

TD6 - GROUPE FONDAMENTAL 2

Exercice 1. (Groupes par générateurs et relations)

a. Reconnaître le groupe

$$\langle a, b, c, d, e \mid d = e^2, bda = 1, ab^{-1}c = 1, bc = a, de = c \rangle.$$

b. Montrer que les groupes suivants sont isomorphes

$$\langle a, b \mid aba = b \rangle$$
 et $\langle x, y \mid x^2y^2 = 1 \rangle$.

c. Montrer que les groupes suivants ne sont pas isomorphes

$$\langle a, b \mid ba^2b^3 = a, abab^2 = 1 \rangle$$
 et $\langle x, y \mid y^3xy = x, x^5y = y^3x^2 \rangle$.

Exercice 2. (Somme amalgamée triviale)

Montrer que la somme amalgamée $(\mathbb{Z}/3\mathbb{Z}) *_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ de $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$ au dessus de \mathbb{Z} le long des surjections canoniques $\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ est le groupe trivial.

Exercice 3. (Attachement d'une cellule)

Soient X un espace topologique connexe par arcs, $n \ge 2$ et $f: S^{n-1} = \partial B^n \to X$ une application continue. Le but de l'exercice est de montrer que le groupe fondamental de l'espace topologique $B^n \cup_f X$ obtenu en attachant à X une cellule B^n de dimension n le long de f est

$$\pi_1(B^n \cup_f X) \cong \begin{cases} \pi_1(X, f(1))/\langle\langle \operatorname{im}(f_*) \rangle\rangle & \text{si } n = 2, \\ \pi_1(X) & \text{si } n \ge 3, \end{cases}$$

où, dans le cas n=2, $\langle\langle \operatorname{im}(f_*)\rangle\rangle$ est le plus petit sous-groupe distingué de $\pi_1(X,f(1))$ contenant l'image de l'homomorphisme $f_*:\pi_1(S^1,1)\to\pi_1(X,f(1))$ induit par f.

a. Soient 0 le centre de la boule B^n et $p: B^n \sqcup X \to B^n \cup_f X$ est l'application quotient. On pose :

$$U = p((B^n \setminus \{0\}) \sqcup X)$$
 et $V = p(B^n \setminus S^{n-1})$.

Montrer que U, V, et $U \cap V$ sont des ouverts de $B^n \cup_f X$ connexes par arcs.

- **b.** Montrer que *V* est simplement connexe.
- **c.** Montrer que $U \cap V$ est un rétract par déformation de $p(S_{1/2}^{n-1})$, où $S_{1/2}^{n-1} \subset B^n$ est la sphère de centre 0 et de rayon 1/2.
- **d.** Montrer que p(X) est un rétract par déformation de U via une rétraction $r: U \to p(X)$ telle que rp(x/2) = pf(x) pour tout $x \in S^{n-1}$.
- e. En déduire que pour tout $s_0 \in S^{n-1}$, il existe un diagramme commutatif

$$\pi_{1}(S^{n-1}, s_{0}) \xrightarrow{\cong} \pi_{1}(U \cap V, p(s_{0}/2))$$

$$\downarrow f_{*} \qquad \qquad \downarrow j_{*}$$

$$\pi_{1}(X, f(s_{0})) \xleftarrow{\cong} \pi_{1}(U, p(s_{0}/2)).$$

où les flèches horizontales sont des isomorphismes de groupes et $j\colon U\cap V\hookrightarrow U$ est l'inclusion.

f. Conclure.

Exercice 4. (Bouteille de Klein)

Déterminer le groupe fondamental de la bouteille de Klein définie par

$$K = [0, 1]^2 / \mathcal{R},$$

où \mathcal{R} est la relation d'équivalence engendrée par $(s,0) \sim (s,1)$ et $(0,t) \sim (1,1-t)$ pour $s,t \in [0,1]$. [*Indication*: montrer que $K \cong B^2 \cup_f S^1$ où $f \colon S^1 \to S^1$ est définie par $f(z) = \bar{z}$.]

Exercice 5. (Groupes fondamentaux des espaces projectifs complexes)

Montrer que les espaces projectifs complexes \mathbb{CP}^n sont simplement connexes. [*Indication*: utiliser les exercices 7.c et 8.d du TD3.]

Exercice 6. (Groupes fondamentaux des espaces projectifs réels)

Exercice o. (Groupes iondamentaux des espaces projectifs reels)

Montrer que les groupes fondamentaux des espaces projectifs réels sont

$$\pi_1(\mathbb{RP}^1) \cong \mathbb{Z}$$
 et $\pi_1(\mathbb{RP}^n) \cong \mathbb{Z}/2\mathbb{Z}$ pour $n \geq 2$.

[*Indication*: montrer que $\mathbb{RP}^1 \cong S^1$ et conclure en utilisant l'exercice 8.d du TD3.]

Exercice 7. (Espaces lenticulaires)

Soient p et q deux entiers premiers entre eux. Notons σ la symétrie orthogonale de \mathbb{R}^3 par rapport au plan z=0 et r la rotation de \mathbb{R}^3 de direction (0,0,1) et d'angle $2\pi/p$. L'espace lenticulaire de type (p,q) est l'espace topologique quotient

$$L(p,q) = B^3/\mathcal{R},$$

où \mathcal{R} est la relation d'équivalence sur B^3 engendrée par $x \sim \sigma(r^q(x))$ pour $x \in S^2$. Montrer que

$$\pi_1(L(p,q)) \cong \mathbb{Z}/p\mathbb{Z}.$$

Exercice 8. (Bouquet de cercles)

Determiner le groupe fondamental d'un bouquet de n cercles, qui est la réunion de n cercles reliés tous ensemble en un seul point.

Exercice 9. (Groupes de présentation finie comme groupes fondamentaux)

Montrer que tout groupe de présentation finie est le groupe fondamental d'un espace topologique.

[*Indication*: si $G \cong \langle g_1, \dots, g_m | r_1, \dots, r_n \rangle$, attacher n cellules B^2 au bouquet de m cercles.]