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1. Hopf algebras

Throughout the text, the ground field is K. All vector spaces are defined over K.

1.1. Recall on tensor product. Let V1, V2 and W be vector spaces. A map F :
V1 × V2 −→W is called bilinear if for λ ∈ K, v1, v′1 ∈ V1 and v2, v

′
2 ∈ V2 we have

F (λv1 + v′1, v2) = λF (v1, v2) + F (v′1, v2), F (v1, λv2 + v′2) = λF (v1, v2) + F (v1, v
′
2).

Proposition 1.1. Given two vector spaces V1 and V2, we have a vector space V and a
bilinear map ι : V1 × V2 −→ V satisfying the following universal property:

if W is a vector space and F : V1 × V2 −→ W is a bilinear map, there exists a
unique linear map f : V −→W such that F = f ◦ ι.

If (V ′, ι′) is another pair of a vector space and a bilinear map satisfying the universal
property, then we have a unique linear isomorphism f : V −→ V ′ such that ι′ = f ◦ ι.

Write V := V1 ⊗ V2. For v1 ∈ V1 and v2 ∈ V2, let v1 ⊗ v2 ∈ V denote ι(v1, v2).
If f : V1 −→ V ′1 and g : V2 −→ V ′2 are linear maps, then we have a bilinear map

F : V1×V2 −→ V ′1⊗V ′2 given by F (v1, v2) = f(v1)⊗g(v2). From the universal property,
we obtain a linear map F : V1 ⊗ V2 −→ V ′1 ⊗ V ′2 such that F(v1 ⊗ v2) = f(v1)⊗ g(v2).
Such a linear map is denoted by f ⊗ g. Whenever composition is well-defined, we have

(f1 ⊗ g1) ◦ (f2 ⊗ g2) = f1 ◦ f2 ⊗ g1 ◦ g2, IdV⊗W = IdV ⊗ IdW .

Example 1.2. The map F : V1 × V2 −→ V2 ⊗ V1 defined by F (v1, v2) = v2 ⊗ v1 is
bilinear. It induces a linear map f : V1⊗V2 −→ V2⊗V1 such that f(v1⊗ v2) = v2⊗ v1.
Such a linear map is denoted by σV1,V2 , and called flip map.

The tensor product of n vector spaces V1 ⊗ V2 ⊗ · · · ⊗ Vn is well-defined for n ≥ 3.
We have natural identifications of tensor products and identities of linear maps

(U ⊗ V )⊗W = U ⊗ (V ⊗W ), V ⊗K = V = K⊗ V,
(f ⊗ g)⊗ h = f ⊗ (g ⊗ h), f ⊗ IdK = f = IdK ⊗ f.

1.2. Algebras and representations. An algebra is a vector space A (addition and
scalar multiplication) together with a bilinear map A × A −→ A, (a, b) 7→ ab and an
element 1 such that

(ab)c = a(bc), λa = (λ1)a = a(λ1).

This is equivalent to a vector space A together with two linear maps A⊗A −→ A and
K −→ A satisfying associativity and unity. Call 1 the identity element.

A subalgebra of A is a subspace B stable under multiplication and containing 1.
An ideal of A is a subspace I such that AI ⊂ I and IA ⊂ I. Given such I, the

quotient space A/I is an algebra with multiplication

ab = ab.

An algebra homomorphism F : A −→ B is a linear map such that

F (a1a2) = F (a1)F (a2), F (1) = 1.

The tensor product of two algebras A and B is an algebra with multiplication

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.
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Example 1.3. If V is a vector space, then the vector space EndV of all linear endo-
morphisms of V forms an algebra, with multiplication given by composition. Let W
be another vector space. Then the bilinear map (f, g) 7→ f ⊗ g extends to an injective
algebra homomorphism EndV ⊗EndW −→ End(V ⊗W ). It is an isomorphism if V or
W is finite-dimensional.

Proposition 1.4. Given a vector space V , we have an algebra A and a linear map
ι : V −→ B satisfying the universal property:

if B is an algebra and F : V −→ B is a linear map, then there exists a unique
algebra homomorphism f : A −→ B such that F = f ◦ ι.

If (A′, ι′) is another pair of an algebra and a linear map satisfying the universal property,
then there exists a unique algebra isomorphism f : A −→ A′ such that ι′ = f ◦ ι.

Call A the tensor algebra of V and denote it by T (V ). Let X be a basis of V and Let
R be a subset of T (V ). Call the quotient algebra T (V )/〈R〉 the algebra with generators
X and relations R. Here 〈R〉 denotes the ideal of T (V ) generated by R.

Example 1.5. Let V be a finite-dimensional vector space with basis (e1, e2, · · · , en).
Then EndV ∼= T (W )/〈R〉 where

W :=
⊕

1≤i,j≤n
Keij , R = {eij⊗ekl−δjkeil ∈W⊕W⊗2 | 1 ≤ i, j, k, l ≤ n}∪{

n∑
i=1

eii−1}.

Definition 1.6. A representation of an algebra A is a vector space V equipped with
an algebra homomorphism ρ : A −→ EndV . Call V an A-module.

Submodules, quotient modules, irreducible modules are defined in the obvious way.
Given two A-modules V and W , the tensor product is naturally a module over A⊗A

with structural map

A⊗A −→ EndV ⊗ EndW ↪→ End(V ⊗W ).

To make it an A-module, we would like to have an algebra homomorphism A −→ A⊗A.

1.3. Monoid algebra. By a monoid we mean a setM endowed with a binary operation
M ×M −→M,a⊗ b 7→ ab and an element 1 such that: (ab)c = a(bc) and 1a = a = a1.
An algebra is a monoid with the binary operation given by multiplication.

To a monoid M we attach its monoid algebra K[M ] := T (V )/〈R〉 where

V :=
⊕
a∈M

Kea, R := {ea ⊗ eb − eab ∈ V ⊕ V ⊗2 | a, b ∈M} ∪ {e1 − 1}.

(i) Universal property: If A is an algebra and F : M −→ A is a monoid homomor-
phism, then there exists a unique algebra homomorphism f : K[M ] −→ A such
that F = f ◦ ι. Here ι : M −→ K[M ] is the map ι(a) = ea.

(ii) Explicit realization: The algebra K[M ] is realized on the vector space ⊕a∈MKea.
Its multiplication is induced by eaeb = eab.

Example 1.7. If M is the monoid Zn of n-tuples of integers, then K[M ] is the Laurent
polynomial algebra K[t±11 , t±12 , · · · , t±1n ].
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1.4. Universal enveloping algebra. A Lie algebra is a vector space g equipped with
a bilinear map g× g 7→ g, (x, y) 7→ [x, y], called Lie bracket, such that

[x, x] = 0 = [[x, y], z] + [[y, z], x] + [[z, x], y].

An algebra is viewed as a Lie algebra with Lie bracket [a, b] := ab− ba.
To a Lie algebra g we attach its universal enveloping algebra U(g) := T (g)/〈R〉 where

R := {x⊗ y − y ⊗ x− [x, y] ∈ g⊕ g⊗2 | x, y ∈ g}.
(i) Universal property: If A is an algebra and F : g −→ A is a Lie algebra homo-

morphism, then there exists a unique algebra homomorphism f : U(g) −→ A
such that F = f ◦ι. Here ι : g −→ U(g) is the composition g −→ T (g) −→ U(g).

(ii) Let (B,≺) be an ordered basis of g. Then the defining ideal of U(g) is generated
by x⊗ y − y ⊗ x− [x, y] for x ≺ y in B.

(iii) Poincaré–Birkhoff–Witt: The ordered monomials in the x+ 〈R〉 for x ∈ B with
respect to the ordering of B form a basis of the quotient space U(g) of T (g).

Example 1.8. g = sl2 is the Lie algebra of two-by-two traceless matrices. It has a

basis e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
and its Lie bracket is

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

U(sl2) is the algebra with generators e, f, h and relations

ef − fe = h, he− eh = 2e, hf − fh = −2f.

1.5. Coalgebras and convolution product. A coalgebra is a vector space C together
with two linear maps ∆ : C −→ C ⊗ C and ε : C −→ K such that

(∆⊗ Id)∆ = (Id⊗∆)∆, (ε⊗ Id)∆ = (Id⊗ ε)∆ = Id.

C is called co-commutative if σ∆ = ∆. A sub-coalgebra is a subspace D of C such
that ∆(D) ⊂ D ⊗ D. A co-ideal is a subspace I of C such that ε(I) = {0} and
∆(I) ⊂ I ⊗ C + C ⊗ I. The quotient space C/I is naturally a coalgebra.

A coalgebra homomorphism from a coalgebra (C,∆, ε) to a coalgebra (C ′,∆′, ε′) is
a linear map f : C −→ C ′ such that

(f ⊗ f)∆ = ∆′f, ε = ε′f.

The tensor product C ⊗ C ′ is a coalgebra with coproduct (Id ⊗ σ ⊗ Id)(∆ ⊗ ∆′) and
counit ε⊗ ε′.

Lemma 1.9. Let (A,m, η) be an algebra and (C,∆, ε) be a coalgebra. For f and g two
linear maps from C to A, define their convolution product f ∗g to be the linear map
m(f ⊗ g)∆ : C −→ A. Namely, for x ∈ C we have

(f ∗ g)(x) =
∑
i

f(ai)g(bi) if ∆(x) =
∑
i

ai ⊗ bi.

Then the vector space Hom(C,A) equipped with the convolution product is an algebra
whose identity element is ηε.

As a consequence, the linear dual of a coalgebra is naturally an algebra.
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Example 1.10. (i) Let C be the vector space with basis (ei : 1 ≤ i ≤ n). Then C is
a coalgebra by setting ∆(ei) = ei ⊗ ei and ε(ei) = 1. Its dual is identified the vector
space of maps from {1, 2, · · · , n} to K. The convolution product of two such maps f
and g is simply the usual product: (f ∗ g)(i) = f(i)g(i) for 1 ≤ i ≤ n.

(ii) Let C be the vector space with basis (eij : 1 ≤ i, j ≤ n). It is a coalgebra:

∆(eij) =

n∑
k=1

eik ⊗ ekj , ε(eij) = δij .

Its dual is the algebra Matn×n(K) of n× n matrices.

1.6. Bialgebras.

Lemma 1.11. Let B be vector space with is equipped with an algebra structure (B,m, η)
and a coalgebra structure (B,∆, ε). Then the following two conditions are equivalent.

(i) m : B ⊗B −→ B and η : K −→ B are coalgebra homomorphisms.
(ii) ∆ : B −→ B ⊗B and ε : B −→ K are algebra homomorphisms.

Under these conditions, B is called a bialgebra.

Example 1.12. (i) Let M be a monoid. Then K[M ] is a bialgebra.
(ii) Let g be a Lie algebra. We have Lie algebra homomorphisms

g −→ U(g)⊗ U(g), g −→ K

which send x to x ⊗ 1 + 1 ⊗ x and 0 respectively. They extend to algebra
homomorphisms ∆ : U(g) −→ U(g) ⊗ U(g) and ε : U(g) −→ K. In this way,
U(g) becomes a bialgebra.

1.7. Hopf algebras. Let (B,m, η,∆, ε) be a bialgebra. Then Hom(B,B) equipped
with convolution product is an algebra. Call B a Hopf algebra if the linear map Id :
B −→ B is invertible with respect to the convolution product. The inverse is called
the antipode S : B −→ B.

To an algebra (A,m, η) we attach its opposite algebra (A,mσ, ε), denoted by Aop. To
a coalgebra (C,∆, ε) we attach its opposite coalgebra (C, σ∆, ε), denoted by Ccop.

Example 1.13. (i) Let M be a monoid. The bialgebra K[M ] is a Hopf algebra if
and only if M is a group. The antipode is given by S(ex) = ex−1 .

(ii) Let g be a Lie algebra. We have a Lie algebra homomorphism

g −→ U(g)op, x 7→ −x,

which extends to an algebra homomorphism S : U(g) −→ U(g)op, which is the
antipode. Therefore, U(g) is always a Hopf algebra.

2. Quantum groups I

2.1. Antipode and duality. Let (B,m, η,∆, ε) be a bialgebra. Given two B-modules
U and V , we can equip their tensor product U⊗V with a B-module structure by setting
a(u⊗ v) =

∑
i aiu⊗ biv for ∆(a) =

∑
i ai ⊗ bi and u ∈ U, v ∈ V .

The counit ε : B −→ K equips K with a B-module structure.
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For three B-modules U, V and W , the identity maps are B-module morphisms:

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ), K⊗ U ∼= U ∼= U ⊗K.
If f : U −→ U ′ and g : V −→ V ′ are B-module morphisms, then so is f ⊗ g.

Proposition 2.1. In a Hopf algebra (H,m, η,∆, ε, S), the antipode S : H −→ H is an
anti-homomorphism of algebras and an anti-homomorphism of coalgebras.

Proof. We shall prove the first half, namely, Sm = (S⊗S)mσ in the convolution algebra
HomK(H ⊗H,H). Since m is a coalgebra homomorphism, we have

Sm ∗m = m(S ⊗ Id)(m⊗m)∆H⊗H = m(S ⊗ Id)∆m = ηεm = m ∗ Sm.
So Sm is the convolution-inverse of m. On the other hand, for x, y ∈ H with ∆(x) =∑

i ai ⊗ bi and ∆(y) =
∑

j cj ⊗ dj we have ∆H⊗H(x⊗ y) =
∑

i,j ai ⊗ cj ⊗ bi ⊗ dj and

(S ⊗ S)mσ ∗m(x⊗ y) =
∑
i,j

S(cj)S(ai)bidj =
∑
j

S(cj)×
∑
i

S(ai)bi × dj

=
∑
j

S(cj)× ε(x)1× dj = ε(x)
∑
j

S(cj)dj = ε(x)ε(y)1.

By invertibility of m, we must have Sm = (S ⊗ S)mσ. �

Definition 2.2. Let (H,m, η,∆, ε, S) be a Hopf algebra. Given two H-modules U and
V , the space HomK(U, V ) of linear maps from U to V has a H-module structure: for
x ∈ H with coproduct ∆(x) =

∑
i ai ⊗ bi and for f : U −→ V a linear map, af is

another linear map from U to V given by

〈af, u〉 =
∑
i

ai〈f, (S(bi)u〉 for u ∈ U.

It follows that the dual U∗ = HomK(U,K) of an H-module U is still an H-module.
In particular, the natural linear map

V ⊗ U∗ −→ HomK(U, V )

is a H-module homomorphism.

Lemma 2.3. Let H be a Hopf algebra and U be a finite-dimensional H-module. Then
the evaluation map eU : U∗ ⊗ U −→ K and the coevaluation map cU : K −→ U ⊗ U∗
are H-module morphisms.

Proof. Choose a basis (u1, u2, · · · , un) of U and let (u∗1, u
∗
2, · · · , u∗n) be the dual basis

of U∗. Then cU (1) =
∑

i ui ⊗ u∗i . For h ∈ H with ∆(h) =
∑

i ai ⊗ bi we have

hcU (1) = h
∑
s

us ⊗ u∗s =
∑
i,s

aius ⊗ biu∗s =
∑
i,s,t

aius ⊗ 〈biu∗s, ut〉u∗t

=
∑
i,s,t

aius ⊗ 〈u∗s, S(bi)ut〉u∗t =
∑
i,t

ai(
∑
s

〈u∗s, S(bi)ut〉us)⊗ u∗t

=
∑
i,t

aiS(bi)ut ⊗ u∗t = ε(h)cU (1) = cU (h1).
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So cU is H-linear. For f ∈ U∗ and u ∈ U , we have

eU (h(f ⊗ u)) = eU (
∑
i

aif ⊗ biu) =
∑
i

〈aif, biu〉 =
∑
i

f(S(ai)biu)

= f(
∑
i

S(ai)biu) = f(ε(h)u) = ε(h)〈f, u〉 = heU (f ⊗ u).

So eU is H-linear. �

Let U be a finite-dimensional H-module. Then the double dual module U∗∗ is the
pullback of the H-module U along the algebra homomorphism S2.

Assume that there exists an invertible element h0 ∈ H× such that S2(h) = h0hh
−1
0

for h ∈ H. Then we have an H-module isomorphism

U∗∗ −→ U u 7→ h−10 u.

As a consequence, the following are H-module morphisms:

ẽU : U ⊗ U∗ −→ K, u⊗ f 7→ 〈f, h0u〉,

c̃U : K −→ U∗ ⊗ U, 1 7→
∑
i

u∗i ⊗ h−10 ui.

2.2. Braided bialgebras. A bialgebra B is braided (or quasi-triangular) if there exists
an invertible element R ∈ (H ⊗H)× satisfying

∆cop(x) = R∆(x)R−1 for x ∈ H,
(∆⊗ Id)(R) = R13R12, (Id⊗∆)(R) = R13R23

where for R =
∑

i ai ⊗ bi we set

R12 =
∑
i

ai ⊗ bi ⊗ 1, R13 =
∑
i

ai ⊗ 1⊗ bi, R23 =
∑
i

1⊗ ai ⊗ bi.

Given two B-modules U and V , the following defines a B-module morphism

cU,V : U ⊗ V −→ V ⊗ U, cU,V (u⊗ v) =
∑
i

biv ⊗ aiu.

Namely, cU,V = σU,VR|U⊗V . It is invertible with inverse given by c−1U,V = R−1|U,V σV,U .

These isomorphisms are functorial in the sense that if f : U −→ U ′ and g : V −→ V ′

are B-module morphisms then

cU ′,V ′(f ⊗ g) = (g ⊗ f)cU,V .

Furthermore, they satisfy the two relations

cU⊗V,W = (cU,W ⊗ IdV )(IdU ⊗ cV,W ), cU,V⊗W = (IdV ⊗ cU,W )(cU,V ⊗ IdW ).

The category of B-modules is therefore braided monoidal.
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2.3. The quantum group Uq(sl2). Let K be a field. Fix q ∈ K× which is not a root
of unity. For t ∈ Z and n ∈ N define the q-numbers in K×

(t)q :=
q2t − 1

q2 − 1
, (n)q! :=

n∏
m=1

(m)q,

(
t

n

)
q

:=

n∏
m=1

(t−m+ 1)q
(m)q

.

The quantum group Uq(sl2) is the algebra generated by E,F,K,K−1 subject to relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1
.

It is a Hopf algebra whose coproduct is determined by

∆(K) = K ⊗K, ∆(E) = K ⊗ E + E ⊗ 1, ∆(F ) = 1⊗ F + F ⊗K−1.
Its antipode is the algebra anti-automorphism S : Uq(sl2) −→ Uq(sl2) determined by

S(K) = K−1, S(E) = −K−1E, S(F ) = −FK.
Proposition 2.4. We have S2(x) = K−1xK for x ∈ Uq(sl2). As a vector space,
Uq(sl2) is spanned by the monomials FmKnEp where m, p ∈ N and n ∈ Z.

The Hopf algebra Uq(sl2) is 2Z-graded by setting the degrees of the generators to be

degE = 2, degF = −2, degK = degK−1 = 0.

2.4. The quasi R-matrix. This is the following power series in z with coefficients in
the tensor product algebra Uq(sl2)

⊗2:

(2.1) R(z) :=
+∞∑
n=0

zncnE
n ⊗ Fn where cn :=

(q−1 − q)n

(n)q!
∈ K×.

It is invertible in the algebra Uq(sl2)
⊗2[[z]]. The constant term of R(z)−1 is still 1 and

its coefficient of zn is proportional to En ⊗ Fn for n ∈ N.

Lemma 2.5. Given two elements x and y in an algebra A such that xy = q2yx, we
have the following q-binomial formula for n ∈ N:

(x+ y)n =

n∑
s=0

(
n

s

)
q

ysxn−s ∈ A.

Proposition 2.6. The quasi R-matrix satisfies the following equations in the algebras
Uq(sl2)

⊗2[[z]] and Uq(sl2)
⊗3[[z]]:

R(z)(1⊗ E + zE ⊗K−1) = (1⊗ E + zE ⊗K)R(z),(2.2)

R(z)(F ⊗ 1 + zK ⊗ F ) = (F ⊗ 1 + zK−1 ⊗ F )R(z),(2.3)

(∆⊗ Id)R(z) = R13(z)R23(zK(1)),(2.4)

(Id⊗∆)R(z) = R13(z)R12(zK
−1
(3) ).(2.5)

Here R13(z) :=
∑+∞

n=0 z
ncn(En ⊗ 1⊗ Fn) and

R23(zK(1)) :=

+∞∑
n=0

zncn(Kn ⊗ En ⊗ Fn), R12(zK
−1
(3) ) :=

+∞∑
n=0

zncn(En ⊗ Fn ⊗K−n).
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Proof. By definition cn = q−1−q
(n)q

cn−1 for n > 0 and c0 = 1. We have

[1⊗ E,R(z)] = [1⊗ E,
∑
n≥0

zncnE
n ⊗ Fn] =

∑
n≥1

zncnE
n ⊗ [E,Fn]

=
∑
n≥1

zncnE
n ⊗

n∑
s=1

F s−1
K −K−1

q − q−1
Fn−s

=
∑
n≥1

zncn

n∑
s=1

q2(s−1)

q − q−1
En ⊗ (KFn−1 − Fn−1K−1)

=
∑
n≥1

zncn
(n)q

q−1 − q
En ⊗ (Fn−1K−1 −KFn−1)

=
∑
n≥1

zncn−1E
n ⊗ (Fn−1K−1 −KFn−1)

= R(z)(zE ⊗K−1)− (zE ⊗K)R(z),

[R(z), F ⊗ 1] =
∑
n≥0

zncn[En, F ]⊗ Fn =
∑
n≥1

zncn

n∑
s=1

Es−1
K −K−1

q − q−1
En−s ⊗ Fn

=
∑
n≥1

zncn
(n)q

q−1 − q
(K−1En−1 − En−1K)⊗ Fn

=
∑
n≥1

zncn−1(K
−1En−1 − En−1K)⊗ Fn

= (zK−1 ⊗ F )R(z)−R(z)(zK ⊗ F ),

(∆⊗ Id)(R(z)) =
∑
n≥0

zncn(K ⊗ E + E ⊗ 1)n ⊗ Fn

=
∑
n≥0

zncn

n∑
s=0

(n)q!

(s)q!(n− s)q!
(Es ⊗ 1)(Kn−s ⊗ En−s)⊗ Fn

= (
∑
n≥0

zncnE
n ⊗ 1⊗ Fn)(

∑
n≥0

zncnK
n ⊗ En ⊗ Fn)

= R13(z)R23(zK(1)),

(Id⊗∆)(R(z)) =
∑
n≥0

zncnE
n ⊗ (F ⊗K−1 + 1⊗ F )n

=
∑
n≥0

zncn

n∑
s=0

(n)q!

(s)q!(n− s)q!
En ⊗ (1⊗ F s)(Fn−s ⊗Ks−n)

= (
∑
n≥0

zncnE
n ⊗ 1⊗ Fn)(

∑
n≥0

zncnE
n ⊗ Fn ⊗K−n)

= R13(z)R12(zK
−1
(3) ).
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�

2.5. Ore extension. Let A be an algebra and ϕ : A −→ A be an algebra automor-
phism. The vector space A[t, t−1] of Laurent polynomials with coefficients in A is an
algebra with multiplication

(atm) ∗ (btn) := aϕm(b)tm+n for a, b ∈ A and m,n ∈ Z.

The resulting algebra is called Ore extension of A by ϕ, and denoted by A[t, t−1;ϕ]. It
contains A and the Laurent polynomial algebra K[t, t−1] as subalgebras.

Suppose f : A −→ B is an algebra homomorphism. If there exits an invertible
element ψ ∈ B× such that ψf(a) = f(ϕ(a))ψ for all a ∈ A, then we can extend f

uniquely to an algebra homomorphism f̃ : A[t, t−1;ϕ] −→ B which sends t to ψ.

Example 2.7. We have an algebra automorphism ϕ of the tensor algebra Uq(sl2)
⊗2

such that for x, y ∈ Uq(sl2) homogeneous of degrees 2r, 2s:

ϕ(x⊗ y) = q−2rsxK−s ⊗ yK−r.

Let A2 denote the Ore extension of Uq(sl2)
⊗2 by ϕ.

The universal R-matrix of Uq(sl2) is the following power series in z with coefficients
in the Ore extension A2 of Uq(sl2)

⊗2 by the algebra automorphism ϕ:

(2.6) R(z) := R(z)t ∈ A2[[z]].

3. Representations of the quantum group Uq(sl2)

3.1. Universal R-matrix of Uq(sl2). Since the Z-grading on Uq(sl2) is compatible
with the Hopf algebra structure, we can define two algebra homomorphisms ∆z and
∆cop
z from Uq(sl2) to Uq(sl2)

⊗2[z, z−1] as follows. For x ∈ Uq(sl2) homogeneous, write
∆(x) =

∑
i ai ⊗ bi where all ai, bi are homogeneous. Then set

∆z(x) :=
∑
i

aiz
deg(ai)

2 ⊗ yi, ∆cop
z (x) :=

∑
i

biz
deg(bi)

2 ⊗ ai.

Proposition 3.1. The universal R-matrix R(z) satisfies the equation:

R(z)∆z(x) = ∆cop
z (x)R(z) ∈ A2((z)) for x ∈ Uq(sl2)

Proof.

R(z)∆z(E) = R(z)t(K ⊗ E + zE ⊗ 1) = R(z)(1⊗ E + zE ⊗K−1)t
= (1⊗ E + zE ⊗K)R(z)t = ∆cop

z (E)R(z),

R(z)∆z(F ) = R(z)t(1⊗ F + z−1F ⊗K−1) = R(z)(K ⊗ F + z−1F ⊗ 1)t

= (K−1 ⊗ F + z−1F ⊗ 1)R(z)t = ∆cop
z (F )R(z).

�



QUANTUM GROUPS 11

3.2. Category F . From now on assume that there exists a fixed square root q
1
2 ∈ K

of q. Recall that the quantum group Uq(sl2) is graded with respect to the conjugate
action of the invertible element K.

Given a Uq(sl2)-module V , for n ∈ Z let Vn denote the eigenspace of K of eigenvalue
qn. It follows that

EVn ⊂ Vn+2, FVn ⊂ Vn−2, KVn = Vn.

Call the module V of type 1 if it is a direct sum of the Vn for n ∈ Z.

Lemma 3.2. Given V and W two Uq(sl2)-modules of type 1, define the linear isomor-
phism ΨV,W by

ΨV,W |Vm⊗Wn := q−
mn
2 IdVm⊗Wn for m,n ∈ Z.

Then the Uq(sl2)
⊗2-module structure on V ⊗W is extended to a A2-module structure

such that t acts as ΨV,W .

Proof. Let x, y ∈ Uq(sl2) be of degrees 2r and 2s respectively. Let v ∈ Vm and w ∈Wn.
We need to check that

ΨV,W (xv ⊗ yw) = q−2rs(xK−s ⊗ yK−r)ΨV,W (v ⊗ w).

Since xv ∈ Vm+2r and yw ∈ Wn+2s, the left-hand side is q−
(m+2r)(n+2s)

2 xv ⊗ yw. The
right-hand side is

q−2rs−
mn
2 xK−sv ⊗ yK−rw = q−2rs−

mn
2
−sm−rnxv ⊗ yw.

�

Let F denote the category of finite-dimensional Uq(sl2)-modules of type 1. It is
closed under dual, quotients, submodules and tensor product.

Example 3.3. Fix n ∈ N. Choose a basis (v0, v1, · · · , vn) of the vector space Kn+1.
The following assignments define a Uq(sl2)-module structure on Kn+1, denoted by L(n):

Kvi = qn−2ivi, Fvi = vi+1, Evi =
(qn−2i+2 − q−n)(q2i − 1)

(q − q−1)(q2 − 1)
vi−1.

It is an simple module in category F and self dual: L(n)∗ ∼= L(n).

Theorem 3.4. Let V and W be Uq(sl2)-modules in category F . Then we have a
module isomorphism

cV,W := σV,WR(1)|V⊗WΨV,W : V ⊗W −→W ⊗ V.
Furthermore, if U is another Uq(sl2)-module in category F , then

cU⊗V,W = (cU,W ⊗ IdV )(IdU ⊗ cV,W ), cU,V⊗W = (IdV ⊗ cU,W )(cU,V ⊗ IdW ).

Proof. The first statement follows from Proposition 3.1, the second from Eqs.(2.4)–(2.5)
and the following commutation relations in End(U ⊗ V ⊗W ):

R12(K
−1
(3) )(ΨU,W )13 = (ΨU,W )13R12(1), R23(K(3))(ΨU,W )13 = (ΨU,W )13R23(1).

�
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Example 3.5. Set V = W = L(1). Then R(1)|V⊗W = 1 + (q−1 − q)E ⊗ F and

cV,W (v0 ⊗ v0) = q−
1
2 v0 ⊗ v0, cV,W (v1 ⊗ v1) = q−

1
2 v1 ⊗ v1,

cV,W (v0 ⊗ v1) = q
1
2 v1 ⊗ v0, cV,W (v1 ⊗ v0) = q

1
2 v0 ⊗ v1 + (q−

1
2 − q

3
2 )v1 ⊗ v0.

3.3. Cyclicity is equivalent to simplicity. Call a Uq(sl2)-module V highest weight
if there exists a nonzero vector v ∈ V such that

V = Uq(sl2)v, Kv ∈ Kv, Ev = 0.

Lemma 3.6. Let V be a highest weight Uq(sl2)-module. Then there exists a unique
nonzero scalar λ ∈ V such that: λ is an eigenvalue of K acting on V ; all the eigenvalues
of K are of the form λq−2s with s ∈ N.

Call λ the highest weight of V . Any nonzero vector of eigenvalue λ is called a highest
weight vector.

Proof. Write Kv = λv. Then λ ∈ K× because K is invertible. Since Uq(sl2) is spanned
by the monomials FmKpEn with m,n ∈ N and p ∈ Z, we have that Uq(sl2)v is spanned
by the Fmv. If Fmv is nonzero, then it is an eigenvector of eigenvalue λq−2m. �

Proposition 3.7. Let V be Uq(sl2)-module in category F of highest weight λ ∈ K×.
Then there exists a unique n ∈ N such that λ = qn and V ∼= L(n).

Proof. Since V is of type 1, there exists k ∈ Z such that λ = qk. Choose a highest
weight vector w0 and set wi := F iw0. If all the wi are nonzero, then the qk−2i for i ∈ N
form an infinite sequence of eigenvalues of K acting on the finite-dimensional space V ,
a contradiction. Let n ∈ N be such that wn 6= 0 and wn+1 = 0. Then

Ewn+1 = EFn+1w0 =
(qk−2n − q−k)(q2n+2 − 1)

(q − q−1)(q2 − 1)
wn = 0.

It follows that qk−2n− q−k = 0 and so n = k. One shows directly that the assignments
vi 7→ wi for 0 ≤ i ≤ n define a module isomorphism from L(n) to V . �

Corollary 3.8. The simple objects in category F are precisely the L(n) for n ∈ N.

3.4. Semi-simplicity of category F . Let V be a module over an algebra. A sub-
module W of V is called a direct factor if there exists another submodule W ′ such that
V ∼= W ⊕W ′.
Lemma 3.9. Let V be a module in category F which contains a submodule W such
that W ∼= L(0) and V/W ∼= L(n) for certain n ∈ N. Then W is a direct factor.

Proof. Suppose n > 0. Then the eigenvalues of K are of the form qs where −n ≤ s ≤ n
and the eigenspace Vn of eigenvalue qn is one-dimensional. Choose a nonzero vector
v ∈ Vn. Then Ev = 0 and the submodule W ′ of V generated by v is a highest weight
module isomorphic to L(n). Since L(0) and L(n) are non-isomorphic, W + W ′ is a
direct sum and V = W ⊕W ′.

Suppose n = 0. Then E = F = 0. Any subspace of V is a submodule. �

Lemma 3.10. Let V be a module in category F which contains a submodule W such
that V/W ∼= L(0) and W ∼= L(n) for certain n ∈ N. Then W is a direct factor.
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Lemma 3.11. Let π : V −→ L(0) be a surjective module morphism in category F .
Then there exists a submodule V0 of V such that V0 ∼= L(0) and π(V0) = L(0).

Proof. We prove by induction on dimV > 0. For dimV = 1 this is trivial. Assume
dimV > 1. Then V is not simple and so it contains a simple submodule W ∼= L(n). If
π(W ) = L(0), then necessarily n = 0 and we are done.

There remains the case π(W ) = {0}. Then π induces another surjective module
morphism π′ : V/W −→ L(0). By induction hypothesis, there exists a submodule T of
V/W isomorphic to L(0) and π′(T ) = L(0). Write T = V ′/W with V ′ a submodule
of V . Then V ′/W ∼= L(0) and W ∼= L(n). So there exists a submodule V ′′ of V ′ such
that V ′ = V ′′ ⊕W . Clearly V ′′ ∼= L(0) is a submodule of V . Since π(V ′) = L(0) and
π(W ) = {0}, we must have π(V ′′) = L(0). �

If H is a Hopf algebra and V is an H-module, set

V H := {v ∈ V | hv = ε(h)v for h ∈ H}.
Lemma 3.12. Let H be a Hopf algebra and V and W be two H-modules. Then

HomK(V,W )H = HomH(V,W ).

Theorem 3.13. Let V be a Uq(sl2)-module in category F . Then all submodules of V
are direct factors.

Proof. Let W be a submodule. The injective module morphism ι : W −→ V induces a
surjective module morphism

F : HomK(V,W ) −→ HomK(W,W ) f 7→ fι.

Notice that KIdW is a submodule of HomK(W,W ) isomorphic to L(0). Its pre-image
T := F−1(KIdW ) is a submodule of HomK(V,W ). Since T admits L(0) as a quotient
module, it contains a submodule T0 isomorphic to L(0) and F (T0) = KIdW . Namely,
there exists a module morphism f : V −→ W such that fι = IdW . One shows then
V = W ⊕ ker(f). �

Corollary 3.14. Any module in category F is a finite direct sum of the L(n) for
n ∈ N.

4. Quantum groups II

4.1. Fusion rule in category F . Recall the simple Uq(sl2)-module L(n) in category
F for n ∈ N. Let wn0 be a highest weight vector. Set wni := 1

(i)q !
F iwn0 for i ∈ N and

wni = 0 for i < 0. Then wni = 0 for i > n and (wn0 , w
n
1 , · · · , wnn) forms a basis of L(n)

with respect to which the Uq(sl2)-action is given by

Kwni = qn−2iwni , Fwni = (i+ 1)qw
n
i+1, Ewni = q1−n(n− i+ 1)qw

n
i−1.

Up to nonzero scalar multiplication, wn0 is the unique highest weight vector of L(n).

Proposition 4.1. For m,n ∈ N we have a decomposition of modules in category F :

L(m)⊗ L(n) ∼=
min(m,n)⊕
j=0

L(m+ n− 2j) =

min(m,n)⊕
p=0

L(|m− n|+ 2p).
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Proof. By comparing dimensions, it suffices to show that for each 0 ≤ j ≤ min(m,n),
there exists a vector in L(m)⊗L(n) of highest weight qm+n−2j . In view of the K-action,

such a vector is of the form
∑j

i=0 αiw
m
i ⊗ wnj−i where α0, α1, · · · , αj ∈ K are chosen

such that the vector is annihilated by E, namely,

0 =

j∑
i=0

αi(Kw
m
i ⊗ Ewnj−i + Ewmi ⊗ wnj−i)

=

j−1∑
i=0

αiq
m−2i+1−n(n− j + i+ 1)qw

m
i ⊗ wnj−i−1

+

j∑
i=1

αiq
1−m(m− i+ 1)qw

m
i−1 ⊗ wnj−i

=

j−1∑
i=0

(αiq
m−2i+1−n(n− j + i+ 1)q + αi+1q

1−m(m− i)q)wmi ⊗ wnj−i−1.

We are reduced to the recursion αi+1 = −αiq2m−2n−2i (n−j+1+i)q
(m−i)q for 0 ≤ i < j. �

In the above proof, one has a solution αi = (−1)iqi(2m−2n−i+1)(m− i)q!(n− j + i)q!
for 0 ≤ i ≤ j to the recursion and a highest weight vector in L(m)⊗ L(n):

wm,nj :=

j∑
i=0

(−1)iqi(2m−2n−i+1)(m− i)q!(n− j + i)q!w
m
i ⊗ wnj−i ∈ L(m)⊗ L(n).

Consider the module isomorphism cL(m),L(n) : L(m) ⊗ L(n) −→ L(n) ⊗ L(m) defined

by σR(1)ΨL(m),L(n) in Theorem 3.4. It sends wm,nj to λjw
n,m
j for a unique λj ∈ K×.

Notice that cL(m),L(n)(w
m,n
j ) modulo the subspace Vect(wni ⊗ wmj−i : 0 < i ≤ j) is

q−
(m−2j)n

2 (−1)jqj(2m−2n−j+1)(m− j)q!(n)q!w
n
0 ⊗ wmj = λj(n)q!(m− j)q!wn0 ⊗ wmj ,

⇒ λj = q−
mn
2 (−1)jqj(2m−n−j+1).

Let Pj denote the composition L(m)⊗L(n) −→ L(m+n−2j) −→ L(n)⊗L(n) sending
wm,nj to wn,mj . We obtain the following spectral decomposition of R-matrix

q
mn
2 cL(m),L(n) =

min(m,n)⊕
j=0

(−1)jqj(2m−n−j+1)Pj .

In the particular case m = n, the Pj are projections.

4.2. Divided power algebra of Lusztig. Let Uq(sl2) denote the quantum group
over the field C(q) with q an indeterminate. Let A := C[q, q−1] be the subalgebra of
Laurent polynomials. For two integers n, r ∈ Z with r ≥ 0, the q-numbers (n)q, (r)q!
and

(
n
r

)
q

belong to A, so they can be specialized to an arbitrary complex number λ.

The resulting complex numbers are denoted by (n)λ, (r)λ! and
(
n
r

)
λ
.
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Definition 4.2. Lusztig’s divided power algebra, denoted by U, is the A-subalgebra of
Uq(sl2) generated by K±1 and the q-divided powers

E(r) :=
1

(r)q!
Er, F (r) :=

1

(r)q!
F r for r ∈ N.

Lemma 4.3. For m,n ∈ Z and r ∈ N we have in A the identity(
m+ n

r

)
q

=
r∑
s=0

(
m

s

)
q

(
n

r − s

)
q

q2s(n−r+s).

Proof. Both sides are polynomials in the qm and qn with coefficients in C(q). To prove
the identity one can assume m,n ≥ 0. let B be an algebra containing x and y such
that xy = q2yx and the monomials yixj for i, j ∈ N are linearly independent. Then the
coefficient of zr in the polynomial (zx+ y)m+n ∈ B[z] is precisely(

m+ n

s

)
q

ym+n−sxr.

Decomposing (zx+ y)m+n = (zx+ y)m(zx+ y)n, we get the coefficient of zr:
r∑
s=0

(
m

s

)
q

ym−sxs
(

n

r − s

)
q

yn−r+sxr−s =
r∑
s=0

(
m

s

)
q

(
n

r − s

)
q

q2s(n−r+s)ym+n−rxr.

�

For n ∈ Z and r ≥ N, define the following element(
K;n

r

)
q

:=

r∏
s=1

K2q2n−2s+2 − 1

q2s − 1
∈ Uq(sl2).

Proposition 4.4. (i) In the C(q)-algebra Uq(sl2) we have for p, r ∈ N and n ∈ Z:(
K;n

r

)
q

E(p) = E(p)

(
K;n+ 2p

r

)
q

,

(
K;n

r

)
q

F (p) = E(p)

(
K;n− 2p

r

)
q

,

E(p)F (r) =
∑
t≥0

qtF (r−t)K−t
(
K; 2t− p− r

t

)
q

E(p−t),

(
K;n

r

)
q

∈ U.

(ii) The A-subalgebra U is a Hopf algebra. We have for m,n ∈ Z and r, p ∈ N:

∆(E(r)) =
r∑
s=0

E(r−s)Ks ⊗ E(s), ∆(F (r)) =
r∑
s=0

F (s) ⊗K−sF (r−s),

∆(

(
K;m+ n

r

)
q

) =
r∑
s=0

q2s(s−r)
(
K;m

s

)
q

⊗
(
K;n

r − s

)
q

K2s,

S(

(
K;n

r

)
q

) = (−1)rK−2rqr(2n−r+1)

(
K;−n+ r − 1

r

)
q

.

(iii) The A-module U is generated by the F (r)φE(s) where r, s ∈ N and φ is a

monomial in the K−1 and
(
K;n
p

)
q

for n ∈ Z and p ∈ Z.
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It is understood that E(r) = 0 = F (r) for r < 0.

Proof. (i) We shall only prove
(
K;n
r

)
q
∈ U, by induction on r ≥ 0. For r = 0 this is

trivial. Assume this is true for 0 ≤ r < t. In view of the recursion formula(
K;n+ 1

r

)
q

= q2r
(
K;n

r

)
q

+

(
K;n

r − 1

)
q

we only need to show that
(
K;0
t

)
q
∈ U. By Proposition 4.4(i),

E(t)F (t) = qtK−t
(
K; 0

t

)
q

+
t−1∑
r=0

qrF (t−r)K−r
(
K; 2r − 2t

r

)
q

E(t−r).

The summation at the right-hand side belongs to U by induction hypothesis. Together
with E(t)F (t),K±1, q±1 ∈ U by definition, we obtain

(
K;0
t

)
q
∈ U.

(ii) The first and second formulas are almost clear. Let H denote the C(q)-subalgebra

of Uq(sl2) generated by the K±1. Then H is a Hopf subalgebra containing all the
(
K;n
r

)
q
.

It follows that ∆(
(
K;m+n

r

)
q
) =

∑
i,j∈Z cijK

i ⊗Kj with cij ∈ C(q). To prove the third

formula, it suffice to show that for all m1,m2 ∈ Z we have∑
i,j∈Z

cijq
m1i+m2j =

r∑
s=0

(
m1 +m

s

)
q

(
m2 + n

r − s

)
q

q2s(m2+n−r+s).

Let C(q)m1 denote the one-dimensional H-module such that K acts as qm1 , so that(
K;n
r

)
q

acts as
(
m1+n
r

)
q
. On the same module C(q)m1 ⊗C(q) C(q)m2

∼= C(q)m1+m2 , the

action of
(
K;m+n

r

)
q

is given on the one-hand by
(
m1+m2+m+n

r

)
q
, and on the other hand

by
∑

ij∈Z cijq
m1i+m2j . The desired formula follows from Lemma 4.3.

(iii) This follows from (i) and E(r)E(s) =
(
r+s
r

)
q
E(r+s) for r, s ∈ N. �

Notice that the quasi R-matrix is a power series in z with coefficients in U⊗A U:

R(z) =
∑
r≥0

(q−1 − q)r

(r)q!
Er ⊗ F rzr =

∑
r≥0

(q−1 − q)r(r)q!E(r) ⊗ F (r)zr.

4.3. Quantum groups at roots of unity. From now on we fix ` > 1 an odd integer
and ε ∈ C a primitive `-th root of unity. The ground field is C.

Definition 4.5. Define the algebra Uε to be the extension U ⊗A Cε where Cε is C
regarded as aA-algebra with q acting as multiplication by ε. Let Uε denote the quotient
algebra of Uε by the two-sided ideal generated by K` − 1.

By abuse of language, in the algebra Uε or its quotient Uε, let x denote x ⊗A 1 or
its quotient for x ∈ {E(r), F (r),K}, and let

(
K;n
r

)
ε

denote
(
K;n
r

)
q
⊗A 1 or its quotient.

Proposition 4.4 tells that U is a Hopf algebra over A. After evaluation Uε is a
complex Hopf algebra. Since K is grouplike, Uε is a Hopf algebra.

Lemma 4.6. In the algebra Uε, the element K` is central and

K2` − 1 = E` = F ` = 0.
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Proof. In the A-algebra U we have

(`)q!

(
K; 0

`

)
q

=
∏̀
s=1

(K2q2s−2 − 1), (`)q!E
(`) = E`, (`)q!F

(`) = F `.

Evaluate q at ε. Since the ε2s−2 for 1 ≤ s ≤ ` are precisely the roots of the polynomial
X` − 1 ∈ C[X] and since (`)ε! = 0, we obtained the desired equations. �

Theorem 4.7. The Hopf algebra Uε is quasi-triangular with universal R-matrix

Rε :=

(
`−1∑
r=0

(ε−1 − ε)r(r)ε!E(r) ⊗ F (r)

)
×

1

`

`−1∑
i,j=0

ε2ijKi ⊗Kj

 .

Proof. Let Rε and ψε denote the two factors at the right-hand side. The C(q)-algebra
automorphism Ψ of Uq(sl2) ⊗C(q) Uq(sl2) in Example 2.7 restricts to an A-algebra au-
tomorphism of U⊗A U still denoted by Ψ. Its evaluation at q = ε induces an algebra
automorphism Uε ⊗Uε factorizes through the quotient map Uε ⊗Uε −→ Uε ⊗Uε.
Let Ψε denote the resulting algebra automorphism of Uε ⊗Uε.

The quasi R-matrix R(z) has coefficients in U⊗A U. By Proposition 2.6:

R(z)Ψ(∆z(x)) = ∆cop
z (x)R(z) ∈ (U⊗A U)((z)) for x ∈ U.

After evaluation at q = ε, the power series R(z) truncates to a polynomial in z. To-
gether with the polynomiality of ∆z(x) and ∆cop

z (x) by definition, we can evaluate z
at 1 to get the relation

RεΨε(∆(x)) = ∆cop(x)Rε ∈ Uε ⊗Uε for x ∈ Uε.

To show that Rεψε is a universal R-matrix, as in the proof of Theorem 3.4 we need
to establish the following assertions:

(i) The element ψε ∈ U
⊗2
ε is invertible and Ψε(X) = ψεXψ

−1
ε for X ∈ U

⊗2
ε .

(ii) We have in U
⊗3
ε the equations

(∆⊗ Id)(ψε) = ψε,13ψε,23, (Id⊗∆)(ψε) = ψε,13ψε,12,

R12(K
−1
(3) )ψε,13 = ψε,13R12, R23(K(3))ψε,13 = ψε,13R23.

One checks directly that 1
`

∑`−1
i,j=0 ε

−2ijKi ⊗Kj is the inverse of ψε; here the relation

K` = 1 is necessary. Furthermore, if x ∈ Uε satisfies Kx = ε2mxK then

ψε(x⊗ 1) =
`−1∑
i,j=0

ε2ijKix⊗Kj =
`−1∑
i,j=0

ε2ij+2imxKi ⊗Kj

= (x⊗K−m)
`−1∑
i,j=0

ε2i(j+m)Ki ⊗Kj+m = (x⊗K−m)ψε.
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It follows that Ψε(x ⊗ 1) = ψε(x ⊗ 1)ψ−1ε . Similarly, Ψε(1 ⊗ x) = ψ(1 ⊗ x)ψ−1. This
proves (i). For (ii), the first equation follows from

ψε,13ψε,23 =
1

`2

∑̀
i,j,s,t=0

ε2ij+2stKi ⊗Ks ⊗Kj+t

=
1

`2

`−1∑
i,s,p=0

Ki ⊗Ks ⊗Kp
`−1∑
j=0

ε2ij+2s(p−j)

=
1

`2

`−1∑
i,s,p=0

ε2spKi ⊗Ks ⊗Kp
`−1∑
j=0

ε2j(i−s)

=
1

`

`−1∑
s,p=0

ε2spKs ⊗Ks ⊗Kp = (∆⊗ Id)(ψε).

Here we used the identity
∑`−1

j=0 ε
2jm = `δm0 for 1 − ` ≤ m ≤ ` − 1. The remaining

three equations are proved in the same way. �

Let uε denote the subalgebra of Uε generated by E,F,K. Then it is a finite-
dimensional quasi-triangular Hopf algebra since Rε ∈ uε ⊗ uε.

Lemma 4.8. Let m0,m1, r0, r1 ∈ Z such that 0 ≤ m0, r0 < ` and r1 ≥ 0. Then(
m0 + `m1

r0 + `r1

)
ε

=

(
m0

r0

)
ε

(
m1

r1

)
.

Proposition 4.9. The algebra Uε is generated by K,E, F,E(`), F (`).

Proof. For m ∈ N, let m = m0 + `m1 be the euclidean division of m by `, so that
m0,m1 are positive integers and 0 ≤ m0 < `. In the A-algebra U we have(

m

m0

)
q

E(m) =
(m)q!

(m0)q!(`m1)q!
E(m) = E(m0)E(`m1).

Evaluating q at ε and noticing
(
m
m0

)
ε

= 1 we get E(m) = E(m0)E(`m1) ∈ Uε.

Next, in the A-algebra U we have Em0 = (m0)q!E
(m0). Evaluating q at ε and

noticing that (m0)ε! ∈ C× we get E(m0) = 1
(m0)ε!

Em0 ∈ Uε.

In the A-algebra U we have for n ≥ 0:(
n`+ `

`

)
q

E(n`+`) = E(n`)E(`).

Evaluating q at ε and noticing
(
n`+`
`

)
ε

= n+ 1 we get E(n`)E(`) = (n+ 1)E(n`+`) ∈ Uε.

It follows by induction on m1 ≥ 0 that E(`m1) = 1
m1!

(E(`))m1 ∈ Uε.
In summary, we have

E(m) =
1

(m0)ε!m1!
Em0(E(`))m1 ∈ Uε.

Similarly, F (m) can be expressed in terms of F and F (`). �
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5. Representations of the quantum group Uε

5.1. Negligible modules. The category of finite-dimensional Uε-modules is monoidal.
It has left duality and right duality (because S(x) = K−1xK for x ∈ Uε)

eV :

{
V ∗ ⊗ V −→ C
f ⊗ v 7→ f(v),

cV :

{
C −→ V ⊗ V ∗

1 7→
∑

i vi ⊗ v∗i ,

ẽV :

{
V ⊗ V ∗ −→ C
f ⊗ v 7→ f(K−1v),

c̃V :

{
C −→ V ∗ ⊗ V
1 7→

∑
i v
∗
i ⊗Kvi.

ϕV : V −→ V ∗∗, v 7→ K−1v.

Here (vi) is a basis of V and (v∗i ) is the dual basis of V ∗ = HomC(V,C).

Definition 5.1. Let V be a finite-dimensional Uε-module.

(i) The quantum trace of a module morphism f : V −→ V is qtr(f) := trV (Kf).
The quantum dimension of V is qdim(V ) := qtr(Id) = trV (K).

(ii) Call V negligible if qtr(f) = 0 for all module morphisms f : V −→ V .

By Krull–Schmidt decomposition, such a module is a direct sum of indecomposable
submodules. It is negligible if and only if each indecomposable submodule is negligible.

Proposition 5.2. Let U, V and W be finite-dimensional Uε-modules.

(i) If W is indecomposable, then W is negligible if and only if qdimW = 0.
(ii) If W is negligible, then so is V ⊗W .
(iii) If W is negligible and U and V are simple non-negligible, then any module

morphism of the form U −→W −→ V is zero.

Proof. (i) By Fitting Lemma, each module morphism f : W −→ W is either an auto-
morphism or nilpotent. Let λ ∈ C be an eigenvalue of f . Then f − λIdW is nilpotent.
So is K(f − λIdW ) and it is traceless. It follows that

qtr(f) = tr(λK +K(f − λIdW )) = λtr(K) = λ× qdim(W ).

(ii) Recall the module morphisms c̃V : C −→ V ∗ ⊗ V and eV : V ∗ ⊗ V −→ C. Given
a module morphism f : V ⊗W −→ V ⊗W , we obtain another module morphism

f̃ = (eV ⊗ IdW )(IdV ∗ ⊗ f)(c̃V ⊗ IdW ) : W −→W.

One verifies directly that trV (Kf̃) = trV⊗W (Kf) and so qtr(f) = qtr(f̃) = 0.
(iii) By Schur Lemma such a module morphism, if nonzero, is an isomorphism. So

V is negligible as an indecomposable submodule of W . �

5.2. Category Fε. Let V be a Uε-module. For n ∈ Z, define Vn to be the subspace

Vn := {v ∈ V | Kv = εnv,

(
K;m

r

)
ε

v =

(
n+m

r

)
ε

v for m ∈ Z and r ∈ N}.

If Vn 6= {0}, then n is called a weight of V , and Vn the weight space of weight n.

Lemma 5.3. Let V and W be Uε-modules. Let m,n ∈ Z and p ∈ N.

(i) The sum of weight spaces of V is direct.
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(ii) We have E(p)Vn ⊂ Vn+2p and F (p)Vn ⊂ Vn−2p.
(iii) We have Vm ⊗Wn ⊂ (V ⊗W )m+n for m,n ∈ Z.
(iv) If V is a finite sum of weight spaces, then so is V ∗ and (Vn)∗ = (V ∗)−n.

Proof. (i) follows from Lemma 4.8, and the rest from Proposition 4.4(i)–(ii). �

Let Fε denote the full subcategory of finite-dimensional Uε-modules which are direct
sums of weight spaces. The module structure factorizes through the quotient map
Uε −→ Uε. So Fε is braided as a full subcategory of finite-dimensional modules
over the quasi-triangular Hopf algebra Uε. Category Fε is closed under submodule,
quotient, tensor product and dual.

Lemma 5.4. Let V be a Uε-module in category Fε and n ∈ Z such that dimVn = 1.
Then V admits a indecomposable direct factor containing Vn. Moreover, such a direct
factor is unique up to isomorphism.

Proof. By Krull-Schmidt decomposition V is a direct sum of indecomposable submod-
ules T 1 ⊕ T 2 ⊕ · · · ⊕ T r. Since dimVn = 1, there exists a unique 1 ≤ i ≤ r such
that (T i)n = Vn and (T j)n = {0} for j 6= i. If V = S1 ⊕ S2 ⊕ ⊕St is another Krull-
Schmidt decomposition, then there exists another 1 ≤ k ≤ t such that (Sk)n = Vn and
(Sl)n = {0} for l 6= k. It follows from uniqueness that Si ∼= Sk. �

Example 5.5. For n ∈ N we define the Weyl module W (n) over Uε in two ways.

(i) Recall the irreducible Uq(sl2)-module L(n) of highest weight qn, defined over

the field C(q). Fix w0 a highest weight vector. Set wr := F (r)w0 for r ∈ N.
Then (w0, w1, · · · , wn) forms a C(q)-basis of L(n) with Uq(sl2)-action:

K±1wr = q±(n−2r)wr,

(
K;m

p

)
q

wr =

(
n+m

p

)
q

wr,

F (p)wr =

(
p+ r

p

)
q

wr+p, E(p)wr = qp−pn
(
n+ p− r

p

)
q

wr−p.

Here wp := 0 if p < 0 or p > n. It follows that ⊕nr=0Awr is a U-submodule of
L(n), denoted by LA(n). Define the Weyl module W (n) to be

W (n) := LA(n)⊗A Cε = LA(n)/(q − ε)LA(n).

We have W (n)n−2r = Cwr for 0 ≤ r ≤ n. The Weyl module W (n) is inde-
comosable of quantum dimension (n + 1)ε, and it is negligible if and only if `
divides n+ 1. If n ≤ `− 1, then W (n) is simple and self dual.

(ii) The Weyl module W (n) is the Uε-module generated by w0 subject to the fol-
lowing relations for p ∈ N and m ∈ Z:

E(p+1)w0 = F (n+p+1)w0 = 0, Kw0 = εnw0,

(
K;m

p

)
ε

w0 =

(
n+m

p

)
ε

w0.

Example 5.6. For n ∈ N, the tensor power W (1)⊗n is a module in category Fε and
(W (1)⊗n)n = Cw⊗n0 . Up to isomorphism it contains a unique indecomposable direct
factor containing w⊗n0 , denoted by T (n) and called a tilting module.

For m,n ∈ N, by uniqueness T (m+ n) is a direct factor of T (m)⊗ T (n).
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5.3. Semi-simplification. Call a Uε-module V of highest weight n ∈ Z if it is gener-
ated by a nonzero vector v ∈ Vn such that E(r)v = 0 for all r > 0. For example, the
Weyl module W (m) is of highest weight m ∈ N.

Proposition 5.7. If V is a finite-dimensional Uε-module of highest weight n ∈ Z, then
n ≥ 0 and V−n 6= {0}. Moreover, V is a quotient of the Weyl module W (n).

Proof. Choose a nonzero vector v ∈ Vn. We need to prove that n ∈ N, F (n)v 6= 0 and
F (s)v = 0 for s > n. Let n = n0 + `n1 and s = s0 + `s1 be the euclidean divisions of n
and s by `, so that 0 ≤ n0, s0 ≤ `− 1. Then s > n implies s1 ≥ n1.

Since V is finite-dimensional, F (r)Vp ⊂ Vp−2r and F (m`) = 1
m!(F

(`))m for m ∈ N,

there exists m ∈ N such that F (m`)v 6= 0 and F (r`)v = 0 for r > m. Apply the
following relation to v:

E(`)F (m`+`) =
∑
t≥0

εtF (m`+`−t)K−t
(
K; 2t−m`− 2`

t

)
ε

E(`−t).

We get
(
n−m`
`

)
ε

= 0 = n1 −m. It follows that n = n0 + `n1 = n0 + `m ≥ 0.

Since F (n1`)v 6= 0 and F (n1`+`)v = 0, there exists 0 ≤ p ≤ `−1 such that F (p+n1`)v 6=
0 and F (p+1+n1`)v = 0. Apply the following relation to v:

EF (p+1+n1`) = F (p+1+n1`)E + εF (p+n1`)K−1
(
K;−p− n1`

1

)
ε

.

We get (n − p − n1`)ε = 0, namely, ` divides n − p − n1`. This forces p = n1. As a

consequence, F (n)v 6= 0 and F (n+1)v = 0.
If s1 > n1, then

F (s)v = F (s0)F (s1`)v = 0.

If s1 = n1, then s > n implies s0 > n0 and(
s0

n0 + 1

)
ε

F (s)v =

(
s

n+ 1

)
ε

F (s)v = F (s−n−1)F (n+1)v = 0.

Since 1 ≤ n0 + 1 ≤ s0 < `, we have
(
s0

n0+1

)
ε
6= 0 and F (s)v = 0. �

Lowest weight modules are defined by replacing E with F everywhere. In particular,
if V is finite-dimensional of lowest weight n, then n ≤ 0 and V−n 6= {0}.

Corollary 5.8. Let V be a nonzero Uε-module in category Fε. Then there exists a
unique m1 ∈ N such that V±m1 6= {0} and Vm 6= {0} only if −m1 ≤ m ≤ m1. Any
surjective module morphism V −→W (m1) splits.

Proof. Since V is a finite direct sum of the Vm, there exist two integers m0 ≤ m1 such
that Vm0 6= {0} 6= Vm1 and Vm 6= {0} only if m0 ≤ m ≤ m1. Choose a nonzero vector
v1 ∈ Vm1 . Then V1 := Uεv1 is a submodule of highest weight m1. Proposition 5.7 forces
m1 ≥ 0 and V−m1 6= {0}. This implies m0 ≤ −m1. On the other hand, any nonzero
vector of Vm0 generates a submodule of lowest weight m0, so m0 ≤ 0 and V−m0 6= {0}.
This implies −m0 ≤ m1. As a consequence, m0 +m1 = 0.

Let f : V −→W (m1) be a surjective module morphism. Choose a pre-image v ∈ Vm1

of w0 ∈ W (m1). We have E(p)v ∈ Vm1+2p = {0} and F (m1+p)v ∈ V−m1−2p = {0} for
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p > 0. So all the defining relations of W (m1) are satisfied and we have a module
morphism W (m1) −→ V sending w0 to v. This gives the desired splitting. �

Theorem 5.9. Let V be a Uε-module in category Fε. Suppose that V is the sum of
the Vm for 1− ` ≤ m ≤ `−1. Then V is isomorphic to a direct sum of the simple Weyl
modules W (n) for 0 ≤ n ≤ `− 1.

Proof. We proceed by induction on dimV . The case dimV = 0 is trivial. Assume
dimV > 0 so that V is nonzero. Choose m1 ∈ N as in Corollary 5.8. Then Vm1 6= {0}
implies m1 ≤ `−1. Choose a nonzero vector v1 ∈ Vm1 . Then the submodule V1 = Uεv1,
being finite-dimensional of highest weight m1, is isomorphic to the simple self dual Weyl
module W (m1). This gives an injective module morphism W (m1) −→ V . Taking duals
gives a surjective module morphism V ∗ −→W (m1). By Corollary 5.8 such a surjective
module morphism splits, meaning that V1 is a direct factor of V . Apply the induction
hypothesis to V/V1 and conclude. �

Corollary 5.10. If 0 ≤ n ≤ ` − 2, then T (n) ∼= W (n) is simple non-negligible. If
n ≥ `− 1, then T (n) is negligible. In all cases, T (n) is self dual.

Proof. For n ≤ ` − 1, the tilting module T (n) as an indecomposable submodule of
the semi-simple module W (1)⊗n is isomorphic to the simple Weyl module W (n). It is
negligible if and only if n = `− 1.

Assume T (n) negligible. Then W (1)⊗ T (n) = T (1)⊗ T (n) is negligible. By Propo-
sition 5.2(ii), its direct factor T (n+ 1) is negligible. �

Definition 5.11. (i) Category Mε is the full subcategory of category Fε with the
additional condition that V is the sum of the Vm for 2− ` ≤ m ≤ `− 2.

(ii) Category Tε is the full subcategory of Fε with the additional condition that V
is isomorphic to a direct sum of tilting modules.

By Theorem 5.9 category Mε is semi-simple with finitely many simple objects: W (n)
for 0 ≤ n ≤ `− 2. We have Mε ⊂ Tε ⊂ Fε. Category Tε is not abelian. Category Mε

is not closed under tensor product.
By definition and uniqueness of Krull–Schmidt decomposition, a module V in cate-

gory Tε has a unique splitting V = M(V )⊕ Z(V ) where:

(i) the submodule M(V ) is a direct sum of simple non-negligible tilting modules;
(ii) the submodule Z(V ) is a direct sum of negligible tilting modules.

A morphism f : V −→W in category Tε is encoded in a square matrix

(
fMM fMZ

fZM fZZ

)
whose entries fXY : Y (V ) −→ X(W ) for X,Y ∈ {Z,M} are module morphisms.

Proposition 5.12. The assignments V 7→ M(V ) and f 7→ fMM define a functor
M : Tε −→ Mε whose restriction to the subcategory Mε is the identity functor. We
have M(V ) = {0} if and only if V is negligible.

Proof. Let f : U −→ V and g : V −→ W be morphisms in category Tε. We need to
show that gMZfZM = 0. This is a morphism of the form M(U) −→ Z(V ) −→M(W ).
By construction M(U) and M(W ) are direct sums of simple non-negligible modules
and Z(V ) is negligible. Apply Proposition 5.2(iii). �
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5.4. Fusion rule and quantum 6j-symbol. We record the following deep result
in representation theory of quantum groups at roots of unity. Its proof requires an
alternative characterization of tilting modules in terms of Weyl module filtrations.

Theorem 5.13 (Andersen, Paradowski). Category Tε is closed under tensor product.

Since negligible modules are stable under tensor product by an arbitrary module,
the monoidal structure on category Tε induces a monoidal structure ⊗ on category Mε

defined in objects U, V and morphisms f, g as follows:

U ⊗ V := M(U ⊗ V ), f ⊗ g := M(f ⊗ g).

Theorem 5.14 (Reshetikhin–Turaev). Let 0 ≤ m,n ≤ ` − 2. In the semi-simple
monoidal category Mε we have

T (m) ⊗ T (n) ∼=
min(m,n,`−2−m,`−2−n)⊕

p=0

T (|n−m|+ 2p).

Call a triple (m,n, k) of integers admissible if 0 ≤ m,n, k ≤ ` − 2 and T (k) is a
direct factor of T (m)⊗ T (n). For such a triple, setting j = m+n−k

2 we have a nonzero

Uε-module morphism Y k
m,n : T (k) −→ T (m)⊗ T (n):

wk0 7→ wm,nj =

j∑
i=0

(−1)iεi(2m−2n−i+1)(m− i)ε!(n− j + i)ε!w
m
i ⊗ wnj−i.

Fix (a, d, c, f) four integers between 0 and `−2. For all d such that (d, c, f) and (a, b, d)
are admissible, we have a module morphism in category Tε:

(Y d
ab ⊗ 1c)Y

f
dc : T (f) −→ T (d)⊗ T (c) −→ T (a)⊗ T (b)⊗ T (c).

Here 1c denotes the identity map of T (c). Their images by the functor M form a basis
of the space of morphisms in category Mε from T (f) to T (a) ⊗ T (b) ⊗ T (c). Likewise,
for all e such that (a, e, f) and (b, c, e) are admissible, we have a module morphism

(1a ⊗ Y e
bc)Y

f
ae : T (f) −→ T (a)⊗ T (e) −→ T (a)⊗ T (b)⊗ T (c).

Their images by the functor M form a basis of the same morphism space. We obtain

therefore the so-called quantum 6j-symbol

{
a b d
c f e

}
ε

such that

(1a ⊗ Y e
bc)Y

f
ae =

∑
d

{
a b d
c f e

}
ε

(Y d
ab ⊗ 1c)Y

f
dc.


