

TD7 - Homologie

Dans cette feuille d'exercices, les complexes de chaînes considérés sont des complexes de chaînes de groupes abéliens de la forme

$$C = (\cdots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0).$$

Exercice 1.

Soit $f: A \to B$ un morphisme de complexes de chaînes.

Montrer que Ker(f), Im(f) et B/Im(f) sont des complexes de chaînes.

Exercice 2. (Lemme des cinq)

Considérons le diagramme commutatif suivant, à lignes exactes, formé de groupes abéliens et de morphismes de groupes :

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4} \xrightarrow{f_{4}} A_{5}$$

$$\downarrow \varphi_{1} \qquad \downarrow \varphi_{2} \qquad \downarrow \varphi_{3} \qquad \downarrow \varphi_{4} \qquad \downarrow \varphi_{5}$$

$$B_{1} \xrightarrow{g_{1}} B_{2} \xrightarrow{g_{2}} B_{3} \xrightarrow{g_{3}} B_{4} \xrightarrow{g_{4}} B_{5}.$$

Le but de l'exercice est de montrer que si φ_1 , φ_2 , φ_4 , φ_5 sont des isomorphismes, alors φ_3 aussi.

- **a.** Montrer que si φ_1 est surjective et φ_2 , φ_4 sont injectives, alors φ_3 est injective.
- **b.** Montrer que si φ_2 , φ_4 sont surjectives et φ_5 est injective, alors φ_3 est surjective.
- c. Conclure.

Exercice 3.

Considérons le diagramme commutatif suivant de complexes de chaînes à lignes exactes :

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow h$$

$$0 \longrightarrow D \longrightarrow E \longrightarrow F \longrightarrow 0.$$

Montrer que si deux des applications f, g, h induisent des isomorphismes en homologie, alors il en est de même pour la troisième.

Indication: appliquer le lemme des cinq aux suites exactes longues induites en homologie.

Exercice 4. (Acyclicité vs contractilité)

Un complexe de chaînes C est *acyclique* si $H_n(C) = 0$ pour tout $n \ge 0$ et est *contractile* si l'application identité sur C est homotope à l'application nulle.

- **a.** Montrer que si un complexe de chaînes C est contractile alors il est acyclique.
- **b.** Montrer que la réciproque à la question a) est fausse en général. Indication: considérer le complexe de chaînes C défini par $C_n = \mathbb{Z}/4\mathbb{Z}$ pour tout $n \geq 0$ et dont l'application de bord est la multiplication par 2.
- **c.** Montrer que la réciproque à la question a) est vraie lorsque chaque C_n est un groupe abélien libre.

Exercice 5. (Homologie singulière vs groupe fondamental)

Soient X un espace topologique et $x_0 \in X$. Considérons le 1-simplexe standard

$$\Delta_1 = \left\{ (t_0, t_1) \in \mathbb{R}^2 \,\middle|\, t_0 \ge 0, \ t_1 \ge 0, \ t_0 + t_1 = 1 \right\}$$

et l'homéomorphisme $\omega \colon \Delta_1 \to [0,1]$ défini par $\omega(t_0,t_1)=t_0$. A tout chemin $f \colon [0,1] \to X$ on associe un 1-simplexe singulier $h(f)=f\omega \colon \Delta_1 \to X$.

a. Montrer que si α est un lacet de X, alors $h(\alpha)$ est un 1-cycle. Montrer que si α et α' sont des lacets homotopes, alors $h(\alpha)$ et $h(\alpha')$ sont homologues.

b. Montrer que la correspondance h induit un morphisme de groupes

$$H: \pi_1(X, x_0)_{ab} \to H_1(X),$$

appelé le morphisme de Hurewicz, où $\pi_1(X, x_0)_{ab}$ désigne l'abélianisé du groupe $\pi_1(X, x_0)$.

c. On souhaite démontrer le théorème de Hurewicz : si *X* est connexe par arcs, alors H est un isomorphisme :

$$H_1(X) \cong \pi_1(X, x_0)_{ab}$$
.

Pour cela, pour chaque $x \in X$, on choisit un chemin γ_x d'origine x_0 et d'extrémité x. A chaque 1-simplexe singulier $\sigma \colon \Delta_1 \to X$, on associe un lacet $\psi(\sigma)$ de X basé en x_0 défini par

$$\psi(\sigma) = \gamma_{f(0)} \cdot (\sigma \omega^{-1}) \cdot \overline{\gamma_{f(1)}}.$$

En étendant par linéarité l'application $\sigma \mapsto [\psi(\sigma)] \in \pi_1(X, x_0)_{ab}$, on obtient un morphisme de groupes $S_1(X) \to \pi_1(X, x_0)_{ab}$. Montrer que ce morphisme induit un morphisme de groupes

$$\Psi \colon H_1(X) \to \pi_1(X, x_0)_{ab}.$$

d. Montrer que Ψ et H sont inverses l'un de l'autre.

Indication: montrer que si σ est un 1-simplexe singulier de X, alors la classe d'homologie de $h(\psi(\sigma))$ est représentée par le cycle $f + \gamma_{f(0)} - \gamma_{f(1)}$.

e. Conclure.

Exercice 6. (Théorème du point fixe de Brouwer)

Le but de l'exercice est de montrer que toute application continue $f: B^n \to B^n$ possède un point fixe.

- **a.** Vérifier que le résultat est vrai pour n = 0 et n = 1.
- **b.** On suppose que $n \ge 2$. Montrer qu'il n'existe pas de rétraction du disque B^n sur le cercle S^{n-1} . *Indication*: dans le cas contraire, considérer le morphisme induit entre les (n-1)-ièmes groupes d'homologie singulière et utiliser que $H_{n-1}(S^{n-1}) \cong \mathbb{Z}$ et $H_{n-1}(B^n) \cong 0$.
- **c.** Soit $f: B^n \to B^n$ une application continue sans point fixe. Montrer l'application qui envoie $x \in B^n$ sur l'intersection de la demi-droite ouverte]f(x), x) de \mathbb{R}^n avec la sphère S^{n-1} est une rétraction de B^n sur S^{n-1} .
- d. Conclure

Exercice 7. (Orientation en un point d'une variété)

Soient M une variété topologique de dimension n et $x \in M$. Montrer que

$$H_p(M, M \setminus \{x\}) \cong \begin{cases} \mathbb{Z} & \text{si } p = n, \\ 0 & \text{sinon.} \end{cases}$$

Une *orientation en x* de M est la donnée d'un générateur de $H_n(M, M \setminus \{x\})$. Il existe donc deux orientations en un point donné.

Indication: considérer un voisinage fermé D de x homémomorphe à B^n et appliquer le théorème d'excision pour montrer que $H_p(M, M \setminus \{x\}) \cong H_p(D, D \setminus \{x\}) \cong H_p(B^n, S^{n-1})$, puis calculer ce groupe à l'aide de la suite exacte longue d'homologie relative à la paire (B^n, S^{n-1}) .

Exercice 8. (Théorème d'invariance du domaine)

Le but de l'exercice est de montrer que si $m \neq n$, alors un ouvert U de \mathbb{R}^m ne peut être homéomorphe à un ouvert V de \mathbb{R}^n . En particulier, \mathbb{R}^m et \mathbb{R}^n ne sont pas homéomorphes lorsque $m \neq n$.

a. Soit $x \in U$. Montrer (via le théorème d'excision) que pour tout $p \ge 0$,

$$H_p(U, U \setminus \{x\}) \cong H_p(\mathbb{R}^m, \mathbb{R}^m \setminus \{x\}).$$

b. Supposons qu'il existe un homéomorphisme $f: U \to V$. Montrer que pour tout $p \ge 0$,

$$H_p(\mathbb{R}^m, \mathbb{R}^m \setminus \{x\}) \cong H_p(\mathbb{R}^n, \mathbb{R}^n \setminus \{f(x)\}).$$

c. Conclure en utilisant l'exercice 7.

Exercice 9. (Homologie cellulaire)

Soit X un CW-complexe fini. Rappelons que X est un espace topologique de la forme $X = \bigcup_{n=0}^{N} X_n$, où X_0 est une réunion finie de points et X_n s'obtient à partir de X_{n-1} par recollement d'un nombre fini de n-cellules le long d'applications continues $f_i \colon S^{n-1} \to X_{n-1}$. Le sous-espace X_n s'appelle le n-squelette de X; il est la réunion de toutes les cellules de X de dimension $\leq n$.

- a. Montrer que l'on a les propriétés suivantes :
 - $H_q(X_n) = 0$ pour q > n,
 - $H_q(X) \cong H_q(X_{n+1})$ pour $q \le n$,
 - Pour tout n, il existe une suite exacte longue

$$0 \longrightarrow H_n(X_n) \xrightarrow{p_n} H_n(X_n, X_{n-1}) \xrightarrow{\delta_n} H_{n-1}(X_{n-1}) \xrightarrow{q_n} H_{n-1}(X_n) \longrightarrow 0$$

extraite de la suite exacte longue de la paire (X_n, X_{n-1}) .

b. Montrer que

$$\operatorname{Cell}_n(X) = H_n(X_n, X_{n-1}).$$

est un groupe abélien libre dont le rang est le nombre de *n*-cellules de *X*.

c. Considérons les applications de bord

$$\partial_n = p_{n-1} \circ \delta_n \colon \operatorname{Cell}_n(X) \to \operatorname{Cell}_{n-1}(X).$$

Montrer que cela définit un complexe de chaînes noté Cell(X).

d. Montrer que l'homologie de Cell(X) est isomorphe à l'homologie singulière de X: pour tout $n \ge 0$,

$$H_n(\operatorname{Cell}(X)) \cong H_n(X)$$
.

Exercice 10. (Homologie des espaces projectifs complexes)

Soit $n \ge 1$. L'espace projectif complexe \mathbb{CP}^n a une structure de CW-complexe fini avec une cellule en dimension paire q avec $0 \le q \le 2n$ (voir l'exercice 7 de la feuille TD2). En utilisant l'exercice précédent, montrer que

$$H_q(\mathbb{CP}^n) \cong \left\{ egin{array}{ll} \mathbb{Z} & \text{si } q \text{ pair et } 0 \leq q \leq 2n, \\ 0 & \text{sinon.} \end{array} \right.$$