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Abstract. This paper contains three related groupings of results. First, we consider a new notion of an
admissible skein module of a surface associated to an ideal in a (non-semisimple) pivotal category. Second,

we introduce the notion of a chromatic category and associate to such a category a finite dimensional
non-compact (2+1)-TQFT by assigning admissible skein modules to closed oriented surfaces and using

Juhász’s presentation of cobordisms. The resulting TQFT extends to a genuine one if and only if the

chromatic category is semisimple with nonzero dimension (recovering then the Turaev-Viro TQFT). The
third grouping of results concerns sided chromatic maps in finite tensor categories. In particular, we prove

that every spherical tensor category (in the sense of Etingof, Douglas et al.) is a chromatic category (and

so can be used to define a non-compact (2+1)-TQFT).
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Introduction

In the seminal paper [At], Atiyah introduced the notion of a (n + 1)-TQFT which is equivalent to a
symmetric monoidal functor from the category of (n + 1)-dimensional cobordisms Cob to the category of
vector spaces Vectk. Two milestones in this area are the Reshetikhin-Turaev and Turaev-Viro (2+1)-TQFTs
associated to certain semisimple categories. The first is based on modular categories, see [RT, T2, BHMV],
the second is based on spherical categories, see [TV, BW], and these constructions are related in [TVi]. Later
the first approach has been extended to constructions coming from non-semisimple modular categories, see
for example [KL, BCGP, D, DGGPR]. The focus of this paper is to extend the second approach to non-
compact (2 + 1)-TQFTs coming from non-semisimple spherical categories. Here “non-compact” means Cob
is replaced with its subcategory Cobnc of cobordisms where each component has nonempty source (this
terminology is used by Lurie [Lu, Definition 4.2.10]).

Another active area of research is the study of skein modules. In general, a skein module of a manifold M is
an algebraic object defined as a formal linear combination of embedded graphs in M , modulo local relations.
An important example of such modules is the Kauffman skein algebra of a surface introduced independently
by Przytycki [P1, P2] and Turaev [T1]. It has a simple and combinatorial definition where the local relations
are determined by the Jones polynomial or equivalently the Kauffman bracket. In particular, the Kauffman
skein algebra S(S2) associated to the 2-sphere is one dimensional, its dual S(S2)∗ is cononically isomorphic
to the linear span of the quantum trace on the category of finite dimensional modules over Uq(sl2), and
the natural pairing of these spaces recovers the Jones polynomial. The simple definition of the Kauffman
skein algebra hides deep connections to many interesting objects like character varieties, TQFTs, quantum
Teichmüller spaces, and many others, see for example [Bu, BW, Mu, Si, Th].

The results of this paper fall into three main groupings. First, we give a new notion of admissible skein
modules associated to an ideal of a pivotal k-category. Second, we show these modules are the TQFT
spaces of a finite dimensional non-compact (2 + 1)-TQFT associated to a new type of category called a
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chromatic category (which is a pivotal k-category endowed with a non-degenerate m-trace and a chromatic
map). Finally, we show that any (non-semisimple) spherical tensor category (as defined in [DSS, EGNO]) is
a chromatic category.

Let us describe each of these groupings of results in more detail. Let C be pivotal k-category, that is,
a k-linear pivotal category such that hom-spaces are finite dimensional vector spaces and EndC(1) = kid1.
Given an ideal I (a full subcategory of C closed under tensor product and retracts) and an oriented surface Σ,
we define the admissible skein module SI(Σ) as the k-span of I-admissible ribbon graphs in Σ modulo the
span of I-skein relations (see Definition 2.5). Loosely speaking, an I-skein relation is similar to a usual
skein relation except that we require there is an edge colored with an object in I which is not completely
contained in the local defining relation. We prove that the mapping class group of Σ naturally acts on SI(Σ)
(see Theorem 2.3). We also establish (see Theorem 2.4) that admissible skein modules are related to the
notion of a modified trace (m-trace) on I defined in [GKP, GPV]: the dual SI(S2)∗ of the admissible skein
module of the 2-sphere is canonically isomorphic to the k-span of m-traces on I (a related result was stated
in a talk by Walker [W2]). The pairing of this space with SI(S2) gives back the renormalized quantum
invariants of links coming from these m-traces (see [GP, Section 1.5]), generalizing the above mentioned
relationship between the Kauffman skein algebra, the Jones polynomial, and the quantum trace.

The second main grouping of results of this paper answers the natural question: “For which categories
does the mapping class group action induced by admissible skein modules extend to a TQFT?”. The relevant
categories are the chromatic categories. These are pivotal k-categories endowed with a non-degenerate m-
trace on the ideal of projective objects and a chromatic map (which plays the role of the so called “Kirby
color” in the surgery semisimple approach). Note that we do not need chromatic categories to be abelian
but instead we assume that any non zero morphism to the unit object 1 is an epimorphism. We show
(Theorem 3.3) that any chromatic category C gives rise to non-compact TQFT

S : Cobnc → Vectk,

which extends to a genuine TQFT Cob → Vectk if and only if C is semisimple with nonzero dimension (as
a chromatic category, see Section 1.8). We prove (Theorem 3.5) that the TQFT S is an extension of the
3-manifolds invariant KC defined in [CGPT]. While the definition of KC is based on Heegaard decompositions,
our construction only requires understanding local attachment of framed 0 and 1-spheres and then appeals to
the substantial work of Juhász [J] where the categories of cobordisms are described in terms of generators and
relations. We use the m-trace and chromatic map to build operators on admissible skein modules that satisfy
the relations of Cobnc and so induce the functor S : Cobnc → Vectk. Since the 3-manifold invariant KC is
both a generalization of the Turaev-Viro invariant and a version of the (unimodular) Kuperberg invariant,
the construction of this paper provides non-compact TQFTs for these two invariants.

The TQFT S has several useful properties. First, the vector spaces associated to surfaces are easy to
understand as they are skein modules (for example, it is not hard to show they are finite dimensional as soon
as there is a projective generator). Second, the action of the mapping class groups on them is very natural.
Third, the algebraic data needed for the construction is easy to formulate with low-level technology using
monoidal categories. In particular, the quite technical notions used in many constructions of non-semisimple
TQFTs are replaced with a simple relation (see Equation (2)) relating an m-trace and a chromatic map. The
chromatic map has an explicit expression in many examples (including categories of modules over small (su-
per) quantum groups) and it is a graphical tool which is easy to manipulate (see the proofs below). Finally,
the straightforward language of this paper opens the door for new applications and even broader general-
izations. In particular, using a similar approach, (3 + 1)-TQFT are defined in [CGHP] from certain ribbon
categories. In another direction, it would be interesting to extend the present results to non-unimodular
graded categories including the category of modules over the Borel algebra of the unrestricted quantum
group (which should have applications related to SL(2,C) Chern-Simons theory, see [CDGG]). Furthermore,
a graded extension of the techniques of this paper would also include new examples with perturbative mod-
ules over super Lie algebras, giving TQFTs which should be related to a conjectural perturbative versions
of super CS-theory (see [AGPS, GY, Mi, RS] and references within).

The final main grouping of results of this paper concerns the existence of chromatic maps and chromatic
categories. Given a finite tensor category C (in the sense of [EGNO]), we introduce left and right chromatic
maps for C (see Section 4). Their definition involves the distinguished invertible object of C. We show that left
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and right chromatic maps for C always exist (Theorem 4.2) and we explicitly describe them for categories of
representations of finite dimensional Hopf algebras (Theorem 4.6). The proof of the existence uses the central
Hopf monad (which describes the center of C, see [BV2]) and the existence and uniqueness of (co)integrals
based at the distinguished invertible object of C (see [Sh]). As a consequence, we get (Theorem 1.6) that
spherical finite tensor categories (over an algebraically closed field) are chromatic categories (and so can be
used to define non-compact (2+1)-TQFTs).

The research area around non-semisimple TQFTs is very active and many recent results are related to this
paper, see for example [BCGP, BGPR, BJSS, CGP, CGuP, D, DGP, DGGPR, KTV, KV, Ke, KL, Vi]. In
particular, in [Ba], Bartlett used the same approach to recover Turaev-Viro TQFT in the semisimple setting.
We expect that our construction is related to the general universal non-semisimple TQFT announced by
Kevin Walker and David Reutter in [W1].

Acknowledgments. F.C. is supported by CIMI Labex ANR 11-LABX-0040 at IMT Toulouse within the pro-
gram ANR-11-IDEX-0002-02 and from the french ANR Project CATORE ANR-18-CE40-0024. N.G. is
supported by the Labex CEMPI (ANR-11-LABX-0007-01), IMT Toulouse and by the NSF grant DMS-
2104497. B.P. thanks the France 2030 framework program Centre Henri Lebesgue ANR-11-LABX-0020-01
for creating an attractive mathematical environment. A.V. is supported by the FNS-ANR grant OCHoTop
(ANR-18-CE93-0002) and the Labex CEMPI (ANR-11-LABX-0007-01).

Throughout the paper, k is a field and all categories are supposed to be essentially small.

1. Chromatic categories

In this section, after reviewing some categorical notions, we introduce chromatic maps and chromatic
categories (which are the algebraic ingredients to construct non-compact (2+1)-TQFTs).

1.1. Rigid and pivotal categories. For the basics on monoidal categories, we refer for example to [ML,
EGNO, TVi]. We will suppress in our formulas the associativity and unitality constraints of monoidal
categories. This does not lead to ambiguity because by Mac Lane’s coherence theorem, all legitimate ways
of inserting these constraints give the same result. For any objects X1, ..., Xn with n ≥ 2, we set

X1 ⊗X2 ⊗ · · · ⊗Xn = (...((X1 ⊗X2)⊗X3)⊗ · · · ⊗Xn−1)⊗Xn

and similarly for morphisms.
Recall that a monoidal category is rigid if every object admits a left dual and a right dual. Subsequently,

when dealing with rigid categories, we shall always assume tacitly that for each object X, a left dual ∨X and
a right dual X∨ have been chosen, together with their (co)evaluation morphisms

←−
evX : ∨X ⊗X → 1,

←−
coevX : 1→ X ⊗ ∨X, −→

evX : X ⊗X∨ → 1,
−→

coevX : 1→ X∨ ⊗X,
where 1 is the monoidal unit of C.

A pivotal category is a rigid monoidal category with a choice of left and right duals for objects so that
the induced left and right dual functors coincide as monoidal functors. Then we write X∗ = ∨X = X∨ for
any X ∈ C, the dual f∗ : Y ∗ → X∗ of a morphism f : X → Y is computed by

f∗ = (
←−
evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗⊗

−→
coevX) = (idX∗⊗

−→
evY )(idX∗ ⊗ f ⊗ idY ∗)(

←−
coevX ⊗idY ∗),

and
φ = {φX = (idX∗∗⊗

←−
evX)(

−→
coevX∗ ⊗idX) : X → X∗∗}X∈C

is a monoidal natural isomorphism relating the (co)evaluation morphisms, called the pivotal structure of C.
The categorical left trace and right trace of any endomorphism f : X → X of a pivotal category C are

defined by

trl(f) =
←−
evX(idX∗ ⊗ f)

−→
coevX and trr(f) =

−→
evX(f ⊗ idX∗)

←−
coevX .

Both take values in the commutative monoid EndC(1) of endomorphisms of the monoidal unit 1 and share
a number of properties of the standard trace of matrices such as cyclicity (i.e., symmetry). More generally,
the left partial trace of a morphism g : X ⊗ Y → X ⊗ Z is the morphism

ptrXl (g) = (
←−
evX ⊗ idZ)(idX∗ ⊗ g)(

−→
coevX ⊗idY ) : Y → Z,
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and the right partial trace of a morphism h : X ⊗ Y → Z ⊗ Y is the morphism

ptrYr (h) = (idZ⊗
−→
evY )(h⊗ idY ∗)(idX⊗

←−
coevY ) : X → Z.

1.2. Penrose graphical calculus. We represent morphisms in a pivotal category C by plane diagrams to
be read from the bottom to the top. Diagrams are made of oriented arcs colored by objects of C and of boxes
colored by morphisms of C. The arcs connect the boxes and have no mutual intersections or self-intersections.
The identity idX of an object X, a morphism f : X → Y , the composition of two morphisms f : X → Y
and g : Y → Z, and the monoidal product of two morphisms α : X → Y and β : U → V are represented as
follows:

idX = X , f = f

X

Y

, g ◦ f =
g

f

Z

Y

X

, α⊗ β =

Y

α

X

V

β

U

.

A box whose lower/upper side has no attached strands represents a morphism with source/target 1. If an
arc colored by X is oriented downward, then the corresponding object in the source/target of morphisms
is X∗. For example, idX∗ and a morphism f : X∗ ⊗ Y → U ⊗ V ∗ ⊗W may be depicted as:

idX∗ = X and f =

U V W

X Y

f .

The duality morphisms are depicted as

←−
evV = V ,

←−
coevV = V ,

−→
evV = V ,

−→
coevV = V .

The partial traces of morphisms g : X ⊗ Y → X ⊗ Z and h : X ⊗ Y → Z ⊗ Y are depicted as

ptrXl (g) = g

Z

Y

X , ptrYr (h) = h

Z

X

Y

Note that the morphisms represented by the diagrams are invariant under isotopies of the diagrams in the
plane keeping fixed the bottom and top endpoints (see [JS, TVi]).

1.3. Projective objects, covers, and generators. An object P of a category C is projective if the functor
HomC(P,−) : C → Set preserves epimorphisms. A category has enough projectives if every object has an
epimorphism from a projective object onto it.

A projective cover of an object X of a category C is a projective object P (X) of C together with an
epimorphism p : P (X) → X such that if g : P → X is an epimorphism from a projective object P to X,
then there exists an epimorphism h : P → P (X) such that ph = g. In an abelian category, a projective
cover (if it exists) is unique up to a non-unique isomorphism, and a projective cover of a simple object is
indecomposable.

By a generator of a preadditive category (that is, a category that is enriched over the category of abelian
groups), we mean an object G of the category such that any other object X is retract of G⊕n for some non-
negative integer n. A projective generator of a preadditive category C is a generator of the full subcategory
of projective objects of C.

1.4. Linear monoidal categories. A monoidal category is k-linear if each hom-set carries a structure of
a k-vector space so that the composition and monoidal product of morphisms are k-bilinear.

By a k-category, we mean a k-linear monoidal category C such that the hom-sets in C are finite dimensional
and the k-algebra map k→ EndC(1), k 7→ k id1 is an isomorphism, used then to identify EndC(1) = k.

We say a k-category that C is semisimple if every object of C is projective. Note that if C is abelian, then
C is semisimple (in the above sense) if and only if it is abelian semisimple (in the sense every object is a
direct sum of simple objects).

4



1.5. Finite tensor categories. Assume in this subsection that k is algebraically closed. Following [EGNO],
a finite tensor category (over k) is a rigid abelian k-category C such that:

• every object of C has finite length,
• the category C has enough projectives,
• there are finitely many isomorphism classes of simple objects.

Let C be a finite tensor category. Then the unit object 1 of C is simple (see [EGNO, Theorem 4.3.8]).
Also, every simple object of C has a projective cover, and any indecomposable projective object P of C has
a unique simple subobject, called the socle of P (see [EGNO, Remark 6.1.5]). In particular, the socle of the
projective cover of the unit object 1 is an invertible object called the distinguished invertible object of C.
Finally C has a projective generator (for example the direct sum of the projective covers of the elements of
a representative set of the isomorphism classes of simple objects).

1.6. Modified traces. Let C be a pivotal k-category. We first recall from the definition of a modified trace
on an ideal of C (see [GPV, GKP2] for details).

An object Y of C is a retract of an object X of C if there are morphisms r : X → Y and i : Y → X such
that ri = idY . An ideal of C is a full subcategory I of C which is

• closed under monoidal products: for all X ∈ I and Y ∈ C, we have: X ⊗ Y ∈ I and Y ⊗X ∈ I,
• closed under retracts: any retract of an object of I belongs to I.

Recall from [GPV] that the pivotality of C implies that any ideal of C is stable under duality.
Let I be an ideal of C. A family t = {tX : EndC(X)→ k}X∈I of k-linear forms satisfies the

• cyclicity property if tX(gf) = tY (fg) for all morphisms f : X → Y and g : Y → X with X,Y ∈ I;
• right partial trace property if tX⊗Y (f) = tX

(
ptrYr (f)

)
for all f ∈ EndC(X ⊗ Y ) with X ∈ I;

• left partial trace property if tY⊗X(f) = tX
(
ptrYl (f)

)
for all f ∈ EndC(Y ⊗X) with X ∈ I.

A right m-trace (respectively left m-trace, respectively m-trace) on I is a family t = {tX : EndC(X)→ k}X∈I
of k-linear forms satisfying the cyclicity and right (respectively left, respectively right and left) partial trace
properties.

For example, identifying EndC(1) = k, the family trr = {f ∈ EndC(X) 7→ trr(f) ∈ k}X∈C is a right m-
trace on C and the family trl = {f ∈ EndC(X) 7→ trl(f) ∈ k}X∈C is a left m-trace on C called the categorical
left and right traces of C. If these traces coincide, then tr = trr = trl is a m-trace on C called the categorical
trace of C.

A m-trace t on an ideal I of C is non-degenerate if for any X ∈ I, the pairing

HomC(1, X)⊗k HomC(X,1)→ k, u⊗ v 7→ tX(uv)

is non-degenerate. Given such a non-degenerate trace t, we set for any X ∈ I,

ΩX =
∑
i

xi ⊗ xi ∈ HomC(X,1)⊗k HomC(1, X) and Λt
X =

∑
i

xi ◦ xi ∈ EndC(X), (1)

where {xi}i and {xi}i are basis of HomC(X,1) and HomC(1, X) which are dual with respect to the m-trace t,
that is, such that tX(xi ◦ xj) = δi,j . Clearly, ΩX and Λt

X are independent of the choice of such dual basis.
The properties of the m-trace t translate to the copairings ΩX as follows:

Lemma 1.1. Let X,Y ∈ I and Z ∈ C, and let f : X → Y be a morphism in C.

(a) Duality: If ΩX =
∑
i x

i ⊗ xi, then ΩX∗ =
∑
i(xi)

∗ ⊗ (xi)∗ ∈ HomC(X
∗,1)⊗k HomC(1, X

∗).
(b) Naturality: If ΩX =

∑
i x

i ⊗ xi and ΩY =
∑
j y

j ⊗ yj, then∑
i

xi ⊗ (f ◦ xi) =
∑
j

(yj ◦ f)⊗ yj ∈ HomC(X,1)⊗k HomC(1, Y ).

(c) Rotation: If ΩX⊗Z =
∑
i z
i ⊗ zi then ΩZ⊗X =

∑
i z̃
i ⊗ z̃i where

z̃i =
−→
evZ(idZ ⊗ zi ⊗ idZ∗)(idZ⊗X⊗

←−
coevZ) and z̃i = (idZ⊗X⊗

−→
evZ)(idZ ⊗ zi ⊗ idZ∗)

←−
coevZ .

Proof. The duality and rotation properties follow from the fact that we apply transformations sending dual
basis to dual basis. The naturality can be checked by applying tX(xk ◦ )⊗ tY ( ◦y`) to both sides: it reduces
then to the cyclic property tY (f ◦ xk ◦ y`) = tX(xk ◦ y` ◦ f) of the m-trace t. �
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1.7. Chromatic maps. Let C be a pivotal k-category. The full subcategory ProjC of projective objects of C
is an ideal of C (see [GPV]). Assume that C is endowed with a non-degenerate m-trace t on ProjC .

A chromatic map for a projective generator G of C is a map c ∈ EndC(G⊗G) satisfying

(idG⊗
←−
evG ⊗ idG)(Λt

V⊗G∗ ⊗ c)(idG⊗
−→

coevG ⊗idG) = idG⊗G, (2)

that is,

Λt
G⊗G∗ c

G G

G

G

=

G G

.

More generally, a chromatic map based on a projective object P for a projective generator G is a map
cP ∈ EndC(G⊗ P ) such that for all X ∈ C,

(idX⊗
←−
evG ⊗ idP )(Λt

X⊗G∗ ⊗ c)(idX⊗
−→

coevG ⊗idP ) = idX⊗P , (3)

that is,

Λt
X⊗G∗ cP

X P

G

G

=

X P

, or more explicitly
∑
i

xi

xi

cP

X

X

G

G

P

=

X P

where {xi}i and {xi}i are basis of HomC(X ⊗G∗,1) and HomC(1, X ⊗G∗) which are dual with respect to
the m-trace t.

Clearly, a chromatic map based on G for a projective generator G is a chromatic map for G. Conversely,
any chromatic map gives rise to chromatic maps based on projective objects:

Lemma 1.2. Let c ∈ EndC(G⊗G) be a chromatic map for a projective generator G of C and let P ∈ ProjC.
Pick any non zero morphism ε : G → 1 and a morphism eP,G : P → G ⊗ P such that idP = (ε ⊗ idP )eP,G
(such morphisms always exist). Then the map

cP = (idG ⊗ ε⊗ idP )(c⊗ idP )(idG ⊗ eP,G) ∈ EndC(G⊗ P )

is a chromatic map based on P for G.

Proof. We first verify the existence of the maps ε and eP,G. Since G∗ ⊗ G is projective and is a retract of

finite direct sum of copies of G, the (nonzero) evaluation epimorphism
←−
evG factors through G, and so there

exists a nonzero map G
ε−→ 1 which then is an epimorphism. Since P ⊗ P ∗ is projective, the evaluation

morphism
−→
ev P : P ⊗ P ∗ → 1 factors as

−→
ev P = ε ◦ ẽP,G for some ẽP,G : P ⊗ P ∗ → G. Then the map

eP,G = (ẽP,G ⊗ idP )(idP⊗
−→

coevP ) does satisfy idP = (ε⊗ idP )eP,G.
Next, denote by g ∈ EndC(G⊗G) be the left hand side of (2) and by fX,P ∈ EndC(X ⊗ P ) the left hand

side of (3). Assume first that X = Q ∈ ProjC . Since Q is a retract of a direct sum of copies of G, there is a
finite family {αi : Q → G, βi : G → Q}i of morphisms such that idQ =

∑
i βiαi. Then, using the naturality

of Ω (see Lemma 1.1) and the fact that g = idG⊗G (since c is a chromatic map for G), we obtain:

fQ,P =
∑
i

fQ,P (βiαi ⊗ idP ) =
∑
i

(βi ⊗ ε⊗ idP )(g ⊗ idP )(αi ⊗ eP,G)

=
∑
i

βiαi ⊗
(
(ε⊗ idP )eP,G

)
= idQ⊗P .

Finally, let X ∈ C. The naturality of Ω implies that fX,P (idX ⊗ ε ⊗ idP ) = (idX ⊗ ε ⊗ idP )fX⊗G,P . The
previous case applied to the projective object Q = X ⊗ G gives that fX⊗G,P = idX⊗G⊗P . Therefore
fX,P (idX ⊗ ε⊗ idP ) = (idV ⊗ ε⊗ idP ). Now idX ⊗ ε⊗ idP is an epimorphism because ε is an epimorphism
and C is pivotal. Hence fX,P = idX⊗P , that is, cP is a chromatic map based on P for G. �

The existence of chromatic maps does not depend of the choice of the projective generator:

Lemma 1.3. Let G,G′ be projective generator and cP be a chromatic map based on a projective object P
for G. Then there is a finite family {γi : G → G′, δi : G

′ → G}i of morphisms such that
∑
i δiγi = idG and

c′P =
∑
i(γi ⊗ idP )cP (δi ⊗ idP ) is a chromatic map based on P for G′.
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Proof. The existence of {γi, δi}i comes from the facts that G is a retract of (G′)⊕n. To prove that c′P is a

chromatic map, one can precompose
←−
evG with idG∗⊗G =

∑
i idG∗ ⊗ δiγi in Equation (3), and then slide δi

using the naturality of Λt
•. �

1.8. Chromatic categories. A chromatic category (over k) is a pivotal k-category C endowed with a non-
degenerate m-trace on ProjC such that:

• any non zero morphism to the unit object 1 is an epimorphism,
• there exists a chromatic map for a nonzero projective generator.

Note that Lemmas 1.2 and 1.3 imply that in a chromatic category, there are chromatic maps based at any
projective object for any projective generator.

First examples of chromatic categories are given by spherical fusion categories and categories of repre-
sentations of unimodular and unibalanced finite dimensional Hopf algebras, see the Examples 1.4 and 1.5
below. A large family of chromatic categories is given by the spherical tensor categories over an algebraically
closed field, see Theorem 1.6.

A chromatic category is semisimple if it is semsimple as a k-category (see Section 1.4) or, equivalently,
if the unit object 1 is projective. Note that the m-trace t of a semisimple chromatic category is a nonzero
multiple of the categorical trace tr. Indeed the partial trace property implies that t = t1(id1) tr, and
t1(id1) 6= 0 because t is nonzero.

The dimension of a semisimple chromatic category C is dim(C) = tr(c1) = tG(c1)
t1(id1) ∈ k for any chromatic

map c1 based on 1 for some projective generator G of C. (This terminology is justified by the last assertion
of Example 1.4.) Note that dim(C) does not depend on the choice of c1 (see Remark 2.7) but does depend
on the m-trace.

Example 1.4. Let C be a spherical fusion k-category. Here, fusion means that there is a finite family I of
objects of C such that 1 ∈ I, HomC(i, j) = δi,jk idi for all i, j ∈ I, and each object of C is a direct sum of
objects in I. (Such fusion categories are in particular semisimple k-categories in the sense of Section 1.4).
Also, spherical means that the categorical left and right traces of C coincide (see Section 1.6). Then any
object of C is projective, the categorical trace tr is non-degenerate, G =

⊕
i∈I i is a (projective) generator

of C, and for any object P ∈ C,
cP =

⊕
i∈I

dim(i) idi ⊗ idP

is a chromatic map based on P for G, where dim(i) = tr(idi) ∈ k. Formally, cP = idΩ ⊗ idP , where
Ω =

⊕
i∈I dim(i) i is the so-called “Kirby color” of C. Consequently, C (endowed with its categorical trace)

is a semisimple chromatic category. Note that the dimension of C (as a semisimple chromatic category)
coincides with its usual definition dim(C) =

∑
i∈I dim(i)2 as a spherical fusion category. (This follows from

the computation of tr(c1) for the above chromatic map based on 1.)

Example 1.5. Let H be a finite dimensional Hopf algebra over k. The category H-mod of finite dimen-
sional (left) H-modules and H-linear homomorphisms is a k-category. Assume that H is unimodular and
unibalanced in the sense of [BBG], meaning that the square of the antipode S of H is the conjugation
by a square root g of the distinguished grouplike element of H. Pick a nonzero right integral λ : H → k
for H. Then H is a projective generator of H-mod, the integral λ determines a non-degenerate m-trace t on
ProjH-mod characterized by tH(f) = λ(gf(1)) for all f ∈ EndH(H), and a chromatic map for H is

cH :

{
H ⊗H → H ⊗H
x⊗ y 7→ λ(S(y(1))gx) y(2) ⊗ y(3)

where y(1) ⊗ y(2) ⊗ y(3) is the double coproduct of y. (This follows from [CGPT, Lemma 6.3] or the more
general computations performed in Section 4.3.) More generally, for any finite dimensional projective H-
module P ,

cP =
∑
i

(idH ⊗ gi)cH(idH ⊗ fi) : H ⊗ P → H ⊗ P

is a chromatic map based on P for H, where {fi : P → H, gi : H → P}i is any finite family of H-linear
homomorphisms such that idP =

∑
i gifi. Consequently, H-mod is a chromatic category. In particular,

finite dimensional modules over many small versions of (super) quantum groups fit into this setting. Note
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that H-mod is semisimple (as a chromatic category) if and only if H is semisimple (as an algebra), and if
such is the case, then the dimension of H-mod (as a semisimple chromatic category) is equal to λ(1) and
so is nonzero if and only if H is cosemisimple (by Maschke’s theorem for Hopf algebras). Consequently,
the chromatic category H-mod is semisimple with nonzero dimension if and only if H is semisimple and
cosemsisimple, or equivalently (by [EG, Corollary 3.2]) if and only if H is involutory with dimk(H)1k 6= 0.

1.9. Spherical tensor categories. Assume in this subsection that k is algebraically closed. A finite tensor
category is unimodular if its distinguished invertible object (see Section 1.5) is the unit object.

A spherical tensor category (over k) is a pivotal unimodular finite tensor category C (over k) such that
the right m-trace on ProjC (which exists and is unique up to scalar multiple by [GKP3, Corollary 5.6]) is
also a left m-trace. Note that by [SS, Theorem 1.3], this definition agrees with [DSS, Definition 3.5.2] where
the above condition on the right m-trace is replaced by the equality of the square of the pivotal structure
with the Radford equivalence. The first main result of the paper is the following:

Theorem 1.6. Any spherical tensor category over an algebraically closed field is a chromatic category.

Theorem 1.6 is a reformulation of Corollary 4.4 below which is a consequence of a related more general
result (Theorem 4.2) stating the existence of left and right chromatic maps in any finite tensor category.

Note that the categories of Examples 1.4 and 1.5 are examples of spherical tensor categories when the
ground field k is algebraic closed. Moreover, a spherical tensor category over an algebraically closed field
which is semisimple (as a chromatic category or, equivalently, as an abelian category) is a spherical fusion
category (in the sense of Example 1.4).

2. Admissible skein modules

Throughout this section, C is a pivotal k-category and I is an ideal of C. We introduce I-admissible
graphs in surfaces and use them to construct the skein module functor.

2.1. Ribbon graphs. Loosely speaking, a ribbon graph is an oriented compact surface embedded in man-
ifold which is decomposed into elementary pieces: bands, annuli, and coupons, see [T2]. A C-coloring of
such a graph is a labeling of the core of each band and annuli with an object of C and a compatible mor-
phism to each coupon. We proceed to precise definitions as in [TVi] in the case of surfaces. A circle is a
1-manifold homeomorphic to S1. An arc is a 1-manifold homeomorphic to the closed interval [0, 1]. The
boundary points of an arc are called its endpoints. A rectangle is a 2-manifold with corners homeomorphic
to [0, 1] × [0, 1]. The four corner points of a rectangle split its boundary into four arcs called the sides. A
coupon is an oriented rectangle with a distinguished side called the bottom base, the opposite side being the
top base.

A plexus is a topological space obtained from a disjoint union of a finite number of oriented circles,
oriented arcs, and coupons by gluing some endpoints of the arcs to the bases of the coupons. We require
that different endpoints of the arcs are never glued to the same point of a (base of a) coupon. The endpoints
of the arcs that are not glued to coupons are called free ends. The set of free ends of a plexus Γ is denoted
by ∂Γ. The arcs and the circles of a plexus are collectively called strands.

A ribbon graph in an oriented surface Σ is a plexus embedded in Σ such that all coupons of Γ are embedded
in Int(Σ) = Σ \ ∂Σ preserving orientation, Γ ∩ ∂Σ = ∂Γ, the arcs and coupon of Γ are smoothly embedded
and the arcs of Γ meet ∂Σ transversely.

2.2. Colored ribbon graphs. A C-coloring of a plexus Γ is a function assigning to every strand of Γ an
object of C, called its color, and assigning to every coupon Q of Γ a morphism Q• → Q• in C. Here Q•
and Q• are objects of C defined as follows. Let us call the endpoints of the arcs of Γ lying on the bottom
(respectively, top) base of Q the inputs (respectively, outputs) of Q. The orientation of the bottom base
of Q induced by the orientation of Q determines an order in the set of the inputs. Let Xi ∈ C be the color
of the arc of Γ adjacent to the i-th input. Set εi = + if this arc is directed toward Q at the i-th input and
εi = − otherwise. The orientation of the top base of Q induced by the orientation of Q determines an order
in the set of the outputs, and we take the opposite order. Let Yj ∈ C be the color of the arc of Γ adjacent to
the j-th output. Set νj = − if this arc is directed toward Q at the j-th output and νj = + otherwise. Then

Q• = Xε1
1 ⊗ · · · ⊗Xεm

m and Q• = Y ν1
1 ⊗ · · · ⊗ Y νnn ,
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where m and n are respectively the numbers of inputs and outputs of Q and, as usual, X+ = X and
X− = X∗ for X ∈ C. For example, the following coupon whose bottom base is the horizontal bottom one

Y1 Y2 Y3

X1 X2

must be colored with a morphism X∗1 ⊗X2 → Y1 ⊗ Y ∗2 ⊗ Y3

A ribbon graph is C-colored if its underlying plexus is endowed with a C-coloring.

2.3. Invariants of colored ribbon graphs. To each free end of a C-colored ribbon graph Γ in R × [0, 1]
is associated a signed object consisting of the color of the arc incident to the free end and of a sign ±1
depending if that arc is directed up or down. Then one can view Γ as a morphism from the sequence of
signed objects associated with its bottom free ends (i.e., its free ends in R× {0}) to the sequence of signed
objects associated with its top free ends (i.e., its free ends in R × {1}). This defines a monoidal category
RibC whose objects are finite sequences of signed objects, whose morphisms are isotopy classes of C-colored
ribbon graph in R× [0, 1], whose composition is given by putting one C-colored ribbon graph on top of the
other, and whose monoidal product is given by concatenation. The graphical calculus of Section 1.2 gives
rise to a monoidal functor

F : RibC → C. (4)

If the left and right traces trl and trl on C coincide (see Section 1.1), then F induces an isotopy invariant
F : L → EndC(1) = k, where L is the class of C-colored ribbon graphs in S2 = (R×]0, 1[) ∪ {∞}. This
invariant can be renormalized using a modified trace as follows.

Denote by LI the class of C-colored ribbon graphs in S2 having at least one strand colored with an object
in I. In particular, each Γ ∈ LI is the braid closure of some C-colored ribbon graph TX in R × [0, 1] with
exactly one bottom free end and one top free end both supported by arcs oriented upward and colored by
some object X ∈ I, so that F (TX) ∈ EndC(X). Then, by [GPV, Theorem 5], each m-trace t on I induces
an isotopy invariant

F ′ : LI → k, Γ 7→ F ′(Γ) = tX
(
F (TX)

)
. (5)

2.4. Admissible graphs. Let Σ be an oriented surface. An I-admissible graph in Σ is a C-colored ribbon
graph Γ in Σ with no free ends such that each connected component of Σ contains at least one strand of Γ
colored with an object in I.

Given I-admissible graphs Γ1, . . . ,Γk in Σ and a1, . . . , ak ∈ k, the linear combination a1Γ1 + · · ·+ anΓn
is a I-skein relation (in Σ) if there is a coupon Q embedded in Σ and I-admissible graphs Γ′1, . . . ,Γ

′
k in M

such that:

• Γ′i is isotopic to Γi (as a C-colored graph in Σ) for all 1 ≤ i ≤ k;
• the Γ′is coincide outside Q: Γ′i ∩ (Σ \Q) = Γ′j ∩ (Σ \Q) for all 1 ≤ i, j ≤ k;
• Γ′i intersects ∂Q only in its bottom and tops bases and transversally along the stands of Γ′i (so that

Γ′i ∩Q can be seen as a C-colored ribbon graph in R× [0, 1]) for all 1 ≤ i ≤ k;
• a1F (Γ′1 ∩Q) + · · ·+ akF (Γ′k ∩Q) = 0 (as a morphism in C);
• each Γ′i has an edge colored by a projective object which is not entirely contained in the coupon Q.

Two linear combinations of I-admissible graphs are I-skein equivalent if their difference is an I-skein
relation.

The next lemma will be useful in the sequel:

Lemma 2.1. Let {Γi}i be a finite family of I-admissible graphs in Σ which are identical outside two disjoint
coupons Q1, Q2 and which intersect these coupons transversally and only their bottom an top bases. Let
s =

∑
i ciΓi be a formal sum (with ci ∈ k) and suppose that F (s ∩Q1)⊗k F (s ∩Q2) = 0 . Then s is a sum

of skein relations.

Proof. Let X,Y ∈ C such that F (s ∩Q1) ∈ HomC(X,Y ). Choose a basis {fj}j of HomC(X,Y ). First apply
skein relations in Q1 to replace every graph Γi with a linear combination of graphs where Q1∩Γi is replaced
with a unique coupon colored by one of the morphisms fj . Then s is skein equivalent to s′ =

∑
j sj where sj
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collects all diagrams whose box Q1 has a coupon colored by fj . Now F (s′ ∩ Q1) ⊗k F (s′ ∩ Q2) = 0 =∑
j cjfj ⊗k F (sj ∩ Q2) for some constants cj ∈ k. Since the fj are linearly independent, we conclude that

F (sj ∩Q2) = 0, and so sj is a skein relation. �

2.5. Admissible skein modules. The I-admissible skein module SI(Σ) of an oriented surface Σ is the
quotient of the k-vector space generated by the I-admissible graphs in Σ by its vector subspace generated
by the I-skein relations. The empty graph in Σ is not admissible unless Σ is empty. Then SI(∅) is the
1-dimensional vector space generated by the empty graph.

Lemma 2.2. SI(Σ) is generated by I-admissible graphs where each strand is colored by an object of I.

Proof. By inserting coupons colored by identities and using that an I-admissible graph has no free ends, it
is easy to see SI(Σ) is generated by I-admissible graphs with no circles and where each arc is joining two
different coupons. Then we can induct on the number of arcs whose color does not belong to I. Pushing an
arc colored by X ∈ I next to an arc colored by Y ∈ C (through some isotopy) and using a skein relation,
we can replace the Y -colored arc with an arc colored by Y ⊗X ∈ I and changing the incident coupons as
in the following figure:

XY

f

g

−→ Y ⊗X

f⊗idX

g⊗idU

.

This reduces the number of arcs whose color does not belong to I. �

If f : Σ→ Σ′ is an orientation preserving embedding and Γ is a ribbon graph in Σ, then f(Γ) is a ribbon
graph in Σ′ in an obvious way. Further, if Γ is C-colored, then so if f(Γ) (with colors inherited from Γ).
An embedding f : Σ → Σ′ is admissible if f(Σ) meets every component of Σ′ or, equivalently, if H0(f) is
surjective. The image under an admissible orientation preserving embedding f of an I-admissible graph is an
I-admissible graph. Clearly, the image under f of a skein relation in Σ is a skein relation in Σ′. Consequently
the map Γ 7→ f(Γ) induces a k-linear homomorphism

SI(f) : SI(Σ)→ SI(Σ′).

Let Emba2 be the category whose objects are oriented surfaces and morphisms are isotopy classes of
admissible orientation preserving embeddings. This is a monoidal category with disjoint union as monoidal
product. Denote by Vectk the monoidal category of k-vector spaces and k-linear homomorphisms.

Theorem 2.3. Recall, C is a pivotal k-category. The assignments Σ 7→ SI(Σ) and f 7→ SI(f) define a
monoidal functor

SI : Emba2 → Vectk.

In particular, this functor provides representations of the mapping class group of surfaces. Moreover, if the
ideal I has a generator (in the sense of Section 1.3), then for any closed oriented surface Σ, the k-vector
space SI(Σ) is finite dimensional.

Proof. The functoriality and monoidality of SI are direct consequences of the definitions. Assume that I
has a generator G and let Σ be a closed oriented surface. It is sufficient to prove the last statement of the
theorem for Σ a compact connected surface. Consider a cellularization of Σ consisting in a single vertex v,
2g closed curves c1, . . . , c2g and one disk D. Let Γ be an I-admissible graph in Σ. We can assume that Γ
intersects each ci transversally and that all its strands are I-colored (by Lemma 2.2). By fusing all the
strands intersecting each ci, we obtain that Γ is skein equivalent to an I-colored ribbon graph intersecting
each ci once. Moreover, since G is a generator of I up to applying some skein relation for each ci, we can
replace Γ with a linear combination of I-colored ribbon graphs intersecting ci via a single edge colored by the
generator Gi = G (here we denote the generator with a subscript i so we can discern which one is associated
to ci). Thus, Γ is skein equivalent to a linear combination of graphs of the form of a bouquet of circles where
each arc intersects a single ci once and is colored by Gi, and these arcs end up in a single coupon contained
in the disk D and colored by some f ∈ HomC(1, G1 ⊗G2 ⊗G∗1 ⊗G∗2 ⊗ · · · ⊗G2g−1 ⊗G2g ⊗G∗2g−1 ⊗G∗2g).
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Since this space of homomorphisms is finite dimensional (because C is a k-category), we conclude that so
is SI(Σ). �

In the next theorem, we interpret skein modules of the 2-disk D2 and the sphere 2-sphere in terms of
m-traces. Note that Walker and Reutter announced in [W2] a related result.

Theorem 2.4. Recall, C is a pivotal k-category. There are canonical k-linear isomorphisms:

SI(D2)∗ ∼= {right m-traces on I} ∼= {left m-traces on I} and SI(S2)∗ ∼= {m-traces on I}.

We prove Theorem 2.4 in Section 2.7.

Remark 2.5. Theorems 2.3 and 2.4 have analogue in dimension 3 by assuming that C is moreover rib-
bon (meaning that C has a braiding so that the induced left and right twist coincide), by considering the
Reshetikhin-Turaev functor F from the category of C-colored ribbon graphs in R2 × [0, 1] to C (see [T2]),
and by using this functor to define (as above) the skein module SI(M) associated to an oriented compact
3-manifold M . In particular, for the 3-ball B3 and 3-sphere S3, there are canonical k-linear isomorphisms

SI(B3)∗ ∼= SI(S3)∗ ∼= {m-traces on I}.
These skein modules of 3-manifolds are used in [CGHP] to construct (3+1)-TQFTs.

2.6. Skein modules elements from bichrome graphs. In this subsection, we assume that C is a chro-
matic category. Following [CGPT], a bichrome graph in a closed oriented surface Σ is the disjoint union
of an admissible graph in Σ (called the blue part) and finitely many pairwise disjoint unoriented embedded
circles in Σ (called the red part). A red to blue modification of a bichrome graph is the modification in an
annulus given by

P

−→ cP

G

P

, (6)

where cP is any chromatic map based on a projective object P at a projective generator G of C. Here
we allow the P -colored strand to be replaced by several parallel strands with at least one colored by a
projective object. Note that if the category C is spherical fusion, then the red to blue modification amounts
to arbitrarily orient the red curve and color it with the Kirby color of C (see Example 1.4).

Red to blue modifications transform any bichrome graph into a ProjC-admissible graph in Σ whose class
in the skein module SProjC (Σ) is well-defined:

Lemma 2.6. Using the red to blue modification, bichrome graphs in Σ represent well defined elements of
the skein module SProjC (Σ).

Proof. To prove the lemma, we show that two red to blue modifications of a red curve at different places
with different chromatic maps give skein equivalent diagrams. Let P,Q be projective objects and G,G′ be
projective generators of C. Pick a chromatic map cP based on P at G and a chromatic map cQ based on Q
at G′. There are two cases to consider. First, if the two modifications are made on the same side of the red
curve, then

cP

Q

=
∑
i

cP

cQ

xi

xi

=
∑
i cP

cQ

x∗i

x∗i

=

cQ

P

where x∗i and x∗i are the dual basis obtained by x∗i = (xi)
∗ ◦ (φG′ ⊗ idG∗) and x∗i = (φ−1

G′ ⊗ idG∗) ◦ (xi)∗.
Here the first and third equalities follow from (3) and the second equality from isotopying the coupon and
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applying duality of Lemma 1.1. Second, if the modifications are made on opposite sides of the red curve,
then (with implicit summation):

cPQ =
cP

cQ

xi

xi

=

cQ

cP

xi

xi

=

cQ

cP

x̃i

x̃i

=

cQ
P

where x̃i and x̃i are the dual basis obtained from xi and xi by the rotation property of Lemma 1.1. �

Remark 2.7. If C is semisimple, then applying Lemma 2.6 to a red unknot with P = 1 implies that tr(c1)
does not depend of the chromatic map c1 based on 1.

The next lemma shows the usefulness of bichrome graphs.

Lemma 2.8. A blue strand can be slid over a red curve of an admissible bichrome graph in SProjC (Σ).

Proof. We first consider the case where we want to slide a strand colored by P ∈ ProjC over a red curve.
Then we have the following skein relations:

P

=

cP

=

cP

cP∗

xi

xi

=

cP

cP∗

x∗i

x∗i

=

cP

cP∗

x∗i

x∗i
=

cP∗

=

P

where x∗i and x∗i are the dual basis defined by x∗i = (xi)
∗◦(φG⊗idP∗⊗G∗) and x∗i = (φ−1

G ⊗idP∗⊗G∗)◦(xi)∗.
Next, consider the general case where we want to slide a strand colored by Y ∈ C over a red curve. Applying
the procedure explained in the proof of Lemma 2.2, we can push a strand colored by P ∈ ProjC next to the
Y -colored strand. Inserting coupons colored by identities, we replace the Y -colored arc we want to slide by
an arc colored by Y ⊗ P ∈ ProjC which we then slide over the red curve. By removing then the inserted
coupons, we obtain the desired result. �

2.7. Proof of Theorem 2.4. We prove the right version of the first statement of Theorem 2.4 (the left
version being analogous). We associate to any T ∈ SI(D2)∗ a family tT = {tTX : EndC(X)→ k}X∈I of linear
forms as follows: for any f ∈ EndC(X) with X ∈ I, set

tTX(f) = T (Of )

where Of is the admissible graph in D2 given by the right closure of the coupon colored with f . Let us prove
that tT is a right m-trace on I. First, since a coupon colored with f ◦ g is I-skein equivalent to a coupon
colored with f composed with a coupon colored with g, we get that Of◦g is skein equivalent to Og◦f via an
isotopy which exchanges f and g:

g ◦ f =
g

f

=
f

g

= f ◦ g .

Therefore tT satisfies the cyclicity property of an m-trace. Next, for any f ∈ EndC(X ⊗ Y ) with X ∈ I
and Y ∈ C, the admissible graph Of is skein equivalent to the closure of a coupon colored with f with two
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incoming and outgoing arcs colored with X and Y :

f

X ⊗ Y

= f

X Y

.

This shows that tT satisfies the right partial trace property of an m-trace. Then the assignment T 7→ tT is
a k-linear homomorphism SI(D2)∗ → {right m-traces on I}.

Conversely, we associate to any right m-trace t on I an element of F ′t ∈ SI(D2)∗ as follows. Let Γ be an
I-admissible graph in D2. A cutting path for Γ is any embedding γ : [0, 1] → D2 starting from a boundary
point of D2 and ending in any point in the interior of D2 \ Γ such that the following three conditions
hold: γ does not meet any coupon of Γ, γ is transverse to the strands of Γ, and γ intersects at least one
I-colored strand of Γ. The complement of a tubular neighborhood of γ is a coupon Qγ whose bottom and
top correspond to the left and right side of γ, respectively. Then Γγ = Γ ∪ Qγ can be seen as a C-colored
ribbon graph in R× [0, 1]) and F (Γγ) ∈ EndC(Xγ) with Xγ ∈ I (because γ intersects an I-colored strand).
Set

F ′t (Γ) = tXγ (F (Γγ)) ∈ k.
Let us prove that F ′t (Γ) is independent of the choice of γ. Pick another cutting path γ′ for Γ. Up to slightly
isotopying γ′, we can assume that γ and γ′ intersect transversely in a finite number n of points. We show
that tXγ (F (Γγ)) = tXγ′ (F (Γγ′)) by induction on n:

Case n = 0. We first locally modify Γ so that all its intersection points with γ and γ′ are positive: Away

from the tubular neighborhood of γ∪γ′ the graph Γ̃ is just Γ. For each intersection point p of γ or γ′ with Γ,
let e be a small segment of the strand of Γ near p. If the orientation of this intersection is negative (with
respect to the orientation of the D2), then we replace e with a segment containing two coupons colored with
identities joined by an edge crossing γ or γ′ positively and colored by the dual color of e:

γ
X1 X2 X3 −→

X∗1
X2

X∗3

id

idid

id

.

Clearly Γ and Γ′ are skein equivalent, F (Γγ) = F (Γ̃γ), and F (Γγ′) = F (Γ̃γ′). Thus up to replacing Γ

with Γ̃, we can assume that all the crossings of γ or γ′ with Γ are positive. In this case, the intersection of Γ
with the complement of a tubular neighborhood of γ ∪ γ′ can be seen as a C-colored ribbon graph Γγ∪γ′ in
R × [0, 1] whose left partial closure is Γγ and right partial closure is the π-rotation rotπ(Γγ′) of Γγ′ . Note
that F (rotπ(Γγ′)) = F (Γγ′)

∗ ∈ EndC(X
∗
γ′). Set g = F (Γγ∪γ′) ∈ EndC(X

∗
γ′ ⊗Xγ). Then

tXγ (F (Γγ))
(i)
= tXγ

(
ptr

X∗
γ′

l (g)
)

(ii)
= tX∗∗

γ′

(
(ptrXγr (g))∗

)
(iii)
= tX∗∗

γ′

((
F (rotπ(Γγ′))

)∗) (iv)
= tXγ′ (F (Γγ′)).

Here (i) and (iii) follow from the definition of Γγ∪γ′ , (ii) from Lemma 4.b of [GPV] which can be restated

as tU (ptrV
∗

L (g)) = tV ∗∗((ptrUR(g))∗) for all g ∈ EndC(V
∗ ⊗ U) with U, V ∈ I, and (iv) from the fact that

tU∗∗(f
∗∗) = tU (f) for all f ∈ EndC(U) with U ∈ I.

Inductive case. Assume the statement is true for cutting paths intersecting less than n ≥ 1 times. Let γ
and γ′ be two cutting paths intersecting n times. We claim that there exists a cutting path α intersecting
each of γ and γ′ less than n times, so that by induction we have: tXγ (F (Γγ)) = tXα(F (Γα)) = tXγ′ (F (Γγ′)).

Indeed, let γ′′ be the sub-arc of γ going from ∂D to the first edge of Γ colored by an object of I and
then crossing this edge of a small arc. It is clear that γ′′ is a cutting path for Γ. If γ′′ intersects γ′ less
than n times, then we can push γ′′ slightly to either side of γ to obtain the cutting path α. Assume that γ′′
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intersects γ′ exactly n times. Let p be the last intersection (in the orientation of γ′′) between γ′′ and γ′.
Consider the arc obtained by following γ′ until getting to p and then following γ′′ until its end. By pushing
this arc slightly to its right or left (according to the sign of the intersection at p between γ and γ′), we get
a cutting arc α intersecting each γ and γ′ less than n times. This completes the induction.

Thus F ′t (Γ) is independent of γ. Moreover, F ′t (Γ) depends only on the class of Γ in SI(D2) since one
can always find a cutting path avoiding any box involved in an I-admissible skein relation. Consequently,
the linear form F ′t ∈ SI(D2)∗ is well defined. Then the assignment t 7→ F ′t is a k-linear homomorphism
{right m-traces on I} → SI(D2)∗. It follows from their construction that this homomorphism and the
above homomorphism T ∈ SI(D2)∗ → tT ∈ {right m-traces on I} are inverse of each other, thus proving
the first isomorphism of the theorem.

Let us now consider the spherical case. Any linear form T on SI(S2) induces a right m-trace tT defined
on morphisms by tTX(f) = T (Of ) as above (except that the graph Of is now in S2). Since Of and Of∗ are
isotopic in S2, this right m-trace is equal to its dual, and [GPV, Lemma 3] implies this is an m-trace.

Reciprocally, let t be a m-trace on I. It is in particular a right m-trace and so defines F ′t ∈ SI(D2)∗. For
any I-admissible graph Γ in S2 and any p ∈ S2 \ Γ, view Γp = Γ as an I-admissible graph in S2 \ {p} ∼= D2

and set F ′t (Γ, p) = F ′t (Γp). We claim that F ′t (Γ, p) does not depend on the choice of the point p. Consider
a cutting path in S2 for Γ, that is, a path γ starting from a point p1 /∈ Γ and ending at a point p2 /∈ Γ,
meeting no coupons of Γ, transverse to the strands of Γ, and intersecting at least one I-colored edge of Γ.
Let γ̄ be the inverse path from p2 to p1. The path γ induces a cutting path in D2 that can be used to
compute F ′t (Γ, p1). Similarly, F ′t (Γ, p2) can be computed using the cutting path in D2 induced by γ̄. Since
the two coupons obtained by cutting along γ and γ̄ are related by a π-rotation and since t is an m-trace, we
obtain that F ′t (Γ, p1) = F ′t (Γ, p2). Hence F ′t (Γ) = F ′t (Γ, p) is well defined by choosing any point p. Finally
if an I-admissible skein relation in S2 is defined with a coupon, then we can choose for all involved graphs
the same point p outside the coupon, so the skein relation comes from a skein relation in D2 on which F ′t
vanishes.

3. Non-compact TQFTs from chromatic categories

Throughout this section, C is a chromatic category. We associate to C a non-compact (2+1)-TQFT which
extends the skein module functor from Theorem 2.3. Our construction is based on Juhász’s presentation of
cobordisms ([J]).

3.1. Non-compact (2+1)-TQFTs. Let Cob be the category whose objects are closed oriented (smooth)
surfaces and morphisms are equivalence classes (up to orientation preserving diffeomorphisms preserving
the boundary parameterizations) of oriented 3-dimensional (smooth) cobordisms. Composition in Cob
is induced by the gluing of cobordisms (along their common boundary). The category Cob is symmetric
monoidal with monoidal product induced by the disjoint union and monoidal unit the empty surface. Denote
by Vectk the symmetric monoidal category of k-vector spaces and k-linear homomorphisms. A (2+1)-TQFT
is a symmetric monoidal functor Cob → Vectk. Note that any such TQFT always takes values in the
subcategory of finite dimensional vector spaces (since Cob is rigid).

Let Cobnc be the largest subcategory of Cob such that each component of every cobordism has a nonempty
source. The category Cobnc is a symmetric monoidal subcategory of Cob. A non-compact (2+1)-TQFT is
a symmetric monoidal functor Cobnc → Vectk. A non-compact (2+1)-TQFT is finite dimensional if it takes
values in the subcategory of finite dimensional vector spaces.

3.2. Generators of Cob and Cobnc. In [J], Juhász gives a presentation of Cob whose generators {eΣ,S, ed}
are indexed by framed k-spheres S in a surface Σ and diffeomorphisms d : Σ → Σ′ between surfaces, see
Section 3.4. These generators correspond to k + 1-handles and mapping cylinders that we now describe.

Let Σ be an oriented surface. For k ∈ {0, 1, 2}, a framed k-sphere in Σ is an orientation reversing
embedding S : Sk ×D2−k ↪→ Σ. Then we can perform surgery on Σ along S by removing the interior of the
image of S and gluing in Dk+1 × S1−k, getting a well defined topological manifold Σ(S) which, using the
framing of the sphere, can be endowed with a canonical smooth structure. The associated oriented cobordism
(Σ × [0, 1]) ∪S (Dk+1 ×D2−k) represents a morphism W (S) in Cob from Σ → Σ(S). Juhász considers two
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additional types of framed sphere, namely S = 0 and S = ∅, where Σ(0) = Σ t S2 and Σ(∅) = Σ with
associated the cobordisms W (0) = Σ× [−1, 1] tD3 : Σ→ Σ(0) and W (∅) = Σ× [−1, 1] : Σ→ Σ(∅).

Finally, recall that any orientation preserving diffeomorphism d : Σ→ Σ′ between closed oriented surfaces
gives rise to the morphism cd : Σ → Σ′ in Cob represented by the cylindrical cobordism whose underlying
manifold is Σ× [0, 1] with boundary (−Σ×{0})t(Σ×{1}) parameterized by (x, 0) 7→ x and (x, 1) 7→ d(x) for
all x ∈ Σ. In Juhász’s presentation, the formal generators eΣ,S and ed correspond to the above cobordisms
W (S) and cd respectively.

The generators of Cobnc are the same with exception of those associated with the formal spheres S = 0
since the cobordisms W (0) do not belong to Cobnc.

3.3. Construction of the non-compact TQFT. The admissible skein module functor associated with
the ideal ProjC of projective objects of C (see Theorem 2.3) induces (by restriction) a monoidal functor

SProjC : Man→ Vectk, (7)

where Man ⊂ Cobnc is the category of closed oriented surfaces and orientation preserving diffeomorphisms.
Our goal is to extend it to a functor S : Cobnc → Vectk. In particular, for any closed oriented surface Σ and
any orientation preserving diffeomorphism d : Σ→ Σ′ between closed oriented surfaces, we set

S(Σ) = SProjC (Σ) and S(Σ)(ed) = SProjC (d) : S(Σ)→ S(Σ′).

We need to assign values to the other generators of Cobnc. More precisely, given a nonempty closed oriented
surface Σ and a framed sphere S in Σ, we need to assign a k-linear homomorphism S(eΣ,S) : S(Σ)→ S(Σ(S))
in the case S = ∅ or S = Sk is a framed k-sphere with k ∈ {0, 1, 2}:

• Case S = ∅: We set
S(eΣ,∅) = idS(Σ).

• Case S = S0: Consider the disjoint embedded disks D and D′ in Σ given by the a framed 0-sphere S0.
Set Σ′ = Σ \ (D tD′) and let C ' S1 × [0, 1] be the cylinder such that Σ(S0) = Σ′ ∪∂ C. Set γ = S1 × { 1

2}
be a red curve inside C. Let Γ be an admissible graph in Σ. Slightly isotopying Γ away from D and D′, we
obtain an admissible graph Γ′ in Σ′. Then Γ′ ∪ γ is a bichrome graph in Σ(S0):

Γ =  Γ′ =

Γ′ ∪ γ =

γ

By Lemma 2.6, the bichrome graph Γ′ ∪ γ defines an element in S(Σ(S0)).

Lemma 3.1. The element S(eΣ,S0)(Γ) = Γ′ ∪ γ ∈ S(Σ(S0)) only depends on the framed sphere S0 and the
class of Γ in S(Σ).

Proof. If Γ′1 and Γ′2 are two preimages of Γ isotopic in Σ by an isotopy during which an edge passes over the
disk D or D′, then by the sliding property of Lemma 2.8, we have (Σ′,Γ′1) ∪∂ (C, γ) = (Σ′,Γ′2) ∪∂ (C, γ) ∈
S(Σ(S0)). Any isotopy in Σ can be modified so that no coupons of Γ pass through S0. Finally, any skein
relation in Σ is isotopic to a skein relation in a box that does not intersect S0 which induce a corresponding
skein relation between (Σ′,Γ′1) ∪∂ (C, γ) and (Σ′,Γ′2) ∪∂ (C, γ) in S(Σ). Remark that interchanging D and
D′ does not change S(eΣ,S0)(Γ). �

• Case S = S1: Given a framed 1-sphere S1 in Σ, let γ be a simple closed curve embedded in Σ so that
S1 ' γ × [−1, 1] in Σ. We fix an orientation and a base point ∗ on γ. Let Γ be an admissible graph in Σ.
Isotopying Γ, we can assume that Γ is transverse to S1 in the sense that S1 ∩ Γ consists in a finite number
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of portions of edges of Γ in position γ(ti)× [−1, 1] for ti 6= ∗ and with at least one intersecting edge colored
by a projective object. We define S(eΣ,S0)(Γ) to be the admissible graph in Σ(S1) obtained from (Σ,Γ) \ S1

by filling the two attached discs with two coupons colored with dual basis (see Section 1.6):

Γ = 7→ S(eΣ,S1)(Γ) =
∑
i

xi

xi
. (8)

Lemma 3.2. The element S(eΣ,S1)(Γ) only depends on the framed sphere S1 and the class of Γ in S(Σ).

Proof. If Γ1 and Γ2 are isotopic in Σ, with an isotopy where no strand passes through the base point
and no coupon passes through γ, then S(eΣ,S1)(Γ1) and S(eΣ,S1)(Γ2) are isotopic in Σ(S1). Assume first
that a coupon crosses γ. Assertion (b) of Lemma 1.1 implies that there are two coupons Q1 and Q2

such that F (Q1) ⊗k F (Q2) = 0, where F is the functor given in (4). Thus, by Lemma 2.1, the difference
S(eΣ,S1)(Γ1)− S(eΣ,S1)(Γ2) is a sum of skein relations in Σ(S1). Next, Assertions (a) and (c) of Lemma 1.1
imply respectively that S(eΣ,S1)(Γ) is invariant under the change of the orientation of γ and under the change
of the base point on γ. Hence S(eΣ,S1)(Γ) only depends of the isotopy class of Γ in Σ. Since any skein relation
in Σ can be isotoped to a skein relation involving a coupon disjoint from S1, it induces an equivalent skein
relation inside Σ(S1). �

• Case S = S2: A framed 2-sphere S2 in Σ determines a spherical component of Σ denoted S2. Recall from
Theorem 2.4 that the m-trace t induces a linear form

F ′ : S(S2)→ k. (9)

Any admissible graph Γ in Σ decomposes as Γ = Γ1tΓ2 with Γ1 ⊂ Σ(S2) and Γ2 = Γ∩S2. Then the element

S(eΣ,S2)(Γ) = F ′(Γ2)Γ1 ∈ S(Σ(S2))

only depends on the framed sphere S2 and the class of Γ in S(Σ).

Theorem 3.3. Recall, C is a chromatic category. The above assignments define a finite dimensional non-
compact (2+1)-TQFT

S : Cobnc → Vectk.

Furthermore S (uniquely) extends to a genuine (2+1)-TQFT Cob → Vectk if and only if C is semisimple
with nonzero dimension (see Section 1.8).

We prove Theorem 3.3 in Section 3.5 using a presentation of Cobnc given in Section 3.4.
By construction, the non-compact TQFT of Theorem 3.3 extends the skein module functor (7). Also, it

follows from the work of Bartlett [Ba] that if C is a spherical fusion category with nonzero dimension (see
Example 1.4), then the (2+1)-TQFT associated with C by Theorem 3.3 is isomorphic to the Turaev-Viro
TQFT associated with C.

The next corollary is a direct consequence of Theorems 1.6 and 3.3:

Corollary 3.4. Any spherical tensor category over an algebraically closed field defines a finite dimensional
non-compact (2+1)-TQFT.

The next theorem relates the TQFT S of with the spherical chromatic invariant KC of closed oriented
3-manifolds defined in [CGPT].

Theorem 3.5. Recall, C is a chromatic category. Let M be a closed connected oriented 3-manifold. Consider
Ṁ = M \ Int(B3) : S2 → ∅ and M̈ = M \ Int(S0 ×B3) : S2 → S2. Then

S(Ṁ) = KC(M)F ′,

where F ′ is given by (9). In particular, if the m-trace of C is unique (up to scalar multiple, see [GKP3]),

then dimk(S(S2)) = 1 and so S(M̈) = KC(M)idS(S2).
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Proof. Recall that KC(M) is defined from a graph formed by an oriented circle oG colored by a projective
generator G of C and endowed with a coupon colored by an endomorphism h ∈ EndC(G) such that tG(h) = 1.

To prove the theorem we need to show S(Ṁ)(oG) = KC(M). Choosing a Heegaard splitting of M we see that

Ṁ is diffeomorphic to the cobordism W (S2)◦W (S1
g)◦W (S1

g−1)◦W (S1
1)◦W (S0

g)◦· · ·◦W (S0
1) for some disjoint

S0 framed spheres S0
1, . . .S0

g on S2 and some disjoint S1 spheres S1
1, . . . ,S1

g on the surface Σ obtained after

doing surgery in S2 on all of S0
1, . . . ,S0

g. The overall composition is then obtained by first applying g times

Lemma 2.6 to the g red curves created by the first g spheres S0
i with i = 1, . . . g, then applying g times the

cutting map of Equation (8), once for each S1
i with i = 1, . . . g, and finally applying F ′. This is exactly the

result of the Kuperberg invariant defined in [CGPT]. Indeed the handlebody H of Theorem 2.5 of [CGPT]
is B3 ◦W (S1

g) ◦W (S1
g−1) ◦W (S1

1) seen as a cobordism from Σ to ∅, the red graph Γ is S1
1 t . . .t S1

g ⊂ Σ and
the blue graph is oG. �

An easy consequence of the previous theorem is the following:

Corollary 3.6. If the m-trace of C is unique (up to scalar multiple), then the 3-manifold invariant KC is
multiplicative with respect to connected sums.

Proof. Let M1,M2 be closed connected oriented 3-manifolds and denote by M = M1]M2 their connected
sum. We have: M̈ = M̈1 ◦ M̈2 ∈ Cobnc. Then it follows from Theorem 3.5 and the functoriality of S that
KC(M̈)idS(S2) = S(M̈) = S(M̈1) ◦ S(M̈2) = KC(M1)KC(M2)idS(S2). �

3.4. Juhász’s presentation of Cob and Cob′. Following [J], we consider the subcategory Cob′ of cobor-
dism such that each component of every cobordism has a nonempty source and nonempty target.Here, we
consider the empty surface as an object of Cob′.

Let G be the directed graph described as follows. The vertices are closed oriented surfaces. There are two
kinds of edges of G. First, for each orientation preserving diffeomorphism d : Σ→ Σ′ between closed oriented
surfaces, there is an edge ed going from Σ to Σ′. Second, for each framed sphere S in a closed oriented surface
Σ, there is an edge eΣ,S from Σ to Σ(S). Let Gnc (resp. G′) be the subgraph of G obtained by removing the
empty surface and the edges eΣ,S where S = 0 (resp. where S = 0 or S is a framed 2-sphere). Denote by
F(G) (resp. F(Gnc), resp. F(G′)) the free categories generated by G (resp. Gnc, resp. G′).

In [J, Definition 1.4], Juhász considers a set of relations R in F(G) which we recall now. If w and w′ are
words consisting of composable arrows, then we write w ∼ w′ if w = w′ is a relation in R.

(R1) For composable diffeomorphisms d and d′ between closed oriented surfaces, we have the relation
ed◦d′ ∼ ed ◦ed′ . We also have the relations eΣ,∅ ∼ eidΣ

and ed ∼ eidΣ
if d : Σ→ Σ is a diffeomorphism

isotopic to the identity.
(R2) Let d : Σ → Σ′ be an orientation preserving diffeomorphism between closed oriented surfaces and S

be a framed sphere in Σ. Consider the framed sphere S′ = d◦S in Σ′ and denote by dS : Σ(S)→ Σ′(S′)
the induced diffeomorphism. Then the commutativity of the following diagram defines a relation:

Σ

ed

��

eΣ,S // Σ(S)

e
dS

��
Σ′

eΣ′,S′// Σ′(S′)

(R3) Let S,S′ be disjoint framed sphere in an oriented surface Σ. Notice that Σ(S)(S′) = Σ(S′)(S) and
denote this surface by Σ(S,S′). The commutativity of the following diagram defines a relation:

Σ

eΣ,S′

��

eΣ,S // Σ(S)

eΣ(S),S′

��
Σ(S′)

eΣ(S′),S// Σ(S,S′)

(R4) Let S be a framed k-sphere in an oriented surface Σ and S′ a framed k′-sphere in Σ(S). If the attaching

sphere S′(Sk′ × {0}) ⊂ Σ(S) intersects the belt sphere {0} × S−k+1 ⊂ Σ(S) once transversely, then
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there is a diffeomorphism (well defined up to isotopy) φ : Σ→ Σ(S,S′) (see [J, Definition 2.17]) and
the following is a relation:

eΣ(S),S′ ◦ eΣ,S ∼ eφ.

(R5) For each be a framed k-sphere S in an oriented surface Σ, there is a relation eΣ,S ∼ eΣ,S̄, where the

framed k-sphere S̄ : Sk×D2−k ↪→ Σ is defined by S̄(x, y) = S(rk+1(x), r2−k(y)) for any x ∈ Sk ⊂ Rk+1

and y ∈ D2−k ⊂ R2−k, with rm(x1, x2, . . . , xm) = (−x1, x2, . . . , xm).

Let Rnc and R′ be the subset of relations involving only edges in Gnc and G′ respectively.
Following [J, Definition 1.5], let c : G → Cob be the map which is the identity on vertices, assigns the

cylindrical cobordism cd to the generator ed associated to a diffeomorphism d, and assigns the cobordism
W (S) to the edge eΣ,S. This extends to a symmetric strict monoidal functor c : F(G) → Cob. Recall that
given a category F and a set of relations ∼ on its morphisms, the quotient category F/ ∼ has the same
objects as F and equivalence classes of morphisms of F as morphisms. Juhász proved (see [J, Theorem 1.7])
that the functor c : F(G)→ Cob induces isomorphisms of symmetric monoidal categories

F(G)/R → Cob and F(G′)/R′ → Cob′ .

As a corollary, we obtain:

Corollary 3.7. The functor c : F(Gnc)→ Cobnc induces an isomorphism of symmetric monoidal categories

F(Gnc)/Rnc → Cobnc .

Proof. This corollary follows from Juhasz’s argument in [J] using parameterized Cerf decomposition. Here
we give an argument based on the statements of Juhasz’s theorems.

In this proof, the edges of G associated to 3-handles are called singular (these are edges in Gnc but not

in G′). If W : M → N is a cobordism in Cobnc then let Ẇ : M → N t (S2)tn be a cobordism in Cob′

obtained by removing a 3-ball from each connected components of W which is disjoint from N . Then
Ẇ ∈ c(G′) ⊂ c(Gnc) and W =

∏
i c(e

3
i ) ◦ Ẇ ∈ c(Gnc) where the e3

i are singular edges. Hence c is surjective
on the morphisms of Cobnc.

Now let w1, w2 ∈ Gnc such that c(w1) = c(w2) = W ∈ Cobnc. We can assume (up to adding cancelling
2-3 handles using relation R4 ∈ Rnc), that for each component of W , w1 and w2 contain the same number
of singular edges corresponding to 3 handles in the component. Then for j = 1, 2 up to modifying wj
via relations R2, R3 ∈ Rnc we can assume that all these singular edges are at the end of the word, i.e.
wj ∼

∏
i e

3
iw
′
j where the e3

i are singular edges and w′j ∈ F(G′) (indeed, the target of a singular edge is a
2-manifold where the attaching sphere has completely disappeared so there is no possible intersection in the
boundary with other attaching spheres). Now c(w′1) ' c(w′2) ' Ẇ ∈ Cob′ are both diffeomorphic to a
punctured W with the same number of 3-balls removed in each component of W , that is up to an isotopy

moving the punctures, we have c(w′1) = c(w′2) ∈ Cob′. Then by [J, Theorem 1.7]) we have w′1
R′∼ w′2 and it

follows that w1
Rnc

∼ w2. Thus, c : F(Gnc)/Rnc → Cobnc is an isomorphism. �

3.5. Proof of Theorem 3.3. To prove the first statement of the theorem, we need to show that the relations
(R1)-(R5) are satisfied by S.

(R1) Since S : Man→ Vectk is functorial we have S(ed◦d′) = S(ed) ◦ S(ed′). Also, since elements of S(Σ)
are defined by graphs up to isotopy we clearly have S(ed) = id if d is isotopic to idΣ.

(R2) Since the construction of the maps S(eΣ,S) are local, they are covariant under diffeomorphisms of
the pair (Σ,S).

(R3) Again, since the construction of the maps S(eΣ,S) are local, they commute for disjoint framed spheres.
(R4) The 1-2 handle cancellation reduces to the chromatic identity (3) as shown in the following picture:

S(eΣ,S0)((Σ,Γ)) =
P

=
P

cP
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(Σ,Γ) =
P

(3)
=

xi

xi

cP

P

↙ S(eΣ,S1)

Here, Γ is a skein element in the surface Σ with an edge colored by P ∈ ProjC . On the top left we
depict the result of a S(eΣ,S0) move which is cancelled then by a S(eΣ,S1) (diagonal arrow) where the
S1 is the green curve on the top right hand side. The bottom equality reduces to Equation (3) for
Q = 1 after rotating the coupons colored with the dual basis and applying the duality property of
Lemma 1.1.

The 2-3 handle cancellation reduces to a skein relation which replaces a skein in a disk whose
image by F is f ∈ Hom(1, P ) by a unique coupon colored by

∑
i tP (fxi)xi = f .

(R5) As stated in the proof of Lemma 3.1 interchanging the disks D and D′ does not change the map
S(eΣ,S0). This implies that (R5) is satisfied for any framed 0-sphere. Similarly, in the proof of Lemma
3.2 it is shown that the map S(eΣ,S1) does not depend on the orientation of γ, implying that (R5) is
satisfied for any framed 1-sphere.

We now prove the second statement of the theorem. Assume that C is semisimple with nonzero dimension
(as a chromatic category, see Section 1.8). To extend S to a (2+1)-TQFT, we first need to assign the value
under S for the generator eΣ,0 : Σ → Σ(0) = Σ ∪ S2 where Σ is an oriented closed surface. Let Γ be an
admissible graph in Σ. Consider the graph γ in S2 defined by

γ =
1

dim(C)

id1

id1

1 ,

where dim(C) is the dimension of C. Then

S(eΣ,0)(Γ) = Γ ∪ γ ∈ S(Σ(0))

only depends on the class of Γ in S(Σ). Next we need to verify that the relation (R4) is satisfied for 0-1-handle
cancellation: the result of a 0-handle followed by a cancelling 1-handle sends a skein Γ ∈ S(Σ) to the same
graph union the graph γ encircled by a red unknot. Now an admissible skein relation replaces the encircled
γ with 1

dim(C) trC(c1) = 1.

Conversely, assume that C is not semisimple or is semisimple with dimension zero. We will prove that the
3d-pants cobordism M : S2 t S2 → S2 given by a 3-ball minus two smaller 3-balls is sent to 0 by S. As a
consequence, since the cobordism M has a right inverse in Cob given by cidS2 t B3 : S2 → S2 t S2 (recall
the notation introduced at the beginning of Subsection 3.2) and since idS(S2) 6= 0, this implies that S can not
be extended to a functor with domain the category Cob. To compute S(M), we remark that M is given by
gluing a unique 1-handle to the cylinder over S2tS2, that is, M = W (S0) = ((S2tS2)× [0, 1])∪S0 (D2×D1).
The the k-linear homomorphism S(M) : S(S2 t S2)→ S(S2) defines a map given by Γ1 t Γ2 7→ Γ where Γ is
the admissible graph in S2 represented by a red curve at the equator and the graphs Γ1 and Γ2 in the upper
and lower hemispheres, respectively. We now consider the two cases. First, if C is not semisimple, then after
making the red circle of Γ blue, we obtain the disjoint union of two admissible graphs in S2 which is skein
equivalent to 0. Indeed, any admissible closed graph is sent to 0 by the functor F (given in (4)) associated
to a non-semisimple category. Second, if C is semisimple with dimension zero, then the unit object 1 is
projective and it can be used to make the red circle of Γ blue. In this case, Γ becomes skein equivalent to
F (Γ1) tr(c1)Γ2 = 0 because tr(c1) = 0 (see Section 1.8).

4. Existence of chromatic maps

Throughout this section, C is a finite tensor category over an algebraically closed field k. We introduce
left and right chromatic maps for C and prove that such maps always exist. As an example, the case of
categories of representations of finite dimensional Hopf algebras is treated in detail.
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4.1. Left and right chromatic maps. Pick a projective cover ε : P0 → 1 of the unit object and a monomor-
phism η : α→ P0, where α is the distinguished invertible object of C.

Lemma 4.1. There are unique natural transformations

Λr = {ΛrX : α⊗X → X}X∈C and Λl = {ΛlX : X ⊗ α→ X}X∈C

such that for any indecomposable projective object P non isomorphic to P0,

ΛrP = 0, ΛlP = 0, and ΛrP0
= η ⊗ ε, ΛlP0

= ε⊗ η.

We prove Lemma 4.1 in Section 4.4.
Let P be a projective object and G be a projective generator of C. A right chromatic map based at P

for G is a morphism

crP ∈ HomC(P ⊗G∨∨, P ⊗G⊗ α)

such that for all X ∈ C,

(idP⊗
−→
evG ⊗ idX)(idP⊗G ⊗ ΛrG∨⊗X)(crP ⊗ idG∨⊗X)(idP⊗

−→
evG∨ ⊗ idX) = idP⊗X .

Using graphical calculus for monoidal categories (with the convention of diagrams to be read from bottom
to top), the latter condition depicts as:

P
−→
evG

X

R

G Λr
G∨⊗X

α

crP

G∨∨ G∨

−→
coevG∨

P X

=

P X

.

Similarly, a left chromatic map based at P for G is a morphism

clP ∈ HomC(
∨∨G⊗ P, α⊗G⊗ P )

such that for all X ∈ C,

(idX⊗
←−
evG ⊗ idP )(ΛlX⊗∨G ⊗ idG⊗P )(idX⊗∨G ⊗ clP )(idX⊗

←−
coev∨G ⊗idP ) = idX⊗P .

This condition depicts as:
X P

←−
evG

∨G

Λl
X⊗∨G G

α

clP

∨G ∨∨G
←−
coev∨G

X P

=

X P

.

The main result of this section is the existence of right and left chromatic maps for any finite tensor
category over an algebraically closed field k:

Theorem 4.2. For any projective object P and any projective generator G of C, there are a right chromatic
map and a left chromatic map based at P for G.

We prove Theorem 4.2 in Section 4.6 using the notions of central Hopf monad and (co)integrals based at α
reviewed Section 4.5. In Section 4.3 we explicitly compute right and left chromatic maps for the category of
representations of a Hopf algebra.
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4.2. The case of spherical tensor categories. Assume that C is spherical, meaning that the unit object 1
is the distinguished invertible object of C (see Section 1.9). As in the previous section, pick a projective cover
ε : P0 → 1 and a monomorphism η : 1 → P0. By [GKP3, Corollary 5.6], there is a unique non-degenerate
m-trace

t = {tP : EndC(P )→ k}P∈ProjC

such that tP0
(ηε) = 1k. Let Λt

P ∈ EndC(P ) be the morphism (1) associated to a projective object P and the
m-trace t. Consider the natural transformations Λr and Λl associated with ε and η as in Lemma 4.1.

Lemma 4.3. For any projective object P of C, we have: Λt
P = ΛrP = ΛlP .

Proof. Since HomC(P0,1) = k ε, HomC(1, P0) = k η, and tP0(ηε) = 1k, the definition of Λt gives that
Λt
P0

= ηε. Using that ηε = η ⊗ ε = ε⊗ η, we get that Λt
P0

= ΛrP0
= ΛlP0

.
Let P be an indecomposable projective object non isomorphic to P0. Since HomC(P,1) = 0 = HomC(1, P ),

the definition of Λt gives that Λt
P = 0, and so we get that Λt

P = ΛrP = ΛlP .
Since any projective object is a (finite) direct sum of indecomposable projective objects, the above equal-

ities together with the naturality Λt, Λr, Λl implies that Λt
P = ΛrP = ΛlP for all P ∈ ProjC . �

The next result is a direct consequence of Theorem 4.2 and Lemma 4.3.

Corollary 4.4. Recall C is a spherical tensor category. For any projective object P and any projective
generator G of C, there is a chromatic map based at P for G.

Since C is a finite tensor category, any non zero morphism to 1 is an epimorphism. Consequently,
Theorem 1.6 is a direct consequence of Corollary 4.4.

Proof. Let φ be the pivotal structure of C (see Section 1.1). The fact that
−→

coevG= (idG∗ ⊗ φ−1
G )

←−
coevG∗ and

Lemma 4.3 imply that a morphism cP : G ⊗ P → G ⊗ P is a chromatic map if and only if the morphism
clP = cP (φ−1

G ⊗ idP ) : G∗∗⊗P → G⊗P is a left chromatic map. The existence of a chromatic map based on
any projective object P for any projective generator G follows then from Theorem 4.2. �

4.3. The case of finite dimensional Hopf algebras. Let H be a finite dimensional Hopf algebra over k.
The category H-mod of finite dimensional (left) H-modules and H-linear homomorphisms is a finite tensor
category. Recall that the left dual of an object M of H-mod is the H-module ∨M = M∗ = Homk(M,k)
where each h ∈ H acts as the transpose of m ∈ M 7→ S(h) ·m ∈ M , with S the antipode of H. The right
dual of M is M∨ = M∗ where each h ∈ H acts as the transpose of m ∈ M 7→ S−1(h) · m ∈ M . The
associated left and right evaluation morphisms are computed for any m ∈M and ϕ ∈M∗ by

←−
ev(ϕ⊗m) = ϕ(m) =

−→
ev(m⊗ ϕ).

A projective generator of H-mod is H equipped with its left regular action. It follows from [EGNO, Propo-
sition 6.5.5.] that the distinguished object α of H-mod is k with action H⊗ k ∼= H → k given by the inverse
αH ∈ H∗ of the distinguished grouplike element of H∗. (The form αH is characterized by ΛS(h) = αH(h)Λ
for all h ∈ H and all left cointegral Λ ∈ H.) Pick a projective cover ε : P0 → k of the unit object and a
monomorphism η : α → P0. Since the counit εH : H → k of H is an epimorphism, there exists an epimor-
phism p : H → P0 such that εH = εp. Let i : P0 → H be a section of p in H-mod and set Λ = S(iη(1k)) ∈ H.

Lemma 4.5. Then Λ is a nonzero left cointegral.

Proof. It follows from [Ra, Proposition 10.6.2.] that the set LαH = {a ∈ H |hx = αH(h)a for all h ∈ H} is a
one dimensional left ideal of H which is equal to the set of right cointegrals of H. The element a = iη(1k) ∈ H
is nonzero (because p(a) = η(1k) 6= 0 since η is a monomorphism). Moreover, the H-linearity of iη implies
that a ∈ LαH . Thus x is a nonzero right cointegral. Consequently, Λ = S(a) is a nonzero left cointegral. �

By [Ra, Theorem 10.2.2], there is a unique right integral λ ∈ H∗ such that λ(Λ) = 1. Consider the
canonical k-linear isomorphism x ∈ H 7→ ex ∈ H∗∗ (defined by ex(ϕ) = ϕ(x) for all ϕ ∈ H∗).

Theorem 4.6. A left chromatic map based at H for H is

clH :

{ ∨∨H ⊗H → α⊗H ⊗H
ex ⊗ y 7→ λ

(
S(y(1))x

)
αH(y(2))⊗ y(3) ⊗ y(4)
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and a right chromatic map based at H for H is

crH :

{
H ⊗H∨∨ → H ⊗H ⊗ α
y ⊗ ex 7→ y(1) ⊗ y(2) ⊗ αH(y(2))λ

(
S(x)y(1)

)
.

More generally, for any finite dimensional projective H-module P ,

clP =
∑
i

(idα⊗H ⊗ gi)clH(id∨∨H ⊗ fi) and crP =
∑
i

(gi ⊗ idH⊗α)clH(idfi⊗H∨∨)

are a left chromatic map and right chromatic map based on P for H, where {fi : P → H, gi : H → P}i is
any finite family of H-linear homomorphisms such that idP =

∑
i gifi.

We prove Theorem 4.6 in Section 4.7.
If H is unimodular and unibalanced, then αH ∈ H∗ is the counit of H and the pivotal structure evaluated

at H is computed by x ∈ H 7→ φH(x) = egx ∈ H∗∗, where g is the pivot of H. Consequently, using
the computation of the left chromatic map clH based at H for H given by Theorem 4.6 and the fact that
clH(φH ⊗ idH) is a chromatic map for H (see the proof of Corollary 4.4), we obtain the expression of the
chromatic map cH for H given in Example 1.5.

4.4. Proof of Lemma 4.1. For any indecomposable projective object P non isomorphic to P0 and all
morphisms f ∈ EndC(P0), g ∈ HomC(P, P0), h ∈ HomC(P0, P ), it follows from [GKP3, Lemma 4.3] that

η ⊗ εf = fη ⊗ ε, εg = 0, hη = 0.

This and the fact that any projective object is a (finite) direct sum of indecomposable projective objects
imply that the prescriptions of Lemma 4.1 uniquely define natural transformations {ΛrP : α⊗P → P}P∈ProjC
and {ΛrP : P ⊗α→ P}P∈ProjC , where ProjC is the full subcategory of C of projective objects. These natural
transformations further uniquely extend to C by applying the next Lemma 4.7 with the functor F = α⊗−
(which is exact since it is an equivalence because α is invertible) and the identity functor G = 1C .

Lemma 4.7. Let F,G : A → B be additive functors between abelian categories. Assume that A has enough
projectives and that F is right exact. Denote by ProjC the full subcategory of A of projective objects. Then
any natural transformation {αP : F (P ) → G(P )}P∈ProjC uniquely extends to A, that is, to a natural trans-
formation {αX : F (X)→ G(X)}X∈A.

Proof. Consider a natural transformation α = {αP : F (P )→ G(P )}P∈ProjC . Assume first that ᾱ and α̃ are
both extensions of α to A. Let X ∈ A. Pick an epimorphism p : P → X with P projective. Using the
naturality of ᾱ and α̃ together with the fact that both ᾱ and α̃ extend α, we have:

ᾱXF (p) = G(p)ᾱP = G(p)αP = G(p)α̃P = α̃XF (p).

Thus ᾱX = α̃X since F (p) is an epimorphism (because p is and F is right exact). This proves the uniqueness
of an extension of α to A.

We now prove the existence of an extension of α to A. Let X ∈ A. Pick an epimorphism p : P → X
with P projective. Then there is a unique morphism ᾱX : F (X)→ G(X) in A such that

ᾱXF (p) = G(p)αP . (10)

Indeed, since A is abelian, the epimorphism p is the cokernel of its kernel k : K → P . Pick an epimorphism
r : Q→ K with Q projective. Then p is the cokernel of q = kr : Q→ P , and so F (p) is the cokernel of F (q)
(because F is right exact). Consequently, since

G(p)αPF (q) = G(p)G(q)αQ = G(pq)αQ = G(0)αQ = 0,

there is a unique morphism ᾱX : F (X)→ G(X) in A satisfying (10). Note that the morphism ᾱX does not
depend on the choice of p. Indeed, let r : R→ X be another epimorphism with R projective and denote by
α̃X : F (X) → G(X) the unique morphism such that G(r)αR = α̃XF (r). Since P is projective and r is an
epimorphism, there is a morphism s : P → R such that p = rs. Then

ᾱXF (p) = G(p)αP = G(r)G(s)αP = G(r)αRF (s) = α̃XF (r)F (s) = α̃XF (p),
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and so α̃X = ᾱX (since F (p) is an epimorphism). Note also that ᾱP = αP for all P ∈ ProjC . Indeed, since
idP : P → P is an epimorphism with P projective and using the defining relation (10), we have:

ᾱP = ᾱPF (idP ) = G(idP )αP = αP .

It remains to prove that the family ᾱ = {ᾱX : F (X) → G(X)}X∈A is natural in X. Let f : X → Y be a
morphism in A. Pick epimorphisms p : P → X and q : Q → Y with P,Q projective. Since P is projective
and q is an epimorphism, there is a morphism g : P → Q such that fp = qg. Consider the following diagram:

F (X) F (Y )

(i)

(ii)

F (Q)

F (P ) (v) G(Q) G(Y )

G(P )
(iii)

(iv)

F (X) G(X)

F (p)

F (f)

ᾱY

F (p)

ᾱX

G(f)

F (q)

αP

G(p)

F (g)

G(q)

αQ

G(g)

The inner squares (i) and (iii) commute by the functoriality of F and G applied to the equality fp = qg.
The inner squares (ii) and (iv) commute by the defining relation (10). The inner square (v) commutes by
the naturality of α. Consequently, the outer diagram commutes: ᾱY F (f)F (p) = G(f)ᾱXF (p). Since F (p)
is an epimorphism (because p is and F is right exact), we obtain ᾱY F (f) = G(f)ᾱX . �

4.5. Hopf monads, based (co)integrals and central Hopf monad. In this subsection we review the
notions of a Hopf monad and their based (co)integrals and recall the construction of the central Hopf monad.
These are instrumental in the proof of Theorem 4.2 in Section 4.6.

A monad on a category C is a monoid in the category of endofunctors of C, that is, a triple (T,m, u)
consisting of a functor T : C → C and two natural transformations

m = {mX : T 2(X)→ T (X)}X∈C and u = {uX : X → T (X)}X∈C
called the product and the unit of T , such that for any X ∈ C,

mXT (mX) = mXmT (X) and mXuT (X) = idT (X) = mXT (uX).

A bimonad on monoidal category C is a monoid in the category of comonoidal endofunctors of C. In other
words, a bimonad on C is a monad (T,m, u) on C such that the functor T and the natural transformations m
and u are comonoidal. The comonoidality of T means that T comes equipped with a natural transformation
T2 = {T2(X,Y ) : T (X ⊗ Y ) → T (X) ⊗ T (Y )}X,Y ∈C and a morphism T0 : T (1) → 1 such that for all
X,Y, Z ∈ C, (

idT (X) ⊗ T2(Y,Z)
)
T2(X,Y ⊗ Z) =

(
T2(X,Y )⊗ idT (Z)

)
T2(X ⊗ Y, Z),

(idT (X) ⊗ T0)T2(X,1) = idT (X) = (T0 ⊗ idT (X))T2(1, X).

The comonoidality of m and u means that for all X,Y ∈ C,
T2(X,Y )mX⊗Y = (mX ⊗mY )T2(T (X), T (Y ))T (T2(X,Y )),

T2(X,Y )uX⊗Y = uX ⊗ uY .

Let T = (T,m, u) be a bimonad on a monoidal category C and A be an object of C. A left A-integral
for T is a morphism Λl : T (A)→ 1 in C such that

(idT (1) ⊗ Λl)T2(1, A) = u1Λl.
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Similarly, a right A-integral for T is a morphism Λr : T (A)→ 1 in C such that

(Λr ⊗ idT (1))T2(A,1) = u1Λr.

An A-cointegral for T is a morphism λ : 1→ T (A) in C which is T -linear:

mAT (λ) = λT0.

A Hopf monad on monoidal category C is a bimonad on C whose left and right fusion operators are
isomorphisms (see [BLV]). When C is a rigid category, a bimonad T on C is a Hopf monad if and only if it
has a left antipode and a right antipode (see [BV1]). (Here, we will not need the actual definition of a Hopf
monad and so just refer to [BLV, BV1].)

Let C be a rigid monoidal category. Assume that for any X ∈ C, the coend

Z(X) =

∫ Y ∈C
∨Y ⊗X ⊗ Y (11)

exists. Denote by iX,Y : ∨Y ⊗X ⊗ Y → Z(X) the associated universal dinatural transformation and set

∂X,Y = (idY ⊗ iX,Y )(
←−

coevY ⊗idX⊗Y ) : X ⊗ Y → Y ⊗ Z(X).

We will depict the morphism ∂X,Y as

∂X,Y =

Z(X)Y

YX

and call ∂ = {∂X,Y }X,Y ∈C the centralizer of C. The universality of {iX,Y }Y ∈C translates to a universal
factorization property for ∂ as follows: for any natural transformation {ξY : X ⊗ Y → Y ⊗M}Y ∈C with
X,M ∈ C, there exists a unique morphism r : Z(X)→M in C such that ξY = (idY ⊗ r)∂X,Y for all Y ∈ C:

Y M

ξY

X Y

=

Y M

r

X Y

Also, the parameter theorem for coends (see [ML]) implies that the family of coends {Z(X)}X∈C uniquely
extend to a functor Z : C → C so that ∂ = {∂X,Y }X,Y ∈C is natural in X and Y .

By [BV2, Corollary 5.14 and Theorem 6.5], the functor Z has the structure of a quasitriangular Hopf
monad, called the central Hopf monad of C, which describes the center Z(C) of C (meaning that the Eilenberg-
Moore category of Z is isomorphic to Z(C) as braided monoidal categories). The product m, unit u, and
comonoidal structure (Z2, Z0) are characterized (using the universal factorization property for ∂) by the
following equalities with X,X1, X2, Y, Y1, Y2 ∈ C:

Y1 Y2 Z(X)

mX

X Y1 Y2

=

Y1⊗Y2 Z(X)

X Y1⊗Y2

, uX =

1 Z(X)

X 1

,

Z(X1) Z(X2)Y

Z2(X1, X2)

X1 ⊗X2 Y

=

Z(X1) Z(X2)Y

X1 X2 Y

,

Y

Y

Z0 =

Y

Y

.

Note that the left and right antipodes and R-matrix of Z can similarly be described (see [BV2]), but we do
not recall these descriptions since we do not use them in the sequel.
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4.6. Proof of Theorem 4.2. Note that a left chromatic map based at a projective object P for a projective
generator G is nothing but a right chromatic map based at P for G in the monoidal-opposite finite tensor
category C⊗op = (C,⊗op,1). Thus we only need to prove the existence of right chromatic maps.

Since C has a projective generator, the coend (11) exists for all X ∈ C (by [KL, Lemma 5.1.8]). By
Section 4.5, we can then consider the central Hopf monad Z = (Z,m, u, Z2, Z0) of C and its associated
centralizer ∂ = {∂X,Y : X ⊗ Y → Y ⊗ Z(X)}X,Y ∈C .

Recall the natural transformation Λr = {ΛrY : α⊗ Y → Y }Y ∈C from Lemma 4.1. The universal factoriza-
tion property for ∂ gives that there is a unique morphism Λr : Z(α)→ 1 in C such that ΛrY = (idY ⊗Λr)∂α,Y
for all Y ∈ C:

Y

ΛrY

α Y

=

Y

Λr

α Y

.

Lemma 4.8. The morphism Λr : Z(α)→ 1 is a nonzero right α-integral for Z.

Proof. Clearly Λr 6= 0 since Λr is nonzero (because ΛrP0
= η ⊗ ε 6= 0). We need to prove that (Λr ⊗

idZ(1))Z2(α,1) = u1Λr. It follows from the universal factorization property for ∂ that this amounts to
showing the equality of the natural transformations l = {lY }Y ∈C and r = {rY }Y ∈C defined by

lY =
(
idY ⊗ (Λr ⊗ idZ(1))Z2(α,1)

)
∂α,Y and rY = (idY ⊗ u1Λr)∂α,Y .

Note that the definitions of Λr and Z2(α,1) imply that rY = (idY ⊗ u1)ΛrY and

lY =
(
(idY ⊗ Λr)∂α,Y ⊗ idZ(1)

)
(idα ⊗ ∂1,Y ) = (ΛrY ⊗ idZ(1))(idα ⊗ ∂1,Y ).

Then lP = 0 = rP for any indecomposable projective object P non isomorphic to P0 (since ΛrP = 0). Also

lP0

(i)
= η ⊗

(
(ε⊗ idZ(1))∂1,P0

) (ii)
= η ⊗ ∂1,1ε

(iii)
= (idP0 ⊗ u1)(η ⊗ ε) (iv)

= rP0 .

Here (i) and (iv) follow from the equality ΛrP0
= η ⊗ ε, (ii) from the naturality of ∂, and (iii) from the

definition of u1. Consequently, using that any projective object is a (finite) direct sum of indecomposable
projective objects, we obtain that lP = rP for all P ∈ ProjC . Finally we conclude that l = r by applying
Lemma 4.7 with the functors F = α⊗− and G = −⊗ Z(1). �

Since the central Hopf monad Z is the central Hopf comonad for the finite tensor category Cop opposite
to C, it follows from Lemma 4.8 and [Sh, Theorem 4.8] that there is a unique α-cointegral λ : 1→ Z(α) such
that Λrλ = id1.

Lemma 4.9. For any X ∈ C, (idX ⊗ Λrmα)∂Z(α),X(λ⊗ idX) = idX .

Proof. We have:

(idX ⊗ Λrmα)∂Z(α),X(λ⊗ idX)
(i)
= (idX ⊗ ΛrmαZ(λ))∂1,X

(ii)
= (idX ⊗ ΛrλZ0)∂1,X

(iii)
= (idX ⊗ Z0)∂1,X

(iv)
= idX .

Here (i) follows from the naturality of ∂, (ii) from the fact that mαZ(λ) = λZ0 (because λ is an α-cointegral),
(iii) from the equality λΛr = id1, and (iv) from the definition of Z0. �

Let P be a projective object and G be a projective generator of C. Set

aP = (idP⊗
−→
evG ⊗ idZ(α))(idP⊗G ⊗ ∂α,G∨) : P ⊗G⊗ α⊗G∨ → P ⊗ Z(α).

Graphically,

aP =

−→
evG

Z(α)

P G α G∨

.

Lemma 4.10. aP is an epimorphism.
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Proof. SinceG∨ is a projective generator of C, the universal dinatural transformation iα,G∨ : ∨(G∨)⊗α⊗G∨ →
Z(α) is an epimorphism (by [KL, Corollary 5.1.8]). Then bP = idP ⊗ iα,G∨ is an epimorphism (since ⊗ is

exact because C is rigid). Considering the isomorphism ϕG = (
−→
evG ⊗ id∨(G∨))(idG⊗

←−
coevG∨) : G → ∨(G∨),

we conclude that aP = bP (idP ⊗ ϕG ⊗ idα⊗G∨) is an epimorphism. �

Since aP is an epimorphism (by Lemma 4.10) and P is a projective object, the morphism idP ⊗ λ : P →
P ⊗ Z(α) factors through aP , that is, idP ⊗ λ = aP dP for some morphism dP : P → P ⊗G⊗ α⊗G∨. Set

crP = (id⊗ −→evG∨)(dP ⊗ idG∨∨) : P ⊗G∨∨ → P ⊗G⊗ α.
Graphically,

crP =

P G α

G∨

−→
evG∨

dP

P G∨∨

.

Then crP is a right chromatic map based at P for G. Indeed, for any X ∈ C,
P X

−→
evG

G∨

G Λr
G∨⊗X

α

crP

G∨∨ G∨

−→
coevG∨

P X

(i)
=

P −→
evG

X

G∨

idG∨⊗X

G
Λr

α
idG∨⊗X

G∨

dP

P X

(ii)
=

P X

−→
evG Λrmα

G G∨

α

dP

P X

(iii)
=

P Y

Λrmα

aP

P G α G∨

dP

P X

(iv)
=

Y

Λrmα

λ

P X

(v)
=

P X

Here (i) follows from the definitions of crP and Λr, (ii) from the definition of the product m of Z, (iii) from
the definition of aP , (iv) from the fact that aP dP = idP ⊗ λ, and (v) from Lemma 4.9.

4.7. Proof of Theorem 4.6. We first prove that clH is H-linear. For any x, y, h ∈ H,

clH
(
h · (ex ⊗ y)

) (i)
= clH(eS2(h(1))x ⊗ h(2)y)

(ii)
= λ

(
S(h(2)y(1))S

2(h(1))x
)
αH(h(3)y(2))⊗ h(4)y(3) ⊗ h(5)y(4)

(iii)
= λ

(
S
(
S(h(1))h(2)y(1)

)
x
)
αH(h(3)y(2))⊗ h(4)y(3) ⊗ h(5)y(4)

(iv)
= λ

(
S(y(1))x

)
αH(h(1)y(2))⊗ h(2)y(3) ⊗ h(3)y(4)

(v)
= αH(h(1))λ

(
S(y(1))x

)
αH(y(2))⊗ h(2)y(3) ⊗ h(3)y(4)

(vi)
= h · clH(ex ⊗ y).

Here (i) follows from the definition of the monoidal product in H-mod, (ii) from the definition of clH and
the multiplicativity of the coproduct of H, (iii) from the anti-multiplicativity of S, (iv) from the axiom of
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the antipode, (v) from the multiplicativity of αH , and (vi) from the definitions of clH and of the monoidal
product in H −mod.

We next compute the natural transformation Λl. For any finite dimensional H-module M , consider the
k-linear homomorphism

Λ̃lM :

{
M ⊗ α → M
m⊗ 1k 7→ S−1(Λ) ·m.

Then Λ̃lM is H-linear. Indeed, for any h ∈ H and m ∈M ,

Λ̃lM (h · (m⊗ 1k))
(i)
= αH(h(2))S

−1(Λ)h(1) ·m
(ii)
= εH(h(1))αH(h(2))S

−1(Λ) ·m
(iii)
= αH(h)S−1(Λ) ·m (iv)

= S−1(ΛS(h)) ·m (v)
= hS−1(Λ) ·m (vi)

= h · Λ̃lM (m⊗ 1k),

where εH is the counit of H. Here (i) follows from the definitions of Λ̃lM and of the action of M ⊗ α, (ii)
from the fact that S−1(Λ) is a right cointegral of H, (iii) from the counitality of the coproduct, (iv) from
the property characterizing αH (see Example 4.3), (v) from the anti-multiplicativity of S, and (vi) from the

definition of Λ̃lM . Clearly, the family {Λ̃lM}M is natural in M . Now for any h ∈ H,

Λ̃lH(h⊗ 1k)
(i)
= S−1(Λ)h

(ii)
= εH(h)iη(1k)

(iii)
= (εp⊗ iη)(h⊗ 1k).

Here (i) follows from the definition of Λ̃lH , (ii) from the fact that S−1(Λ) is a right cointegral and from the

definition of Λ, and (iii) from the definition of p. Thus, using that pi = idP0
and the naturality of Λ̃l, we

obtain:

Λ̃lP0
= Λ̃lP0

(pi⊗ idα) = pΛ̃lH(i⊗ idα) = εpi⊗ piη = ε⊗ η.

Also, for any indecomposable projective object P non isomorphic to P0, we have Λ̃lP = 0. Indeed, in the

projective generator H, the image kS−1(Λ) = iη(k) ⊂ i(P0) of Λ̃lH is isomorphic to the simple H-module α,
and i(P0) ∼= P0 is the only (up to isomorphism) indecomposable projective H-module which has a submodule
isomorphic to α (by uniqueness of the socle, see Section 1.5). Consequently, the uniqueness in Lemma 4.1

implies that Λl = Λ̃l.
We now prove that clH is a left chromatic map. Let M be a finite dimensional H-module. Pick any m ∈M

and x ∈ H. In M ⊗ ∨H ⊗ α⊗H ⊗H, we have:

(idM⊗∨H ⊗ clH)(idM⊗
←−

coev∨H ⊗idH)(m⊗ x) = m⊗ λ(S(x(1)) )⊗ αH(x(2))⊗ x(3) ⊗ x(4).

Evaluating this vector under (idM⊗
←−
evH ⊗ idH)(ΛlM⊗∨H ⊗ idH⊗H) gives

αH(x(2))λ
(
S(x(1)) Λ(1)x(3)

) (
S−1(Λ(2)) ·m

)
⊗ x(4)

(i)
= αH(x(2))αH

(
S(x(3))

)
λ
(
S2(x(4))S(x(1)) Λ(1)

) (
S−1(Λ(2)) ·m

)
⊗ x(5)

(ii)
= λ

(
S2(x(2))S(x(1)) Λ(1)

) (
S−1(Λ(2)) ·m

)
⊗ x(3)

(iii)
= εH(x(1))λ(Λ(1))

(
S−1(Λ(2)) ·m

)
⊗ x(2)

(iv)
=
(
S−1

(
λ(Λ(1))Λ(2)

)
·m
)
⊗ x (v)

= m⊗ x.

Here (i) follows from the fact that λ(ab) = αH(S(b(1)))λ(S2(b(2))a) for all a, b ∈ H (see [Ra, Theorem 10.5.4]),
(ii) from multiplicativity of αH and the axiom of the antipode, (iii) from the axiom of the antipode, (iv)
from the counitailty of the coproduct, and (v) from the fact that λ(Λ(1))Λ(2) = λ(Λ)1H = 1H . Consequently,

(idM⊗
←−
evH ⊗ idH)(ΛlM⊗∨H ⊗ idH⊗H)(idM⊗∨H ⊗ clH)(idM⊗

←−
coev∨H ⊗idH) = idM⊗H ,

that is, clH is a left chromatic map based at H for H.
Finally, the expression for crH is derived from that of clH by noticing that for any projective generator G

and projective object P in H-mod, a right chromatic map based at P for G in H-mod is a left chromatic
map at P for G in (H-mod)⊗op, that is, in (Hcop)-mod, where Hcop is H with opposite coproduct (for which
Scop = S−1, Λcop = Λ, λcop = λS, and αHcop = αH).
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