TD4 - Algèbres de Hopf

In what follows, k is a field.

Exercice 1. (The restricted dual)

Université de Lille

We denote the dual of a k-vector space V by $V^* = \text{Hom}_{\Bbbk}(V, \Bbbk)$ and the transpose of a linear map $f: V \to W$ by $f^*: W^* \to V^*$. Let A be an k-algebra with product $\mu: A \otimes A \to A$ and unit $\eta: \Bbbk \to A$. We view $A^* \otimes A^*$ as a subset of $(A \otimes A)^*$ as follows: for any $f, g \in A^*$, we define $f \otimes g \in (A \otimes A)^*$ by setting

$$(f \otimes g)(a \otimes b) = f(a)g(b)$$

for all $a, b \in A$. The *restricted dual* of the algebra A is the subspace of the dual A^* defined by

$$A^{\circ} = (\mu^{*})^{-1} (A^{*} \otimes A^{*}),$$

where $\mu^* \colon A^* \to (A \otimes A)^*$ is the transpose of μ .

- **a.** Prove that a form $f \in A^*$ belongs to A° if and only if there is an ideal *I* of *A* such that $\dim(A/I) < \infty$ and f(I) = 0.
- **b.** Prove that A° is the largest subspace of A^{*} such that $\mu^{*}(A^{\circ}) \subset A^{\circ} \otimes A^{\circ}$.
- **c.** Prove that A° is a coalgebra with coproduct and counit

$$\Delta_{A^{\circ}} = \mu^* \colon A^{\circ} \to A^{\circ} \otimes A^{\circ} \quad \text{and} \quad \varepsilon_{A^{\circ}} = \eta^* \colon A^{\circ} \subset A^* \to \Bbbk^* = \Bbbk.$$

d. Assume that *A* is a Hopf algebra with coproduct $\Delta: A \to A \otimes A$, counit $\varepsilon: A \to \Bbbk$, and antipode $S: A \to A$. Prove that

$$\Delta^*(A^\circ \otimes A^\circ) \subset A^\circ, \qquad \varepsilon^*(\Bbbk^*) \subset A^\circ, \qquad S^*(A^\circ) \subset A^\circ.$$

Deduce that the restricted dual A° of A is a Hopf algebra with product, unit, and antipode defined by

$$\mu_{A^{\circ}} = \Delta^* \colon A^{\circ} \otimes A^{\circ} \to A^{\circ}, \quad \eta_{A^{\circ}} = \varepsilon^* \colon \Bbbk = \Bbbk^* \to A^{\circ}, \quad S_{A^{\circ}} = S^* \colon A^{\circ} \to A^{\circ}.$$

e. Let *A* be a finite-dimensional Hopf algebra. Then $A^{\circ} = A^*$, so that A^* is a Hopf algebra. Likewise $A^{**} = (A^*)^*$ is a Hopf algebra. Prove that $A^{**} \simeq A$ as Hopf algebras.

Exercice 2. (Grouplike and primitive elements)

Let *A* be a Hopf algebra with coproduct Δ and counit ε . An element $g \in A$ is *grouplike* if $\Delta(g) = g \otimes g$ and $\varepsilon(g) = 1$. An element $a \in A$ is *primitive* if $\Delta(a) = a \otimes 1 + 1 \otimes a$.

a. Prove that the set G(A) of grouplike elements of A is a group (under multiplication).

b. Prove that the grouplike elements of *A* are linearly independent.

c. Prove that the set P(A) of primitive elements is a Lie subalgebra of A.

d. Let $I = \text{Ker}(\varepsilon)$. Prove that $A = \Bbbk \oplus I$ as vector spaces and that any $a \in I$ satisfies:

$$\Delta(a) = a \otimes 1 + 1 \otimes a \mod I \otimes I.$$

Exercice 3. (PBW basis for quantum groups)

Fix $q \in k^*$ not a root of unity. The goal of the exercise is to prove that the set

$$\mathcal{B} := \{ F^i K^n E^j \mid i, j \in \mathbb{N}, n \in \mathbb{Z} \}$$

is linearly independent; recall from the lecture that \mathcal{B} is a spanning set. The Hopf algebra $U_q(\mathfrak{sl}_2)$ is \mathbb{Z} -graded so that deg E = 2, deg F = -2 and deg K = 0. Its coproduct is given by

$$\Delta(E) = K \otimes E + E \otimes 1, \quad \Delta(F) = 1 \otimes F + F \otimes K^{-1}, \quad \Delta(K) = K \otimes K.$$

For $n \in \mathbb{Z}$ let $\pi_n : U_q(\mathfrak{sl}_2) \longrightarrow U_q(\mathfrak{sl}_2)_n$ denote the projection to the degree *n* component. **a.** Prove that the K^n for $n \in \mathbb{Z}$ are grouplike and two-by-two distinct, so that they are linearly indepen-

dent by the previous exercise. (Hint: apply the vector representation.) **b** Prove that $E_i^i \neq 0 \neq E_i^j$ for $i \in \mathbb{N}$. (Hint: apply the irreducible representation of highest weight e_i^j)

b. Prove that $E^j \neq 0 \neq F^j$ for $j \in \mathbb{N}$. (Hint: apply the irreducible representation of highest weight q^j .)

- **c.** Assume we have a nontrivial linear relation $\sum_{i \in \mathbb{N}, n \in \mathbb{Z}} \lambda_{i,n} F^i K^n = 0$.
 - **1.** Prove that there exists $i_0 > 0$ and $n_0 \in \mathbb{Z}$ such that $\lambda_{i_0,n_0} \neq 0$ and $\lambda_{i,n} \neq 0$ only if $i < i_0$.
 - **2.** Compute $(\pi_0 \otimes \pi_{-2i_0}) \Delta(F^i K^n)$ for $i \leq i_0$.
 - **3.** Prove that $\sum_{n \in \mathbb{Z}} \lambda_{i_0,n} K^n \otimes F^{i_0} = 0$.
 - **4.** Deduce from **a** and **b** the contradiction $\lambda_{i_0,n} = 0$ for all $n \in \mathbb{Z}$.
 - It follows that the $F^i K^n$ for $i \in \mathbb{N}$ and $n \in \mathbb{Z}$ are linearly independent.
- **d.** Assume we have a nontrivial linear relation $\sum_{i,j\in\mathbb{N},n\in\mathbb{Z}} \lambda_{i,n,j} F^i K^n E^j = 0$. **1.** Prove that there exists $j_0 > 0$ and $i_0 \in \mathbb{N}$, $n_0 \in \mathbb{Z}$ such that $\lambda_{i_0,n_0,j_0} \neq 0$ and $\lambda_{i,n,j} \neq 0$ only if $j < j_0$. **2.** Compute $(\pi_{2j_0} \otimes \operatorname{Id})\Delta(F^iK^nE^j)$ for $j \leq j_0$.
 - **3.** Prove that $\sum_{i \in \mathbb{N}, n \in \mathbb{Z}} \lambda_{i, n, j_0} K^n E^{j_0} \otimes F^i K^n = 0.$

4. Deduce from **b** and **c** the contradiction $\lambda_{i,n,i_0} = 0$ for all $i \in \mathbb{N}$ and $n \in \mathbb{Z}$. Conclude.

Exercice 4. (Simple of Weyl modules)

Let $\Bbbk = \mathbb{C}$ and ε be a root of unity of odd order $\ell > 1$. Recall the Weyl module W(n) for $n \in \mathbb{N}$ over the quantum group \mathbf{U}_{ε} . Let $n + 1 = n_0 + \ell n_1$ be the euclidean division of n + 1 by ℓ . Prove that the module W(n) is simple if and only if $n_0n_1 = 0$.