

2013/14 - Devoir surveillé n°2

Durée: 3H00

Les quatre exercices sont indépendants. Les notes de cours et de TD sont autorisées. Il sera tenu compte de la clarté et de la précision de la rédaction.

Exercice 1. (Logarithme complexe)

Montrer qu'il n'existe pas d'application continue $\log \colon \mathbb{C}^* \to \mathbb{C}$ telle que

$$\log(1) = 0$$
 et $\exp(\log(z)) = z$ pour tout $z \in \mathbb{C}^*$,

où exp est l'exponentielle complexe.

[*Indication*: dans le cas contraire, on pourra étudier les applications induites.]

Exercice 2. (Revêtements des groupes topologiques)

Soit G un groupe topologique (i.e., un groupe muni d'une topologie telle que la multiplication et la fonction inverse soient continues). On suppose que G est connexe et localement connexe par arcs et on considère un revêtement $p \colon E \to G$ de G par un espace E connexe par arcs.

a. Principe d'Eckmann-Hilton.

Soit M un ensemble muni de deux produits, i.e., deux applications \bullet : $M \times M \to M$ et \star : $M \times M \to M$, admettant une unité commune et vérifiant pour tous $a, b, c, d \in M$,

$$(a \bullet b) \star (c \bullet d) = (a \star c) \bullet (b \star d).$$

Montrez que les produits \bullet et \star sont égaux et que $\bullet = \star$ est associatif et commutatif.

b. On note le produit de G par * et son élément neutre par 1. Si α et β sont deux lacets de G basés en 1, on note par $\alpha * \beta$ le lacet basé en 1 défini pour $s \in [0, 1]$ par :

$$(\alpha * \beta)(s) = \alpha(s) * \beta(s).$$

Montrer le produit \star sur $\pi_1(G, 1)$ donné par $[\alpha] \star [\beta] = [\alpha * \beta]$ est bien défini.

- **c.** Montrer (en utilisant le principe d'Eckmann-Hilton) que $\pi_1(G, 1)$ est commutatif.
- **d.** En déduire que *p* est un revêtement galoisien.
- **e.** Soient $m: E \times E \to G$ et $\iota: E \to G$ les applications définies pour $x, y \in E$ par

$$m(x, y) = p(x) * p(y)$$
 et $\iota(x) = p(x)^{-1}$.

Soit $e \in p^{-1}(1)$. Montrer que $m_*(\pi_1(E \times E, (e, e))) \subset p_*(\pi_1(E, e))$. En déduire qu'il existe une unique application continue $\tilde{m} \colon E \times E \to E$ telle que $\tilde{m}(e, e) = e$ et $p\tilde{m} = m$.

- **f.** Montrer qu'il existe une unique application continue $\tilde{\iota}: E \to E$ telle que $\tilde{\iota}(e) = e$ et $p\tilde{\iota} = \iota$.
- **g.** Montrer que pour tous $x, y, z \in E$,

$$\tilde{m}(\tilde{m}(x,y),z) = \tilde{m}(x,\tilde{m}(y,z))$$
 et $\tilde{m}(\tilde{\iota}(x),x) = e = \tilde{m}(x,\tilde{\iota}(x)).$

- **h.** En déduire que \tilde{m} et $\tilde{\iota}$ permettent de définir une structure de groupe topologique sur E dont e est l'élément neutre et telle que $p \colon E \to G$ est un homomorphisme de groupes.
- **k.** Soit e' un autre élément de la fibre $p^{-1}(1)$. Montrer qu'il existe un automorphisme ϕ du revêtement p tel que $\phi(e) = e'$. Montrer que ϕ est un isomorphisme de groupes de E (muni de la structure de groupe définie ci-dessus grâce à e) sur E (muni de la structure de groupe définie de manière analogue avec e').
- **l.** Déterminer toutes les structures de groupe topologique sur \mathbb{R} telles que l'application $p \colon \mathbb{R} \to S^1$, définie par $p(t) = e^{2i\pi t}$ pour $t \in \mathbb{R}$, soit un homomorphisme (continu) de groupes topologiques.

Exercice 3. (Homéomorphismes locaux et revêtements)

Une application continue $f: X \to Y$ est un homéomorphisme local si pour tout $x \in X$, il existe un voisinage ouvert est une U de x tel que f(U) soit ouvert et $f_{|U|}^{|f(U)}: U \to f(U)$ soit un homéomorphisme.

- a. Montrer qu'un revêtement est un homéomorphisme local.
- **b.** Montrer qu'un homéomorphisme local est une application ouverte.
- **c.** Soit $p: E \to B$ un homéomorphisme local avec E séparé. On suppose que les fibres $p^{-1}(b)$, avec $b \in B$, sont finies et ont le même cardinal. Montrer que p est un revêtement.
- **d.** Soit $n \in \mathbb{N}^*$. Montrer que l'application $p_n : \mathbb{C}^* \to \mathbb{C}^*$, définie par $p_n(z) = z^n$, est un revêtement à n feuillets.
- **e.** Montrer que l'application $f:]0, 2[\to S^1,$ définie par $f(t) = e^{2i\pi t}$, est un homéomorphisme local dont les fibres sont finies, mais que f n'est pas un revêtement.

Exercice 4. (Automorphismes de revêtements)

Combien d'automorphismes possède un revêtement non galoisien à cinq feuillets dont l'espace total est connexe et localement connexe par arcs ?