction (F,U) such that Hl
1,−

(resp. Hr−,1) is invertible. A pre-Hopf adjunction is a comonoidal adjunction such that both Hl
1,−

and Hr−,1 are invertible.
From Remark 2.13, we easily deduce

Proposition 2.14.

(a) The monad of a left (resp. right) Hopf adjunction is a left (resp. right) Hopf monad. In
particular the monad of a Hopf adjunction is a Hopf monad.

(b) The monad of a left (resp. right) pre-Hopf adjunction is a left (resp. right) pre-Hopf monad.
In particular the monad of pre-Hopf adjunction is a pre-Hopf monad.

On the other hand, a bimonad is a Hopf monad if and only if its associated comonoidal ad-
junction is a Hopf adjunction:
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Theorem 2.15. Let T be a bimonad on a monoidal category C.

(a) T is a left (resp. right) Hopf monad if and only if the comonoidal adjunction (FT ,UT ) is a
left (resp. right) Hopf adjunction. In particular T is a Hopf monad if and only if (FT ,UT ) is
a Hopf adjunction.

(b) T is a left (resp. right) pre-Hopf monad if and only if the comonoidal adjunction (FT ,UT )

is a left (resp. right) pre-Hopf adjunction. In particular T is a pre-Hopf monad if and only if
(FT ,UT ) is a pre-Hopf adjunction.

We prove Theorem 2.15 in Section 2.9.
Hopf adjunctions are stable under composition:

Proposition 2.16. The composite of two left (resp. right) Hopf adjunctions is a left (resp. right)
Hopf adjunction. In particular the composite of two Hopf adjunctions is a Hopf adjunction.

Proposition 2.16 is a direct consequence of the following lemma:

Lemma 2.17. Let (F :C → D,U :D → C) and (G :D → E,V :E → D) be two comonoidal
adjunctions. Denote by Hl (resp. H′ l , resp. H′′ l) and Hr (resp. H′ r , resp. H′′ r ) the left and right
Hopf operators of (F,U) (resp. (G,V ), resp. (GF,UV )). Then

H′′ l
c,e = H′ l

F c,eG
(
Hl

c,V e

)
and H′′ r

e,c = H′ r
e,FcG

(
Hr

V e,c

)
for all c ∈ Ob(C) and e ∈ Ob(E).

2.9. Proof of Theorem 2.15

The ‘if’ part of each assertion results immediately from Proposition 2.14, since T is the bi-
monad of its comonoidal adjunction. The ‘only if’ part, less straightforward, results from the
following lemma:

Lemma 2.18. Let T be a bimonad on a monoidal category C. Denote by Hl , Hr its fusion
operators and by Hl , Hr the Hopf operators of the adjunction (FT ,UT ) of T . Let X be an
object C. Then Hl

X,− is invertible if and only if Hl
X,− is invertible, and in that case their inverses

are related by

Hl−1

X,Y = Hl−1

X,FT Y and Hl−1

X,(M,r) = T (idX ⊗ r)H l−1

X,M(idT X ⊗ ηM).

Similarly Hr−,X is invertible if and only if Hr−,X is invertible, and in that case:

Hr−1

Y,X = Hr−1

FT Y,X and Hr−1

(M,r),X = T (r ⊗ idX)Hr−1

M,X(ηM ⊗ idT X).

Proof. By Remark 2.13, the forgetful functor UT being strict monoidal, we have Hl
X,Y =

Hl
X,FT (Y ) and Hr

X,Y = Hr
FT (X),Y . Hence the ‘if’ parts and the expressions given for inverses of

fusion operators.
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Let us prove the ‘only if’ part of the left-handed case (the right-handed case can be done sim-
ilarly). Assume Hl

X,− is invertible. Set A = T (X ⊗ ?), B = T X ⊗ ?, and α = UT Hl
X,− :AUT →

BUT . We have αFT
= Hl

X,− and so αFT
is invertible. Therefore α is invertible by Lemma 2.19 be-

low. Thus Hl is invertible (UT being conservative) and Hl−1

X,(M,r) = T (idX ⊗ r)H l−1

X,M(idT X ⊗ηM)

for any T -module (M, r). �
Lemma 2.19. Let α :AUT → BUT be a natural transformation, where T is a monad on a cate-
gory C and A,B :C → D are two functors. If αFT

is invertible, so is α, and

α−1
(M,r) = A(r)α−1

FT MB(ηM)

for any T -module.

Proof. Let (M, r) be a T -module. The fork

T 2M

μM

T r

T M
r

M

in C is split by T 2M T M
ηT M

M
ηM

. As a result, in the diagram:

AT 2M

αFT T M

AμM

AT r
AT M

αFT M

Ar
AM

α(M,r)

BT 2M

BμM

BT r
BT M

Br
BM

the two rows are split coequalizers and the first two columns are invertible by assumption.
Therefore the third column is also invertible. Since r :FT M → (M, r) is T -linear, we obtain:
α−1

(M,r) = α−1
(M,r)B(rηM) = A(r)α−1

FT MB(ηM). �
3. Hopf monads on closed monoidal categories

In this section we define binary left and right antipodes for a bimonad T on a closed
monoidal category C and show that T is a Hopf monad if and only if T admits binary left
and right antipodes, or equivalently, if the category of T -modules is closed monoidal and
the forgetful functor UT preserves internal Homs. When C is autonomous, Hopf monads as
defined in the present paper coincide with Hopf monads defined in [5] in terms of unary an-
tipodes.

The general results on Hopf monads on closed monoidal categories are stated in Section 3.3
and the autonomous case is studied in Section 3.4. The rest of the section is devoted to the proofs
which are based on a classification of adjunction liftings (see Section 3.5).
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3.1. Closed monoidal categories

See [9] for a general reference. Let C be a monoidal category. Let X,Y be two objects of C.
A left internal Hom from X to Y is an object [X,Y ]l endowed with a morphism evX

Y : [X,Y ]l ⊗
X → Y such that, for each object Z of C, the mapping{

HomC
(
Z, [X,Y ]l) → HomC(Z ⊗ X,Y)

f �→ evX
Y (f ⊗ idX)

is a bijection. If a left internal Hom from X to Y exists, it is unique up to unique isomorphism.
A monoidal category C is left closed if left internal Homs exist in C. This is equivalent to

saying that, for every object X of C, the endofunctor ? ⊗ X admits a right adjoint [X, ?]l , with
adjunction unit and counit:

evX
Y : [X,Y ]l ⊗ X → Y and coevX

Y :Y → [X,Y ⊗ X]l ,

called respectively the left evaluation and the left coevaluation.
Let C be a left closed monoidal category. The left internal Homs of C give rise to a functor:

[−,−]l :Cop × C → C

where Cop is the category opposite to C. Moreover, from the associativity and unitarity of the
monoidal product of C, we deduce isomorphisms

[X ⊗ Y,Z]l 	 [
X, [Y,Z]l]l and [1,X]l 	 X

which we will abstain from writing down in formulae. The composition

cX,Y,Z : [Y,Z]l ⊗ [X,Y ]l → [X,Z]l

of internal Homs is the natural transformation defined by

evX
Z(cX,Y,Z ⊗ X) = evY

Z

([Y,Z]l ⊗ evX
Y

)
.

Remark 3.1. If X is an object of a monoidal category C admitting a left dual (∨X, evX, coevX)

then, for every object Y of C, [X,Y ]l = Y ⊗ ∨X is a left internal Hom from X to Y , with
evaluation morphism evX

Y = Y ⊗ evX . Therefore any left autonomous category is left closed
monoidal.

Remark 3.2. A left closed monoidal category C is left autonomous if and only if cX,1,X : [1,X]l ⊗
[X,1]l → [X,X]l is an isomorphism for all object X of C. In that case, ∨X = [X,1]l is a left
dual of X, with evaluation evX = evX

1 and coevaluation coevX = (evX
1 ⊗ id∨X)c−1

X,1,XcoevX
1 .

One defines similarly right internal Homs and right closed monoidal categories. A monoidal
category is right closed if and only if, for every object X of C, the endofunctor X ⊗ ? has a right
adjoint [X, ?]r , with adjunction unit and counit:
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ẽvX
Y :X ⊗ [X,Y ]r → Y and c̃oevX

Y :Y → [X,X ⊗ Y ]l ,

called respectively the right evaluation and the right coevaluation. The right internal Homs of a
monoidal left right closed category C give rise to a functor:

[−,−]r :Cop × C → C.

Remark 3.3. A right internal Hom in a monoidal category C is a left internal Hom in C⊗op, and
C is right closed if and only if C⊗op is left closed.

A closed monoidal category is a monoidal category which is both left and right closed.

3.2. Functors preserving internal Homs

Let X,Y be objects of a monoidal category D which have a left internal Hom [X,Y ]l , with
evaluation morphism evX

Y : [X,Y ]l ⊗ X → Y . A monoidal functor U :D → C is said to preserve
the left internal Hom from X to Y if U [X,Y ]l , endowed with the evaluation

U
(
evX

Y

)
U2

([X,Y ]l ,X)
:U [X,Y ]l ⊗ UX → UY,

is a left internal Hom from UX to UY .
A monoidal functor U :D → C between left closed monoidal categories is left closed if it

preserves all left internal Homs.
Let U :D → C be a monoidal functor between left closed monoidal categories. The natural

transformation U(evX
Y )U2([X,Y ]l ,X) :U [X,Y ]l ⊗UX → UY induces by universal property of

internal Homs a natural transformation:

Ul
X,Y :U [X,Y ]l → [UX,UY ]l .

The monoidal functor U is left closed if and only if Ul is an isomorphism.
Similarly one defines monoidal functors preserving right internal Homs and right closed

monoidal functors.

Lemma 3.4. Let U :D → C be a strong monoidal functor between left closed monoidal cate-
gories. If U is conservative, left closed, and C is left autonomous, then D is left autonomous.

Proof. According to Remark 3.2, it is enough to show that, for any object X of D, the com-
position morphism cX,1,X : [1,X]l ⊗ [X,1]l → [X,X]l is an isomorphism. Since U is strong
monoidal, U2 and U0 are isomorphisms. Consider the following commutative diagram:
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U([1,X]l ⊗ [X,1]l )
U(cX,1,X)

U [X,X]l
U l

X,X [UX,UX]l

U [1,X]l ⊗ U [X,1]l
U2([1,X]l ,[X,1]l )

U l
1,X⊗Ul

X,1

[1,UX]l ⊗ [UX,1]l
cUX,1,UX

[U1,UX]l ⊗ [UX,U1]l
[U0,UX]l⊗[UX,U−1

0 ]l

Since Ul is an isomorphism (U being left closed) and cUX,1,UX is invertible (by Remark 3.2),
we obtain that U(cX,1,X) is invertible. Now U is conservative. Hence cX,1,X is an isomor-
phism. �
Proposition 3.5. Let (F :C →D,U :D → C) be a comonoidal adjunction between monoidal left
(resp. right) closed categories. Then (F,U) is a left (resp. right) Hopf adjunction if and only if
U is left (resp. right) closed.

Proof. We prove the left-handed version (the right one can be done similarly). Let (F :C → D,

U :D → C) be a comonoidal adjunction between left closed monoidal categories. For any c ∈
Ob(C) and d, e ∈ Ob(D), set

he
c,d :

{HomD(F (c) ⊗ d, e) → HomD(F (c ⊗ Ud), e)

α �→ αHl
c,d

where Hl is the left Hopf operator of (F,U). Note that he
c,d is natural in c, d, e and one verifies

easily that it is the composition:

HomD(Fc ⊗ d, e)
∼→ HomD

(
Fc, [d, e]l) ∼→ HomC

(
c,U [d, e]l)

u
d,e
c−−→ HomC

(
c, [Ud,Ue]l) ∼→ HomC(c ⊗ Ud,Ue)

∼→ HomD
(
F(c ⊗ Ud), e

)
,

where u
d,e
c = HomC(c,Ul

d,e) and all other maps are adjunction bijections.

Assume that U is left closed. Let c ∈ Ob(C) and d ∈ Ob(D). Since Ul
d,− is an isomorphism,

u
d,−
c is an isomorphism, and so is h−

c,d . Therefore Hl
c,d is invertible by the Yoneda lemma. Hence

(F,U) is a left Hopf adjunction.
Conversely, suppose that (F,U) is a left Hopf adjunction. Let d, e ∈ Ob(D). Since Hl

−,d is an

isomorphism, he
−,d is an isomorphism, and so is u

d,e
− . Therefore Ul

d,e is invertible by the Yoneda
lemma. Hence U is left closed. �
3.3. Hopf monads and antipodes in the closed monoidal setting

Let T be a bimonad on a monoidal category C.
If C is left closed, a binary left antipode for T , or simply left antipode for T , is a natural

transformation
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sl = {
sl
X,Y :T [T X,Y ]l → [X,T Y ]l}

X,Y∈Ob(C)

satisfying the following two axioms:

T
(
evX

Y

([ηX,Y ]l ⊗ X
)) = evT X

T Y

(
sl
T X,Y T [μX,Y ]l ⊗ T X

)
T2

([T X,Y ]l ,X)
, (1a)

[X,T Y ⊗ ηX]lcoevX
T Y = [

X, (T Y ⊗ μX)T2(Y,T X)
]l

sl
X,Y⊗T XT

(
coevT X

Y

)
, (1b)

for all objects X,Y of C.
Similarly if C is right closed, a binary right antipode for T , or simply right antipode for T , is

a natural transformation

sr = {
sr
X,Y :T [T X,Y ]r → [X,T Y ]r}

X,Y∈Ob(C)

satisfying:

T
(
ẽvX

Y

(
X ⊗ [ηX,Y ]r)) = ẽvT X

T Y

(
T X ⊗ sr

T X,Y T [μX,Y ]r)T2
(
X, [T X,Y ]r), (2a)

[X,ηX ⊗ T Y ]r c̃oevX
T Y = [

X, (μX ⊗ T Y )T2(T X,Y )
]r

sr
X,T X⊗Y T

(
c̃oevT X

Y

)
, (2b)

for all objects X,Y of C.
With this definition of (binary) antipodes, we have

Theorem 3.6. Let T be a bimonad on a left (resp. right) closed monoidal category C. The fol-
lowing assertions are equivalent:

(i) The bimonad T is a left (resp. right) Hopf monad on C;
(ii) The monoidal category CT is left (resp. right) closed and the forgetful functor UT is left

(resp. right) closed;
(iii) The bimonad T admits a left (resp. right) binary antipode.

This theorem is proved in Section 3.6.

Remark 3.7. If the equivalent conditions of Theorem 3.6 are satisfied, internal Homs in CT may
be constructed in terms of the antipodes of T as follows. If T is a left Hopf monad and C is left
closed monoidal, then a left internal Hom for any two T -modules (M, r) and (N, t) is given by

[
(M, r), (N, t)

]l = ([M,N ]l , [M, t]lsl
M,NT [r,N ]l),

ev(M,r)
(N,t) = evM

N , and coev(M,r)
(N,t) = coevM

N .

Similarly, if T is a right Hopf monad and C is right closed monoidal, then a right internal Hom
for any two T -modules (M, r) and (N, t) is given by[

(M, r), (N, t)
]r = ([M,N]r , [M, t]r sr

M,NT [r,N ]r),
ẽv(M,r)

(N,t) = ẽvM
N , and c̃oev(M,r)

(N,t) = c̃oevM
N .
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In addition to characterizing Hopf monads on closed monoidal categories, the left and right
antipodes, when they exist, are unique and well behaved with respect to the bimonad structure:

Proposition 3.8. Let T be a bimonad on a monoidal category C.

(a) If C is left (resp. right) closed and T admits a left (resp. right) antipode, then this antipode
is unique.

(b) Assume C is left closed and T is a left Hopf monad. Then the left antipode sl for T satisfies:

sl
X,Y μ[T X,Y ]l = [X,μY ]lsl

X,T Y T
(
sl
T X,Y

)
T 2[μX,Y ]l ,

sl
X,Y η[T X,Y ]l = [ηX,ηY ]l ,

sl
X⊗Y,ZT

[
T2(X,Y ),Z

]l = [
X,sl

Y,Z

]l
sl
X,[T (Y ),Z]l ,

sl
T (1),X[T0,X]l = idT X,

for all objects X,Y,Z of C.
(c) Assume C is right closed and T is a right Hopf monad. Then the right antipode sr for T

satisfies:

sr
X,Y μ[T X,Y ]r = [X,μY ]r sr

X,T Y T
(
sr
T X,Y

)
T 2[μX,Y ]r ,

sr
X,Y η[T X,Y ]r = [ηX,ηY ]r ,

sr
X⊗Y,ZT

[
T2(X,Y ),Z

]r = [
X,sr

Y,Z

]r
sr
X,[T (Y ),Z]r ,

sr
T (1),X[T0,X]r = idT X,

for all objects X,Y,Z of C.

The proposition is proved in Section 3.6.
Lastly, the antipodes and the inverses of the fusion operators of a Hopf monad can be ex-

pressed in terms of one another, as follows:

Proposition 3.9. If T is a left Hopf monad on a left closed monoidal category C, then the inverse
of the left fusion operator Hl and the left antipode sl are related as follows:

Hl−1

X,Y = T (X ⊗ μY )evT Y
T (X⊗T 2Y)

(
sl
T Y,X⊗T 2Y

T
(
coevT 2Y

X

) ⊗ idT Y

)
,

sl
X,Y = [

X,T evT X
Y

]l[
ηX,H l−1

X,[T X,Y ]l
]lcoevT X

T [T X,Y ]l .

Similarly if T is a right Hopf monad on a right closed monoidal category C, then the inverse of
the right fusion operator Hr and the right antipode sl are related as follows:

Hr−1

X,Y = T (μX ⊗ Y)ẽvT X
T (T 2X⊗Y)

(
idT X ⊗ sr

T X,T 2X⊗Y
T

(
c̃oevT 2X

Y

))
,

sr
X,Y = [

X,T ẽvT X
Y

]r[
ηX,Hr−1

X,[T X,Y ]r
]r c̃oevT X

T [T X,Y ]r .

The proposition is proved in Section 3.6.
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3.4. Hopf monads on autonomous categories

The notion of Hopf monad introduced in this paper is a generalization of the notion of Hopf
monad on an autonomous category introduced in [5].

If T is a bimonad on a left autonomous category C, a unary left antipode for T , or simply left
antipode for T , is a natural transformation

sl = {
sl
X :T

(∨T X
) → ∨X

}
X∈Ob(C)

satisfying:

T0T (evX)T
(∨ηX ⊗ X

) = evT X

(
sl
T XT

(∨μX

) ⊗ T X
)
T2

(∨T X,X
);(

ηX ⊗ ∨X
)
coevXT0 = (

μX ⊗ sl
X

)
T2

(
T X,∨T X

)
T (coevT X);

for every object X of C.
Similarly if T is a bimonad on a right autonomous category C, a unary right antipode for T ,

or simply left antipode for T , is a natural transformation

sr = {
sr
X :T

(
(T X)∨

) → X∨}
X∈Ob(C)

satisfying:

T0T (ẽvX)T
(
X ⊗ η∨

X

) = ẽvT X

(
T X ⊗ sr

T XT
(
μ∨

X

))
T2

(
X, (T X)∨

);(
X∨ ⊗ ηX

)
c̃oevXT0 = (

sr
X ⊗ μX

)
T2

(
(T X)∨, T X

)
T (c̃oevT X).

In [5], a left (resp. right) Hopf monad T on a left (resp. right) autonomous category C is
defined as a bimonad on C which admits a left (resp. right) unary antipode or, equivalently by [5,
Theorem 3.8], whose category of modules CT is left (resp. right) autonomous. This definition,
which makes sense only in the autonomous setting, agrees with that given in Section 2.7:

Theorem 3.10. Let C be a left (resp. right) autonomous category and T be a bimonad on C. Then
the following assertions are equivalent:

(i) The bimonad T has a left (resp. right) unary antipode;
(ii) The bimonad T has a left (resp. right) binary antipode;
(iii) The bimonad T is a left (resp. right) Hopf monad.

The theorem is proved in Section 3.6.

Remark 3.11. The binary left antipode sl
X,Y and unary left antipode sl

X of a left Hopf monad T

on a left autonomous category are related as follows:

sl
X,Y = (

T X ⊗ sl
Y

)
T2

(
X,∨T Y

)
and sl

X = (
T0 ⊗ ∨X

)
sl
X,1.
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Similarly the binary right antipode sr
X,Y and unary right antipode sl

X of a right Hopf monad T on
a right autonomous category are related as follows:

sr
X,Y = (

sr
Y ⊗ T X

)
T2

(∨T Y ,X
)

and sr
X = (∨X ⊗ T0

)
sr
X,1.

3.5. Lifting adjunctions

In this subsection, (T ,μ,η) is a monad on a category C and (T ′,μ′, η′) is a monad on a
category C′.

A lift of a functor G :C → C′ along (T ,T ′) is a functor G̃ :CT → C′T ′
such that UT ′G̃ = GUT .

It is a well-known fact that such lifts G̃ are in bijective correspondence with natural transforma-
tions ζ :T ′G → GT satisfying:

ζμ′
G = G(μ)ζT T ′(ζ ) and ζη′

G = G(η).

Such a natural transformation ζ is called a lifting datum for G along (T ,T ′).
The lift G̃ζ corresponding with a lifting datum ζ is defined by

G̃ζ (M, r) = (
G(M),G(r)ζM

)
.

Conversely, the lifting datum associated with a lift G̃ is

ζ = UT ′
(
ε′̃
GFT

)
T ′G(η),

where ε′ denotes the counit of the adjunction (FT ′ ,UT ′).
Consider two functors G,G′ :C → C′, a lifting datum ζ for G, and a lifting datum ζ ′ for G′.

Then a natural transformation α :G → G′ lifts to a natural transformation

α̃ : G̃ζ → G̃′ζ ′

(in the sense that UT ′ (̃α) = αUT
) if and only if it satisfies ζ ′T ′(α) = αT ζ .

Example 3.12. Let T be a bimonad on a monoidal category C and (M, r) be a T -module. Then
the endofunctors ? ⊗ M and M ⊗ ? of C lift to endofunctors ? ⊗ (M, r) and (M, r) ⊗ ? of CT .
The lifting data corresponding with these lifts are the Hopf operators Hl

−,(M,r) and Hr
(M,r),− of

the comonoidal adjunction (FT ,UT ).

Now let (G :C → C′,V :C′ → C) be an adjunction, with unit h : 1C → V G and counit
e :GV → 1C′ .

A lift of the adjunction (G,V ) along (T ,T ′) is an adjunction (G̃, Ṽ ), where G̃ :CT → C′T ′
is

a lift of G along (T ,T ′), Ṽ :C′T ′ → CT is a lift of V along (T ′, T ), and the unit h̃ and counit ẽ

of (G̃, Ṽ ) are lifts of h and e respectively.
Lifts of the adjunction (G,V ) are in bijective correspondence with pairs (ζ, ξ), where

ζ :T ′G → GT and ξ :T V → V T ′ are natural transformations satisfying the following axioms:
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ζμ′
G = G(μ)ζT T ′(ζ ), (3a)

ζη′
G = G(η), (3b)

ξμV = V
(
μ′)ξT ′T (ξ), (3c)

ξηV = V
(
η′), (3d)

T ′(e) = eT ′G(ξ)ζV , (3e)

hT = V (ζ )ξGT (h). (3f)

Such a pair (ζ, ξ) is called a lifting datum for the adjunction (G,V ) along (T ,T ′).
By adjunction, we have a bijection

Φ :

{
HOM(T V,V T ′) → HOM(GT ,T ′G)

ξ �→ Φ(ξ) = eT ′GG(ξG)GT (h)

whose inverse is given by Φ−1(α) = V T ′(e)V (αV )hT V .

Theorem 3.13. Let ζ :T ′G → GT ′ be a lifting datum for G along (T ,T ′). Then the following
assertions are equivalent:

(i) There exists a natural transformation ξ :T V → V T ′ such that (ζ, ξ) is a lifting datum for
the adjunction (G,V ) along (T ,T ′).

(ii) ζ is invertible.

If such is the case, ξ is unique and ξ = Φ−1(ζ−1).

The theorem, which may be interpreted in terms of doctrinal adjunctions, results immediately
from the following lemma:

Lemma 3.14. Let ζ :T ′G → GT and ξ :T V → V T ′ be natural transformations.

(a) Axiom (3e) is equivalent to Φ(ξ)ζ = idT ′G, and (3f) to ζΦ(ξ) = idGT .
(b) If (3e) and (3f) hold, then (3a) is equivalent to (3c), and (3b) to (3d).

Proof. The adjunction bijection HOM(T ′GV,T ′) ∼→ HOM(T ′G,T ′G), defined by β �→
βGT ′G(h), sends T ′(e) to idT ′G, and eT ′G(ξ)ζV to eT ′GG(ξG)ζV GT ′G(h) = Φ(ξ)ζ . Similarly
the adjunction bijection HOM(T ,V GT )

∼→ HOM(GT ,GT ) sends hT to idGT and V (ζ )ξGT (h)

to ζΦ(ξ). Hence part (a).
Now assume that axioms (3e) and (3f) hold. In other words, ζ is invertible and ζ−1 = Φ(ξ).

Then axiom (3a) and axiom (3b) can be re-written as Φ(ξ)G(μ) = μ′
GT ′(Φ(ξ))Φ(ξ)T and

Φ(ξ)G(η) = η′
G, which translate respectively to axiom (3c) and axiom (3d) via the adjunction

bijections HOM(GT 2, T ′G)
∼→ HOM(T 2V,V T ′) and HOM(G,T ′G)

∼→ HOM(V ,V T ′). Hence
part (b). �
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3.6. Bimonads and lifting adjunctions

Here, by applying the results of Section 3.5 to bimonads in closed monoidal categories, we
prove Theorems 3.6 and 3.10 and Propositions 3.8 and 3.9.We deal with the left closed case, from
which the right closed case results using the coopposite bimonad (see Remarks 2.11 and 3.3).

Let C be a monoidal category and T be a bimonad on C. Note that T × 1CT is a bimonad on
C × CT . The monoidal tensor product ⊗ :CT × CT → CT of CT is a lift of the functor ⊗(1C ×
UT ) :C × CT → C along (T × 1CT , T ):

CT × CT

UT ×1CT

⊗
CT

UT

C × CT

⊗(1C×UT )
C

The corresponding lifting datum ζ :T (1C ⊗ UT ) → T ⊗ UT is given by

ζ
(M,r)
X = (X ⊗ r)T2(X,M) :T (X ⊗ M) → T (X) ⊗ M.

Note that ζ = UT (Hl ), where Hl denotes the left Hopf operator of the comonoidal adjunction
(FT ,UT ), and so, UT being conservative, ζ is invertible if and only if T is a left Hopf monad.

Assume now that C is left closed, that is, we have an adjunction (?⊗ X, [X, ?]l ) for each X ∈
Ob(C). In particular (? ⊗ M)(M,r)∈CT is a family of endofunctors of C admitting right adjoints
indexed by CT .

Lemma 3.15. The following assertions are equivalent:

(i) The category CT is left closed monoidal and UT is left closed;
(ii) For each T -module (M, r), the adjunction (? ⊗ M, [M, ?]l ) lifts to an adjunction (? ⊗

(M, r), Ṽ(M,r)).

Proof. Let us prove that (i) implies (ii). Recall that since UT is left closed, we have a natural
isomorphism Ul

T :UT [ , ]l → [UT ,UT ]l , see Section 3.2. Thus, by transport of structure, we may
choose left internal Homs in CT so that UT [(M, r), (N, r)]l is equal to [M,N ]l , Ul

T being the
identity. Then the adjunction (?⊗ (M, r), [(M, r), ?]l ) is a lift of the adjunction (?⊗M, [M, ?]l ).

Conversely (ii) implies (i) since the existence of an adjunction (?⊗ (M, r), Ṽ(M,r)) lifting the
adjunction (? ⊗ M, [M, ?]l ) means firstly that CT is left closed monoidal, with [(M, r), ?]l =
Ṽ(M,r), and secondly that Ul

T is the identity (and so UT is left closed). �
Let us prove Theorem 3.6, Propositions 3.8 and 3.9, and Theorem 3.10.

Proof of Theorem 3.6. According to Theorem 3.13, given a T -module (M, r), the adjunction
(?⊗M, [M, ?]l ) lifts to an adjunction (?⊗ (M, r), Ṽ (M,r)) if and only if the lifting datum ζ (M,r)

is invertible. Therefore, by Lemma 3.15, CT is left closed monoidal and UT is left closed if and
only if ζ is invertible, and so if and only if T is a left Hopf monad. Hence the equivalence of
assertions (i) and (ii).
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Assume (i) holds, so that ζ is invertible. By Theorem 3.13, for any T -module (M, r), there
exists a unique natural transformation

ξ (M,r) :T [M, ?]l → [M,T ]l

such that (ζ (M,r), ξ (M,r)) is a lifting datum for the adjunction (? ⊗ M, [M, ?]l ) along (T ,T ),
which is given by

ξ
(M,r)
X = [

M,T
(
evM

X

)]l[
M,ζ

(M,r)−1

[M,X]l
]lcoevM

T [M,X]l .

Note that ξ is natural in (M, r). Axioms (3e) and (3f) for this lifting datum are

T
(
evM

X

) = evM
T X

(
ξ

(M,r)
X ⊗ M

)
ζ

(M,r)

[M,X]l , (4a)

coevM
T X = [

M,ζ
(M,r)
X

]l
ξ

(M,r)
X⊗M T

(
coevM

X

)
. (4b)

They translate to axioms (1a) and (1b) of a left antipode under the adjunction bijection:

Ψ :

{
HOM(T [UT ,1C]l , [UT ,T ]l ) → HOM(T [T ,1C]l , [1C, T ]l )
ξ �→ sl = {sl

X,Y = [ηX,T Y ]lξFT X
Y }X,Y∈Ob(C).

Hence assertion (iii).
Conversely assume (iii) holds. Denote by sl the left antipode of T . Set ξ = Ψ −1(sl), that

is, ξ
(M,r)
Y = sl

M,Y T [r, Y ]l . Under Ψ −1, axioms (1a) and (1b) for sl translate to (4a) and (4b).

In particular, for any T -module (M, r), ξ (M,r) satisfies (3e) and (3f). Furthermore, axioms (3a)
and (3b) hold for ζ (M,r) as it is a lifting datum for ? ⊗ M . Thus, by Lemma 3.14, axioms (3c)
and (3d) hold for ξ (M,r), that is:

ξ
(M,r)
X μ[M,X]l = [M,μX]lξ (M,r)

T X T
(
ξ

(M,r)
X

)
, (5a)

ξ
(M,r)
X η[M,X]l = [M,ηX]l . (5b)

Therefore (ζ (M,r), ξ (M,r)) is a lifting datum for the adjunction (? ⊗ M, [M, ?]l ) along (T ,T ).
Hence (ii) by Lemma 3.15. This concludes the proof of Theorem 3.6. �
Proof of Proposition 3.8. Part (a) results from the fact that if a natural transformation ξ satisfy-
ing (4a) and (4b) exists, it is unique by Theorem 3.13.

Let us prove part (b). Assume that T admits a left antipode sl . When translated in terms
of sl , axioms (4a) and (4b) yield the compatibility of sl with μ and η. Given two T -modules
(M, r) and (N, t), the T -action of the left internal Hom [(M, r), (N, t)]l obtained by lifting
[M,N ]l is [M, t]lsl

M,NT [r,N ]l . Given a third T -module (P,p), the T -linearity of the canonical
isomorphism

[
(M, r) ⊗ (N, t), (P,p)

]l 	 [
(M, r),

[
(N, t), (P,p)

]l]l
,
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translated in terms of sl , yields the compatibility of sl to T2. Similarly the T -linearity of the
canonical isomorphism

[
(1, T0), (M, r)

]l 	 (M, r)

yields the compatibility of sl to T0. Hence Proposition 3.8. �
Proof of Proposition 3.9. Denote by sl the left antipode of T and set ξ = Ψ −1(sl). Recall that
ξ

(M,r)
Y = sl

M,Y T [r, Y ]l and sl
X,Y = [ηX,T Y ]lξFT X

Y . By Theorem 3.13,

ξ
(M,r)
X = [

M,T
(
evM

X

)]l[
M,ζ

(M,r)−1

[M,X]l
]lcoevM

T [M,X]l ,

ζ
(M,r)−1

X = evM
X⊗M

(
ξ

(M,r)
X⊗M ⊗ M

)
T

(
coevM

X

)
,

where ζ
(M,r)
X = Hl

X,(M,r). By Lemma 2.18, we have: Hl−1

X,Y = ζ
FT Y
X

−1
and

ζ
(M,r)−1

X = T (idX ⊗ r)H l−1

X,M(idT X ⊗ ηM).

Hence the expression of sl in terms of Hl−1
, and conversely. �

Proof of Theorem 3.10. We prove the left-handed version. Assertions (ii) and (iii) are equivalent
by Theorem 3.6. Assertion (iii) is equivalent to CT and UT being left closed, and so to CT being
left autonomous (using Lemma 3.4 and the fact that a strong monoidal functor preserves left
duals). Hence (ii) is equivalent to (i) by [5, Theorem 3.8]. �
4. Cross products and related constructions

In this section we study the cross product of Hopf monads (previously introduced in [6] for
Hopf monads on autonomous categories). In particular we introduce the inverse operation, called
the cross quotient.

4.1. Functoriality of categories of modules

Let C be a category. If T is a monad on C, then (CT ,UT ) is a category over C, that is, an object
of Cat/C. Any morphism f :T → P of monads on C induces a functor

f ∗ :
{CP → CT

(M, r) �→ (M, rfM)

over C, that is, UT f ∗ = UP . Moreover, any functor F :CP → CT over C is of this form. This
construction defines a fully faithful functor{

Mon(C)op → Cat/C
T �→ (CT ,UT

)
.
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If f :T → P is a morphism of bimonads on a monoidal category C, then f ∗ :CP → CT is
a strict monoidal functor over C, and any strong monoidal functor F :CP → CT over C (that is,
such that UT F = UP as monoidal functors) is of this form (see [5, Lemma 2.9]). Hence a fully
faithful functor

BiMon(C)op → MonCat/C.

4.2. Exactness properties of monads

A Hopf monad T on a monoidal category C admits a right adjoint if C is autonomous (see [5,
Corollary 3.12]), but not in general. In many cases, the existence of a right adjoint can be replaced
by the weaker condition of preservation of reflexive coequalizers (defined in Section 1).

Lemma 4.1. (See [13].) Let C be a category and T be a monad on C preserving reflexive co-
equalizers. Then:

(a) A reflexive pair of morphisms of CT whose image by UT has a coequalizer, has a coequalizer,
and this coequalizer is preserved by UT ;

(b) If reflexive coequalizers exist in C, they exist also in CT and UT preserves them.

Lemma 4.2. Let C be a monoidal category admitting reflexive coequalizers, which are preserved
by monoidal product on the left (resp. right). If T is a bimonad on C preserving reflexive co-
equalizers, then CT has reflexive coequalizers which are preserved by monoidal product on the
left (resp. right).

Proof. Let us prove the right-handed version. According to Lemma 4.1, CT has reflexive co-
equalizers and UT preserves them. Let h be a coequalizer of a reflexive pair (f, g) in CT , and d

be an object of CT . Denoting k be a coequalizer of the reflexive pair (f ⊗d,g⊗d), the morphism
h ⊗ d factorizes uniquely as φk. Both UT (h ⊗ d) and UT k are coequalizers of (UT f,UT g) (be-
cause UT and UT ⊗ UT d preserve reflexive coequalizers) so UT φ is an isomorphism. Hence φ

is an isomorphism, since UT is conservative. Thus h ⊗ d is a coequalizer of (f ⊗ d,g ⊗ d). �
4.3. Cross products

Let T be a monad on a category C. If Q is a monad on the category CT of T -modules, the
monad of the composite adjunction

(CT
)Q

UQ

FQ

CT

UT

FT

C

is called the cross product of T by Q and is denoted by Q � T (see [6, Section 3.7]). As an
endofunctor of C, Q � T = UT QFT . The product p and unit e of Q � T are

p = qFT
Q(εQFT

) and e = vFT
η,
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where q and v are the product and the unit of Q, and η and ε are the unit and counit of the
adjunction (FT ,UT ).

Note that the composition of two monadic functors is not monadic in general. However:

Proposition 4.3. (See [1].) If T is a monad on a category C and Q is a monad on CT which
preserves reflexive coequalizers, then the forgetful functor UT UQ is monadic with monad Q�T .
Moreover the comparison functor

K :
(CT

)Q → CQ�T

is an isomorphism of categories.

If T is a bimonad on a monoidal category C and Q is a bimonad on CT , then Q�T = UT QFT

is a bimonad on C (since a composition of comonoidal adjunctions is a comonoidal adjunction),
with comonoidal structure given by

(Q � T )2(X,Y ) = Q2
(
FT (X),FT (Y )

)
Q

(
(FT )2(X,Y )

)
,

(Q � T )0 = Q0Q
(
(FT )0

)
.

In that case the comparison functor K : (CT )Q → CQ�T is strict monoidal.
The cross product is functorial in Q: the assignment Q �→ Q � T defines a functor ? �

T :BiMon(CT ) → BiMon(C).
From Proposition 2.16 and Proposition 2.14, we deduce

Proposition 4.4. The cross product of two left (resp. right) Hopf monads is a left (resp. right)
Hopf monad. In particular, the cross product of two Hopf monads is a Hopf monad.

Example 4.5. Let H be a bialgebra over a field k and A be an H -module algebra, that is, an alge-
bra in the monoidal category HMod of left H -modules. In this situation, we may form the cross
product A�H , which is a k-algebra (see [16]). Recall that H ⊗ ? is a monad on Vectk and A⊗ ?
is a monad on HMod. Then:

(A ⊗ ?) � (H ⊗ ?) = (A � H) ⊗ ?

as monads. Moreover, if H is a quasitriangular Hopf algebra and A is an H -module Hopf algebra,
that is, a Hopf algebra in the braided category HMod, then A � H is a Hopf algebra over k, and
(A ⊗ ?) � (H ⊗ ?) = (A � H) ⊗ ? as Hopf monads.

Example 4.6. Let T be a Hopf monad on an autonomous category C. Assume T is centralizable,
that is, for all object X of C, the coend

ZT (X) =
Y∈C∫

∨T (Y ) ⊗ X ⊗ Y

exists (see [6]). In that case, the assignment X �→ ZT (X) is a Hopf monad on C, called the cen-
tralizer of T and denoted by ZT . The centralizer ZT of T lifts canonically to a Hopf monad Z̃T
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on CT , which is the centralizer of 1CT . Then, by [6, Theorem 6.5], DT = Z̃T � T is a quasitri-
angular Hopf monad, called the double of T , and satisfies Z(CT ) ∼= CDT as braided categories,
where Z denotes the categorical center.

Distributive laws, introduced by Beck [2] to encode composition and lifting of monads, have
been adapted to Hopf monads on autonomous categories in [6]. The next corollary deals with the
case of Hopf monads on arbitrary monoidal categories.

Corollary 4.7. Let P and T be Hopf monads on a monoidal category C and Ω :T P → PT be a
comonoidal distributive law of T over P .

(a) If P is a Hopf monad, then the lift P̃ Ω of P is a Hopf monad on CT .
(b) If P and T are Hopf monads, then the composition P ◦Ω T is a Hopf monad on C and

P̃ Ω
� T = P ◦Ω T as Hopf monads.

Proof. Recall from [6, Theorem 4.7] that Ω defines a bimonad P̃ Ω on CT , which is a lift of the
bimonad P , and a bimonad P ◦Ω T on C, with underlying functor PT . Moreover P ◦Ω T =
P̃ Ω

� T as bimonads on C. The forgetful functor UT maps the fusion operators of P̃ Ω to those
of P . Therefore if P is a Hopf monad, so is P̃ Ω (as UT is conservative). If both P and T are
Hopf monads, then P̃ Ω

� T is a Hopf monad by Proposition 4.4, and so is P ◦Ω T . �
Lemma 4.8. Let T be a bimonad on a monoidal category C and Q be a bimonad on CT . Assume
that the monoidal products of CT and (CT )Q preserve reflexive coequalizers in the left (resp.
right) variable. If the adjunction (FQFT ,UT UQ) is a left (resp. right) Hopf adjunction and T is
a left (resp. right) Hopf monad, then Q is a left (resp. right) Hopf monad.

Proof. Let us prove the left-handed version. Denote by Hl , H′ l , and H′′ l the left Hopf oper-
ators of the adjunctions (FT ,UT ), (FQ,UQ), and (FQFT ,UT UQ) respectively. Assume that
(FQFT ,UT UQ) is a left Hopf adjunction, that is H′′ l is invertible. Assume also that T is a left
Hopf monad. By Theorem 2.15, Hl is invertible and it is enough to show that H′ l is also invertible.
Let e be an arbitrary object of (CT )Q. The natural transformation H′ l−,e :FQ(?⊗UQe) → FQ ⊗ e

is invertible on the image of FT , since H′ l
FT ,e = H′′ l−,eFQ(Hl

−,UQ(e))
−1 by Lemma 2.17. Now let

(M, r) be a T -module. The coequalizer

FT T (M)
μM

FT (r)

FT (M)
r

(M, r)

is reflexive because FT (r)FT (ηM) = idFT (M) = μMFT (ηM). This reflexive coequalizer is pre-
served by the functors FQ(? ⊗ UQ(e)) and FQ ⊗ e, because FQ is a left adjoint and ? ⊗ UQ(e)

and ? ⊗ e preserve reflexive coequalizers (by hypothesis). Hence H′ l
(M,r),e is invertible. �

4.4. Cross quotients

Let f :T → P be a morphism of monads on a category C. We say that f is cross quotientable
if the functor f ∗ :CP → CT is monadic. In that case, the monad of f ∗ (on CT ) is called the cross
quotient of f and is denoted by P ÷|f T or simply P ÷|T . Note that the comparison functor
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CP
K

f ∗

(CT )P ÷|T

UP ÷|T

CT

is then an isomorphism of categories (by the last assertion of Theorem 2.1).

Lemma 4.9. (See [13].) Let f :T → P be a morphism of monads on a category C. The following
assertions are equivalent:

(i) The morphism f is cross quotientable;
(ii) The functor f ∗ admits a left adjoint;
(iii) For any T -module (M, r), the reflexive pair

FP T M
P(r)

pMP(fM)

FP M

admits a coequalizer FP M → G(M,r) in CP , where p is the product of P .

If these conditions hold, a left adjoint f! of f ∗ is given by f!(M, r) = G(M,r).

Proof. It results from Beck’s theorem (see Theorem 2.1) that if U and V are composable func-
tors such that both UV and U are monadic, then V is monadic if and only if it admits a left
adjoint. Thus (i) is equivalent to (ii).

Now let (M, r) be a T -module and (N,ρ) be a P -module. The pair of assertion (iii) is reflex-
ive (since FP (ηM) is a common retraction). Via the adjunction bijection

HomCP

(
FP M, (N,ρ)

) 	 HomC
(
M,UP (N,ρ)

) = HomC(M,N),

morphisms FP M → (N,ρ) which coequalize that pair correspond with T -linear morphisms
(M, r) → f ∗(N,ρ). Therefore (ii) is equivalent to (iii). We conclude using the last assertion of
Theorem 2.1. �
Remark 4.10. A morphism f :T → P of monads on C is cross quotientable whenever C admits
coequalizers of reflexive pairs and P preserves them.

A cross quotient of bimonads is a bimonad: let f :T → P be a cross quotientable morphism
of bimonads on a monoidal category C. Since f ∗ is strong monoidal, P ÷|f T is a bimonad on
CT and the comparison functor K :CP → (CT )P ÷|f T is an isomorphism of monoidal categories.

The cross quotient is inverse to the cross product in the following sense:

Proposition 4.11. Let T be a (bi)monad on a (monoidal) category C.
(a) If T → P is a cross quotientable morphism of (bi)monads on C, then

(P ÷|T ) � T 	 P

as (bi)monads.
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(b) Let Q be a (bi)monad on CT such that UT UQ is monadic. Then the unit of Q defines a cross
quotientable morphism of (bi)monads T → Q � T and

(Q � T )÷|T 	 Q

as (bi)monads.

Proof. Let us prove part (a). Since CP 	 (CT )P ÷|T , the functor UP ÷|T UT is monadic. Hence an
isomorphism CP 	 C(P ÷|T )�T of (monoidal) categories over C, which induces an isomorphism
(P ÷|T ) � T 	 P of (bi)monads on C.

Let us prove part (b). Set f = u � T :T → Q � T , where u is the unit of Q. We have a
commutative diagram of (monoidal) functors:

(CT )Q
K

UQ

CQ�T

f ∗
UQ�T

CT
UT

C

where K is the comparison functor of the adjunction (FQFT ,UT UQ). Since K is an equivalence,
the functor f ∗ is monadic, with (bi)monad (Q � T )÷|T . Hence K induces an isomorphism of
(bi)monads (Q � T )÷|T 	 Q. �
Remark 4.12. Let T be a bimonad on a monoidal category C. Let BiMon(CT )m be the full
subcategory of BiMon(CT ) whose objects are monads Q on CT such that UT UQ is monadic.
Let T \BiMon(C)q be the full subcategory of T \BiMon(C) whose objects are quotientable mor-
phisms of bimonads from T . Then the functor{

BiMon
(CT

) → T \BiMon(C)

Q �→ (Q,T → Q � T )

induces an equivalence of categories BiMon(CT )m 	 T \BiMon(C)q , with quasi-inverse given
by (T → P) �→ (P ÷|T ).

Under suitable exactness assumptions, if P and T are Hopf monads, so is P ÷|T :

Proposition 4.13. Let C be a monoidal category admitting reflexive coequalizers, and whose
monoidal product preserves reflexive coequalizers in the left (resp. right) variable. Let T and
P be two left (resp. right) Hopf monads on C which preserve reflexive coequalizers. Then any
morphism of bimonads T → P is cross quotientable and P ÷|T is a left (resp. right) Hopf
monad.

Proof. Let us prove the left-handed version. The morphism f is cross quotientable by Re-
mark 4.10, and so P 	 (P ÷|f T ) � T as bimonads. The monoidal products of CT and CP

preserve reflexive coequalizers in the left variable by Lemma 4.2. Applying Lemma 4.8 to the
bimonads T and P ÷|T , we get that P ÷|T is a left Hopf monad. �
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Example 4.14. Let f :L → H be a morphism of Hopf algebras over a field k, so that H becomes
an L-bimodule by setting � · h · �′ = f (�)hf (�′). The morphism f induces a morphism of Hopf
monads on Vectk:

f ⊗k ? :L ⊗k ? → H ⊗k ?

which is cross quotientable, and (H ⊗ ?)÷|(L ⊗ ?) is a k-linear Hopf monad on the monoidal
category LMod given by N �→ H ⊗L N . This construction defines an equivalence of categories

L\HopfAlgk → HopfMonk(LMod),

where L\HopfAlgk is the category of Hopf k-algebras under L and HopfMonk(LMod) is the
category of k-linear Hopf monads on LMod.

5. Hopf monads associated with Hopf algebras and bosonization

Examples of Hopf monads may be obtained from Hopf algebras. For instance, any Hopf alge-
bra A in a braided category B gives rise to Hopf monads A⊗? and ?⊗A on B, see Example 2.10.
More generally, any Hopf algebra (A,σ ) in the center Z(C) of a monoidal C gives rise to a Hopf
monad A ⊗σ ? on C (see Section 5.3, or [6] for the autonomous case). Hopf monads of this form
are called representable. The main result of this section asserts that a Hopf monad on a monoidal
category is representable if and only if it is augmented, that is, endowed with a Hopf monad
morphism from itself to the identity (see Theorem 5.17).

More generally, given a Hopf monad T on C and a Hopf algebra (A, σ ) in the center Z(CT )

of the category of T -modules, we construct a Hopf monad A �σ T on C of which T is a re-
tract. Conversely, under suitable exactness conditions (involving reflexive coequalizers), any
Hopf monad P of which T is a retract is of the form A �σ T for some Hopf algebra (A, σ )

in Z(CT ).

5.1. Lax braidings, lax half braidings and lax center

A lax braiding of a monoidal category C is a natural transformation

τ = {τX,Y :X ⊗ Y → Y ⊗ X}X,Y∈Ob(C)

satisfying:

τX,Y⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ),

τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z),

τX,1 = idX = τ1,X.

A lax braided category is a monoidal category endowed with a lax braiding. A braiding is an
invertible lax braiding, and a braided category is a monoidal category endowed with a braiding.

Let C be a monoidal category and M an object of C. A lax half braiding for M is a natural
transformation σ :M ⊗ 1C → 1C ⊗ M such that

σY⊗Z = (idY ⊗ σZ)(σY ⊗ idZ) and σ1 = idM.

The pair (M,σ) is then called a lax half braiding of C.
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The lax center of C (see [20,7]) is the lax braided category Z lax(C) defined as follows. Objects
of Z lax(C) are left half braidings of C. A morphism in Z lax(C) from (M,σ) to (M ′, σ ′) is a
morphism f :M → M ′ in C such that: (id1C ⊗ f )σ = σ ′(f ⊗ id1C ). The monoidal product and
lax braiding τ are

(M,σ) ⊗ (N,γ ) = (
M ⊗ N, (σ ⊗ idN)(idM ⊗ γ )

)
and τ(M,σ),(N,γ ) = σN .

A half braiding is a lax half braiding (M,σ) such that σ is invertible. The center of C is the
full monoidal subcategory Z(C) ⊂ Z lax(C) whose objects are half braidings of C. It is a braided
category, with braiding induced by τ .

Note that if C is autonomous, lax half braidings are in fact half braiding, so that the lax center
Z lax(C) coincides with the center Z(C).

5.2. Hopf algebras in lax braided categories

Let B be a lax braided category, with lax braiding τ . A bialgebra in B is an object A of B
endowed with an algebra structure (m,u) and a coalgebra structure (�, ε) in B satisfying:

�m = (m ⊗ m)(idA ⊗ τA,A ⊗ idA)(� ⊗ �), �u = u ⊗ u,

εm = ε ⊗ ε, εu = id1.

Bialgebras in B, together with morphisms of bialgebras (defined in the obvious way), form a
category BiAlg(B).

Let A be a bialgebra in B. An antipode of A is a morphism S :A → A in B such that:

m(S ⊗ idA)� = uε = m(idA ⊗ S)�.

If it exists, an antipode for A is unique, it satisfies

Sm = mτA,A(S ⊗ S), Su = u, �S = (S ⊗ S)τA,A�, εS = ε,

and we have: τA,A = (m ⊗ m)(S ⊗ �m ⊗ S)(� ⊗ �).
If τA,A is invertible, an opantipode of A is a morphism S′ :A → A in B such that:

mτ−1
A,A

(
S′ ⊗ idA

)
� = uε = mτ−1

A,A

(
idA ⊗ S′)�.

If it exists, an opantipode for A is unique.
If τA,A is invertible, the bialgebra A admits an antipode and an opantipode if and only if it

admits an invertible antipode, or equivalently, an invertible opantipode. When such is the case,
the opantipode is the inverse of the antipode.

Let A be a bialgebra on a lax braided category B, with lax half braiding τ . The fusion operator
of A is the morphism

H = (A ⊗ m)(� ⊗ A) = :A ⊗ A → A ⊗ A.



Author's personal copy

776 A. Bruguières et al. / Advances in Mathematics 227 (2011) 745–800

The opfusion operator of A is the morphism

H′ = (m ⊗ A)(A ⊗ τA,A)(� ⊗ A) = :A ⊗ A → A ⊗ A.

Lemma 5.1.

(a) The bialgebra A admits an antipode S if and only if its fusion operator H is invertible. If
such is the case,

S = (ε ⊗ A)H−1(A ⊗ u),

H−1 = (A ⊗ m)(A ⊗ S ⊗ A)(� ⊗ A).

(b) If τA,A is invertible, the bialgebra A admits an opantipode S′ if and only if its opfusion
operator H′ is invertible. If such is the case,

S′ = (ε ⊗ A)H′−1(u ⊗ A),

H′−1 = τ−1
A,A(m ⊗ A)

(
S′ ⊗ A ⊗ A

)(
τ−1
A,A ⊗ A

)
(A ⊗ �).

A Hopf algebra in a lax braided category B, with lax braiding τ , is a bialgebra A in B ad-
mitting an invertible antipode and such that τA,A is invertible. Hopf algebras in B form a full
subcategory of BiAlg(B) denoted by HopfAlg(B).

Remark 5.2. If B is a braided category, the mirror B of B is the braided category obtained when
the braiding τ of B is replaced by its mirror τ (defined by τX,Y = τ−1

Y,X). If (A,m,u,�, ε)

is a bialgebra in a braided category B, one defines a bialgebra Aop in B by setting Aop =
(A,mop, u,�, ε), with mop = mτ−1

A,A. We have (Aop)op = A. An opantipode for A is an an-
tipode for Aop. The bimonads A ⊗ ? and ? ⊗ Aop are isomorphic via τA,−. See [6, Section 1.11
and Example 2.3] for details.

5.3. Hopf monads represented by central Hopf algebras

Let C be a monoidal category. A (lax) central algebra (resp. coalgebra, resp. bialgebra, resp.
Hopf algebra) of C is an algebra (resp. coalgebra, resp. bialgebra, resp. Hopf algebra) in the (lax)
center of C.

Any lax central coalgebra (A,σ ) of C gives rise to a comonoidal endofunctor of C, denoted
by A ⊗σ ?, defined by A ⊗ ? as a functor and endowed with the comonoidal structure:

(A ⊗σ ?)2(X,Y ) = (A ⊗ σX)(� ⊗ X) ⊗ Y = , (A ⊗σ ?)0 = ε = ,

where � and ε denote the coproduct and counit of (A,σ ).
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For any lax central bialgebra (A,σ ) of C, the comonoidal endofunctor A ⊗σ ? is a bimonad
on C with monad structure given by

μX = m ⊗ X = and ηX = u ⊗ X = ,

where m and u are the product and unit of A. Denote by AModσ the monoidal category
CA⊗σ ?, that is, the category of left A-module (in C) with monoidal product (M, r) ⊗ (N, s) =
(M ⊗ N,ω), where

ω = ,

and monoidal unit (1, ε).
The bimonads of the form A ⊗σ ? can be characterized as follows:

Lemma 5.3. Let A be an object of C and consider the endofunctor T = A ⊗ ? of C. Let � :A →
A⊗A and ε :A → 1 be morphisms in C and σ :A⊗ ? → ?⊗A be a natural transformation such
that σ1 = idA. Set

T2(X,Y ) = (A ⊗ σX ⊗ Y)(� ⊗ X ⊗ Y) and T0 = ε.

Then the following conditions are equivalent:

(i) (T ,T2, T0) is a comonoidal endofunctor of C;
(ii) σ is a lax half braiding for A and (A,σ ) is a coalgebra in Z lax(C) with coproduct � and

counit ε.

Assume these equivalent conditions hold. Then T = A ⊗σ ? as comonoidal functors. Further-
more, let m :A ⊗ A → A and u :1 → A be morphisms in C and set

μ = m ⊗ ? :T 2 → T and η = u ⊗ ? : 1C → T .

Then the following conditions are equivalent:

(iii) T is a bimonad with product μ, unit η, and comonoidal structure (T2, T0);
(iv) (A,σ ) is a lax central bialgebra of C with product m, unit u, coproduct �, and counit ε.

If these equivalent conditions hold, T = A ⊗σ ? as bimonads.

Proof. The verification, lengthy but straightforward, is left to the reader. �
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Let (A,σ ) be a lax central bialgebra of C, that is, a bialgebra in Z lax(C). The left and right
fusion operators of the monad A ⊗σ ? are

Hl
X,Y = (A ⊗ X ⊗ m)(A ⊗ σX ⊗ A)(� ⊗ X ⊗ A) ⊗ Y = ,

H r
X,Y = (m ⊗ X ⊗ A)(A ⊗ σA⊗X)(� ⊗ A ⊗ X) ⊗ Y = .

Proposition 5.4. Let (A,σ ) be a lax central bialgebra in C, and let A⊗σ ? be the corresponding
bimonad on C. Then:

(a) The following conditions are equivalent:
(i) A ⊗σ ? is a left Hopf monad;
(ii) A ⊗σ ? is a left pre-Hopf monad;
(iii) A admits an antipode.

(b) The following conditions are equivalent:
(i′) A ⊗σ ? is a right Hopf monad;
(ii′) A ⊗σ ? is a right pre-Hopf monad;
(iii′) σ is invertible and A admits an opantipode.

In particular, the bimonad A ⊗σ ? is a Hopf monad if and only if A ⊗σ ? is a pre-Hopf monad, if
and only if (A,σ ) is a central Hopf algebra of C, that is, a Hopf algebra in the center Z(C).

Remark 5.5. Let (A,σ ) be a central Hopf algebra of C and AModσ be the monoidal cat-
egory of left A-modules (with monoidal product induced by σ ). Then the full subcategory
Amodσ ⊂ AModσ of left A-modules (M, r) whose underling object M has a left and a right
dual is autonomous.

Remark 5.6. If B is a braided category, then its braiding τ defines a fully faithful braided functor{B → Z(B)

X �→ (X, τX,−)

which is a monoidal section of the forgetful functor Z(B) → B. In particular if A is a bialgebra
in B, then (A, τA,−) is a central bialgebra of B and we have

A ⊗ ? = A ⊗τA,− ?

as bimonads on B, where A ⊗ ? is the bimonad constructed in Example 2.10. Also, if A is
a bialgebra in B, then Aop is a bialgebra in the mirror B of B (see Remark 5.2), (Aop, τA,−) is a
central bialgebra of B, where τ is the mirror braiding of τ , and
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? ⊗ A 	 Aop ⊗τA,− ?

as bimonads on B. Moreover A is a Hopf algebra in B if and only if (A, τA,−) is a central Hopf
algebra of B, if and only if A ⊗ ? is a Hopf monad on B, if and only if ? ⊗ A is a Hopf monad
on B.

Proof of Proposition 5.4. Let Hl be the left fusion operator of T = A ⊗σ ? and H be the fusion
operator of A. We have: Hl

X,Y = Hl
X,1 ⊗ Y and Hl

1,1 = H. Thus the bimonad T is a left Hopf

monad if and only if Hl−,1 is an isomorphism, and T is a left pre-Hopf monad if and only if H
is an isomorphism. Hence (ii) is equivalent to (iii) since, by Lemma 5.1, H is invertible if and
only if A admits an antipode. Assuming (iii) and denoting by S the antipode of A, one verifies
easily that (A ⊗ X ⊗ m)(A ⊗ σX ⊗ A)((A ⊗ S)� ⊗ X ⊗ A) is inverse to Hl

X,1. Therefore (iii)
implies (i). Hence part (a) of the proposition, since (i) implies (ii) is trivial.

Let us prove part (b). Denote by Hr the right fusion operator of T and H′ the opfusion operator
of A. Since Hr

X,Y = Hr
X,1 ⊗ Y , the bimonad T is a right Hopf monad if and only if it is a right

pre-Hopf monad. Hence (i′) is equivalent to (ii′). Moreover, we have: Hr
X,1 = (A⊗σX)(H′ ⊗X).

If (iii′) holds, then σ and H′ are invertible by Lemma 5.1, and so Hr−,1 is an isomorphism. Hence
(iii′) implies (ii′). Conversely, if Hr−,1 is an isomorphism, then in particular H′ = Hr(1,1) is
invertible, and A ⊗ σ is invertible. Since 1 is a retract of A, this implies that σ is invertible.
Hence (ii′) implies (iii′). This completes the proof of part (b).

In particular T is a Hopf monad if and only if σ is invertible and (A,σ ) admits an antipode
and an opantipode, in other words, (A,σ ) is a Hopf algebra in Z(C). �
5.4. Characterization of representable Hopf monads

Let C be a monoidal category. A bimonad T on C is augmented if it is endowed with an
augmentation, that is, a bimonad morphism e :T → 1C .

Augmented bimonads on C form a category BiMon(C)/1C , whose objects are augmented
bimonads on C, and morphisms between two augmented bimonads (T , e) and (T ′, e′) are mor-
phisms of bimonads f :T → T ′ such that e′f = e.

If (A,σ ) is a lax central bialgebra of C, the bimonad A ⊗σ ? (see Section 5.3) is augmented,
with augmentation e = ε ⊗ ? :A ⊗σ ? → 1C , where ε is the counit of (A,σ ). Hence a functor
BiAlg(Z lax(C)) → BiMon(C)/1C which, according to Proposition 5.4, induces by restriction a
functor

R :

{
HopfAlg(Z(C)) → HopfMon(C)/1C
(A,σ ) �→ (A ⊗σ ?, ε ⊗ ?)

where HopfMon(C)/1C denotes the category of augmented Hopf monads on C.

Theorem 5.7. The functor R is an equivalence of categories.

In other words, Hopf monads representable by central Hopf algebras are nothing but aug-
mented Hopf monads. Theorem 5.7 is proved in Section 5.6.

Remark 5.8. Hopf monads are not representable in general. A counterexample is given in [6] in
terms of centralizers. Let T be a centralizable Hopf monad on an autonomous category C (see
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Example 4.6). In general the centralizer ZT of T is not representable by a Hopf algebra. For
example, let C = G-vect be the category of finite-dimensional G-graded vector spaces over a
field k for some finite group G. The identity 1C of C is centralizable and its centralizer Z1C is
representable if and only if G is abelian (see [6, Remark 9.2]).

Hopf monads on a braided category B which are representable by Hopf algebras in B can also
be characterized as follows:

Corollary 5.9. Let T be a Hopf monad on a braided category B. Then T is isomorphic to the
Hopf monad A⊗? for some Hopf algebra A in B if and only if it is endowed with an augmentation
e :T → 1C compatible with the braiding τ of B in the following sense:

(eX ⊗ T 1)T2(X,1) = (eX ⊗ T 1)τT 1,T XT2(1,X)

for all object X of B.

The corollary is proved in Section 5.6.

Remark 5.10. Let T be a centralizable Hopf monad on a braided autonomous B (see Re-
mark 5.8). Then the centralizer ZT of T is representable by a Hopf algebra CT = ∫ Y∈B ∨T (Y )⊗
Y in B (see [6, Theorem 8.4]). This representability result may be recovered from Corollary 5.9,
observing that

eX =
Y∈C∫

(evY ⊗ X)
(∨ηY ⊗ τ−1

Y,X

)
:ZT (X) → X

defines an augmentation of ZT which is compatible with the braiding τ of B.

5.5. Bosonization

Let C be a monoidal category. Given a Hopf monad (T ,μ,η) on C and a central Hopf algebra
(A, σ ) of CT (that is, a Hopf algebra in the center Z(CT ) of CT ), set

A �σ T = (A ⊗σ ?) � T .

As a cross product of Hopf monads, A�σ T is a Hopf monad on C (see Proposition 4.4). Set A =
(A,a), where A = UT (A) and a is the T -action on A. As an endofunctor of C, A �σ T = A ⊗ T .
The product p and unit v of A �σ T are

pX = and vX = .

The comonoidal structure of A �σ T is given by
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(A �σ T )2(X,Y ) = and (A �σ T )0 = .

Denoting by u and ε the unit and counit of (A, σ ), the morphisms

ι = u ⊗ T :T → A �σ T and π = ε ⊗ T :A �σ T → T

are Hopf monads morphisms such that πι = idT . Hence T is a retract of A �σ T in the category
HopfMon(C) of Hopf monads on C.

Example 5.11. Let T be a centralizable Hopf monad on an autonomous category C and DT be
the double of T (see Example 4.6). If T is quasitriangular (see [5]), then CT is braided and T is
a retract of DT . In that case, the braided category CT admits a coend C, which is a Hopf algebra,
and DT = C �τC,− T where τ is the braiding of CT .

Conversely, under exactness assumptions, a Hopf monad which admits T as a retract is of the
form A �σ T for some central Hopf algebra (A, σ ) of CT . This results from the fact that aug-
mented Hopf monads are representable, using the notion of cross quotient studied in Section 4.4:

Corollary 5.12. Let P and T be Hopf monads on a monoidal category C such that T is a retract
of P . Assume that reflexive coequalizers exist in C and are preserved by P and the monoidal
product of C. Then there exists a central Hopf algebra (A, σ ) of CT and an isomorphism of Hopf
monads P 	 A �σ T such that we have a commutative diagram of Hopf monads:

P
	

A �σ T

T = T

Proof. Denote by f :T → P and g :P → T the morphisms of Hopf monads making T a re-
tract of P , that is, gf = idT . By assumption P preserves reflexive coequalizers and so, since
T is a retract of P , the Hopf monad T preserves reflexive coequalizers too. By Lemma 4.2,
reflexive coequalizers exist in CT and CP and are preserved by the monoidal product. By Propo-
sition 4.13, the crossed quotient P ÷|T (relative to f :T → P ) exists and is a Hopf monad
on CT . On the other hand, by functoriality of the cross quotient (see Remark 4.12), g :P → T in-
duces a morphism of bimonads g ÷|T :P ÷|T → T ÷|T ∼= 1CT . In other words the Hopf monad
P ÷|T is augmented. By Theorem 5.7, there exists a Hopf algebra (A, σ ) in Z(CT ) such that
P ÷|T = A ⊗σ ?. By Proposition 4.11, P = (P ÷ T ) � T = (A ⊗σ ?) � T = A ⊗σ T as Hopf
monads. The commutativity of the diagram is straightforward. �
Remark 5.13. Let H be a Hopf algebra over a field k, and A a Hopf algebra in the braided
category of Yetter–Drinfeld modules H

HYD. In that situation, Radford constructed a Hopf alge-
bra A # H , known as Radford’s biproduct, or Radford–Majid’s bosonization. Radford [19] (see
also [15]) showed that if K is a Hopf algebra on a field k and p is a projection of K , that is,
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an idempotent endomorphism of the Hopf algebra K , then K may be described as a biproduct
as follows. Denote by H the image of p, which is a Hopf subalgebra of K . Then there exists a
Hopf algebra A in H

HYD such that K = A # H . Corollary 5.12 generalizes Radford’s theorem.
Indeed, in the situation of the theorem, the Hopf monad H ⊗ ? is a retract of the Hopf monad
K ⊗ ? on Vectk. Hence, by Corollary 5.12, there exists a Hopf algebra (A, σ ) in Z(HMod) such
that K⊗ = A �σ (H ⊗ ?). Identifying the center of HMod with the category of Yetter–Drinfeld
modules, we view (A, σ ) as a Hopf algebra A in H

HYD. Then K ⊗ ? = A�σ (H ⊗ ?) = A#H ⊗ ?
as Hopf monad, and so K = A # H .

5.6. Regular augmentations

In this subsection we prove Theorem 5.7 and Corollary 5.9 using the notion of regular aug-
mentation.

Let T be a comonoidal endofunctor of a monoidal category C and e :T → 1C be a comonoidal
natural transformation. Define natural transformations ue :T → T 1 ⊗ ? and ve :T → ?⊗ T 1 by

ue
X = (T 1 ⊗ eX)T2(1,X) and ve

X = (eX ⊗ T 1)T2(X,1).

We say that e is left regular if ue is invertible.

Lemma 5.14. Assume e is left regular and set

σ = ve
(
ue

)−1 :T 1 ⊗ ? → ?⊗ T 1.

Then the natural transformation σ is a lax half braiding in C and (T 1, σ ) is a lax central
coalgebra of C with coproduct T2(1,1) and counit T0. Furthermore the natural transformation
ue :T → T 1 ⊗σ ? is a comonoidal isomorphism.

Proof. By transport of structure, the endofunctor P = T 1 ⊗ ? of C admits a unique comonoidal
structure such that the natural isomorphism ue :T → P is comonoidal, that is,

P0u
e
1 = T0 and P2(X,Y )ue

X⊗Y = (
ue

X ⊗ ue
Y

)
T2(X,Y ).

We have e1 = T0 (since e is comonoidal) and so ue
1 = idT 1 and ve

1 = idT 1. Hence P0 =
P0u

e
1 = T0 and σ1 = ve

1(ue
1)−1 = idT 1. Moreover,

P2(X,Y )ue
X⊗Y = (

ue
X ⊗ ue

Y

)
T2(X,Y )

= (T 1 ⊗ eX ⊗ T 1 ⊗ eY )T4(1,X,1, Y )

= (
T 1 ⊗ ve

X ⊗ Y
)
(T 1 ⊗ T X ⊗ eY )T3(1,X,Y )

= (
T 1 ⊗ ve

Xue−1
X ⊗ Y

)(
T 1 ⊗ ue

X ⊗ eY

)
T3(1,X,Y )

= (T 1 ⊗ σX ⊗ Y)(T 1 ⊗ T 1 ⊗ eX ⊗ eY )T4(1,1,X,Y )

= (T 1 ⊗ σX ⊗ Y)
(
T2(1,1) ⊗ (eX ⊗ eY )T2(X,Y )

)
T2(1,X ⊗ Y)

= (T 1 ⊗ σX ⊗ Y)
(
T2(1,1) ⊗ X ⊗ Y

)
ue

X⊗Y (since e is comonoidal).
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Therefore P2(X,Y ) = (T 1 ⊗ σX ⊗ Y)(T2(1,1) ⊗ X ⊗ Y) because ue is invertible. We conclude
using Lemma 5.3. �

Recall that an augmentation of a bimonad T on C is a morphism of bimonads from T to 1C .
It is called left regular if it is left regular as a comonoidal natural transformation.

Lemma 5.15. Let (T ,μ,η) be an augmented bimonad on C. Assume its augmentation e :T → 1C
is left regular. Then σ = ve(ue)−1 is a lax half braiding for T 1 and (T 1, σ ) is a lax central
bialgebra of C, with product m = μ1(ue

T 1)−1, unit u = η1, coproduct T2(1,1), and counit T0.
Moreover ue :T → T 1 ⊗σ ? is an isomorphism of bimonads.

Proof. By transport of structure, the endofunctor P = T 1 ⊗ ? of C admits a unique bimonad
structure such that the natural transformation ue :T → P is an isomorphism of bimonads. In
view of Lemmas 5.3 and 5.14, it is enough to verify that the product μ′ and unit η′ of P are
given by μ′ = μ1(ue

T 1)−1 ⊗ ? and η′ = η1 ⊗ ?. Since ue is a morphism of monads, we have

η′
X = ue

XηX = (T 1 ⊗ eX)T2(1,X)ηX = η1 ⊗ eXηX = η1 ⊗ X.

Also, setting m = μ1(ue
T 1)−1, we have

μ′
Xue

T 1⊗XT
(
ue

X

) = ue
XμX = (T 1 ⊗ eX)T2(1,X)μX

= (μ1 ⊗ eXμX)T 2
2 (1,X)

= (
mue

T 1 ⊗ eXT (eX)
)
T2(T 1, T X)T

(
T2(1,X)

)
= (m ⊗ X)

(
(T 1 ⊗ eT 1)T2(1, T 1) ⊗ eX

)
T2(T 1,X)T

(
ue

X

)
= (m ⊗ X)(T 1 ⊗ eT 1⊗X)T2(1, T 1 ⊗ X)T

(
ue

X

)
= (m ⊗ X)ue

T 1⊗XT
(
ue

X

)
,

and so μ′
X = m ⊗ X since ue is invertible. �

Lemma 5.16. Let T be an augmented left pre-Hopf monad on C. Then its augmentation
e :T → 1C is left regular and (ue)−1 = T (e)H l−1

1,−(T 1 ⊗ η).

Proof. Let X be an object of C and set θe
X = T (eX)H l−1

1,X(T 1 ⊗ ηX). We have

ue
Xθe

X = (T 1 ⊗ eX)T2(1,X)T (eX)H l−1

1,X(T 1 ⊗ ηX)

= (
T 1 ⊗ eXT (eX)

)
T2(1, T X)H l−1

1,X(T 1 ⊗ ηX)

= (T 1 ⊗ eXμX)T2(1, T X)H l−1

1,X(T 1 ⊗ ηX)

= (T 1 ⊗ eX)H l
1,XH l−1

1,X(T 1 ⊗ ηX)

= (T 1 ⊗ eXηX) = idT 1⊗X

and
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θe
Xue

X = T (eX)H l−1

1,X(T 1 ⊗ ηXeX)T2(1,X)

= T (eX)H l−1

1,X

(
T 1 ⊗ T (eX)ηT X

)
T2(1,X)

= T (eX)T 2(eX)H l−1

1,T X(T 1 ⊗ ηT X)T2(1,X)

= T (eX)T (μX)H l−1

1,T X(T 1 ⊗ ηT X)T2(1,X)

= T (eX)H l−1

1,X(T 1 ⊗ μXηT X)T2(1,X) by Proposition 2.6

= T (eX)H l−1

1,X

(
T 1 ⊗ μXT (ηX)

)
T2(1,X)

= T (eX)H l−1

1,XH l
1,XT (ηX) = T (eXηX) = idT X.

Hence ue is invertible with inverse θe. �
Theorem 5.17. Let C be a monoidal category. The functor

Rlax :

{
BiAlg(Z lax(C)) → BiMon(C)/1C
(A,σ ) �→ (A ⊗σ ?, ε ⊗ ?)

induces an equivalence of categories from BiAlg(Z lax(C)) to the full subcategory of
BiMon(C)/1C of augmented bimonads (T , e) such that e is left regular.

Proof. If (A,σ ) is a bialgebra in Z lax(C), then e = ε ⊗ ? :A ⊗σ ? → 1C is a left regular bi-
monad morphism (since ue = idA⊗?). Therefore Rlax takes values in the full subcategory A ⊂
BiMon(C)/1C of augmented bimonads (T , e) such that e is left regular. Conversely, let (T , e) be
an object ofA. By Lemma 5.15, T 1 is endowed with a half braiding σ and (T 1, σ ) is a bialgebra
in Z(C). This construction is functorial, that is, gives rise to a functor I :A → BiAlg(Z lax(C))

defined on objects by I(T , e) = (T 1, σ = veue−1) and on morphisms by I(f ) = f1. More-
over I is quasi-inverse to Rlax. Indeed, for (T , e) in A, ue is an isomorphism from (T , e) to
RlaxI(T , e) and, for (A,σ ) in BiAlg(Z lax(C)), we have IRlax(A,σ ) = (A,σ ). Hence the theo-
rem. �
Corollary 5.18. Let C be a monoidal category. The functor Rlax induces equivalences of cate-
gories between:

(a) Lax central left Hopf algebras of C and augmented left Hopf monads on C.
(b) Central Hopf algebras of C and augmented Hopf monads on C.

Moreover an augmented left (resp. right) pre-Hopf monad on C is in fact a left (resp. right) Hopf
monad.

Proof. Let (T , e) be an augmented bimonad such that T is a left pre-Hopf monad. Then e is left
regular by Lemma 5.16. By Theorem 5.17, T is of the form A ⊗σ ? for some bialgebra (A,σ )

in Z lax(C). By Proposition 5.4, A admits an antipode, and T is in fact a left Hopf monad. Hence
the first equivalence of categories. Moreover, by Proposition 5.4, T is a Hopf monad if and only
if (A,σ ) is a Hopf algebra in Z(C). Hence the second equivalence of categories. �
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Proof of Theorem 5.7. The theorem is just assertion (b) of Corollary 5.18. �
Proof of Corollary 5.9. By Theorem 5.7, the augmentation e :T → 1B defines a Hopf algebra
(A = T 1, σ ) in Z(B) such that T 	 A ⊗σ ?. In view of Remark 5.6, the question is whether
σ = τA,−. Recall σ = ve(ue)−1. Therefore σX = τA,X if and only if ve

X = τA,Xue
X , that is,

(eX ⊗ T 1)T2(X,1) = (eX ⊗ T 1)τT 1,T XT2(1,X). �
6. Induced coalgebras and Hopf modules

A cocommutative coalgebra of the center of a monoidal categoryD gives rise to a comonoidal
comonad on D and, under certain exactness assumptions, to a Hopf adjunction. On the other
hand, we show that the comonoidal comonad of a pre-Hopf adjunction (F :C → D,U :D → C)

is represented by its induced coalgebra, which is a cocommutative coalgebra of the categorical
center of D.

As an application, we obtain a structure theorem for Hopf modules over pre-Hopf monads on
monoidal categories. It generalizes Sweedler’s theorem on the structure of Hopf modules over a
Hopf algebra, and is an enhanced version of [5, Theorem 4.6] which concerns Hopf monads on
autonomous categories.

6.1. From cocommutative central coalgebras to Hopf adjunctions

Let D be a monoidal category and (C,�,ε) be a coalgebra in D. Denote by CComod the
category of left C-comodules in D. The forgetful functor V :CComod → D has a right adjoint,
the cofree comodule functor

R :

{D → CComod

X �→ (C ⊗ X,� ⊗ X).

The comonad (on D) of the adjunction (V ,R) is T̂ = (C ⊗ ?,� ⊗ ?, ε ⊗ ?). This adjunction
is comonadic, since T̂ -comodules are just left C-comodules.

On the other hand, the monad T = RV (on CComod) of the adjunction (V ,R) is defined by
T (M,δ) = (C ⊗M,�⊗M) for any C-comodule (M, δ), with product μ(M,δ) = C ⊗ ε ⊗M and
unit η(M,δ) = δ. In general the adjunction (V ,R) is not monadic.

Remark 6.1. The adjunction (V ,R) is monadic if, for instance, D admits reflexive coequalizers
and C ⊗ ? is conservative and preserves reflexive coequalizers.

Now let (C,σ ) be a lax central coalgebra of D, that is, a coalgebra in Z lax(C). Then the
endofunctor C ⊗ ? of D has both a comonad structure (because C is a coalgebra in D) and a
comonoidal structure denoted by C ⊗σ ? (see Lemma 5.3).

A lax central coalgebra (C,σ ) is cocommutative if its coproduct � satisfies σC� = �. We
have

Lemma 6.2. Let (C,σ ) be a lax central coalgebra of D. Then C ⊗σ ? is a comonoidal comonad
if and only if (C,σ ) is cocommutative.
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Proof. One checks that the coproduct � ⊗ ? of the comonad C ⊗ ? is comonoidal if and only if
σC� = �, and that its counit ε ⊗ ? is always comonoidal. �

We say that a cocommutative lax central coalgebra (C,σ ) of D is cotensorable if for each
pair (M, δ), (N, δ′) of left C-comodules, the coreflexive pair

M ⊗ N
σMδ⊗N

M⊗δ′
M ⊗ C ⊗ N

admits an equalizer, denoted by M ⊗σ
C N → M ⊗ N , and the endofunctor C ⊗ ? preserves these

equalizers.
Let (C,σ ) be a cotensorable cocommutative lax central coalgebra of D. Given two left C-

comodules (M, δ) and (N, δ′), there exists a unique left coaction δ′′ of C on M ⊗σ
C N such that

the morphism M ⊗σ
C N → M ⊗ N is a comodule morphism (M ⊗σ

C N, δ′′) → (M ⊗ N,δ ⊗ N).
The assignment (M, δ) × (N, δ′) �→ (M ⊗σ

C N, δ′′) defines a functor:

⊗σ
C :CComod× CComod → CComod.

Then the category CComod of left C-comodules (in C) is monoidal, with monoidal product ⊗σ
C

and unit object (C,�). We denote this monoidal category by CComodσ . The cofree comod-
ule functor R :D → CComodσ is strong monoidal, so that the comonadic adjunction (V ,R) is
comonoidal, with comonoidal comonad C ⊗σ ?.

Lemma 6.3. Let D be a monoidal category admitting coreflexive equalizers which are preserved
by the monoidal product. Let (C,σ ) be a cocommutative central coalgebra of D. Then (C,σ )

is cotensorable and the monoidal category CComodσ admits coreflexive equalizers which are
preserved by the monoidal product ⊗σ

C and the forgetful functor V :CComodσ → D.

Proof. By standard diagram chase left to the reader. �
Theorem 6.4. Let D be a monoidal category and (C,σ ) be a cotensorable cocommutative lax
central coalgebra of D. Then the comonoidal adjunction

(
V :CComodσ →D,R :D → CComodσ

)
is a left Hopf adjunction, and its induced lax central coalgebra is (C,σ ). Moreover, if σ is
invertible, (V ,R) is a Hopf adjunction.

Proof. Let d be an object of D and (M, δ) be a left C-comodule. Then the morphism σMδ ⊗
d :M ⊗ d → M ⊗ C ⊗ d is an equalizer of the pair

M ⊗ C ⊗ d
σMδ⊗C⊗d

M⊗�⊗d
M ⊗ C ⊗ C ⊗ d.
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Hence an isomorphism M ⊗σ
C R(d)

∼→ M ⊗d which is the left fusion operator of the comonoidal
adjunction (V ,R). Similarly if σ is invertible, the morphism (σ−1

d ⊗ M)(d ⊗ δ) :d ⊗ M →
C ⊗ d ⊗ M is an equalizer of the pair

C ⊗ d ⊗ M
(σC⊗d⊗M)(�⊗d⊗M)

C⊗d⊗δ
C ⊗ d ⊗ C ⊗ M.

Hence an isomorphism R(d) ⊗σ
C M

∼→ d ⊗ M which is the right fusion operator of the
comonoidal adjunction (V ,R). �
6.2. Induced coalgebra and comonad of a comonoidal adjunction

Let C, D be monoidal categories and (F :C → D,U :D → C) be a comonoidal adjunction,
with adjunction unit η : 1C → UF and counit ε :FU → 1D .

Being comonoidal, F sends the trivial coalgebra 1 in C to a coalgebra Ĉ = F(1) in D, with
coproduct � = F2(1,1) and counit ε = F0, called the induced coalgebra of the comonoidal
adjunction.

The endofunctor T̂ = FU of D is a comonoidal comonad, with coproduct F(ηU) : T̂ → T̂ 2

and counit ε (see Section 2.5).
In this situation we have three comonads on the category D, namely:

• ?⊗ Ĉ (with coproduct ? ⊗ � and counit ? ⊗ ε);
• Ĉ ⊗ ? (with coproduct � ⊗ ? and counit ε ⊗ ?);
• the (comonoidal) comonad T̂ = FU of the adjunction (F,U).

How are they related?

Lemma 6.5. The Hopf operators Hl and Hr define morphisms of comonads:

Hl
1,− : T̂ → Ĉ ⊗ ? and Hr−,1 : T̂ → ?⊗ Ĉ.

Proof. The commutativity of the following diagrams:

FUd

F2(1,Ud)

FηUd

F2(1,Ud)

FUFUd

F2(1,UFUd)

F1 ⊗ FUFUd

F1⊗εFUd

F1 ⊗ FUd

F1⊗F2(1,Ud)

F1 ⊗ FUd

F1⊗εd

F2(1,1)⊗FUd
F1 ⊗ F1 ⊗ FUd

F1⊗F1⊗εd

F1 ⊗ d
F2(1,1)⊗d

F1 ⊗ F1 ⊗ d

FUd
εd

F2(1,Ud)

F1 ⊗ FUd

F1⊗εd

d

F1 ⊗ d

F0⊗d
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which results from the fact that the adjunction (F,U) is comonoidal, means that Hl
1,− is a mor-

phism of comonads. The proof for Hr−,1 is similar. �
6.3. From Hopf adjunctions to cocommutative central coalgebras

In the case of a left pre-Hopf adjunction, the induced coalgebra is endowed with a canonical
lax half braiding, making it a cocommutative lax central coalgebra which represents the induced
comonoidal comonad:

Theorem 6.6. Let (F :C → D,U :D → C) be a left pre-Hopf adjunction, with induced coalge-
bra Ĉ. Then:

(a) The natural transformation σ̂ = Hr−,1Hl−1

1,− : Ĉ ⊗ ? → ?⊗ Ĉ is a lax half braiding of D such
that, for any object c of C, the diagram:

Fc
F2(1,c) F2(c,1)

Ĉ ⊗ Fc
σ̂Fc

F c ⊗ Ĉ

is commutative.
(b) (Ĉ, σ̂ ) is a cocommutative lax central coalgebra of D and Hl

1,− : T̂ → Ĉ ⊗σ̂ ? is an isomor-
phism of comonoidal comonads.

Proof. Let (F,U) be a left pre-Hopf adjunction, so that Hl
1,− is invertible. Since U is strong

monoidal, we identify Ĉ = F(1) and T̂ (1) = FU(1) as coalgebras in D. We apply Lemma 5.14
to the comonoidal endofunctor T̂ of D and the comonoidal morphism ε :FU → 1C . The natural
transformations uε :FU → FU(1) ⊗ ? and vε :FU → ? ⊗ FU(1) of the lemma are nothing
but Hl

1,− and Hr−,1 respectively. Therefore ue = Hl
1,− being invertible, we conclude that σ̂ =

ve(ue)−1 is a lax braiding on D and (Ĉ, σ̂ ) is a coalgebra in Z(D) such that ue is a comonoidal
isomorphism. Now, for any object c of C, we have

Hl
1,F cF (ηc) = F2(1, c) and Hr

Fc,1F(ηc) = F2(c,1),

from which the equality σ̂F cF2(1, c) = F2(c,1) follows directly. Hence part (a).
Applying this equality to d = 1 gives the cocommutativity of the coalgebra (Ĉ, σ̂ ), so that

Ĉ ⊗σ̂ ? is a comonoidal comonad by Lemma 6.2. Thus Hl
1,− = ue is an isomorphism of

comonoidal comonads, hence part (b). �
As a consequence, the comonoidal comonad of a pre-Hopf adjunction is canonically repre-

sented by a cocommutative central coalgebra of the upper category. More precisely:

Corollary 6.7. Let (F :C → D,U :D → C) be a pre-Hopf adjunction, with induced coalgebra Ĉ.
Then σ̂ = Hr−,1Hl−1

1,− is a half braiding for Ĉ. Moreover (Ĉ, σ̂ ) is a cocommutative central coal-
gebra in D called the induced central coalgebra of the pre-Hopf adjunction (F,U).
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Proof. Since (F,U) is a pre-Hopf adjunction, the pre-Hopf operators Hr−,1 and Hl
1,− are invert-

ible. Thus σ̂ is invertible and the corollary follows then directly from Theorem 6.6. �
Example 6.8. Let C be a monoidal category and (A,σ ) be a Hopf algebra in Z(C), with
product m, coproduct �, and counit ε. Consider the Hopf monad T = A ⊗σ ? on C (see Propo-
sition 5.4). Recall AModσ denotes the monoidal category CA⊗σ ? of left A-modules (in C), with
monoidal product induced by σ (see Section 5.3). The induced coalgebra Ĉ of A ⊗σ ? is the left
A-module Ĉ = (A,m), with coproduct � and counit ε. Its associated half braiding is given by

σ̂(M,r) =

for any left A-module (M, r). Then (Ĉ, σ̂ ) is a cocommutative coalgebra in the center
Z(AModσ ) of AModσ .

Proposition 6.9. Let (F :C →D,U :D → C) be a comonadic pre-Hopf adjunction, with induced
central coalgebra (Ĉ, σ̂ ). Assume that for all X,Y objects of C, the morphism F2(X,Y ) :F(X ⊗
Y) → F(X) ⊗ F(Y ) is an equalizer of the coreflexive pair

FX ⊗ FY
F2(X,1)⊗FY

FX⊗F2(1,Y )

FX ⊗ F1 ⊗ FY,

and these equalizers are preserved by the endofunctor F(1)⊗?. Then the cocommutative central
coalgebra (Ĉ, σ̂ ) is cotensorable and the comparison functor

K :C →
Ĉ
Comodσ̂

is a strong monoidal equivalence. In particular (F,U) is a Hopf adjunction.

Proof. The cotensorability assumption means that for each pair (M, δ), (N, δ′) of left Ĉ-
comodules, the coreflexive pair

M ⊗ N
σMδ⊗N

M⊗δ′
M ⊗ C ⊗ N

admits an equalizer, and the endofunctor Ĉ ⊗ ? preserves these equalizers. Now recall that the
comparison functor K is defined by K(X) = (FX,F2(1,X)) for X in C. If X is an object of C
then by Theorem 6.6, part (a), we have σ̂FXF2(1,X) = F2(X,1). Since K is an equivalence, we
conclude that (Ĉ, σ̂ ) is cotensorable. Moreover, we have K(X ⊗ Y) = K(X) ⊗σ̂

Ĉ
K(Y ) so that

K is a strong monoidal equivalence. By Theorem 6.4, (F,U) is a Hopf adjunction. �
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6.4. Descent

Let (T ,μ,η) be a monad on a category C. Its adjunction (FT ,UT ) has unit η : 1C →
UT FT = T and has counit denoted by ε :FT UT → 1CT . Let T̂ be the comonad of the adjunc-
tion (FT ,UT ), that is, T̂ = FT UT on CT , with coproduct δ = FT (ηUT

) and counit ε. Denote by
H(T ) the category (CT )

T̂
of T̂ -comodules in the category of T -modules in C. Objects of H(T )

are triples (B, r, ρ), where B is an object of C, r :T B → B , and ρ :B → T B are morphisms
in C, such that (B, r) is a T -module, that is,

rT (r) = rμB and rηB = idB,

and (B,ρ) is a T̂ -comodule whose coaction is T -linear, that is,

T (ρ)ρ = δBρ, rρ = idB, and ρr = μBT (ρ).

Morphisms in H(T ) from (M, r,ρ) to (N, s, �) are morphisms f :M → N in C which are mor-
phisms of T -modules and T̂ -comodules:

f r = sT (f ) and T (f )ρ = �f.

The comparison functor of the comonad T̂ is the functor

χ :

{C → H(T )

X �→ (T X,μX,T ηX).

The question whether χ is an equivalence is a descent problem.
The coinvariant part of an object B = (B, r, ρ) of H(T ) is the equalizer of the coreflexive

pair

B
ηB

ρ
T B.

If the coinvariant part of B exists, it is denoted by iB :BT → B . We say that T admits coinvariant
parts if any object of H(T ) admits a coinvariant part. We say that T preserves coinvariant parts
if, for any object B of H(T ) which admits a coinvariant part iB :BT → B , the morphism T (iB)

is an equalizer of the pair (T ηB,Tρ).
The following characterization of monads T for which χ is an equivalence is a reformulation

of [10, Theorem 1].

Theorem 6.10. Let T be a monad on a category C. The following assertions are equivalent:

(i) The functor χ :C → H(T ) is an equivalence of categories;
(ii) T is conservative, admits coinvariant parts, and preserves coinvariant parts.

If such is the case, the functor ‘coinvariant part’ B �→ BT is quasi-inverse to χ .
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6.5. Hopf modules for pre-Hopf monads

Let T be a bimonad on a monoidal category C. The induced coalgebra of T , denoted by Ĉ, is
the induced coalgebra of the comonoidal adjunction (FT ,UT ). Explicitly Ĉ = (T (1),μ1), with
coproduct T2(1,1) and counit T0. Note that UT (Ĉ) = T (1) is a coalgebra in C.

A left Hopf T -module (as defined in [5]) is a left Ĉ-comodule in CT , that is, a triple (M, r,ρ)

such that (M, r) is a T -module, (M,ρ) is a left T (1)-comodule, and

ρr = (μ1 ⊗ r)T2(T 1,M)T (ρ).

A morphism of Hopf T -modules between two left Hopf T -modules (M, r,ρ) and (N, s, �) is a
morphism of Ĉ-comodules in CT , that is, a morphism f :M → N in C such that

f r = sT (f ) and (idT (1) ⊗ f )ρ = �f.

We denote by Hl (T ) the category of left Hopf T -modules.
The coinvariant part of a left Hopf module M = (M, r,ρ) is the equalizer of the coreflexive

pair

M
η1⊗M

ρ
T (1) ⊗ M.

If it exists, it is denoted by MT . We say that T preserves coinvariant parts of left Hopf modules if,
whenever a left Hopf module M = (M, r,ρ) admits a coinvariant part iT :MT → M , then T (iT )

is an equalizer of (T (η1 ⊗ M),Tρ).

Theorem 6.11. Let T be a left pre-Hopf monad on a monoidal category C. The following asser-
tions are equivalent:

(i) The functor

hl :

{C →Hl (T )

X �→ (T X,μX,T2(1,X))

is an equivalence of categories;
(ii) T is conservative, left Hopf T -modules admit coinvariant parts, and T preserves them.

If these hold, the functor ‘coinvariant part’ M �→ MT is quasi-inverse to hl .

Remark 6.12. Similarly, we define the categoryHr (T ) of right Hopf T -modules. SinceHr (T ) =
Hl (T cop), Theorem 6.11 holds also for right pre-Hopf monads and right Hopf modules (see
Remark 2.11).

Example 6.13. Let (A,σ ) be a central Hopf algebra in a monoidal category C, that is, a Hopf
algebra in the center Z(C) of C. Consider the left Hopf monad T = A ⊗σ ? on C, see Proposi-
tion 5.4. A left Hopf module over A is left Hopf T -module, that is, a triple (M, r :A ⊗ M → M,

ρ :M → A ⊗ M) such that (M, r) is a left A-module, (M,ρ) is a left A-comodule, and
ρr = (m ⊗ r)(idA ⊗ σA ⊗ idM)(� ⊗ ρ), where m is the product of A and � is coproduct of A.
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Assume now that C splits idempotents. Then the morphism r(S ⊗ idM)ρ (where S denotes the
antipode of A) is an idempotent of A ⊗ M and its image is the coinvariant part of M . One ver-
ifies that T is conservative and preserves coinvariant parts. Applying Theorem 6.11, we obtain
the fundamental theorem of Hopf modules for central Hopf algebras. In view of Remark 5.6, we
recover the fundamental decomposition theorem of Hopf modules for Hopf algebras in a braided
category (see [3]) which, for the category of vector spaces over a field, is just Sweedler’s clas-
sical theorem. For a detailed treatment of the case of Hopf algebras over a field, we refer to [4,
Examples 6.2 and 6.3].

Proof of Theorem 6.11. Let T̂ be the comonad of the adjunction (FT ,UT ) and Ĉ be the induced
coalgebra of T . Since T is a left pre-Hopf monad, Hl

1,− : T̂ → Ĉ ⊗ ? is an isomorphism of
comonads by Lemma 6.5. It induces an isomorphism of categories

κl
T :H(T ) = (CT

)
T̂

→ (CT
)
Ĉ⊗? = Hl (T )

such that κl
T χ = hl . We conclude using Theorem 6.10. �

6.6. Summary

In this subsection we summarize the relationships between Hopf monads, Hopf adjunctions,
and cocommutative central coalgebras.

We have constructed several correspondences between these objects:

• A Hopf adjunction (F :C → D,U :D → C) gives rise to a Hopf monad m(F,U) = UF

on C by Proposition 2.14, and to a cocommutative central coalgebra c(F,U) = (Ĉ, σ̂ ) in D
by Corollary 6.7;

• A Hopf monad T on a monoidal category C defines a Hopf adjunction

a(T ) = (
FT :C → CT ,UT :CT → C)

by Theorem 2.15;
• A cotensorable cocommutative central coalgebra (C,σ ) on a monoidal category D yields a

Hopf adjunction

o(C,σ ) = (
U :CComodσ → D,R :D → CComodσ

)
by Theorem 6.4.

Hence the following triangle:

Hopf adjunctions

m

c

Hopf monads

ca

a

cocommutative
central coalgebras

mo
o
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We have:

• ma(T ) = T ;
• am(F,U) 	 (F,U) if and only if the adjunction (F,U) is monadic;
• co(C,σ ) = (C,σ );
• assuming c(F,U) is cotensorable, we have oc(F,U) 	 (F,U) if the comonoidal adjunction

(F,U) satisfies the conditions of Proposition 6.9.

With suitable exactness assumption, we have in fact equivalences:

Theorem 6.14. The following data are equivalent via the assignments a and c:

(A) A Hopf monad T on a monoidal category C such that:
• C admits reflexive coequalizers and coreflexive equalizers, and its monoidal product pre-

serves coreflexive equalizers;
• T is conservative and preserves reflexive coequalizers and coreflexive equalizers.

(B) A Hopf adjunction (F :C →D,U :D → C) such that:
• C andD admit reflexive coequalizers and coreflexive equalizers, and their monoidal prod-

ucts preserve coreflexive equalizers;
• F and U are conservative, U preserves reflexive coequalizers and F preserves coreflexive

equalizers.
(C) A cocommutative central coalgebra (C,σ ) in a monoidal category D such that:

• D admits reflexive coequalizers and coreflexive equalizers, and its monoidal product pre-
serves coreflexive equalizers (in particular the central coalgebra (C,σ ) is cotensorable);

• the endofunctor C ⊗ ? of D is conservative and preserves reflexive coequalizers.

Moreover, a Hopf adjunction satisfying the conditions of (B) is a monadic and comonadic Hopf
adjunction.

Proof. Firstly, we show the equivalence of (A) and (B). Let T be a Hopf monad on a monoidal
category C satisfying the conditions of (A). Then UT , being the forgetful functor of a monad,
preserves and creates limits and in particular equalizers. As a result, the monoidal category CT

admits coreflexive equalizers and UT preserves them. From this one deduces that, since the
monoidal product of C preserves coreflexive equalizers, so does that of CT . Moreover, since
T preserves reflexive coequalizers, UT creates and preserves them. Consequently: CT admits
reflexive coequalizers, and FT preserves reflexive coequalizers. The forgetful functor UT is con-
servative, and since by assumption T = UT FT is conservative, so is FT . Thus a(T ) = (FT ,UT )

is a Hopf adjunction satisfying the conditions of (B), and we have ma(T ) = T . Conversely, let
(F,U) be a Hopf adjunction satisfying the conditions of (B). By adjunction F preserves colimits
and U preserves limits. The Hopf monad T = m(F,U) = UF is conservative and preserves re-
flexive coequalizers and coreflexive equalizers, so that it satisfies the conditions of (A). Moreover
by Beck’s monadicity theorem, the adjunction (F,U) is monadic, so am(F,U) 	 (F,U), hence
the equivalence of (A) and (B).

Secondly, we show the equivalence of (B) and (C). Let (C,σ ) be a cocommutative central
comonad in a monoidal category D satisfying the conditions of (C). Then (C,σ ) is cotensorable,
and the adjunction
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o(C,σ ) = (
V :CComodσ →D,R :D → CComodσ

)
is a Hopf adjunction. It is comonadic, with comonoidal comonad T̂ = C ⊗σ ?. It is also
monadic, see Remark 6.1. Moreover the cotensor product ⊗σ

C preserves coreflexive equalizer
by Lemma 6.3. Thus the adjunction (V ,R) satisfies the conditions of (B). We have co(C,σ ) =
(C,σ ).

Let us prove conversely that if (F,U) is a Hopf adjunction satisfying the conditions
of (B), then its induced central coalgebra (Ĉ, σ̂ ) = c(F,U) satisfies the conditions of (C) and
oc(F,U) 	 (F,U) as Hopf adjunctions. We will need the following lemmas.

Lemma 6.15. Let C be a category admitting coreflexive equalizers and let T be a conservative
monad on C preserving coreflexive equalizers. Then for each object X of C, ηX is an equalizer
of the pair (T (ηX), ηT X).

Proof. Let X be an object of C. Observe that T (ηX) is an equalizer of the coreflexive pair
(T 2(ηX),T (ηT X)). Since T is conservative and C admits coreflexive equalizers preserved by T ,
ηX is an equalizer of the coreflexive pair (T (ηX), ηT X). �
Lemma 6.16. Let C be a monoidal category whose monoidal product preserves coreflexive equal-
izers in the left variable. Let T be a left Hopf monad on C which preserves coreflexive equalizers.
Assume furthermore that for each object X of C, ηX is an equalizer of the pair (T (ηX), ηT X).
Then for all objects X,Y of C, T2(X,Y ) :T (X ⊗ Y) → T X ⊗ T Y is an equalizer of the coreflex-
ive pair

T (X) ⊗ T (Y )
T2(X,1)⊗T (Y )

T (X)⊗T2(1,Y )

T (X) ⊗ T (1) ⊗ T (Y ).

Proof. The following diagram:

T (X ⊗ Y)
T (X⊗ηY )

=

T (X ⊗ T Y )
T (X⊗ηT Y )

T (X⊗T (ηY ))

H l
X,Y

T (X ⊗ T 2Y)

(T X⊗Hl
1,Y )H l

X,T Y

T (X ⊗ Y)
T2(X,Y )

T X ⊗ T Y
T2(X,1)⊗T Y

T X⊗T2(1,Y )
T X ⊗ T 1 ⊗ T Y

is commutative (in the sense that the left square and the two right squares obtained by taking
respectively the top and bottom arrow of each pair, are commutative); this results easily from
Proposition 2.6. The top row is an equalizer because the endofunctor T (X ⊗ ?) preserves core-
flexive equalizers. Since Hl is invertible, we conclude that the bottom row is exact, hence the
lemma. �

Now let T = UF be the Hopf monad of (F,U). Then T satisfies the hypotheses of Lem-
mas 6.15 and 6.16, so that for all objects X,Y of C, T2(X,Y ) :T (X ⊗ Y) → T (X) ⊗ T (Y ) is an
equalizer of the pair
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T (X) ⊗ T (Y )
T2(X,1)⊗T (Y )

T (X)⊗T2(1,Y )

T (X) ⊗ T (1) ⊗ T (Y ).

Moreover, the adjunction (F,U) is monadic. In particular the functor U creates and preserves
equalizers; thus F2(X ⊗ Y) is an equalizer of the pair

F(X) ⊗ F(Y )
F2(X,1)⊗F(Y )

F (X)⊗F2(1,Y )

F (X) ⊗ F(1) ⊗ F(Y ).

We may therefore apply Proposition 6.9 to the adjunction (F,U), and we conclude that the
comparison functor C →

Ĉ
Comodσ̂ is a strong monoidal equivalence and c(F,U) satisfies the

conditions of (C), hence oc(F,U) 	 (F,U) as Hopf adjunctions. �
7. Hopf algebroids and finite abelian tensor categories

In this section, we study bialgebroids which, according to Szlachányi [21], are linear bimonads
on categories of bimodules admitting a right adjoint. A bialgebroid corresponds with a Hopf
monad if and only if it is a Hopf algebroid in the sense of Schauenburg [20]. We also use Hopf
monads to prove that any finite tensor category is naturally equivalent (as a tensor category) to
the category of finite-dimensional modules over some finite-dimensional Hopf algebroid.

7.1. Bialgebroids and bimonads

Let k be a commutative ring and R be a k-algebra. Denote by RModR the category of R-
bimodules. It is a monoidal category, with monoidal product ⊗R and unit object R. We identify
RModR with the category ReMod of left Re-modules, where Re = R ⊗k Rop. Hence a monoidal
product � on ReMod (corresponding to ⊗R on RModR), with unit R (whose Re-action is
(r ⊗ r ′) · x = rxr ′).

If f :B → A is k-algebra morphism, we denote by f A the left B-module A with left action
b · a = f (b)a, and by Af the right B-module A with right action a · b = af (b).

A left bialgebroid with base R (also called Takeuchi ×R-bialgebra) consists of data
(A, s, t,�, ε) where:

• A is a k-algebra;
• s :R → A and t :Rop → A are k-algebra morphisms whose images in A commute. Hence a

k-algebra morphism

e :

{
Re → A

r ⊗ r ′ �→ s(r)t (r ′),

which gives rise to an Re-bimodule eAe;
• (eA,�,ε) is a coalgebra in the monoidal category (ReMod,�,R).

In this situation the Takeuchi product A ×R A ⊂ eA � eA, defined by

A ×R A =
{∑

ai ⊗ bi ∈ eA � eA
∣∣ ∀r ∈ R,

∑
ait (r) ⊗ bi =

∑
ai ⊗ bis(r)

}
,
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is a k-algebra, with product defined by (a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′, and one requires:

• �(A) ⊂ A ×R A;
• � :A → A ×R A is a k-algebra morphism;
• ε(as(ε(a′))) = ε(aa′) = ε(at (ε(a′)));
• ε(1A) = 1R .

The notion of left bialgebroid has a nice interpretation in terms of bimonads. A bialgebroid A

with base R gives rise to an endofunctor of ReMod 	 RModR :

TA :

{
ReMod → ReMod

M �→ TA(M) = eAe ⊗Re M.

The axioms of a left bialgebroid are such that TA is a k-linear bimonad admitting a right adjoint.
These properties characterize left bialgebroids:

Theorem 7.1. (See [21].) Let k be a ring and R a k-algebra. Via the correspondence A �→ TA,
the following data are equivalent:

(A) A left bialgebroid A with base R;
(B) A k-linear bimonad T on the monoidal category RModR 	 ReMod admitting a right adjoint.

7.2. Hopf algebroids

We define a left, resp. right, (pre-)Hopf algebroid to be a bialgebroid A whose associated
bimonad TA is a left, resp. right, (pre-)Hopf monad. A (pre-)Hopf algebroid is a left and right
(pre-)Hopf algebroid.

Let A be a bialgebroid and TA be its associated bimonad on RModR 	 ReMod. The fusion
operators Hl and Hr of TA are

Hl
M,N :

{
eAe ⊗Re (M � (eAe ⊗Re N)) → (eAe ⊗Re M) � (eAe ⊗Re N)

a ⊗ m ⊗ b ⊗ n �→ a(1) ⊗ m ⊗ a(2)b ⊗ n

and

Hr
M,N :

{
eAe ⊗Re ((eAe ⊗Re M) � N) → (eAe ⊗Re M) � (eAe ⊗Re N)

a ⊗ b ⊗ m ⊗ n �→ a(1)b ⊗ m ⊗ a(2) ⊗ n.

Using the fact that Re and R are respectively a projective generator and the unit object of ReMod,
we obtain the following characterization of Hopf bialgebroids and pre-Hopf algebroids.

Proposition 7.2. Let A be a bialgebroid with base R. Then:

(a) The bialgebroid A is a left Hopf algebroid if and only if the Re-linear map

Hl
Re,Re :

{
eAt ⊗Rop tA → eA � eA

a ⊗ b �→ a(1) ⊗ a(2)b

is bijective.
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(b) The bialgebroid A is a right Hopf algebroid if and only if the Re-linear map

Hr
Re,Re :

{
eAs ⊗R sA → eA � eA

a ⊗ b �→ a(1)b ⊗ a(2)

is bijective.
(c) The bialgebroid A is a left pre-Hopf algebroid if and only if the Re-linear map

Hl
R,Re :

{
eAe ⊗Re eA → eA � eA

a ⊗ a′ �→ a(1) ⊗ a(2)a
′

is bijective, where

eA = eAe ⊗Re R = A/
{
as(r) = at (r)

∣∣ a ∈ A, r ∈ R
}
.

(d) The bialgebroid A is a right pre-Hopf algebroid if and only if the Re-linear map and

Hr
Re,R :

{
eAe ⊗Re eA → eA � eA

a ⊗ a′ �→ a(1)a
′ ⊗ a(2)

is bijective.

Remark 7.3. The notion of ×R-Hopf algebra introduced by Schauenburg in [20] coincides with
our notion of left Hopf algebroid.

Remark 7.4. The category ReMod is monoidal closed with internal Homs:

[M,N]l = HomRop
(
ReM,ReN

)
and [M,N ]r = HomR

(
ReM,ReN

)
.

By Theorem 3.6, a left bialgebroid A with base R is a Hopf algebroid if and only if it admits a
left antipode

sl
M,N : eAe �HomRop(eAe ⊗Re M,N) → HomRop(M, eAe ⊗Re N)

and a right antipode

sr
M,N : eAe �HomR(eAe ⊗Re M,N) → HomR(M, eAe ⊗Re N).

Remark 7.5. Let A be a pre-Hopf algebroid with base R. Since ReMod is abelian, the bimonad
TA admits coinvariant parts. If Ae is a faithfully flat right Re-module, then TA is conservative and
preserves coinvariant parts. Thus, the Hopf module decomposition theorem (see Theorem 6.11)
applies to (pre-)Hopf algebroids which are faithfully flat on the right over the base ring.
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7.3. Existence of fibre functors for finite tensor categories

A tensor category over k is an autonomous category endowed with a structure of k-linear
abelian category such that the monoidal product ⊗ is bilinear and End(1) = k.

We say that a k-linear abelian category A is finite if it is k-linearly equivalent to the category
Rmod of finite-dimensional left modules over some finite-dimensional k-algebra R. Note that if
A is a finite, then so is Aop, since the functor{

(Rmod)op → Ropmod

N �→ Hom(N,k)

is a k-linear equivalence.

Theorem 7.6. Let C be a finite tensor category over a field k. Then C is equivalent, as a tensor
category, to the category of modules over a finite-dimensional left Hopf algebroid over k.

We first state and prove an analogue of this theorem in terms of Hopf monads in a somewhat
more general setting. Let C be a monoidal category. Recall that the category END(C) of endo-
functors of C is strict monoidal with composition for monoidal product and 1C for monoidal unit.
The functor

Ω :

{C → END(C)

X �→ X ⊗ ?

is strong monoidal.

Theorem 7.7. Let E be a full monoidal subcategory of END(C) containing Ω(C). Denote by
ω :C → E the corestriction of Ω to E . Then

(a) If ω has a left adjoint F , the adjunction (F ,ω) is monadic, its monad T = ωF is a bimonad
on E , and the comparison functor C → ET is a monoidal equivalence.

(b) If C is right autonomous, then ω has a left adjoint if and only if the coend

F(e) =
X∈C∫

e(X) ⊗ X∨

exists for all e ∈ Ob(E). In that case, the assignment e �→ F(e) defines a functor which is a
left adjoint of ω, and the bimonad T = ωF is a right Hopf monad.

(c) If C is autonomous and ω has a left adjoint F , then the bimonad T = ωF is a Hopf monad.

Proof. Assume ω has a left adjoint F . Then the adjunction (F ,ω) is a comonoidal adjunction,
so that the comparison functor K :C → ET is strong monoidal. Besides, ω has a left quasi-inverse
e �→ e(1), and so satisfies conditions (a) and (b) of Beck’s monadicity Theorem 2.1, so that the
adjunction (F ,ω) is monadic and K is a monoidal equivalence. Hence part (a).

Assume C is right autonomous. For e ∈ Ob(E) and X ∈ Ob(C), we have a natural bi-
jection between natural transformations e → X ⊗ ? and dinatural transformations {e(Y ) ⊗
Y∨ → X}Y∈Ob(C). Therefore ω has a right adjoint if and only if the coends F(e) exist for any
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object e of E . Assume that such is the case. Then the assignment e �→ F(e) gives a left adjoint
of ω. For X ∈ Ob(C) and e ∈ Ob(E), we have

F(
ω(X) ◦ e

) =
Y∈C∫

X ⊗ e(Y ) ⊗ Y∨ 	 X ⊗
Y∈C∫

e(Y ) ⊗ Y∨ = X ⊗Fe

because X ⊗ ? has a right adjoint X∨ ⊗ ? and so preserves colimits. One checks that this isomor-
phism is the right Hopf operator Hr

e,X :F(ω(X) ◦ e) → X ⊗Fe of the adjunction (F ,ω). Thus
T is a right Hopf monad by Theorem 2.15. Hence part (b).

Finally assume that C is also left autonomous. Let X ∈ Ob(C) and e ∈ Ob(E). Since the functor
∨X ⊗ ? is left adjoint to X ⊗ ? and the functor ? ⊗ X preserves colimits (because it has a right
adjoint ? ⊗ ∨X), we have

F(
e ◦ ω(X)

) =
Y∈C∫

e(X ⊗ Y) ⊗ Y∨ 	
Y∈C∫

e(Y ) ⊗ (∨X ⊗ Y
)∨

	
Y∈C∫

e(Y ) ⊗ Y∨ ⊗ X 	 Fe ⊗ X.

One checks that the composition of these isomorphisms is the left Hopf operator Hl
X,e :F(e ◦

ω(X)) → Fe ⊗ X of the adjunction (F ,ω). Therefore T is also a left Hopf monad by Theo-
rem 2.15. Hence part (c). �
Proof of Theorem 7.6. We apply Theorem 7.7 to a finite tensor category C over a field k. IfA is
a k-linear abelian category, we denote by ENDra

k
(A) the full monoidal subcategory of END(A)

of k-linear endofunctors which admit a right adjoint.
Set E = ENDra

k
(C). For X ∈ Ob(C), the endofunctor X ⊗ ? is k-linear and has a right adjoint,

namely X∨ ⊗ ?, so we have Ω(C) ⊂ E . Denoting by ω :C → E the corestriction of Ω to E , we
have a commutative triangle of strong monoidal k-linear functors:

C Ω

ω

END(C)

E inclusion

By assumption, there exists a finite-dimensional k-algebra R and a k-linear equivalence
Υ :C → Rmod, with quasi-inverse Υ ∗ of Υ , hence a k-linear strong monoidal equivalence:{E = ENDra

k
(C) → ENDra

k
(Rmod)

E �→ Υ ◦ E ◦ Υ ∗.

Composing this with the well-known strong monoidal k-linear equivalence{
ENDra

k
(Rmod) → RmodR

e �→ e(RR)R
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we obtain a k-linear strong monoidal equivalence

Θ :E → RmodR 	 Remod.

In particular E is a finite k-linear abelian category. The category END(C) is abelian as a category
of functors to an abelian category, Ω is exact (the tensor product of C being exact in each vari-
able), and the inclusion E ↪→ End(C) is fully faithful, so ω is exact. It is a well-known fact that
a right (resp. left) exact k-linear functor between finite k-linear abelian categories admits a left
(resp. right) adjoint. Thus ω has a left adjoint F , as well as a right adjoint R. By Theorem 7.7,
we conclude that the comonoidal adjunction (F ,ω) is monadic and its monad T = ωF is a Hopf
monad. Moreover T is k-linear and has a right adjoint ωR.

Now we transport T along the k-linear monoidal equivalence Θ :E → RmodR . Pick a quasi-
inverse Θ∗ of Θ . The adjunction (FΘ∗,Θω) is a monadic Hopf adjunction. Its monad T ′ is a
k-linear Hopf monad on RmodR with a right adjoint ΘωRΘ∗. By Theorem 7.1, T is of the form
TA for some bialgebroid A with base R, which is by definition a Hopf algebroid. Monadicity
ensures that the comparison functor C → (RmodR)T = Amod is a k-linear monoidal equivalence
of categories. This concludes the proof of Theorem 7.6. �
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