Master 2 (2023) - Groupes quantiques ET INVARIANTS QUANTIQUES

TD4-Algèbres de Hopf

In what follows, \mathbb{k} is a field.

Exercice 1. (The restricted dual)

We denote the dual of a \mathbb{k}-vector space V by $V^{*}=\operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$ and the transpose of a linear map $f: V \rightarrow W$ by $f^{*}: W^{*} \rightarrow V^{*}$. Let A be an \mathbb{k}-algebra with product $\mu: A \otimes A \rightarrow A$ and unit $\eta: \mathbb{k} \rightarrow A$. We view $A^{*} \otimes A^{*}$ as a subset of $(A \otimes A)^{*}$ as follows: for any $f, g \in A^{*}$, we define $f \otimes g \in(A \otimes A)^{*}$ by setting

$$
(f \otimes g)(a \otimes b)=f(a) g(b)
$$

for all $a, b \in A$. The restricted dual of the algebra A is the subspace of the dual A^{*} defined by

$$
A^{\circ}=\left(\mu^{*}\right)^{-1}\left(A^{*} \otimes A^{*}\right)
$$

where $\mu^{*}: A^{*} \rightarrow(A \otimes A)^{*}$ is the transpose of μ.
a. Prove that a form $f \in A^{*}$ belongs to A° if and only if there is an ideal I of A such that $\operatorname{dim}(A / I)<\infty$ and $f(I)=0$.
b. Prove that A° is the largest subspace of A^{*} such that $\mu^{*}\left(A^{\circ}\right) \subset A^{\circ} \otimes A^{\circ}$.
c. Prove that A° is a coalgebra with coproduct and counit

$$
\Delta_{A^{\circ}}=\mu^{*}: A^{\circ} \rightarrow A^{\circ} \otimes A^{\circ} \quad \text { and } \quad \varepsilon_{A^{\circ}}=\eta^{*}: A^{\circ} \subset A^{*} \rightarrow \mathbb{k}^{*}=\mathbb{k}
$$

d. Assume that A is a Hopf algebra with coproduct $\Delta: A \rightarrow A \otimes A$, counit $\varepsilon: A \rightarrow \mathbb{k}$, and antipode $S: A \rightarrow A$. Prove that

$$
\Delta^{*}\left(A^{\circ} \otimes A^{\circ}\right) \subset A^{\circ}, \quad \varepsilon^{*}\left(\mathbb{R}^{*}\right) \subset A^{\circ}, \quad S^{*}\left(A^{\circ}\right) \subset A^{\circ}
$$

Deduce that the restricted dual A° of A is a Hopf algebra with product, unit, and antipode defined by

$$
\mu_{A^{\circ}}=\Delta^{*}: A^{\circ} \otimes A^{\circ} \rightarrow A^{\circ}, \quad \eta_{A^{\circ}}=\varepsilon^{*}: \mathbb{k}=\mathbb{k}^{*} \rightarrow A^{\circ}, \quad S_{A^{\circ}}=S^{*}: A^{\circ} \rightarrow A^{\circ}
$$

e. Let A be a finite-dimensional Hopf algebra. Then $A^{\circ}=A^{*}$, so that A^{*} is a Hopf algebra. Likewise $A^{* *}=\left(A^{*}\right)^{*}$ is a Hopf algebra. Prove that $A^{* *} \simeq A$ as Hopf algebras.

Exercice 2. (Grouplike and primitive elements)

Let A be a Hopf algebra with coproduct Δ and counit ε. An element $g \in A$ is grouplike if $\Delta(g)=g \otimes g$ and $\varepsilon(g)=1$. An element $a \in A$ is primitive if $\Delta(a)=a \otimes 1+1 \otimes a$.
a. Prove that the set $G(A)$ of grouplike elements of A is a group (under multiplication).
b. Prove that the grouplike elements of A are linearly independent.
c. Prove that the set $P(A)$ of primitive elements is a Lie subalgebra of A.
d. Let $I=\operatorname{Ker}(\varepsilon)$. Prove that $A=\mathbb{k} \oplus I$ as vector spaces and that any $a \in I$ satisfies:

$$
\Delta(a)=a \otimes 1+1 \otimes a \quad \bmod I \otimes I
$$

Exercice 3. (PBW basis for quantum groups)

Fix $q \in \mathbb{K}^{*}$ not a root of unity. The goal of the exercise is to prove that the set

$$
\mathcal{B}:=\left\{F^{i} K^{n} E^{j} \mid i, j \in \mathbb{N}, n \in \mathbb{Z}\right\}
$$

is linearly independent; recall from the lecture that \mathcal{B} is a spanning set. The Hopf algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ is \mathbb{Z}-graded so that $\operatorname{deg} E=2, \operatorname{deg} F=-2$ and $\operatorname{deg} K=0$. Its coproduct is given by

$$
\Delta(E)=K \otimes E+E \otimes 1, \quad \Delta(F)=1 \otimes F+F \otimes K^{-1}, \quad \Delta(K)=K \otimes K
$$

For $n \in \mathbb{Z}$ let $\pi_{n}: U_{q}\left(\mathfrak{s l}_{2}\right) \longrightarrow U_{q}\left(\mathfrak{S I}_{2}\right)_{n}$ denote the projection to the degree n component.
a. Prove that the K^{n} for $n \in \mathbb{Z}$ are grouplike and two-by-two distinct, so that they are linearly independent by the previous exercise. (Hint: apply the vector representation.)
b. Prove that $E^{j} \neq 0 \neq F^{j}$ for $j \in \mathbb{N}$. (Hint: apply the irreducible representation of highest weight q^{j}.)
c. Assume we have a nontrivial linear relation $\sum_{i \in \mathbb{N}, n \in \mathbb{Z}} \lambda_{i, n} F^{i} K^{n}=0$.

1. Prove that there exists $i_{0}>0$ and $n_{0} \in \mathbb{Z}$ such that $\lambda_{i_{0}, n_{0}} \neq 0$ and $\lambda_{i, n} \neq 0$ only if $i<i_{0}$.
2. Compute $\left(\pi_{0} \otimes \pi_{-2 i_{0}}\right) \Delta\left(F^{i} K^{n}\right)$ for $i \leq i_{0}$.
3. Prove that $\sum_{n \in \mathbb{Z}} \lambda_{i_{0}, n} K^{n} \otimes F^{i_{0}}=0$.
4. Deduce from \mathbf{a} and \mathbf{b} the contradiction $\lambda_{i_{0}, n}=0$ for all $n \in \mathbb{Z}$.

It follows that the $F^{i} K^{n}$ for $i \in \mathbb{N}$ and $n \in \mathbb{Z}$ are linearly independent.
d. Assume we have a nontrivial linear relation $\sum_{i, j \in \mathbb{N}, n \in \mathbb{Z}} \lambda_{i, n, j} F^{i} K^{n} E^{j}=0$.

1. Prove that there exists $j_{0}>0$ and $i_{0} \in \mathbb{N}, n_{0} \in \mathbb{Z}$ such that $\lambda_{i_{0}, n_{0}, j_{0}} \neq 0$ and $\lambda_{i, n, j} \neq 0$ only if $j<j_{0}$.
2. Compute $\left(\pi_{2 j_{0}} \otimes \mathrm{Id}\right) \Delta\left(F^{i} K^{n} E^{j}\right)$ for $j \leq j_{0}$.
3. Prove that $\sum_{i \in \mathbb{N}, n \in \mathbb{Z}} \lambda_{i, n, j_{0}} K^{n} E^{j_{0}} \otimes F^{i} K^{n}=0$.
4. Deduce from \mathbf{b} and \mathbf{c} the contradiction $\lambda_{i, n, j_{0}}=0$ for all $i \in \mathbb{N}$ and $n \in \mathbb{Z}$.

Conclude.

Exercice 4. (Simple of Weyl modules)

Let $\mathbb{k}=\mathbb{C}$ and ε be a root of unity of odd order $\ell>1$. Recall the Weyl module $W(n)$ for $n \in \mathbb{N}$ over the quantum group \mathbf{U}_{ε}. Let $n+1=n_{0}+\ell n_{1}$ be the euclidean division of $n+1$ by ℓ. Prove that the module $W(n)$ is simple if and only if $n_{0} n_{1}=0$.

