L Université de Lille

HOMEWORK - MEDNYKH'S IDENTITY

Exercice 1.

Let G be a finite group. Consider the \mathbb{C} -vector space $V = \mathbb{C}[G]$ spanned by G. Define $a \in V \otimes V \otimes V$ and $\mu \in (V \otimes V)^*$ by

$$a = \frac{1}{|G|^2} \sum_{\substack{g,h,k \in G \\ ghk = 1}} g \otimes h \otimes k \quad \text{and} \quad \mu(g \otimes h) = |G| \, \delta_{gh,1}.$$

Prove that (V, a, μ) is state sum triple, that is,

$$\tau_{3}(a) = a, \quad \mu \tau_{2} = \mu, \quad \mu_{34}(a \otimes a) = \tau_{4}(\mu_{34}(a \otimes a)), \quad \mu_{19}\mu_{34}\mu_{67}(a \otimes a \otimes a) = a.$$

Here $\otimes = \otimes_{\Bbbk}$, the map τ_n is the k-linear automorphism of $V^{\otimes n}$ defined by

 $\tau_n(x_1 \otimes x_2 \otimes \cdots \otimes x_n) = x_2 \otimes \cdots \otimes x_n \otimes x_1,$

and μ_{ij} denotes the contraction of the *i*-th and *j*-th component using μ .

Exercice 2.

Let G be a finite group. Denote by Z_G the topological invariant of closed oriented surfaces associated with the state sum triple (V, a, μ) of Exercise 1. The goal of the exercise is to prove that

$$Z_G(\Sigma) = |G|^{\chi(\Sigma)-1} \left| \operatorname{Hom}(\pi_1(\Sigma, *), G) \right|$$

for all oriented closed connected surface Σ and $* \in \Sigma$, where $\chi(\Sigma)$ is the Euler characteristic of Σ . To this aim, consider a triangulation \mathcal{T} of Σ such that * is a vertex of \mathcal{T} . Let O be the set of oriented edges of \mathcal{T} . By a *G*-state of \mathcal{T} , we mean a map $c: \mathcal{O} \to G$ such that for all $e \in \mathcal{O}$ and all triangles Δ of \mathcal{T} ,

$$c(-e) = c(e)^{-1}$$
 and $c(e_1^{\Delta})c(e_2^{\Delta})c(e_3^{\Delta}) = 1$,

where e_1^{Δ} , e_2^{Δ} , e_3^{Δ} are the three edges adjacent to Δ oriented and cyclically ordered by the orientation of Δ induced by that of Σ . Denote by $S_G(\mathcal{T})$ the set of G-states of \mathcal{T} . Let \mathcal{V} be the set of vertices of \mathcal{T} . The gauge group of \mathcal{T} is the set \mathcal{G}_* of maps $\phi: \mathcal{V} \to G$ such that $\phi(*) = 1$, endowed with the product defined by

$$(\phi\phi')(v) = \phi(v)\phi'(v)$$

for all $\phi, \phi' \in \mathcal{G}_*$ and all $v \in \mathcal{V}$. **a.** Prove that

$$Z_{G}(\Sigma) = |G|^{n_{1}(\mathcal{T}) - 2n_{2}(\mathcal{T})} \left| S_{G}(\mathcal{T}) \right|$$

where $n_i(\mathcal{T})$ denotes the numbers of *i*-cells of \mathcal{T} . b

b. Prove that
$$\mathcal{G}_*$$
 acts freely on the left on $S_G(\mathcal{T})$ by

$$(\phi \cdot c)(e) = \phi(v_e^{\text{in}})c(e)\phi(v_e^{\text{out}})^{-1}$$

for all $\phi \in \mathcal{G}_*$ and $e \in O$, where $v_e^{\text{in}}, v_e^{\text{out}} \in \mathcal{V}$ are the incoming and outgoing vertices of e, respectively. c. Using that any loop in Σ based at * is homotopic to a finite sequence of oriented edges of \mathcal{T} , construct

a map $\Gamma: S_G(\mathcal{T}) \to \operatorname{Hom}(\pi_1(\Sigma, *), G).$

d. Prove that Γ is \mathcal{G}_* -equivariant and induces a bijection

$$S_G(\mathcal{T})/\mathcal{G}_* \cong \operatorname{Hom}(\pi_1(\Sigma, *), G).$$

e. Conclude.

Exercice 3. (Mednykh's identity)

a. Let $(A, m, u, \Delta, \varepsilon)$ be a semisimple commutative Frobenius \mathbb{C} -algebra and let e_1, \ldots, e_n be its primitive idempotents. Consider the 2-dimensional TQFT Z_A associated to A. Prove that for any closed connected oriented surface Σ of genus g,

$$Z_A(\Sigma) = \sum_{i=1}^n \varepsilon(e_i)^{1-g}.$$

b. Let *G* be a finite group. Denote by Irr(G) the set of isomorphic classes of irreducible complex representations of *G*. Prove that for any closed connected orientable surface Σ ,

$$|\operatorname{Hom}(\pi_1(\Sigma), G)| = |G|^{1-\chi(\Sigma)} \sum_{V \in \operatorname{Irr}(G)} \dim(V)^{\chi(\Sigma)}.$$