Exercice 1.

Let G be a finite group. Consider the \mathbb{C}-vector space $V=\mathbb{C}[G]$ spanned by G.
Define $a \in V \otimes V \otimes V$ and $\mu \in(V \otimes V)^{*}$ by

$$
a=\frac{1}{|G|^{2}} \sum_{\substack{g, h, k \in G \\ g h k=1}} g \otimes h \otimes k \quad \text { and } \quad \mu(g \otimes h)=|G| \delta_{g h, 1} .
$$

Prove that (V, a, μ) is state sum triple, that is,

$$
\tau_{3}(a)=a, \quad \mu \tau_{2}=\mu, \quad \mu_{34}(a \otimes a)=\tau_{4}\left(\mu_{34}(a \otimes a)\right), \quad \mu_{19} \mu_{34} \mu_{67}(a \otimes a \otimes a)=a .
$$

Here $\otimes=\otimes_{\mathbb{k}}$, the map τ_{n} is the \mathbb{k}-linear automorphism of $V^{\otimes n}$ defined by

$$
\tau_{n}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}\right)=x_{2} \otimes \cdots \otimes x_{n} \otimes x_{1},
$$

and $\mu_{i j}$ denotes the contraction of the i-th and j-th component using μ.

Exercice 2.

Let G be a finite group. Denote by Z_{G} the topological invariant of closed oriented surfaces associated with the state sum triple (V, a, μ) of Exercise 1. The goal of the exercise is to prove that

$$
Z_{G}(\Sigma)=|G|^{\chi^{(\Sigma)-1}}\left|\operatorname{Hom}\left(\pi_{1}(\Sigma, *), G\right)\right|
$$

for all oriented closed connected surface Σ and $* \in \Sigma$, where $\chi(\Sigma)$ is the Euler characteristic of Σ. To this aim, consider a triangulation \mathcal{T} of Σ such that $*$ is a vertex of \mathcal{T}. Let O be the set of oriented edges of \mathcal{T}. By a G-state of \mathcal{T}, we mean a map $c: O \rightarrow G$ such that for all $e \in O$ and all triangles Δ of \mathcal{T},

$$
c(-e)=c(e)^{-1} \quad \text { and } \quad c\left(e_{1}^{\Delta}\right) c\left(e_{2}^{\Delta}\right) c\left(e_{3}^{\Delta}\right)=1,
$$

where $e_{1}^{\Delta}, e_{2}^{\Delta}, e_{3}^{\Delta}$ are the three edges adjacent to Δ oriented and cyclically ordered by the orientation of Δ induced by that of Σ. Denote by $S_{G}(\mathcal{T})$ the set of G-states of \mathcal{T}. Let \mathcal{V} be the set of vertices of \mathcal{T}. The gauge group of \mathcal{T} is the set \mathcal{G}_{*} of maps $\phi: \mathcal{V} \rightarrow G$ such that $\phi(*)=1$, endowed with the product defined by

$$
\left(\phi \phi^{\prime}\right)(v)=\phi(v) \phi^{\prime}(v)
$$

for all $\phi, \phi^{\prime} \in \mathcal{G}_{*}$ and all $v \in \mathcal{V}$.
a. Prove that

$$
Z_{G}(\Sigma)=|G|^{n_{1}(\mathcal{T})-2 n_{2}(\mathcal{T})}\left|S_{G}(\mathcal{T})\right|
$$

where $n_{i}(\mathcal{T})$ denotes the numbers of i-cells of \mathcal{T}.
b. Prove that \mathcal{G}_{*} acts freely on the left on $S_{G}(\mathcal{T})$ by

$$
(\phi \cdot c)(e)=\phi\left(v_{e}^{\text {in }}\right) c(e) \phi\left(v_{e}^{\text {out }}\right)^{-1}
$$

for all $\phi \in \mathcal{G}_{*}$ and $e \in O$, where $v_{e}^{\text {in }}, v_{e}^{\text {out }} \in \mathcal{V}$ are the incoming and outgoing vertices of e, respectively.
c. Using that any loop in Σ based at $*$ is homotopic to a finite sequence of oriented edges of \mathcal{T}, construct a map $\Gamma: S_{G}(\mathcal{T}) \rightarrow \operatorname{Hom}\left(\pi_{1}(\Sigma, *), G\right)$.
d. Prove that Γ is \mathcal{G}_{*}-equivariant and induces a bijection

$$
S_{G}(\mathcal{T}) / \mathcal{G}_{*} \cong \operatorname{Hom}\left(\pi_{1}(\Sigma, *), G\right)
$$

e. Conclude.

Exercice 3. (Mednykh's identity)

a. Let $(A, m, u, \Delta, \varepsilon)$ be a semisimple commutative Frobenius \mathbb{C}-algebra and let e_{1}, \ldots, e_{n} be its primitive idempotents. Consider the 2-dimensional TQFT Z_{A} associated to A. Prove that for any closed connected oriented surface Σ of genus g,

$$
Z_{A}(\Sigma)=\sum_{i=1}^{n} \varepsilon\left(e_{i}\right)^{1-g}
$$

b. Let G be a finite group. Denote by $\operatorname{Irr}(G)$ the set of isomorphic classes of irreducible complex representations of G. Prove that for any closed connected orientable surface Σ,

$$
\left|\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right)\right|=|G|^{1-\chi(\Sigma)} \sum_{V \in \operatorname{lrr}(G)} \operatorname{dim}(V)^{\chi(\Sigma)} .
$$

