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Traces on ideals in pivotal categories
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Abstract. We construct invariants of C -colored spherical graphs from traces on ideals in
a pivotal category C. Then we provide a systematic approach to defining such traces from
ambidextrous and spherical traces on a class of objects of C. This extends the notion of an
ambidextrous object of a braided category given by the first two authors in a previous work.
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Introduction

Many constructions of quantum topology rely on tensor categories with duality and
more precisely on categorical traces of such categories. When these categories are
non-semisimple, the categorical traces are often degenerate and these constructions
become trivial. In [3] and [7] it has been shown that in non-semisimple ribbon cate-
gories, non-trivial traces can exist. The study of these traces leads to new interesting
quantum invariants of links and 3-manifolds. The goal of this paper is to generalize
this study within the context of pivotal categories. In particular, we develop a theory
of modified traces on ideals in pivotal categories and show that such traces lead to
topological invariants of planar graphs.

1The work of Nathan Geer has been partially supported by the NSF grants DMS-0706725 and DMS-
0968279. Alexis Virelizier was partially supported by the ANR grant GESAQ.
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Let C be a pivotal k-category. We call a class � of objects of C a left ideal (resp.
a right ideal) if it is closed under retraction and left (resp. right) tensor multiplication
by objects of C. An ideal is a two-side ideal. A left trace (resp. a right trace) on a
left (resp. right) ideal � is a family of k-linear functions

t D ftV W EndC .V / ! kgV 2�

which is suitably compatible with the tensor product and composition of morphisms
(cf. Section 2.2). A trace on an ideal � is a family t D ftV gV 2� which is both a left
and right trace on �.

Let us explain how left traces and traces lead to topological invariants of certain
graphs. Similar invariants exist for right traces. We consider planar and spherical
graphs (i.e., graphs in R2 and S2 D R2 [ f1g, respectively). If O is a class of
objects of C, then a O-colored graph in R2 (resp. S2) is a ribbon graph embedded in
R2 (resp. S2) whose edges are colored by elements of O and coupons are colored by
morphisms in C. Let � be a planar C-colored graph. By a left cutting presentation
of �, we mean a C-colored 1–1-ribbon graph T in R � Œ0; 1� such that � is the left
closure of T. Let t be a left trace on a left ideal � of C. We say � is � -admissible if
it admits a left cutting presentation T whose open component is colored by an object
V of �. For such a left cutting presentation we set

Ft.�/ D tV .fT /

where fT W V ! V is the morphism defined by T via Penrose calculus (see Subsec-
tion 1.3). In Section 3 we prove the following statements.

(i) Let � be an � -admissible planar graph. Then the scalar Ft.�/ is well defined
(that is, independent of the choice of the left cutting presentation T of �). The
assignment � 7! Ft.�/ is then an isotopy invariant of � -admissible planar
graphs �.

(ii) The left trace t on the left ideal � determines a class A � � (see (9)) such that for
any A-colored spherical graph� the scalarFt.�/ is well defined. The assignment
� 7! Ft.�/ is then an isotopy invariant of A-colored spherical graphs �.

(iii) If � is an ideal and t is a trace on �, then A D � and so the assignment� 7! Ft.�/

is a well defined isotopy invariant of A-colored spherical graphs�. Moreover, this
assignment extends to an isotopy invariant of � -admissible spherical graphs �.

In Section 4 we give a systematic approach to defining traces on ideals. More
precisely, let O be a class of objects of C. We define a left ambidextrous trace on O

as a family t D ftX W EndC .X/ ! kgX2O of k-linear forms satisfying

tX

0
B@ X 0

X

X

f

1
CA D tX 0

0
B@
X 0

X 0

X
f
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for all X;X 0 2 O and f 2 EndC .X
0 ˝ X�/. Then we show that left ambidextrous

traces on O bijectively correspond to left traces on the left ideal generated by O. We
also give a notion of a spherical trace on O and show that these traces bijectively
correspond to traces on the ideal generated by O.

The invariant of spherical graphs described above in (ii) relies on a certain set A
of objects defined from a one-sided trace on a one-sided ideal. In Section 5 we give
a characterization of A, in terms of the slope, when the one-sided ideal is the ideal of
projective objects. In [5], the slope and left ambidextrous traces are used to construct
3-manifold invariants from the categories of finite dimensional modules over the non-
restricted quantum groups associated to simple Lie algebras introduced and studied
by De Concini, Kac, Procesi, Reshetikhin, and Rosso in [1] and [2]. The categories
of finite dimensional representations of these quantum groups cannot be braided as
their tensor product is not commutative up to isomorphism.

In [4] the results of this paper are used to prove that traces on the ideal of projective
modules exist for factorizable ribbon Hopf algebras, modular representations of finite
groups and their quantum doubles, complex and modular Lie (super)algebras, the
.1; p/minimal model in conformal field theory, and quantum groups at a root of unity.
In all these examples the usual trace restricted to the ideal of projective modules is
zero but the modified trace suggested in this paper is non-zero.

Throughout the paper, we fix a commutative ring k.

1. Pivotal categories

In this section we recall some well-known properties concerning pivotal categories.
Given a category C, the notation X 2 C means that X is an object of C.

1.1. Pivotal categories. Recall that a pivotal (or sovereign) category is a (strict)
monoidal category C, with unit object 1, such that to each object X 2 C there are
associated a dual object X� 2 C and four morphisms

evX W X� ˝X �! 1; coevX W 1 �! X ˝X�;

eevX W X ˝X� �! 1; ecoevX W 1 �! X� ˝X;

such that .evX ; coevX / is a left duality for X, .eevX ; ecoevX / is a right duality for X,
and the induced left and right dual functors coincide as monoidal functors; see [8].
In particular, the left dual and right dual of a morphism f W X ! Y in C coincide,

f � D .evY ˝ idX�/.idY � ˝f ˝ idX�/.idY � ˝coevX /

D .idX� ˝eevY /.idX� ˝f ˝ idY �/.ecoevX ˝ idY �/ W Y � �! X�;

and
' D f'X D .eevX ˝ idX��/.idX ˝coevX�/ W X �! X��gX2C
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is a monoidal natural isomorphism, called the pivotal structure.

1.2. Traces and dimensions. Let C be pivotal category. Recall that EndC .1/ is a
commutative monoid. The left trace trl.f / 2 EndC .1/ and the right trace trr.f / 2
EndC .1/ of an endomorphism f of an object X of C are defined by

8<
:

trl.f / D evX .idX� ˝f /ecoevX ;

trr.f / D eevX .f ˝ idX�/coevX :

Both traces are symmetric: trl.gh/ D trl .hg/ and trr.gh/ D trr.hg/ for any mor-
phisms g W X ! Y and h W Y ! X in C. Also trl.f / D trr.f

�/ D trl.f
��/ for any

endomorphism f of an object (and similarly with l; r exchanged). If

˛ ˝ idX D idX ˝˛ for all ˛ 2 EndC .1/ and X 2 C, (1)

then the traces trl ; trr are ˝-multiplicative, that is
8<
:

trl.f ˝ g/ D trl.f / trl.g/;

trr.f ˝ g/ D trr.f / trr .g/;

for all endomorphisms f; g of objects of C.
The left and right dimensions of X 2 Ob.C/ are defined by diml .X/ D trl.idX /

and dimr.X/ D trr.idX /. Clearly, diml .X/ D dimr.X
�/ D diml.X

��/ (and
similarly with l; r exchanged). Note that isomorphic objects have the same dimen-
sions and diml.1/ D dimr.1/ D id1. If the category C satisfies (1), then left
and right dimensions are ˝-multiplicative: diml .X ˝ Y / D diml.X/ diml.Y / and
dimr.X ˝ Y / D dimr.X/ dimr.Y / for any X; Y 2 C.

1.3. Penrose graphical calculus. We represent morphisms in a category C by plane
diagrams to be read from the bottom to the top. The diagrams are made of oriented arcs
colored by objects of C and of boxes (called coupons) colored by morphisms of C.
The arcs connect the boxes and have no mutual intersections or self-intersections.
The identity idX of X 2 C, a morphism f W X ! Y , and the composition of two
morphisms f W X ! Y and g W Y ! Z are represented as

idX D
X

, f D
X

Y

f , and gf D
X

Y

f

g

Z

.

If C is monoidal, then the monoidal product of two morphisms f W X ! Y and
g W U ! V is represented by juxtaposition
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f ˝ g D
X

f

Y

U

g

V

.

In a pivotal category, if an arc colored by X is oriented upwards, then the corre-
sponding object in the source/target of morphisms is X�. For example, idX� and a
morphism f W X� ˝ Y ! U ˝ V � ˝W may be depicted as

idX� D
X

D
X�

and

f D
X

f

Y

U V W

.

The duality morphisms are depicted as

evX D X ; coevX D X ;

eevX D X ; ecoevX D X :

The dual of a morphism f W X ! Y and the traces of a morphism g W X ! X can
be depicted as

f � D
X

f

Y

D
X

f

Y

and 8̂̂
ˆ̂<
ˆ̂̂̂:

trl.g/ D X
g ;

trr.g/ D X
g :

If C is pivotal, then the morphisms represented by the diagrams are invariant under
isotopies of the diagrams in the plane keeping fixed the bottom and top endpoints.

1.4. Partial traces. Let C be a pivotal category. For X; Y;Z 2 C, the left partial
trace (with respect to X) is the map

trX
l W HomC .X ˝ Y;X ˝Z/ �! HomC .Y;Z/

defined for f 2 HomC .X ˝ Y;X ˝Z/ by

trX
l .f / D .evX ˝ idZ/.idX� ˝f /.ecoevX ˝ idY / D

Y

Z
X

f :
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Likewise, the right partial trace (with respect to X) is the map

trX
r W HomC .Y ˝X;Z ˝X/ �! HomC .Y;Z/

defined, for g 2 HomC .Y ˝X;Z ˝X/ by

trX
r .g/ D .idZ ˝eevX /.g ˝ idX�/.idY ˝coevX / D

Y

Z
X

g :

Note that trX�

r .f �/ D .trX
l
.f //� and trX�

l
.g�/ D .trX

r .g//
�. In particular

trX��

l .f ��/ D .trX
l .f //

�� D 'Y trX
l .f /'

�1
Y

and

trX��

r .g��/ D .trX
r .g//

�� D 'X trX
r .g/'

�1
X ;

where ' D f'X W X ! X��gX2C is the pivotal structure of C.
Note that if f W X ! X is an endomorphism in C, then

trX
l .f / D trl.f /;

trX
r .f / D trr.f /;

and

tr1
l .f / D f D tr1

r .f /:

1.5. Spherical categories. A spherical category is a pivotal category whose left and
right traces are equal, i.e., trl.f / D trr.f / for every endomorphism f of an object.
Then trl.f / and trr.f / are denoted tr.f / and called the trace of f . Similarly, the
left and right dimensions of an object X are equal, denoted dim.X/, and called the
dimension of X.

For spherical categories, the corresponding Penrose graphical calculus has the
following property: the morphisms represented by diagrams are invariant under iso-
topies of diagrams in the 2-sphere S2 D R2 [f1g, i.e., are preserved under isotopies
pushing arcs of the diagrams across 1. For example, the diagrams above represent-
ing trl .f / and trr.f / are related by such an isotopy. The condition trl.f / D trr .f /

for all f is therefore necessary (and in fact sufficient) to ensure this property.

1.6. Linear categories. A monoidal k-category is a monoidal category C such
that its hom-sets are (left) k-modules, the composition and monoidal product of
morphisms are k-bilinear, and EndC .1/ is a free k-module of rank one. Then the
map k ! EndC .1/; k 7! k id1 is a k-algebra isomorphism. It is used to identify
EndC .1/ D k.

A pivotal k-category satisfies (1). Therefore, the traces trl ; trr and the dimensions
diml ; dimr in such a category are ˝-multiplicative. Clearly, trl ; trr are k-linear.
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An objectX of a monoidalk-category C is simple if EndC .X/ is a freek-module of
rank 1. Equivalently,X is simple if thek-homomorphismk ! EndC .X/; k 7! k idX

is an isomorphism. By the definition of a monoidal k-category, the unit object 1 is
simple. If X is a simple object of C, we denote by h iV W EndC .V / ! k the inverse
of the k-linear isomorphism k ! EndC .V / defined by k 7! k idV .

2. Traces on ideals

In this section we introduce the notion of one-side ideals and one-side traces on
one-side ideals. We also study some basic properties of such ideals and traces.

The notation O � C means that O is a class of objects of C. If C is a monoidal
category, we denote by C rev the category C with opposite monoidal product defined
by X ˝op Y D Y ˝X for X; Y 2 C.

2.1. Ideals. By a retract of an object X of a category C, we mean an object U of C

such that there exist morphisms p W X ! U and q W U ! X verifying pq D idU .
A class O � C is said to be closed under retraction if any retract (in C) of an

object of O belongs to O.
A class O of objects of a monoidal category C is said to be closed under left (resp.

right) multiplication if Y ˝X 2 O (resp. X ˝ Y 2 O) for all X 2 O and Y 2 C.
By a left (resp. right) ideal of a monoidal category C, we mean a class � � C

which is closed under retraction and under left (resp. right) multiplication. By an
ideal of a monoidal category C, we mean a class � � C which is both a left and right
ideal.

Note that the closure under retraction implies that a left (resp. right) ideal � of a
monoidal category C is replete, meaning that if Y 2 C is isomorphic (in C) to some
X 2 �, then Y 2 �. In particular, if C is braided, then any left (resp. right) ideal is a
(two-sided) ideal.

Lemma 1. Let C be a pivotal category.

(a) A left (resp. right) ideal of C is closed under biduality.

(b) An ideal of C is closed under duality.

Proof. Part (a) follows from the facts that a left (resp. right) ideal is replete and that
the bidual X�� of an object X 2 C is isomorphic to X (via the pivotal structure).

Let us prove (b). Let � be an ideal of C. Given X 2 �, set p D evX ˝ idX� and
q D idX� ˝coevX. Then pq D idX� . Thus X� is a retract of X� ˝ X ˝ X� 2 �

and so belongs to �.

For a class of objects � in a pivotal category C, we set

� � D fY 2 C W 9X 2 � ; Y ' X�g:
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Note that if � is a left or right ideal of C, then

� � D fY 2 C W Y � 2 � g
(since ideals are replete and Y ' Y �� for any Y 2 C).

Lemma 2. Let � be a replete class of objects of a pivotal category C.

(a) � is a left (resp. right) ideal if and only if � � is a right (resp. left) ideal.

(b) � is an ideal if and only if � is a left (or right) ideal and � � D �.

Proof. Part (a) follows from the fact that .X ˝ Y /� ' Y � ˝ X� and from the
equivalence asserting that an object U is a retract of an object X if and only if U � is
a retract of X�. Let us prove (b). If � is a left (resp. right) ideal satisfying � D � �
then, by (a), it is a right (resp. left) ideal, and so an ideal. Conversely if � is an ideal
of C, then � � D � by Lemma 1(b).

2.2. Traces on ideals. Let C be a pivotal k-category. A left trace on a left ideal �

of C is a family t D ftX W EndC .X/ ! kgX2� of k-linear forms such that

tY ˝X .f / D tX .trY
l .f // and tV .gh/ D tU .hg/ (2)

for anyf 2 EndC .Y˝X/, g 2 HomC .U; V /, andh 2 HomC .V; U /, withX;U; V 2
� and Y 2 C.

A right trace on a right ideal � of C is a family t D ftX W EndC .X/ ! kgX2� of
k-linear forms such that

tX˝Z.f / D tX .trZ
r .f // and tV .gh/ D tU .hg/ (3)

for anyf 2 EndC .X˝Z/, g 2 HomC .U; V /, andh 2 HomC .V; U /, withX;U; V 2
� and Z 2 C.

A trace on a ideal � of C is a family t D ftX W EndC .X/ ! kgX2� of k-linear
forms which is both a left and right trace on �. Note that a trace t on an ideal �

satisfies
tY ˝X˝Z.f / D tX .trY

l trZ
r .f //

for any f 2 EndC .Y ˝X ˝Z/ with X 2 � and Y;Z 2 C.

Lemma 3. The trace satisfies the following properties.

(a) If t is a left (resp. right) trace on a left (resp. right) ideal � of C, then

tX��.f ��/ D tX .f /

for all X 2 � and f 2 EndC .X/.
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(b) If t is a trace on an ideal � of C, then

tX�.f �/ D tX .f /

for all X 2 � and f 2 EndC .X/.

(c) If t is a left (resp. right) trace on a left (resp. right) ideal � of C, then the family
of k-linear forms t_ D ft_X W EndC .X/ ! kgX2�� , defined by

t_X .f / D tX�.f �/;

is a right (resp. left) trace on � �.

Proof. Let us prove (a). Denote by ' the pivotal structure of C (see Section 1.1).
Recall X�� 2 � (see Lemma 1) and f �� D 'Xf '

�1
X . Therefore,

tX��.f ��/ D tX��.'Xf '
�1
X / D tX .f '�1

X 'X / D tX .f /:

Let us prove (b). Recall thatX� 2 � (see Lemma 1). In particular, X� ˝X 2 �

and X� ˝X ˝X� 2 �. Set

g D .evX ˝ idX�/.idX� ˝f ˝ idX�/

and

h D idX� ˝coevX:

We have gh D f � and trX�

l
.trX�

r .hg// D f . Therefore,

tX�.f �/ D tX�.gh/

D tX�˝X˝X�.hg/

D tX�˝X .tr
X�

r .hg//

D tX .trX�

l .trX�

r .hg///

D tX .f /

by the properties of a (two-sided) trace.
Let us prove the left version of (c), from which the right version can be deduced

by using C rev. For g 2 HomC .U; V / and h 2 HomC .V; U /, with U; V 2 � �, we
have

t_V .gh/ D tV �..gh/�/ D tV �.h�g�/ D tU �.g�h�/ D tU �..hg/�/ D t_U .hg/:
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Now let f 2 EndC .Y ˝Z/withX 2 � � andZ 2 C. Let ' W .X˝Z/� ! Z� ˝X�
be the canonical isomorphism. Then trZ�

l
.'f �'�1/ D .trZ

r .f //
� and so

t_X˝Z.f / D t.X˝Z/�.f �/

D tZ�˝X�.'f �'�1/

D tX�.trZ�

r .'f �'�1// D tX�..trZ
r .f //

�/

D t_X .trZ
r .f //

since t is a left trace and X� 2 �. Hence, t_ is a right trace.

Lemma 4. Let C be a pivotal k-category. Denote by ' the pivotal structure of C

(see Section 1.1).

(a) If t is a left trace on a left ideal � of C then

tX .'�1
X .trX 0

l .f //
�'X / D tX 0.trX�

r .f // (4)

for all X;X 0 2 � and f 2 EndC .X
0 ˝X�/.

(b) If t is a right trace on a right ideal � of C then

tX .'�1
X .trX 0

r .g//
�'X / D tX 0.trX�

l .g// (5)

for all X;X 0 2 � and g 2 EndC .X
� ˝X 0/.

(c) If t is a trace on an ideal � of C then

tX .'�1
X .trX 0˝Y

l
.f //�'X / D tX 0.trY ˝X�

r .f //; (6)

and
tX .'�1

X .trY ˝X 0

r .g//�'X / D tX 0.trX�˝Y
l

.g//; (7)

for all X;X 0 2 �, and Y 2 C and for all f 2 EndC .X
0 ˝ Y ˝ X�/, and

g 2 EndC .X
� ˝ Y ˝X 0/.

Proof. Let us prove (a). Let f 2 EndC .X
0 ˝X�/ where X;X 0 2 �. Set

˛ D .idX 0� ˝ idX 0 ˝eevX�/.idX 0� ˝f ˝ idX��/.ecoevX 0 ˝ idX� ˝'X /

D
X 0 X 0

X X

f

and

ˇ D .idX� ˝'�1
X / coevX�evX 0 D

X 0

X

:
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Since X� ˝X 2 �, X 0� ˝X 0 2 �, and t is a left trace, we have

tX .trX�

l .ˇ˛// D tX�˝X .ˇ˛/ D tX 0�˝X 0.˛ˇ/ D tX 0.trX 0�

l .˛ˇ//:

Now

trX�

l .ˇ˛/ D
X 0

X

X

f D '�1
X .trX 0

l .f //
�'X

and

trX 0�

l .˛ˇ/ D
X 0

X 0

X
f D trX�

r .f / :

Therefore, (4) is satisfied. We deduce (b) from (a) by using C rev.
Let us prove (c). Let f 2 EndC .X

0 ˝ Y ˝ X�/, where X;X 0 2 � and Y 2 C.
Set

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

˛ D
X 0 X 0 Y

Y X X

f ;

ˇ D
X 0 Y

X

:

Since Y ˝X� ˝X 2 �, X 0� ˝X 0 ˝ Y 2 �, and t is a trace, we have

tX .tr
Y ˝X�

l
.ˇ˛// D tY ˝X�˝X .ˇ˛/ D tX 0�˝X 0˝Y .˛ˇ/ D tX 0.trX 0�

l trY
r .˛ˇ//:

Now

trY ˝X�

l
.ˇ˛/ D

Y
X 0

X

X

f

and

trX 0�

l trY
r .˛ˇ/ D

X 0

X 0

Y
X

f :
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Therefore, t satisfies (6). Likewise, given g 2 EndC .X
� ˝ Y ˝X 0/, by using

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

˛ D
X 0 X 0Y

YX X

g ;

ˇ D
X 0Y

X

;

we obtain that t satisfies (7).

2.3. Modified dimensions. If t is a left (resp. right) trace on a left (resp. right)
ideal � in a pivotal k-category C, the left (resp. right) modified dimension (associated
with t) is the function defined on the objects V 2 � by

dl.V / D tV .idV / .resp: dr.V / D tV .idV //:

Note that an immediate consequence of the definition of a left trace (resp. right trace)
is that isomorphic objects have equal modified dimensions.

Let t be a trace on an ideal � in C, the modified dimension (associated with t) is
the function defined on the objects V 2 � by

d.V / D tV .idV /:

Note that if V 2 �, then V � 2 � and d.V / D d.V �/ by Lemmata 1 and 3.

3. Invariants of closed graphs

3.1. Colored graphs. Let C be a pivotal category. By a C-colored ribbon graph
in an oriented surface †, we mean a graph embedded in † whose edges are oriented
and colored by objects of C and whose vertices lying in Int† D † � @† are thick-
ened to coupons colored by morphisms of C (as in Penrose graphical calculus, see
Section 1.3). The edges of a C-colored graph do not meet each other and may meet
the coupons only at the bottom and top sides. The intersection of a C-colored ribbon
graph in†with @† is required to be empty or to consist only of vertices of valency 1.

A C-colored ribbon graph in R2 (with counterclockwise orientation) is called
planar. A C-colored ribbon graph in S2 D R2 [ f1g is called spherical.

The C-colored ribbon graphs in R � Œ0; 1� (with counterclockwise orientation)
form a category GC as follows: objects of GC are finite sequences of pairs .X; "/,
where X 2 C and " D ˙. Morphisms of GC are isotopy classes of C-colored ribbon
graphs in R � Œ0; 1�. Composition, identities, tensor multiplication, left and right
duality in GC are defined in the standard way. In particular,

..V1; "1/; : : : ; .Vn; "n//
� D ..Vn;�"n/; : : : ; .V1;�"1//
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and the dual T � of a C-colored ribbon graph T in R � Œ0; 1� is obtained by rotating T
by � . For example, if

T D
U

V W

h W .U;C/ �! ..V;C/; .W;�//

where h 2 HomC .U; V ˝W /, then

T � D
U

VW

h D
VW

h

U

D
VW

h

U

W ..W;C/; .V;�// �! .U;�/.

This makes GC into a pivotal category. By Penrose graphical calculus, one obtains a
(strict) monoidal functor

F W GC ! C :

In particular, F sends .X; "/ 2 Ob.GC / to

X" D
8<
:
X if " D C ,

X� if " D � .

By a C-colored 1–1-ribbon graph, we mean an endomorphism T in GC of a pair
.X; "/, where X 2 C and " D ˙. The pair .X; "/ is called the section of T. The left
and right planar closures of a C-colored 1–1-ribbon graph T are the planar C-colored
ribbon graphs (embedded in the interior of R � Œ0; 1�) defined by

cll.T / D

8̂̂
ˆ̂<
ˆ̂̂̂:

T if " D C,

T if " D �,

and clr.T / D

8̂̂
ˆ̂<
ˆ̂̂̂:

T if " D C,

T if " D �.

Note that F.cll.T // D trl.F.T // and F.clr.T // D trr.F.T //.
By a left (resp. right) cutting presentation of a planar C-colored graph�, we mean

a C-colored 1–1-ribbon graph T such that � D cll.T / (resp. � D clr.T /).
Considered as spherical C-colored ribbon graphs, the left and right planar closures

of a C-colored 1–1-ribbon graph T are isotopic, and are called the spherical closure
of T and denoted cl.T /. By a cutting presentation of a spherical C-colored graph �,
we mean a C-colored 1–1-ribbon graph T such that � D cl.T /.

3.2. Invariants of admissible graphs. Let C be a pivotal k-category and � be
a left (resp. right) ideal of C. A C-colored 1–1-ribbon graph is left (resp. right)
� -admissible if its section .V; "/ has the property that V " 2 �. By a left (resp. right)
� -admissible planar graph we mean a planar C-colored ribbon graphs which admits
a left (resp. right) � -admissible left (resp. right) cutting presentation.
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If t is a left (resp. right) trace on � and � is a left (resp. right) � -admissible planar
graph, we set

F l
t .�/ D tV ".F.T // .resp. F r

t .�/ D tV ".F.T ///;

where T is a left (resp. right) � -admissible left (resp. right) cutting presentation of �
with section .V; "/.

When � is an ideal, by a � -admissible spherical graph, we mean spherical
C-colored ribbon graph such that at least one of its edges is colored by an element
of �. Note that such a graph admits a cutting presentation with section .V;C/ with
V 2 �.

Theorem 5. Let t be a left (resp. right) trace on a left (resp. right) ideal � of C.
Then F l

t (resp. F r
t ) is an isotopy invariant of left (resp. right) � -admissible graphs.

Moreover, if � is an ideal and t is a trace on �, then F l
t D F r

t and this invariant
extends to an isotopy invariant of � -admissible spherical graphs, denoted Ft.

When � D C and t is the usual left (resp. right) trace of endomorphisms of C,
then F l

t (resp. F r
t ) is nothing but the usual invariant obtained by Penrose calculus.

Before proving Theorem 5, we introduce some notation. Remark first that if
T W ..V1; "1/; : : : ; .Vm; "m// ! ..V 0

1; "
0
1/; : : : ; .V

0
n; "

0
n// is a morphism in GC, then

F.T �/ D . �1
.Vm;"m/ ˝ � � � ˝  �1

.V1;"1// B F.T /� B . .V 0
n;"0

n/ ˝ � � � ˝  .V 0
1

;"0
1

// (8)

where  .V;"/ W V �" ! .V "/� is the isomorphism given by

 .V;�1/ D 'V W V �! V ��

and

 .V;1/ D idV � W V � �! V �:

Let T be an endomorphism of ..V1; "1/; : : : ; .Vm; "m// in GC. By taking the left
closure of the k left most strands of T, we define the partial left closure of T denoted
by

cl..V1;"1/;:::;.Vk ;"k//

l
.T / 2 EndGC

..VkC1; "kC1/; : : : ; .Vn; "n//:

Similarly, by taking the right closure of the k right most strands of T, we define the
partial right closure of T denoted by

cl
..Vn�kC1;"n�kC1/;:::;.Vn;"n//
r .T / 2 EndGC

..V1; "1/; : : : ; .Vn�k; "n�k//:

Let� be a spherical C-colored ribbon graph in S2 D R2 [f1g. By a cutting path
of� we mean an embedded oriented path� W Œ0; 1� ! S2 such that�.0/; �.1/ … � and
whose image does not meet the coupons of � and meets any edge of � transversally.
Let � be a cutting path of �. Consider a tubular neighborhood� ' �.Œ0; 1�/���1; 1Œ
of the image �.Œ0; 1�/ of � . We identify S2 n� ' R � Œ0; 1� in such a way that the
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boundary components �.�0; 1Œ/�f�1g and �.�0; 1Œ/�f1g of S2 n� are sent to the top
boundary R � f1g and the bottom boundary R � f0g of R � Œ0; 1�, respectively. Then
we denote by cut� .�/ the endomorphism of GC equal to� n� � S2 n� ' R� Œ0; 1�.

If� is a planar C-colored ribbon graph, considered as a spherical C-colored graph
in S2 D R2 [f1g, and � is a cutting path for � such that the points �.1/ (resp. �.0/)
and 1 are in the same component of S2 n �, then cll.cut� .�// (resp. clr.cut� .�//)
and � are isotopic.

Proof of Theorem 5. Let us prove the first statement of the theorem. Let t be a left
(resp. right) trace on a left (resp. right) ideal �. Let � be an � -admissible pla-
nar C-colored ribbon graph and T0, T1 be two left cutting presentations of � with
sections .V0; "0/ and .V1; "1/, respectively. We have to show that tV "0 .F.T0// D
t
V

"1
1

.F.T1//. The two edges e0 and e1 of � that are cut to form T0 and T1, re-

spectively, are in the boundary of the unbounded component C of R2 n �. Let �0

and �1 be two disjoint cutting paths located in a neighborhoods of e0 and e1, respec-
tively, such thatTi D cut�i

.�/ and �i .1/ 2 C for i D 0; 1. Choose an embedded path
�2 W Œ0; 1� ! C n.�0.�0; 1Œ/[�1.�0; 1Œ// such that �2.0/ D �0.1/ and �2.1/ D �1.1/.
Define � as the concatenation of paths � D N�1�2�0 where N�1.t/ D �1.1 � t/. Set

T D cut� .�/ 2 EndGC
..V0; "0/; .V1;�"1//:

When "0 D "1 D 1, the construction of T can be schematically depicted as

�1

e0 e1

�2

�0

T

:

By construction, we have T0 D cl.V1;�"1/
r .T / and T1 D cl.V0;�"0/

r .T �/. Then, setting

f D .id
V

"0
0

˝ .V1;"1//F.T /.idV
"0
0

˝ �1
.V1;"1// 2 EndC .V

"0

0 ˝ .V
"1

1 /�/;

we have

t
V

"0
0

.F.T0// D t
V

"0
0

.F.cl.V1;�"1/
r .T ///

D t
V

"0
0

.tr
V

�"1
1

r .F.T ///

D t
V

"0
0

.tr
V

�"1
1

r ..id
V

"0
0

˝ �1
.V1;"1//f .idV

"0
0

˝ .V1;"1////

D t
V

"0
0

.tr
.V

"1
1

/�

r .f //

and

t
V

"1
1

.F.T1// D t
V

"1
1

.F.cl.V0;�"0/
r .T �/// D t

V
"1
1

.tr
V

�"0
0

r .F.T �///:
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Now, we have

F.T �/ D . �1
.V1;�"1/ ˝  �1

.V0;"0//F.T /
�. .V1;�"1/ ˝  .V0;"0//

D .'�1

V
"1
1

˝  �1
.V0;"0//f

�.'
V

"1
1

˝  .V0;"0//

by using (8) and the fact that  �
.V;"/

D  �1
.V �;"/

. Therefore

tr
V

�"0
0

r .F.T �// D '�1

V
"1
1

tr
V

�"0
0

r ..id ˝ �1
V0;"0

/f �.id ˝ V0;"0
//'

V
"1
1

D '�1

V
"1
1

tr
.V

"0
0

/�

r .f �/'
V

"1
1

D '�1

V
"1
1

.tr
V

"0
0

l
.f //�'

V
"1
1

and so

t
V

"1
1

.F.T1// D t
V

"1
1

.tr
V

�"0
0

r .F.T �/// D t
V

"1
1

.'�1

V
"1
1

.tr
V

"0
0

l
.f //�'

V
"1
1

/:

Finally, by Lemma 4(a), we have

t
V

"1
1

.F.T1// D t
V

"1
1

.'�1

V
"1
1

.tr
V

"0
0

l
.f //�'

V
"1
1

/ D t
V

"0
0

.tr
.V

"1
1

/�

r .f // D t
V

"0
0

.F.T0//:

Thus, F l
t is an isotopy invariant of left � -admissible graphs. Then using C rev it

follows that F r
t is an isotopy invariant of right � -admissible graphs when t is a left

trace. This concludes the proof of the first statement in Theorem 5.
We now prove the second statement of the theorem. Let t be a trace on an ideal �.

Let � be an � -admissible spherical C-colored ribbon graph and T0, T1 be two cutting
presentations of � with sections .V; "/ and .V 0; "0/, respectively. We have to show
that t

V 0"0 .F.T1// D tV ".F.T0//. Let e0 and e1 be the edges of � that are cut to
form T0 and T1, respectively. Let �0 and �1 be two disjoint cutting paths located in
a neighborhoods of e0 and e1, respectively, such that Ti D cut�i

.�/ for i D 0; 1.
Choose an embedded path �2 W Œ0; 1� ! S2n.�0.Œ0; 1Œ/[�1.Œ0; 1Œ// such that �2.0/ D
�0.1/, �2.1/ D �1.1/, and whose image does not meet the coupons of � and meets
any edge of � transversally. Define � as the concatenation of paths � D N�1�2�0,
where N�1.t/ D �1.1 � t/. Set

T D cut� .�/ 2 EndGC
..V0; "0/; .V1; "1/; : : : ; .Vn; "n//;

where .V0; "0/ D .V; "/, .Vn; "n/ D .V 0; "0/ and V1; : : : ; Vn are the colors of the
edges met by �2. By construction,

T0 D cl..V1;"1/;:::;.Vn;"n//
r .T /
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and

T1 D cl..Vn�1;�"n�1/;:::;.V0;�"0//
r .T �/:

Let Y D V
"1

1 ˝ � � � ˝ V
"n�1

n�1 and set

f D .id
V

"0
0

˝Y
˝ Vn;"n

/F.T /.id
V

"0
0

˝Y
˝ �1

Vn;"n
/ 2 EndC .V

"0

0 ˝ Y ˝ .V "n
n /�/:

As in the first part of the theorem, one can show that

t
V

"0
0

.F.T0// D t
V

"0
0

.trY ˝.V
"n
n /�

r .f //

and

tV "n
n
.F.T1// D tV "n

n
.'�1

V
"n
n
.tr

V
"0
0

˝Y

l
.f //�'V

"n
n
/:

Thus, the second statement of theorem follows from these formulas and (6).

3.3. Invariants of spherical graphs from one-sided traces. Let C be a pivotal
k-category. By a A-colored graph, where A is a class of object of C, we mean a
C-colored graph whose edges are colored by elements of A.

Let t be a left (resp. right) trace on a left (resp. right) ideal �. Set

A D fV 2 � \ � � W tV D t_V g; (9)

where t_ is defined in Lemma 3(c). For any spherical A-colored ribbon graph �, set

F a
t .�/ D tV ".F.T //;

where T is any cutting presentation of � with section .V; "/.

Theorem 6. F a
t is an isotopy invariant of spherical A-colored ribbon graphs.

Note that if t is a trace on an ideal �, then A D � (by Lemmata 1 and 3), and the
invariants Ft and F a

t coincide on spherical � -colored ribbon graphs.

Proof. We prove Theorem 6 in the case when t is a left trace. Then the case when t is
a right trace can be deduced using C rev. Let � be a spherical A-colored ribbon graph
and let T be a cutting presentation of �. Then � 0 D cll.T / is a planar A-colored
ribbon graph whose isotopy class in S2 D R2 [ f1g is the same as the isotopy class
of �. By Theorem 5, F l

t .�
0/ does not depend on the left cutting presentations of � 0.

Let e be the edge of � 0 that is cut to form T. Let C and C 0 be the two connected
components of S2 n � located on the two sides of e, where C is the distinguished
component containing 1. Then � 0 D cll.T / and � 00 D clr.T / D cll .T �/ are
isotopic in S2. However C 0 is the distinguished component of � 00 containing 1.
Hence, � 00 is obtained from � 0 by a move that consist in pushing the point 1 across
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an edge. The class of � 0 modulo these moves clearly depends only of � and thus it
is enough to show that F l

t .�
0/ is invariant by this move. This is true because

F l
t .�

0/ D tV ".F.T // D t_V ".F.T // D t.V "/�.F.T /�/ D tV �".F.T �// D F l
t .�

00/

where the second equality is due to t_ D t on A and the fourth equality follows
from (2) and (8).

The invariant F a
t of Theorem 6 is a generalization of the analogous invariant

defined from ribbon categories in [6]. Moreover, F a
t produces the data of a trivalent-

ambidextrous pair as required in [7]. More precisely, let B be a class of simple objects
of C such that V � 2 B for all V 2 B. Denote by TB the class of connected trivalent
spherical B-colored ribbon graphs (a ribbon graph is trivalent if all its coupons are
adjacent to 3 half-edges). Let d W B ! k be a map such that, for all V; V 0 2 B,

(i) d.V / D d.V �/,
(ii) d.V / D d.V 0/ if V is isomorphic to V 0.
For any 1–1-ribbon graph Q with section .V; "/ where V is simple, we let hQi D
hF.Q/iV " 2 k, that is, F.Q/ D hQi idV " (see Section 1.6). Using this notation,
the pair .B; d/ is trivalent-ambidextrous if for any � 2 TB and for any two cutting
presentations T; T 0 of � with sections .V; "/ and .V 0; "0/, we have

d.V /hT i D d.V 0/hT 0i:
For a trivalent-ambidextrous pair .B; d/, we define a function G.B;d/ W TB ! k by

G.B;d/.�/ D d.V /hT i
where T is any cutting presentation of � with section .V; "/ with V 2 B. The
definition of a trivalent-ambidextrous pair implies that G.B;d/ is well-defined.

Let us explain how to produce a trivalent-ambidextrous pairs from traces on an
ideals and how the invariants derived from such data are related. Let t be a left (resp.
right) trace on a left (resp. right) ideal � of C and A as above. Denote by d the left
(resp. right) modified dimension on � associated with t. Set

B D fV 2 � \ � � W V is simple and d.V / D d.V �/g:

Corollary 7. The pair .B; d/ is trivalent-ambidextrous, B � A (and so any � 2 TB

is A-colored), and G.B;d/.�/ D F a
t .�/ for all � 2 TB.

Proof. Clearly .A; d/ is a trivalent-ambidextrous pair since isomorphic objects have
equal modified dimension. Now let f 2 EndC .V / where V 2 A. Since V is simple,
we have f D hf iV idV and hf �iV � D hf iV . Therefore

tV .f / D hf iV d.V / D hf �iV �d.V �/ D tV �.f �/ D t_V .f /:
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Finally, let � 2 TB and T be any cutting presentation of � with section .V; "/. Since
V is simple, F.T / D hT i idV " . Then

F a
t .�/ D tV ".F.T // D tV ".hT i idV "/

D hT i tV ".idV "/ D hT i d.V "/ D hT i d.V / D G.B;d/.�/:

Therefore, .F a
t /jTB D G.B;d/.

4. Traces and ideals from classes of objects

In this section we give a systematic approach to defining traces on ideals. In particular,
we introduce the notions of a one-sided ambidextrous trace on a class of objects and
of a spherical trace on a class of objects. Then we show that such traces are in one to
one correspondence with the traces of Section 2.

4.1. Ideals generated by a class of objects. Let C be a monoidal category. Given
a class O � C, set

� l
O D fU 2 C W U is a retract of Y ˝X for some X 2 O and Y 2 Cg;

� r
O D fU 2 C W U is a retract of X ˝Z for some X 2 O and Z 2 Cg;

�O D fU 2 C W U is a retract of Y ˝X ˝Z for some X 2 O and Y;Z 2 Cg:

Then � l
O

is the smallest left ideal of C containing O, � r
O

is the smallest right ideal
of C containing O, and �O is the smallest ideal of C containing O.

In the case where O D fV g for V 2 C, we denote � l
fV g, � r

fV g, and �fV g by � l
V ,

� r
V , and �V respectively.

Lemma 8. Let C be a pivotal category, O � C, and U 2 C.

(a) U 2 � l
O

if and only if there exist X 2 O and f 2 EndC .U ˝X�/ such that

trX�

r .f / D idU :

(b) U 2 � r
O

if and only if there exist Y 2 O and f 2 EndC .Y
� ˝ U/ such that

trY �

l .f / D idU :

(c) Let O0 D fX� W X 2 Og. Then

.� l
O/

� D � r
O0 ; .� r

O/
� D � l

O0 ; and �O D �O0 :
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Proof. Let us prove (a). Assume U 2 � l
O

, that is, there exist X 2 O, Y 2 C,
p W Y ˝X ! U , and q W U ! Y ˝X such that pq D idU . Set

f D .p ˝ idX�/.idY ˝ ecoevX evX /.q ˝ idX�/ W U ˝X� �! U ˝X�:

Then trX�

r .f / D pq D idU . Conversely, assume that there exist X 2 O and
f 2 EndC .U ˝ X�/ such that trX�

r .f / D idU . Note that U ˝ X� ˝ X 2 � l
O

and
set

p D idU ˝evX W U ˝X� ˝X �! U;

and

q D .f ˝ idX /.idU ˝ ecoevX / W U �! U ˝X� ˝X:

Then pq D trX�

r .f / D idU .
One deduces (b) from (a) using C rev. The first two identities of (c) follow from the

observations in the proof of Lemma 2. Finally �O D .�O/
� D �O0 by Lemma 2.

4.2. Ambidextrous traces on a class of objects. Let C be a pivotal k-category
and O � C. Denote by ' D f'X W X ! X��gX2C the pivotal structure of C (see
Section 1.1). Let t D ftX W EndC .X/ ! kgX2O be a family of k-linear forms.

We say that the family t is a left ambidextrous trace on O if (4) is satisfied for all
X;X 0 2 O and f 2 EndC .X

0 ˝X�/, that is

tX

0
B@ X 0

X

X

f

1
CA D tX 0

0
B@
X 0

X 0

X
f

1
CA :

We say that the family t is a right ambidextrous trace on O if (5) is satisfied for
all X;X 0 2 O and g 2 EndC .X

� ˝X 0/, that is

tX

0
B@ X 0

X

X

g

1
CA D tX 0

0
B@

X 0

X 0

X
g

1
CA :

For example, the left (resp. right) trace of endomorphisms in C (see Section 1.2)
is a left (resp. right) ambidextrous trace on Ob.C/.

Remark 9. If C is a ribbon category and V 2 C, we recover the definition of an
ambidextrous trace on O D fV g given in [3]. Indeed, in that case, the notions of left
and right ambidextrous traces become equivalent: the k-linear map

� W EndC .V ˝ V / �! EndC .V
� ˝ V /;
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defined by

g 7�! �.g/ D V

V V

V

g ;

is an isomorphism and, given a map tV W EndC .V / ! k, the morphism f D �.g/

satisfies (5) (for tV ) if and only if tV .trV
r .g// D tV .trV

l
.g//.

By Lemma 4, any left (resp. right) trace on a left (resp. right) ideal � in C is a
left (resp. right) ambidextrous trace on � (and in particular on any O � � ). The
following theorem states that one-sided ambidextrous traces on a class of objects
bijectively correspond to one-sided traces on the one-sided ideal generated by the
class.

Theorem 10. Let C be a pivotal k-category. If t is a left (resp. right) ambidextrous
trace on a class O of objects of C, then there exists a unique left (resp. right) trace t
on � l

O
(resp. � r

O
) such that tjO D t .

We prove Theorem 10 in Section 4.5.

Corollary 11. Let C be a pivotal k-category, � be a left (resp. right) ideal in C, and
t D ftX W EndC .X/ ! kgX2� be a family of k-linear maps. Then t is a left (resp.
right) trace on � if and only if t is a left (resp. right) ambidextrous trace on �.

Proof. This is a direct consequence of Theorem 10 and the fact that if � is a left ideal
(resp. right ideal), then � l

�
D � (resp. � r

�
D � ).

4.3. Spherical traces on a class of objects. Let C be a pivotal k-category and
t D ftX W EndC .X/ ! kgX2� be a family of k-linear maps.

Lemma 12. The following assertions are equivalent.

(i) The family t satisfies (6) for allX;X 0 2 O,Y 2 C, andf 2 EndC .X
0˝Y˝X�/,

that is,

tX

0
BB@

Y
X 0

X

X

f

1
CCA D tX 0

0
BB@
X 0

X 0

Y
X

f

1
CCA :

(ii) The family t satisfies (7) for allX;X 0 2 O, Y 2 C, andg 2 EndC .X
�˝Y ˝X 0/,

that is,

tX

0
BB@

YX 0
X

X

g

1
CCA D tX 0

0
BB@

X 0

X 0

Y X
g

1
CCA :
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Lemma 12 is proved in Section 4.6.
We say that the family t is a spherical trace on O if it satisfies the equivalent

assertions of Lemma 12. When C is spherical (see Section 1.5), the trace of endo-
morphisms in C is a spherical trace on Ob.C/.

By Lemma 4, any trace on an ideal � in C is an ambidextrous trace on � (and in
particular on any O � � ). The following theorem states that spherical traces on a
class of objects bijectively correspond to traces on the ideal generated by the class.

Theorem 13. If t is a spherical trace on a class O of objects of C, then there exists
a unique trace t on �O such that tjO D t .

We prove Theorem 13 in Section 4.6.

Corollary 14. Let � be an ideal in C and t D ftX W EndC .X/ ! kgX2� be a family
of k-linear maps. Then t is a trace on � if and only if t is a spherical trace on �.

Proof. This is a direct consequence of Theorem 13 and the fact that if � is an ideal,
then �� D �.

A spherical trace on O is in particular a left and a right ambidextrous trace on O.
But the converse is not true in general (for example, the left trace of endomorphisms
in C is both a left and right ambidextrous trace on O D f1g but is not a spherical trace
on f1g unless C is spherical). Nevertheless the converse is true when C is ribbon.

Corollary 15. Assume C is ribbon. Let O be a class of objects of C. If t is a right
ambidextrous trace on O, then t is a spherical trace on O.

Proof. Since C is braided, � l
O

D � r
O

D �O . By Theorem 10, t extends (uniquely)
to a right trace t on �O . Let X;X 0 2 �O and f 2 EndC .X

0 ˝X�/. We have

t

0
B@ X 0

X

X

f

1
CA D t

0
B@

X 0
X

X

f

1
CA D t

0
B@

X 0

X 0

X
f

1
CA D t

0
B@
X 0

X 0

X
f

1
CA :

The first and third equalities follow from the fact that C is ribbon. Since t is a right
ambidextrous trace on �O by Theorem 10, then the second equality follows from (5)
with g D �X 0;X�f ��1

X 0;X� , where � is the braiding of C. Thus t is a left ambidextrous
trace on �O , and so a left trace on �O by Corollary 11. Hence t is a trace on �O , and
so t D tjO is a spherical trace on O by Corollary 14.

4.4. Traces from ambidextrous objects. Let C be a monoidal k-category. If V is
a simple object of C, we denote by h iV W EndC .V / ! k the inverse of the k-linear
isomorphism k ! EndC .V / defined by k 7! k idV .
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We say that an object V of C is left ambidextrous (resp. right ambidextrous, resp.
spherical) if it is simple and the k-linear form h iV is a left ambidextrous trace (resp.
right ambidextrous trace, resp. spherical trace) on fV g. By Theorems 10 and 13,
such an object gives rise to a left trace (resp. right trace, resp. trace) on � l

V (resp. � r
V ,

resp. �V ).
The following proposition provides useful characterizations of ambidextrous ob-

jects:

Proposition 16. Let C be a pivotal k-category, with pivotal structure ', and let V
be a simple object of C.

(a) The following assertions are equivalent.

(i) V is left ambidextrous.

(ii) For all f 2 EndC .V
� ˝ V /, evV f D eevV �f �.idV � ˝'V /.

(iii) For all f 2 EndC .V
� ˝ V /, f ecoevV D .idV � ˝'�1

V /f �coevV � .

(b) The following assertions are equivalent.

(i) V is right ambidextrous.

(ii) For all f 2 EndC .V ˝ V �/, eevV f D evV �f �.'V ˝ idV �/.

(iii) For all f 2 EndC .V ˝ V �/, f coevV D .'�1
V ˝ idV �/f �

ecoevV � .

(c) V is spherical if and only if

trY
r ..evV ˝ idY /f / D trY �

r ..idY � ˝eevV �/f �/.idV � ˝'V /

for all Y 2 C and f 2 HomC .Y ˝ V � ˝ V; V � ˝ V ˝ Y /.

Proof. For Y 2 C, let IY W HomC .Y ˝V � ˝V; V � ˝V ˝Y / ! EndC .V ˝Y ˝V �/
be the k-linear isomorphism defined by

IY .f / D
V

V V

V Y

Y

f :

Let us prove (a). The form h iV is a left ambidextrous trace on fV g if and only
if (4) applied to I1.f / is satisfied for all f 2 EndC .V

� ˝ V /. Since ˛ D h˛iV idV

for all ˛ 2 EndC .V /, the condition (4) applied to I1.f / is equivalent to evV f DeevV �f �.idV � ˝'V /. Therefore, (i) is equivalent to (ii). Consequently (i) is equiva-
lent to (iii), since (iii) is (ii) applied to the opposite category Cop and an object is left
ambidextrous in C if and only if it is left ambidextrous in Cop.

Part (b) is deduced from (a) by using C rev.
Let us prove (c). The form h iV is a spherical trace on fV g if and only if (6) applied

to IY .f / is satisfied for all Y 2 C and f 2 HomC .Y ˝V � ˝V; V � ˝V ˝Y /, which
turns out to be equivalent to trY

r ..evV ˝idY /f / D trY �

r ..idY � ˝eevV �/f �/.idV � ˝'V /

since V is simple.
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4.5. Proof ofTheorem 10. We prove the theorem for left traces. Then the statements
for right traces can be deduced using C rev. Let t be a left ambidextrous trace on a
class O � C. For U 2 � l

O
and ˛ 2 EndC .U /, set

tU .˛/ D tX .tr
Y
l .q˛p//

where X 2 O, Y 2 C, and

p W Y ˝X �! U

and

q W U �! Y ˝X

are such that
pq D idU :

We first verify that tU .˛/ does not depend on the choice of p; q. Let

p0 W Y 0 ˝X 0 �! U

and

q0 W U �! Y 0 ˝X 0;

with X 0 2 O, Y 0 2 C, such that

pq D idU :

Set

f D
Y

X 0

X 0

U

U

U

X

X

Y 0 ˛

q0

p

q

p0

W X 0 ˝X� �! X 0 ˝X�;

so that

trX�

r .f / D trY 0

l .q
0˛p0/

and

'�1
X .trX 0

l .f //�'X D trY
l .q˛p/:

Therefore

tX 0.trY 0

l .q
0˛p0// D tX 0.trX�

r .f // D tX .'
�1
X .trX 0

l .f //�'X / D tX .tr
Y
l .q˛p//



Traces on ideals in pivotal categories 115

and so tU is well-defined. Clearly, tjO D t . Let us show that t is a left trace on � l
O

.
Let Z 2 C, U 2 � l

O
, and ˛ 2 EndC .Z ˝ U/. Take

p W Y ˝X �! U

and

q W U �! Y ˝X;

with X 2 O and Y 2 C, such that

pq D idU :

Then .idZ ˝p/.idZ ˝q/ D idZ˝U . Therefore

tZ˝U .˛/ D tX .tr
Z˝Y
l

..idZ ˝q/˛.idZ ˝p/// D tX .tr
Y
l .q trZ

l .˛/p// D tU .trZ
l .˛//:

Let now U; V 2 � l
O

, ˛ 2 HomC .U; V /, and ˇ 2 HomC .V; U /. Take

p W Y ˝X �! U; q W U �! Y ˝X;

p0 W Y 0 ˝X 0 �! V; q0 W V �! Y 0 ˝X 0;

with X;X 0 2 O and Y; Y 0 2 C, such that

pq D idU and p0q0 D idV :

Set

f D Y

X 0

X 0

U

U

V

V

X

X

Y 0
˛

ˇ

q0

p

q

p0

W X 0 ˝X� �! X 0 ˝X�;

so that

trX�

r .f / D trY 0

l .q
0˛ˇp0/

and

'�1
X .trX 0

l .f //�'X D trY
l .qˇ˛p/:
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Therefore

tV .˛ˇ/ D tX 0.trY 0

l .q
0˛ˇp0//

D tX 0.trX�

r .f //

D tX .'
�1
X .trX 0

l .f //�'X /

D tX .tr
Y
l .qˇ˛p//

D tU .ˇ˛/:

Hence, t is a left trace on � l
O

. Suppose finally ` is another left trace on � l
O

with
`jO D t . Let U 2 � l

O
and ˛ 2 EndC .U /. Take

p W Y ˝X �! U

and

q W U �! Y ˝X;

with X 2 O, Y 2 C, such that
pq D idU :

Note that U and Y ˝X belong to � l
O

. Then

`U .˛/ D `U .˛pq/ D `Y ˝X .q˛p/ D `X .tr
Y
l .q˛p// D tX .tr

Y
l .q˛p// D tU .˛/:

Hence, ` D t.

4.6. Proofs of Lemma 12 and Theorem 13. Let us prove Theorem 13 by taking
condition (i) of Lemma 12 as the definition of a spherical trace. Let t be a spherical
trace on a class O � C. For U 2 �O and ˛ 2 EndC .U /, set

tU .˛/ D tX .tr
Y
l trZ

r .q˛p//

where X 2 O, Y;Z 2 C, and

p W Y ˝X ˝Z �! U

and

q W U �! Y ˝X ˝Z

are such that
pq D idU :

We first verify that tU .˛/ does not depend on the choice of p; q. Let

p0 W Y 0 ˝X 0 ˝Z0 �! U
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and

q0 W U �! Y 0 ˝X 0 ˝Z0;

with X 0 2 O and Y 0; Z0 2 C, such that

pq D idU :

Set

f D
Y

X

XZ

Z

U

U

U

X 0

X 0

Y 0

Z0

Z0

˛

q0

p

q

p0

W X 0 ˝Z0 ˝Z� ˝X� �! X 0 ˝Z0 ˝Z� ˝X�;

so that
trZ0˝Z�˝X�

r .f / D trY 0

l trZ0

r .q
0˛p0/

and
'�1

X .trX 0˝Z0˝Z�

l
.f //�'X D trY

l trZ
r .q˛p/:

Therefore

tX 0.trY 0

l trZ0

r .q
0˛p0// D tX 0.trZ0˝Z�˝X�

r .f //

D tX .'
�1
X .trX 0˝Z0˝Z�

l
.f //�'X /

D tX .tr
Y
l trZ

r .q˛p//

and so tU is well-defined. Clearly, tjO D t . Let us show that t is a trace on �O . Let
A 2 C, U 2 �O , ˛ 2 EndC .A˝ U/ and ˇ 2 EndC .U ˝ A/. Take

p W Y ˝X ˝Z �! U

and

q W U �! Y ˝X ˝Z;

with X 2 O and Y;Z 2 C, such that

pq D idU :
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Then

.idA ˝p/.idA ˝q/ D idA˝U

and

.p ˝ idA/.q ˝ idA/ D idU ˝A :

Therefore

tA˝U .˛/ D tX .tr
A˝Y
l

trZ
r ..idA ˝q/˛.idA ˝p///

D tX .tr
Y
l trZ

r .q trA
l .˛/p//

D tU .trA
l .˛//

and

tU ˝A.ˇ/ D tX .tr
Y
l trZ˝A

r ..q ˝ idA/ˇ.p ˝ idA///

D tX .tr
Y
l trZ

r .q trA
r .ˇ/p//

D tU .trA
r .ˇ//:

Let now U; V 2 �O , ˛ 2 HomC .U; V /, and ˇ 2 HomC .V; U /. Take

p W Y ˝X ˝Z �! U; q W U �! Y ˝X ˝Z;

p0 W Y 0 ˝X 0 ˝Z0 �! V; q0 W V �! Y 0 ˝X 0 ˝Z0;

with X;X 0 2 O and Y; Y 0; Z;Z0 2 C, such that

pq D idU and p0q0 D idV :

Set

f D Y

X

XZ

Z

U

U

V

V

X 0

X 0

Y 0

Z0

Z0

˛

ˇ

q0

p

q

p0

W X 0 ˝Z0 ˝Z� ˝X� �! X 0 ˝Z0 ˝Z� ˝X�;
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so that

trZ0˝Z�˝X�

r .f / D trY 0

l trZ0

r .q
0˛ˇp0/;

and

'�1
X .trX 0˝Z0˝Z�

l
.f //�'X D trY

l trZ
r .qˇ˛p/:

Therefore

tV .˛ˇ/ D tX 0.trY 0

l trZ0

r .q
0˛ˇp0//

D tX 0.trZ0˝Z�˝X�

r .f //

D tX .'
�1
X .trX 0˝Z0˝Z�

l
.f //�'X /

D tX .tr
Y
l trZ

r .qˇ˛p//

D tU .ˇ˛/:

Hence, t is a trace on �O . Suppose finally ` is another trace on �O with `jO D t . Let
U 2 �O and ˛ 2 EndC .U /. Take

p W Y ˝X ˝Z �! U

and

q W U �! Y ˝X ˝Z;

with X 2 O and Y;Z 2 C, such that

pq D idU :

Note that U and Y ˝X belong to �O . Then

`U .˛/ D `U .˛pq/

D `Y ˝X˝Z.q˛p/

D `Y ˝X .tr
Z
r .q˛p//

D `X .tr
Y
l trZ

r .q˛p//

D tX .tr
Y
l trZ

r .q˛p//

D tU .˛/:

Hence, ` D t.
Finally, let us prove Lemma 12. Assume the family t satisfies condition (i) of

Lemma 12. By the above proof of Theorem 13, there exists a trace t on �O such that
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tjO D t and t satisfies (7) for allX;X 0 2 �O and Y 2 C. Since O � �O and tjO D t ,
we have that t satisfies (7) for allX;X 0 2 O and Y 2 C. Hence, condition (i) implies
condition (ii). Applying this implication to C rev gives the reverse implication, since
the ideal generated by O in C rev coincide with the ideal generated by O in C. This
concludes the proof of Lemma 12.

5. The case of projectives and the slope

The invariant of Theorem 6 relies on a certain set A of objects defined from a one-
sided trace on a one-sided ideal. In this section we give a characterization of A, in
terms of the slope, when the one-sided ideal is the ideal of projective objects.

Let C be a category. Recall that an object P of C is projective if the functor
HomC .P;�/ W C ! Set preserves epimorphisms, that is, if for any epimorphism
p W X ! Y and any morphism f W P ! Y in C, there exists a morphism g W P ! X

in C such that f D pg. We denote by Proj.C/ the class of projective objects of C.
An object Q of C is injective if it is projective in the opposite category Cop. In

other words, an object Q of C is injective if for any monomorphism i W X ! Y and
any morphism f W X ! Q in C, there exists a morphism g W Y ! Q in C such that
f D gi .

Lemma 17. Let C be pivotal category.

(a) Proj.C/ is an ideal of C. In particular, Proj.C/� D Proj.C/.

(b) Proj.C/ is the set of injective objects of C.

(c) If � is a left (resp. right) ideal of C containing an object V such that the left
evaluation evV W V � ˝ V ! 1 (resp. the right evaluation eevV W V ˝ V � ! 1)
is an epimorphism, then Proj.C/ � �.

(d) If P is a projective object such that evP (resp. eevP ) is an epimorphism, then
� l

P D �P D Proj.C/ (resp. � r
P D �P D Proj.C/).

Proof. Let us prove (a). Let P 2 Proj.C/, X 2 C, U be a retract of X ˝ P , and
u W X ˝ P ! U , v W U ! X ˝ P such that uv D idU . Let p W M ! N be an
epimorphism and f W U ! N be a morphism. Set

f 0 D .idX� ˝f u/.ecoevX ˝ idP / W P �! X� ˝N:

Since idX� ˝p is an epimorphism, there exists a morphism g0 W P ! X� ˝M such
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that f 0 D .idX� ˝p/g0. Set g D .eevX ˝ idM /.idX ˝g0/v W U �! M . Then

pg D .eevX ˝ idN /.idX ˝.idX� ˝p/g0/v

D .eevX ˝ idN /.idX ˝f 0/v

D .eevX ˝ f /.idX˝X� ˝u/.idX ˝ ecoevX ˝ idP /v

D f uv

D f:

Therefore, U 2 Proj.C/, and so Proj.C/ is a left ideal. Likewise one shows that
Proj.C/ is a right ideal. Hence, Proj.C/ is an ideal. Thus, Lemma 2 implies that
Proj.C/� D Proj.C/.

Part (b) follows from the fact that the duality functor Cop ! C is an equivalence.
Let us prove the left version of (c), from which the right version can be deduced

by using C rev. Let P 2 Proj.C/. since idP ˝evV is an epimorphism, there exists a
morphism g W P ! P ˝ V � ˝ V such that .idP ˝evV /g D idP . Therefore, P is a
retract of P ˝ V � ˝ V . Since P ˝ V � ˝ V 2 � as � is a left ideal, we get P 2 �.
Hence, Proj.C/ � �.

Finally, let us prove the left version of (d), from which the right version can be
deduced by using C rev. By (c), we have Proj.C/ � � l

P . Now � l
P � �P since �P is

a left ideal containing P and �P � Proj.C/ since Proj.C/ is an ideal containing P .
Therefore, � l

P D �P D Proj.C/.

Now let C be a pivotal k-category and P be a projective object such that evP is
an epimorphism. Assume there exists a non zero left ambidextrous trace t on fP g.
For example, such a trace exists when P is left ambidextrous (see Section 4.4). By
Lemma 17, Proj.C/ D � l

P and so, by Theorem 10, there exists a left trace t on
Proj.C/ such that tP D t . Denote by d the modified left dimension associated with t;
see Section 2.2.

Lemma 18. Let t and d be the left trace and modified left dimension associated to
P and t as defined in the previous paragraph. Let V be a projective object such that
evV an epimorphism. Then tV ¤ 0. Moreover, if V is simple, then d.V / ¤ 0.

Proof. Let g 2 EndC .P / such that tP .g/ D t.g/ ¤ 0. By Lemma 17, � l
V D

Proj.C/. By Lemma 8, since P 2 � l
V , there exists f 2 EndC .P ˝ V �/ such that

idP D trV �

r .f /. Set h D '�1
V .trP

l
..g ˝ idV �/f //�'V 2 EndC .V /. By Theorem 10,

t is a left ambidextrous trace on Proj.C/. Therefore, (4) implies

tV .h/ D tP .trV �

r ..g ˝ idV �/f // D tP .g trV �

r .f // D tP .g/ ¤ 0:

Hence, tV ¤ 0. Now if V is simple. Let k 2 k such that h D k idV . Then
k d.V / D k tV .idV / D tV .h/ ¤ 0, and so d.V / ¤ 0.
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Set

A D fV 2 Proj.C/ W V simple and evV , eevV are epimorphismsg:

Note that A� D A since the dual of a simple object is simple, Proj.C/� D Proj.C/,
and for any X 2 C, evX� is an epimorphism if and only if eevX is an epimorphism.

Assume now that k is a field. For V 2 A, the slope of V is

s.V / D d.V /=d.V �/ 2 k
�:

The slope is well-defined since A� D A and d.U / ¤ 0 for all U 2 A (by Lemma 18).
Recall t_ is the right trace on Proj.C/� D Proj.C/ defined by t_X .f / D tX�.f �/ for
X 2 Proj.C/ and f 2 EndC .X/.

Proposition 19. The slope s W A ! k
� has the following properties.

(a) s.V �/ D s.V /�1 for all V 2 A.

(b) s.U / D s.V /s.W / for all U; V;W 2 A such that U is a retract of V ˝W .

(c) For any V 2 A, t_V D tV if and only if s.V / D 1.

Proof. Part (a) is an immediate consequence of the definition since d.V ��/ D d.V /
because V �� ' V .

Let us prove (c). Let f 2 EndC .V /. There exists � 2 k such that f D � idV

and so f � D � idV � . Then

tV .f / D �d.V / D �d.V �/s.V / D s.V /tV �.f �/ D s.V /t_V .f /: (10)

Hence, tV D s.V / t_V .
Let us prove (b). Let p 2 HomC .V ˝W;U / and q 2 HomC .U; V ˝W / such

that pq D idU . Set

a D .p ˝ idW �/.idV ˝coevW /

and

b D .idV ˝eevW /.q ˝ idW �/:

Note that trW �

r .ab/ D pq D idU and .ba/� D trW �

l
.p�q�/. Since t is a left trace,
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and in particular satisfies (4) (see Theorem 10), and by using (10), we have

d.U / D tU .trW �

r .ab//

D tW .'�1
W .trU

l .ab//
�'W /

D s.W / tW �..'�1
W .trU

l .ab//
�'W /

�/

D s.W / tW �.trU
l .ab//

D s.W / tU ˝W �.ab/

D s.W / tV .ba/

D s.V /s.W / tV �..ba/�/

D s.V /s.W / tV �.trW �

l .p�q�//

D s.V /s.W / tW �˝V �.p�q�/

D s.V /s.W / tU �.q�p�/

D s.V /s.W / tU �.idU �/

D s.V /s.W / d.U �/:

Hence, s.U / D s.V /s.W /.

Remark that when C is ribbon, meaning that C is endowed with a braiding � such
that its associated twist

	 D f	X D trX
r .�X;X / W X ! XgX2C

is self-dual (i.e., .	X /� D 	X� for all X 2 C), then s.V / D 1 for all V 2 A (see [6]),
and so t_ D t on A.
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