Université de Lille

Master 2 (2023) - Groupes quantiques et invariants quantiques

TD3 - Algèbres de Frobenius

By a *state sum triple*, we mean a triple (V, a, μ) , where *V* is a finite-dimensional vector space over a field \Bbbk , $a \in V \otimes V \otimes V$, and $\mu \in (V \otimes V)^*$, such that

 $\tau_{3}(a) = a, \quad \mu \tau_{2} = \mu, \quad \mu_{34}(a \otimes a) = \tau_{4}(\mu_{34}(a \otimes a)), \quad \mu_{19}\mu_{34}\mu_{67}(a \otimes a \otimes a) = a.$

Here $\otimes = \otimes_{\Bbbk}$, the map τ_n is the k-linear automorphism of $V^{\otimes n}$ defined by

 $\tau_n(x_1 \otimes x_2 \otimes \cdots \otimes x_n) = x_2 \otimes \cdots \otimes x_n \otimes x_1,$

and μ_{ij} denotes the contraction of the *i*-th and *j*-th component using μ .

Exercice 1. (Product and coproduct of a state sum triple)

Let (V, a, μ) be a state sum triple. Set

$$\Delta = (\mu \otimes \mathrm{id}_{V^{\otimes 2}})(\mathrm{id}_{V} \otimes a) \colon V \to V \otimes V \quad \text{and} \quad m = (\mu \otimes \mathrm{id}_{V})(\mathrm{id}_{V} \otimes \Delta) \colon V \otimes V \to V.$$

a. Prove that Δ is coassociative, *m* is associative, and

 $(m \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes \Delta) = \Delta m = (\mathrm{id}_V \otimes m)(\Delta \otimes \mathrm{id}_V).$

b. Prove that the k-linear map $\pi = m\Delta : V \to V$ satisfies

$$m = \pi m = m(\mathrm{id}_V \otimes \pi) = m(\pi \otimes \mathrm{id}_V)$$

and is a projector (i.e., $\pi^2 = \pi$).

c. Assume that μ is non-degenerate. Prove that

$$\operatorname{Im}(\pi) = \operatorname{Im}(m) = \{ (\operatorname{id}_V \otimes \phi)(a) \, | \, \phi \in (V \otimes V)^* \}$$

and

$$(V,m)$$
 has a unit $\Leftrightarrow \pi = \mathrm{id}_V \Leftrightarrow V = \{(\mathrm{id}_V \otimes \phi)(a) \mid \phi \in (V \otimes V)^*\}.$

Exercice 2.

Let (V, a, μ) be a state sum triple. Consider the kernel $\text{Ker}(\mu) = \{x \in V | \mu(x \otimes \cdot) = 0\}$ of μ and the canonical projection map

$$p: V \to \overline{V} = V/\operatorname{Ker}(\mu).$$

a. Prove that there is a unique $\overline{\mu} \in (\overline{V} \otimes \overline{V})^*$ such that $\mu = \overline{\mu}(p \otimes p)$.

b. Prove that $\overline{\mu}$ is non-degenerate.

c. Prove that $(\overline{V}, \overline{a}, \overline{\mu})$ is a state sum triple, where $\overline{a} = (p \otimes p \otimes p)(a)$.

Exercice 3.

Let (V, a, μ) be a state sum triple. Set

$$\widetilde{V} = \{ (\mathrm{id}_V \otimes \phi)(a) \, | \, \phi \in (V \otimes V)^* \}.$$

a. Prove that \widetilde{V} is the smallest vector subspace of V such that $a \in \widetilde{V} \otimes \widetilde{V} \otimes \widetilde{V}$.

b. Prove that $(\widetilde{V}, \widetilde{a}, \widetilde{\mu})$ is a state sum triple, where $\widetilde{a} = a$ and $\widetilde{\mu} = \mu_{\widetilde{V} \otimes \widetilde{V}}$.

c. Prove that if μ is non-degenerate, then so is $\tilde{\mu}$.

Exercice 4.

Let (V, a, μ) be a state sum triple such that $V = \{(id_V \otimes \phi)(a) | \phi \in (V \otimes V)^*\}$ and μ is non-degenerate. Consider the center *A* of the k-algebra (V, m). Prove that $\mu_{|A \otimes A}$ is non-degenerate.

Exercice 5.

Let (V, a, μ) be a state sum triple. The goal of this exercise is to determine the Frobenius algebra associated to the 2-dimensional TQFT $Z_{(V,a,\mu)}$. We say that two state sum triples are *equivalent* if they define isomorphic TQFTs.

a. Let $(\overline{V}, \overline{a}, \overline{\mu})$ be the state sum triple of Exercise 2.

Prove that the state sum triples $(\overline{V}, \overline{a}, \overline{\mu})$ et (V, a, μ) are equivalent.

- **b.** Let $(\widetilde{V}, \widetilde{a}, \widetilde{\mu})$ be the state sum triple of Exercise 3. Prove that the state sum triples $(\widetilde{V}, \widetilde{a}, \widetilde{\mu})$ et (V, a, μ) are equivalent.
- **c.** Assume that $V = \{(\mathrm{id}_V \otimes \phi)(a) | \phi \in (V \otimes V)^*\}$ and μ is non-degenerate.

Prove that the Frobenius algebra associated to the 2-dimensional TQFT $Z_{(V,a,\mu)}$ is isomorphic to the center of the k-algebra (V, m), where

 $m = (\mu \otimes \mathrm{id}_V \otimes \mu)(\mathrm{id}_V \otimes a \otimes \mathrm{id}_V) \colon V \otimes V \to V.$

d. Conclude by noticing that the state sum triple $(\tilde{\overline{V}}, \tilde{\overline{a}}, \tilde{\overline{\mu}})$ satisfies the assumptions of question c.