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1. HOPF ALGEBRAS
Throughout the text, the ground field is K. All vector spaces are defined over K.

1.1. Recall on tensor product. Let V;,V5 and W be vector spaces. A map F :
Vi x Vo — W is called bilinear if for A € K, vq,v] € Vi and v, v}, € Vo we have

F(Avy +v],v9) = AF (v1,v2) + F(v],v2), F(v1, \vg +vh) = AF(v1,v2) + F(vy,vh).
Proposition 1.1. Given two vector spaces Vi and Vo, we have a vector space V and a
bilinear map v : V1 x Vo — V satisfying the following universal property:

if W is a vector space and F : Vi x Vo — W is a bilinear map, there exists a
unique linear map f:V — W such that F = fou.

If (V') is another pair of a vector space and a bilinear map satisfying the universal
property, then we have a unique linear isomorphism f:V — V' such that ' = f o.

Write V := V] ® Va. For v; € V4 and vy € V3, let v1 @ v2 € V' denote ¢(vy,v3).

If f:V4 — V] and g : Vo — V4 are linear maps, then we have a bilinear map
F:VixVy, — V] ®Vy given by F(v1,v2) = f(v1)®g(v2). From the universal property,
we obtain a linear map F : Vi ® Vo — V{ ® VJ such that F(v1 ® v2) = f(v1) ® g(ve).
Such a linear map is denoted by f ® g. Whenever composition is well-defined, we have

(fi®g)o(fa®g92) =fiofao®gioge, ldygw =Ildy ® Idw.

Example 1.2. The map F : V] x Vo — Vo ® V} defined by F(v1,v2) = v2 ® v is
bilinear. It induces a linear map f : V4 ® Vo — Vo ® V4 such that f(v1 @ v2) = va @ vy.
Such a linear map is denoted by oy, 5, and called flip map.

The tensor product of n vector spaces V1 @ Vo ® --- ® V,, is well-defined for n > 3.
We have natural identifications of tensor products and identities of linear maps
UeV)oW=Ux(VeW), VaK=V=KaV,
(feg@h=fegeh), [feldk=[f=Idko /.
1.2. Algebras and representations. An algebra is a vector space A (addition and
scalar multiplication) together with a bilinear map A x A — A, (a,b) — ab and an
element 1 such that
(ab)c = a(bc), Aa = (Al)a = a(Al).
This is equivalent to a vector space A together with two linear maps A ® A — A and
K — A satisfying associativity and unity. Call 1 the identity element.
A subalgebra of A is a subspace B stable under multiplication and containing 1.
An ideal of A is a subspace I such that Al C I and A C I. Given such I, the
quotient space A/I is an algebra with multiplication
ab = ab.
An algebra homomorphism F : A — B is a linear map such that
F(ayaz) = F(a1)F(a2), F(1)=1.
The tensor product of two algebras A and B is an algebra with multiplication

(a1 & bl)(ag X bg) = a1a9 ® bybs.
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Example 1.3. If V is a vector space, then the vector space EndV of all linear endo-
morphisms of V' forms an algebra, with multiplication given by composition. Let W
be another vector space. Then the bilinear map (f,g) — f ® g extends to an injective
algebra homomorphism EndV @ EndW — End(V ® W). It is an isomorphism if V' or
W is finite-dimensional.

Proposition 1.4. Given a vector space V, we have an algebra A and a linear map
t 'V — B satisfying the universal property:
if B is an algebra and F :' V — B s a linear map, then there exists a unique
algebra homomorphism f: A — B such that F = fou.

If (A’ /) is another pair of an algebra and a linear map satisfying the universal property,
then there exists a unique algebra isomorphism f: A — A’ such that /' = f o.

Call A the tensor algebra of V' and denote it by T'(V'). Let X be a basis of V' and Let
R be a subset of T'(V'). Call the quotient algebra T'(V') /(R) the algebra with generators
X and relations R. Here (R) denotes the ideal of T'(V') generated by R.

Example 1.5. Let V' be a finite-dimensional vector space with basis (e, ez, -+ ,ey).
Then EndV = T(W)/(R) where

n
W .= @ Keij, R = {eij®ekl—5jkeil € WEBW®2 ‘ 1<,k 1< n}U{Z eii—l}.
1<i,j<n i=1
Definition 1.6. A representation of an algebra A is a vector space V equipped with
an algebra homomorphism p: A — EndV. Call V an A-module.

Submodules, quotient modules, irreducible modules are defined in the obvious way.
Given two A-modules V' and W, the tensor product is naturally a module over A® A
with structural map

A® A —> EndV ® EndW < End(V @ W).

To make it an A-module, we would like to have an algebra homomorphism A — A® A.

1.3. Monoid algebra. By a monoid we mean a set M endowed with a binary operation
M x M — M,a®b~ ab and an element 1 such that: (ab)c = a(bc) and la = a = al.
An algebra is a monoid with the binary operation given by multiplication.

To a monoid M we attach its monoid algebra K[M] := T (V)/(R) where

V= @Kea, Ri={e.®ep—eq € VOV | a,bc M}U{e; —1}.
acM
(i) Universal property: If A is an algebra and F' : M — A is a monoid homomor-
phism, then there exists a unique algebra homomorphism f : K[M] — A such
that F'= f ot Here t: M — K[M] is the map t(a) = e,.
(ii) Explicit realization: The algebra K[M] is realized on the vector space ®qepKe,.
Its multiplication is induced by eqe, = egp.

Example 1.7. If M is the monoid Z" of n-tuples of integers, then K[M] is the Laurent
polynomial algebra K[tF!, 51, ... #+1].
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1.4. Universal enveloping algebra. A Lie algebra is a vector space g equipped with
a bilinear map g x g — g, (z,y) — [x,y], called Lie bracket, such that
[z,2] = 0 = [[z,y], 2] + [ly, 2], 2] + [[2, =], y].
An algebra is viewed as a Lie algebra with Lie bracket [a, b] := ab — ba.
To a Lie algebra g we attach its universal enveloping algebra U(g) := T'(g)/(R) where
R={zoy-—yoz—|r,y) cg®g® |z.yc g}

(i) Universal property: If A is an algebra and F' : g — A is a Lie algebra homo-
morphism, then there exists a unique algebra homomorphism f : U(g) — A
such that F' = fot. Heret: g — U(g) is the composition g — T'(g) — U(g).

(ii) Let (B, <) be an ordered basis of g. Then the defining ideal of U(g) is generated
by t®@y—y®x— [z,y] for x <y in B.

(iii) Poincaré-Birkhoff-Witt: The ordered monomials in the x + (R) for x € B with
respect to the ordering of B form a basis of the quotient space U(g) of T'(g).

Example 1.8. g = sl is the Lie algebra of two-by-two traceless matrices. It has a

. 0 1 0 0 1 0 . . .
basis e = <0 0> , = (1 O) , h= <0 _1> and its Lie bracket is

[e7f]:h7 [hve]:267 [hvf]:_zf
U (sl2) is the algebra with generators e, f, h and relations
ef —fe=h, he—eh=2e, hf—fh=-=-2f

1.5. Coalgebras and convolution product. A coalgebrais a vector space C together
with two linear maps A: C — C ® C and € : C' — K such that

(ARIA = (Id® A)A, (e®Id)A = (Id® )A = 1d.

C is called co-commutative if cA = A. A sub-coalgebra is a subspace D of C' such
that A(D) € D ® D. A co-ideal is a subspace I of C such that ¢(I) = {0} and
A(I) CcI®C+ C®I. The quotient space C'/I is naturally a coalgebra.

A coalgebra homomorphism from a coalgebra (C, A, €) to a coalgebra (C', A’ €’) is
a linear map f : C — C’ such that

(foHA=AFf e=¢f.

The tensor product C ® C’ is a coalgebra with coproduct (Id ® o ® Id)(A ® A’) and
counit € ® €.

Lemma 1.9. Let (A,m,n) be an algebra and (C, A, €) be a coalgebra. For f and g two
linear maps from C to A, define their convolution product fxg to be the linear map
m(f ®g)A:C — A. Namely, for x € C we have

(f *g)(x) = Zf(ang(bi) if A(z) = Z a; © by.

Then the vector space Hom(C, A) equipped with the convolution product is an algebra
whose identity element is ne.

As a consequence, the linear dual of a coalgebra is naturally an algebra.
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Example 1.10. (i) Let C be the vector space with basis (¢; : 1 < i < n). Then C is
a coalgebra by setting A(e;) = e; ® e; and €(e;) = 1. Its dual is identified the vector
space of maps from {1,2,--- ,n} to K. The convolution product of two such maps f
and g is simply the usual product: (f *g)(i) = f(i)g(i) for 1 < i < n.

(ii) Let C be the vector space with basis (e;; : 1 <,7 < n). It is a coalgebra:

A(es5) = Zeikz ® egj, €(€ij) = i
k=1

Its dual is the algebra Mat,, «,(K) of n x n matrices.
1.6. Bialgebras.

Lemma 1.11. Let B be vector space with is equipped with an algebra structure (B, m,n)
and a coalgebra structure (B, A, €). Then the following two conditions are equivalent.

(i) m: B® B— B and n: K — B are coalgebra homomorphisms.
(iil) A: B— B® B and € : B— K are algebra homomorphisms.

Under these conditions, B is called o bialgebra.

Example 1.12. (i) Let M be a monoid. Then K[M] is a bialgebra.
(ii) Let g be a Lie algebra. We have Lie algebra homomorphisms

g —U(@eU(), g—K

which send = to x ® 1 + 1 ® « and 0 respectively. They extend to algebra
homomorphisms A : U(g) — U(g) ® U(g) and € : U(g) — K. In this way,
U(g) becomes a bialgebra.

1.7. Hopf algebras. Let (B, m,n, A, €) be a bialgebra. Then Hom(B, B) equipped
with convolution product is an algebra. Call B a Hopf algebra if the linear map Id :
B — B is invertible with respect to the convolution product. The inverse is called
the antipode S : B — B.

To an algebra (A, m,n) we attach its opposite algebra (A, mo, €), denoted by A°P. To
a coalgebra (C, A, €) we attach its opposite coalgebra (C, oA, €), denoted by CP.

Example 1.13. (i) Let M be a monoid. The bialgebra K[M] is a Hopf algebra if
and only if M is a group. The antipode is given by S(e;) = e€,-1.
(ii) Let g be a Lie algebra. We have a Lie algebra homomorphism

g —U(@»” z— -z

which extends to an algebra homomorphism S : U(g) — U(g)°P, which is the
antipode. Therefore, U(g) is always a Hopf algebra.

2. QUANTUM GROUPS 1

2.1. Antipode and duality. Let (B, m,n, A, ¢€) be a bialgebra. Given two B-modules
U and V', we can equip their tensor product U®V with a B-module structure by setting
a(u®@v) =), au® b for Ala) =) ,a;@b;anduec U, veV.

The counit € : B — K equips K with a B-module structure.
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For three B-modules U,V and W, the identity maps are B-module morphisms:
UeV)eW2Us(VeW), KeU2U=UsK.
If f:U— U and g:V — V' are B-module morphisms, then so is f ® g.

Proposition 2.1. In a Hopf algebra (H,m,n, A€, S), the antipode S : H — H is an
anti-homomorphism of algebras and an anti-homomorphism of coalgebras.

Proof. We shall prove the first half, namely, Sm = (S®S)mo in the convolution algebra
Homg (H ® H, H). Since m is a coalgebra homomorphism, we have

Smxm=m(SId)(m@m)Agey = m(S @ Id)Am = nem = m x Sm.
So Sm is the convolution-inverse of m. On the other hand, for z,y € H with A(z) =
>_iai®b; and A(y) =3, ¢; ®d; we have Aggu(z®y) =3, a4, ®¢; @ b; ® dj and

(S® S)moxm(x @ y) = ZS ¢;)S(a;)bid; = ZS(cj) X ZS(ai)bi X d;

—ZS cj) x €(x)l x dj = €( )ZS(cj)djze(:C)e(y)l.

By invertibility of m, we must have Sm = (S ® S)mo. O

Definition 2.2. Let (H,m,n, A, ¢, S) be a Hopf algebra. Given two H-modules U and
V', the space Homg (U, V') of linear maps from U to V has a H-module structure: for
x € H with coproduct A(z) = > ,a; ® b; and for f : U — V a linear map, af is
another linear map from U to V given by

(af,u) Zaz (bi)u) for u € U.

It follows that the dual U* = Homg (U, K) of an H-module U is still an H-module.
In particular, the natural linear map

V ®U* — Homg (U, V)
is a H-module homomorphism.

Lemma 2.3. Let H be a Hopf algebra and U be a finite-dimensional H-module. Then
the evaluation map ey : U* @ U — K and the coevaluation map cy : K — U Q U*
are H-module morphisms.

Proof. Choose a basis (u1,ua,- -+ ,uy) of U and let (uf,ud,---,u}) be the dual basis
of U*. Then cU(l) =), u;®@u’. For h € H with A(h) =), a; ® b; we have

hey (1 hZu5®u —Zazus(@bu —Zazu5® (bius, ug)uy

1,8,t

=S e g S = Y (S o S(b ) &

2,8, it s

= Zaz iur @ uy = €e(h)ey (1) = cy(hl).
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So ¢y is H-linear. For f € U* and u € U, we have

ev(h(f ®u)) Zalf@)bu Zalf,bu Zf (a;)b;u)
ZSai biu) = f(e(h)u) = e(h){f,u) = hey(f @ u).

So ey is H-linear. O

Let U be a finite-dimensional H-module. Then the double dual module U** is the
pullback of the H-module U along the algebra homomorphism S2.

Assume that there exists an invertible element hg € H* such that SZ(h) = hohhy !
for h € H. Then we have an H-module isomorphism

U™ —U u~ hy'lu
As a consequence, the following are H-module morphisms:
v UQU* — K, u®f— (f hou),
G K—U U, 10> uf @hy'u.
i

2.2. Braided bialgebras. A bialgebra B is braided (or quasi-triangular) if there exists
an invertible element R € (H ® H)* satisfying

A®P(z) = RA(z)R™' for x € H,
(A & Id)(R) = Ri3R9, (Id X A)(R) = Ri3Ro3

where for R =) a; ® b; we set

Given two B-modules U and V, the following defines a B-module morphism

v UV —VeU, ccqgvuey)= va@al

Namely, cyv = ouv R|ugy. It is invertible with inverse given by c{]lv =R Yyvovu.
These isomorphisms are functorial in the sense that if f : U — U’ and g : V — V'
are B-module morphisms then

cor v (f®@g)=(9® feuy.
Furthermore, they satisfy the two relations
CUQV,W = (CU,W & Idv)(IdU & CV,W), CUVeW = (Idv (= CU,W)(CU,V & Idw).

The category of B-modules is therefore braided monoidal.
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2.3. The quantum group U,(slz). Let K be a field. Fix ¢ € K* which is not a root
of unity. For ¢t € Z and n € N define the g-numbers in K*

o n n —m
0=t = Tlew (1) =TT

m=1 m=1 (m)q

The quantum group Uy (slz) is the algebra generated by E, F, K, K ~1 subject to relations
K—-K!

KK'=K'K=1 KE=¢FEK, KF=q*FK, EF-FE=——"—.

qa—4q
It is a Hopf algebra whose coproduct is determined by

AK)=K®K, AB)=K®E+E®l, AF)=19F+FoK

Its antipode is the algebra anti-automorphism S : Uy(sly) — U,(slz) determined by

S(K)=K™', S(E)y=-K'E, S(F)=-FK.

Proposition 2.4. We have S*(x) = K 'zK for x € Uy(sly). As a vector space,
Uy(slp) is spanned by the monomials F™ K" EP where m,p € N and n € Z.

The Hopf algebra Uy (sla) is 2Z-graded by setting the degrees of the generators to be
degE =2, degF =-2, degK =degK!=0.

2.4. The quasi R-matrix. This is the following power series in z with coefficients in
the tensor product algebra U, (sl2)®?:

+oo -1 _ \n
(2.1) R(z) == E Zep B @ ™ where ¢, 1= (q()‘q) e K*.
n)g!
n=0 q

It is invertible in the algebra U, (sl2)®?[[z]]. The constant term of R(z)~! is still 1 and
its coefficient of z™ is proportional to E™ ® F™ for n € N.

Lemma 2.5. Given two elements x and y in an algebra A such that xy = ¢*yx, we
have the following gq-binomial formula for n € N:

n = n §,.,n—Ss
(x+y) :Z<S>yx € A.
q

s=0

Proposition 2.6. The quasi R-matriz satisfies the following equations in the algebras
Uy(s12)®?[[2]] and Ug(sla)#?[[2]]:

(2.2) RZAIQE+2EK ) =(1®F+2E® K)R(z),
(2.3) RE(FRL1+2KQF)=(Fo1l+ 2Kt @ F)R(z),
(2.4) (A ®Id)R(2) = Ruiz(2)Ras(2K 1)),

(2.5) (Id® A)R(z) = ﬁlg(z)ﬁlg(zK&;).

Here Ri3(2) = Y12 2"cn(E" @ 1 @ F™) and

+00 +oo
Ros(2K (1)) := Z 2"cn (K" @ E" @ F™), ﬁm(zK(_g;) = Z 2P (B @ F"@ K™T).
n=0 n=0
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Proof. By definition ¢, = q(%)_qqcn,l for n > 0 and ¢y = 1. We have

1®ERGE|=1®E Y "eE"®@F" =) 2"c,E"® [E, F"]

n>0 n>1
K — K !
—Zz an"®ZF5 e
n>1
(s— 1)
=> 2" cnz ® (KFn—t — prlg—1)
n>1
— Z q En (anlel _ Kanl)
n>1
= 2 E"®(F"' KT - KF™)
n>1

=R(z):E® K') - (:E® K)R(z),

R K- K1
R Foll =Y enlE", Flo P = Yoo, Y B TP e
n=20 n>1 s=1

— Zzncn f")q (K—lEn—l _ En—lK) ® F™

n>1 ¢ 4
=> e (KB - B K) @ F"
n>1
= K '@ F)R(2) — R(2)(:K ® F),
(A®I)(R(2) =Y 2"l KRE+E®1)" @ F"
n>0
=> 2" Z (ES QK" @ E" %)@ F"
n>0 )g!
=) B 91 F”)(Z e, K" @ E" @ F™)
n>0 n>0
= ﬁlg(z)ﬁ%(sz( ))
(AR A)(R(2) =Y 2"aE"®@(FRK '+ 1&F)"
n>0

= Z Pk Cn, Z LE” (1 ® FS)(FTL*S ® stn)

n>0 s=0 ) (n o S)q
=) 2"E"@10F")() " E" @ F" @ K ")
n>0 n>0

= ﬁlS(z)ﬁlg (ZK(E;)
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g

2.5. Ore extension. Let A be an algebra and ¢ : A — A be an algebra automor-
phism. The vector space A[t,t~!] of Laurent polynomials with coefficients in A is an
algebra with multiplication

(at™) x (bt™) := a@™(b)t"™*" for a,b € A and m,n € Z.

The resulting algebra is called Ore extension of A by ¢, and denoted by A[t,t71;¢]. It
contains A and the Laurent polynomial algebra K[t,¢~1] as subalgebras.

Suppose f : A — B is an algebra homomorphism. If there exits an invertible
element ¢ € B* such that ¥ f(a) = f(¢(a))y for all a € A, then we can extend f

uniquely to an algebra homomorphism f : A[t,t~!; ¢] — B which sends ¢ to .

Example 2.7. We have an algebra automorphism ¢ of the tensor algebra Uy (sly)®?
such that for z,y € Uj,(slz) homogeneous of degrees 2r, 2s:

pla®y) =q " aK " @yK "
Let Ay denote the Ore extension of U, (sl3)®? by .

The universal R-matrix of Uy(sly) is the following power series in z with coefficients
in the Ore extension Ay of U,(sly)®? by the algebra automorphism ¢:

(2.6) R(2) := R(2)t € As[[2]].

3. REPRESENTATIONS OF THE QUANTUM GROUP U, (sl3)

3.1. Universal R-matrix of U,(slz). Since the Z-grading on U,(slz) is compatible
with the Hopf algebra structure, we can define two algebra homomorphisms A, and
AP from Uy(sly) to U,(sla)®?[2, 271 as follows. For z € U,(slz) homogeneous, write
A(z) =), a; ® b; where all a;,b; are homogeneous. Then set

deg(a;) deg(b;)
A, (x) = Zaiz % ®vi, APP(x):= Zbiz E ® a;.
i

7

Proposition 3.1. The universal R-matriz R(z) satisfies the equation:
R(z)A.(z) = APP(2)R(2) € Ax((2)) for z € Uy(sla)
Proof.
R(2)AL(E) =RHKQE+2E®1)=R(2) (1@ E+2E® K ')t

=(1®E+2E® K)R(2)t = ASP(E)YR(2),
R()AL(F) =R F+ 2 '"FOK Y =Re)(K@F+2z 'Fal)t

= (K'@F+2'Fo 1)R(2)t = ACP(F)R(2).
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3.2. Category .%. From now on assume that there exists a fixed square root q% ek
of g. Recall that the quantum group Uy(slz) is graded with respect to the conjugate
action of the invertible element K.

Given a U, (slz)-module V', for n € Z let V,, denote the eigenspace of K of eigenvalue
q". It follows that

EV, CVyto, FV,CVy_o, KV,=V,.
Call the module V of type 1 if it is a direct sum of the V,, for n € Z.

Lemma 3.2. Given V and W two U,(sly)-modules of type 1, define the linear isomor-
phism Wy by

\IIV,W’VW(X)WTL = q_%ldvm@m/n for m,n € Z.
Then the Uy, (sl2)®2-module structure on V @ W is extended to a As-module structure
such that t acts as Wy .

Proof. Let z,y € Uy(slz) be of degrees 2r and 2s respectively. Let v € V;;, and w € W,.
We need to check that

Uy w(zo @ yw) = q*2TS(fos QYK ") ¥yw(v®w).

(m+2r)(n+2s)
2

Since xv € Vi, and yw € Wy, 4o, the left-hand side is ¢~ v @ yw. The
right-hand side is
q72rsf%fosv ® nyrw _ q72r57%fsmfrnmv ® yw.
O

Let .# denote the category of finite-dimensional Ug(slz)-modules of type 1. It is
closed under dual, quotients, submodules and tensor product.

Example 3.3. Fix n € N. Choose a basis (vg, v, ,vy,) of the vector space K"*1.
The following assignments define a U, (sl2)-module structure on K", denoted by L(n):

(qn72i+2 _ qfn)(qu _ 1)
(¢—qN(*-1)

It is an simple module in category .# and self dual: L(n)* = L(n).

n—21
Kv; = ¢" v,  Fvg=vi41, Ev = Vi1

Theorem 3.4. Let V and W be Uy(sly)-modules in category #. Then we have a
module isomorphism

cyw = Uvgwﬁ(l)W@W\If‘/’W VW —WeV.
Furthermore, if U is another Uy(sla)-module in category F, then
cvgvw = (cow ®@1dv)(Idy @ ecvw), covew = (Idv ® cow)(cv,y @ Idw).

Proof. The first statement follows from Proposition 3.1, the second from Egs.(2.4)—(2.5)
and the following commutation relations in End(U ® V @ W):

ﬁm(K@j)(\I’U,W)m = (Yyw)i1sRi12(1), Raz(K3)(Yuw)is = (Puw)i3Raes(1).
O
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Example 3.5. Set V =W = L(1). Then R(1)|yew =1+ (¢! —¢)E® F and
cvw (Vo ®v0) = ¢ 2ug @ vo, ey (vl @) = ¢ 2v; @i,
cv,w (vo ® v1) = g7v1 ® vy, cvw (v1 @wg) = q2v0 ® v1 + (q_% - q%)’vl ® vo.
3.3. Cyclicity is equivalent to simplicity. Call a U,(sly)-module V' highest weight
if there exists a nonzero vector v € V' such that
V =Uy(sla)v, KveKv, Ev=0.

Lemma 3.6. Let V' be a highest weight Uy(sly)-module. Then there exists a unique
nonzero scalar A € V' such that: A is an eigenvalue of K acting on V ; all the eigenvalues
of K are of the form Aq~2% with s € N.

Call A the highest weight of V. Any nonzero vector of eigenvalue A is called a highest
weight vector.

Proof. Write Kv = Av. Then X\ € K* because K is invertible. Since U, (slz) is spanned
by the monomials F" KPE"™ with m,n € N and p € Z, we have that U,(slz)v is spanned
by the F™v. If F™v is nonzero, then it is an eigenvector of eigenvalue Ag—2™. O

Proposition 3.7. Let V' be U,(slz)-module in category .F of highest weight A € K*.
Then there exists a unique n € N such that A = ¢" and V = L(n).

Proof. Since V is of type 1, there exists k € Z such that A = ¢*. Choose a highest
weight vector wg and set w; := F'wg. If all the w; are nonzero, then the ¢°=% for i € N
form an infinite sequence of eigenvalues of K acting on the finite-dimensional space V,
a contradiction. Let n € N be such that w,, # 0 and w,4+1 = 0. Then

(qk—Qn _ q—k)(q2n+2 _ 1)
12 Wn
(¢—q")(¢* - 1)
It follows that ¢*~2" — g% = 0 and so n = k. One shows directly that the assignments
v; — w; for 0 <4 < n define a module isomorphism from L(n) to V. O

FBwpy = EF" My = =0.

Corollary 3.8. The simple objects in category F are precisely the L(n) for n € N.

3.4. Semi-simplicity of category .%#. Let V be a module over an algebra. A sub-
module W of V is called a direct factor if there exists another submodule W’ such that
VewaeWw.

Lemma 3.9. Let V' be a module in category % which contains a submodule W such
that W = L(0) and V/W = L(n) for certain n € N. Then W is a direct factor.

Proof. Suppose n > 0. Then the eigenvalues of K are of the form ¢* where —n < s <n
and the eigenspace V,, of eigenvalue ¢" is one-dimensional. Choose a nonzero vector
v € V. Then Ev = 0 and the submodule W’ of V' generated by v is a highest weight
module isomorphic to L(n). Since L(0) and L(n) are non-isomorphic, W + W' is a
direct sum and V =W ¢ W".

Suppose n = 0. Then £ = F = 0. Any subspace of V is a submodule. O

Lemma 3.10. Let V be a module in category F which contains a submodule W such
that V/W = L(0) and W = L(n) for certain n € N. Then W is a direct factor.
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Lemma 3.11. Let m : V. — L(0) be a surjective module morphism in category F .
Then there exists a submodule Vo of V' such that Vo = L(0) and ©(Vy) = L(0).

Proof. We prove by induction on dimV > 0. For dimV = 1 this is trivial. Assume
dim V' > 1. Then V is not simple and so it contains a simple submodule W = L(n). If
m(W) = L(0), then necessarily n = 0 and we are done.

There remains the case 7(W) = {0}. Then 7 induces another surjective module
morphism 7’ : V/W — L(0). By induction hypothesis, there exists a submodule T" of
V/W isomorphic to L(0) and 7/(T) = L(0). Write T = V'/W with V' a submodule
of V. Then V'/W = L(0) and W = L(n). So there exists a submodule V" of V' such
that V' = V" @& W. Clearly V" = L(0) is a submodule of V. Since 7(V') = L(0) and
m(W) = {0}, we must have 7(V") = L(0). O

If H is a Hopf algebra and V' is an H-module, set
VH .= {veV |hv=eh)vfor hec H}.
Lemma 3.12. Let H be a Hopf algebra and V and W be two H-modules. Then
Homy (V, W) = Homp (V, W).

Theorem 3.13. Let V' be a Uy(slz)-module in category 7. Then all submodules of V
are direct factors.

Proof. Let W be a submodule. The injective module morphism ¢ : W — V induces a
surjective module morphism

F : Homg (V,W) — Homg (W, W) f > fu.

Notice that KIdy is a submodule of Homg (W, W) isomorphic to L(0). Its pre-image
T := F~1(KIdy) is a submodule of Homg (V, W). Since T admits L(0) as a quotient
module, it contains a submodule 7j isomorphic to L(0) and F(Tp) = Kldyy. Namely,
there exists a module morphism f : V — W such that fit = Idy,. One shows then
V =W @ker(f). O

Corollary 3.14. Any module in category F is a finite direct sum of the L(n) for
n € N.

4. QUANTUM GROUPS II

4.1. Fusion rule in category .#. Recall the simple U,(slz)-module L(n) in category

Z for n € N. Let wg be a highest weight vector. Set w} := ﬁq!Fiw{)‘ for i € N and
w) =0 for i < 0. Then w =0 for ¢ > n and (wg,wy, -+ ,w,) forms a basis of L(n)

with respect to which the U, (slz)-action is given by

Kwi =¢"" % w, Fuo = (i+ 1wy, Bwl=q""(n—i+ Hgwi,.

)
Up to nonzero scalar multiplication, w{ is the unique highest weight vector of L(n).
Proposition 4.1. For m,n € N we have a decomposition of modules in category % :

min(m,n) min(m,n)

Lim)@Ln)= € Lm+n-2j)= 5 L(m-n|+2p).
j=0 p=0
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Proof. By comparing dimensions, it suffices to show that for each 0 < j < min(m,n),
there exists a vector in L(m)® L(n) of highest weight ¢"+"~2/, In view of the K-action,

", where ag, a1, ,a; € K are chosen

such a vector is of the form ZLO ow @ wi;
such that the vector is annihilated by E, namely,

i
M-

ai(Kw" @ Bwj_; + Ewi" @ wj_;)

oo
(|
- O

"  — i+ Dl ® Wi

~
I
o

J
+ Z g "M (m =i+ 1) ® wi_;
i=1

j—1
=) (g™ — i+ 1)+ 1™ (m = ) )wl @ Wiy
i=0
We are reduced to the recursion oy = —aiqzm_zn_%m for 0 <14 < j. O

(m—i)q
In the above proof, one has a solution a; = (—1)’¢'®™=27=H 1) (;m — i) (n — j + i),
for 0 < ¢ < j to the recursion and a highest weight vector in L(m) ® L(n):
J
wi = "(=1)'q" ) (m — )l (n — 4 i)l @ w, € L(m) @ L(n).
=0
Consider the module isomorphism ¢y, () r(n) : L(m) ® L(n) — L(n) ® L(m) defined
by 0R(1)¥ [ (m),(n) in Theorem 3.4. It sends wi™ to Ajw;™ for a unique \; € K*.
Notice that cr,(m),1(n) (w;nn) modulo the subspace Vect(wj @ w7, : 0 <i < j)is

_(m=2j)n o —on—i . .
¢ (F1) I (i — )l () gl @ wi = Aj(n)gl(m — )glul © wl,

= )‘j _ qf%(_l)jqj@mfnfjjrl).

Let P; denote the composition L(m)® L(n) — L(m+n—2j) — L(n)® L(n) sending

w;n’n to w;”n We obtain the following spectral decomposition of R-matriz
min(m,n)
j=0

In the particular case m = n, the P; are projections.

4.2. Divided power algebra of Lusztig. Let U,(sly) denote the quantum group
over the field C(g) with ¢ an indeterminate. Let A := Clgq,q '] be the subalgebra of
Laurent polynomials. For two integers n,r € Z with r > 0, the ¢g-numbers (n)y, (r),!
and (Z)q belong to A, so they can be specialized to an arbitrary complex number \.

The resulting complex numbers are denoted by (n)y, (r)x! and (7') K
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Definition 4.2. Lusztig’s divided power algebra, denoted by U, is the A-subalgebra of
U,(slz) generated by K*! and the g-divided powers

1 1
)4 )4

Lemma 4.3. For m,n € Z and r € N we have in A the identity

m+n _ —~ (m n 2s(n—r+s)
("), 7% (), (L) e

Proof. Both sides are polynomials in the ¢ and ¢" with coefficients in C(gq). To prove
the identity one can assume m,n > 0. let B be an algebra containing = and y such
that 2y = ¢?yz and the monomials 3z for i, j € N are linearly independent. Then the
coefficient of 2" in the polynomial (zx + y)™™" € Blz] is precisely

<m + TL> mernfsxr'
s q

Decomposing (zz + y)™ ™ = (zx + y)™ (22 + y)™, we get the coefficient of 2

r r
m _ n _ _ m n _ _
Z < ) ym SJ}S< ) yn TS pr—s — Z ( ) < > q25(n T+s)ym+n Tyl
S q r—s q S q r—s q

E(M .= E", F) .= F" forr eN.

s=0 s=0
U
For n € Z and r > N, define the following element
K: r K2 2n—2s+2 1
( ”) — g s € Uysla).
r q s=1 q
Proposition 4.4. (i) In the C(q)-algebra Uy(sly) we have for p,r € N and n € Z:

Kin\ po) _ po) (K0 +2p Kin\ pe) _ po) (HKin—2p
r q r q’ r q r q,

t>0 t q r q
(ii) The A-subalgebra U is a Hopf algebra. We have for m,n € Z and r,p € N:

AED) =N ErIK o E®, AFD) =3 FO @K Fr),
s=0 s=0

K;m+n " e (K;m K;n s
()= g (), () e
" 4 s=0 5 /q "5/

Kin O (I K;—n+r—-1
s ) = v ).
q q

T T

(iii) The A-module U is generated by the FWGE®) where r,s € N and ¢ is a
monomial in the K~ and (Kp;")q forn € Z and p € Z.



16 QUANTUM GROUPS

F) for r < 0.

It is understood that E(") =0 =
Proof. (i) We shall only prove (K ) € U, by induction on r > 0. For r = 0 this is
0

q
trivial. Assume this is true for r < t. In view of the recursion formula

(Ko (R o ()

we only need to show that (K O) € U. By Proposition 4.4(i),

t—1
EOF® _ gt~ <K 0) LS R <K 2r — 2t> )
¢ q r=0 " q

The summation at the right-hand side belongs to U by induction hypothesis. Together
with EOF® K+ ¢+ ¢ U by definition, we obtain (Kgo)q e U.

(ii) The first and second formulas are almost clear. Let H denote the C(g)-subalgebra
of U,(sly) generated by the K +1 Then H is a Hopf subalgebra containing all the (KT”)q
It follows that A((K;”:Jr”)q) =D ijez ci; K ® K7 with ¢;; € C(g). To prove the third
formula, it suffice to show that for all my, mo € Z we have

i,
Z cijg™ it = Z (m1 . m) <m2_+ ”) g25(matnrts)
S q r S q

4,JEL s=0
Let C(q)m, denote the one-dimensional H-module such that K acts as ¢""', so that
(K;n)q acts as (m1T+n)q. On the same module C(q)m, R®c(q) C(q)my = C(q)my+my, the

T
(K ;TJF”) is given on the one-hand by (m1+m2+m+n) , and on the other hand
q q

action of 2

by Zwez cijq™"T™2J. The desired formula follows from Lemma 4.3.
(iit) This follows from (i) and E( E®) = (Tjs)qE(’"*s) for r;s € N. O

Notice that the quasi R-matrix is a power series in z with coefficients in U ® 4 U:

-1 _ A7
R(z) = Z (q(r)'q)ET QFs" = Z(q—l _ q)r(/f')q!E(T) & F)

r>0 7 r>0
4.3. Quantum groups at roots of unity. From now on we fix £ > 1 an odd integer
and € € C a primitive ¢-th root of unity. The ground field is C.

Definition 4.5. Define the algebra U, to be the extension U ®4 C. where C. is C
regarded as a A-algebra with ¢ acting as multiplication by €. Let U, denote the quotient
algebra of U, by the two-sided ideal generated by K* — 1.

By abuse of language, in the algebra U, or its quotient U,, let 2 denote x ®4 1 or
its quotient for z € {E), F() K}, and let (KTn)6 denote (K;n)q ®4 1 or its quotient.

Proposition 4.4 tells that U is a Hopf algebra over A. After evaluation U, is a
complex Hopf algebra. Since K is grouplike, U, is a Hopf algebra.

Lemma 4.6. In the algebra U,, the element K' is central and

K*-1=E'=F'=0.



QUANTUM GROUPS 17

Proof. In the A-algebra U we have

L
<e>q’<KéO> =[P 72=1), (OB =B, (0)1FY = F*.
q

s=1

Evaluate g at €. Since the €272 for 1 < s < £ are precisely the roots of the polynomial
X% —1 € C[X] and since (£).! = 0, we obtained the desired equations. O

Theorem 4.7. The Hopf algebra U, is quasi-triangular with universal R-matriz

-1 —1
1 L .

L —1 r r r 2% 1
R. = <§ (et = &) (1) EM @ F( >> <7 y K @ K

—0 i,j=0

Proof. Let R. and . denote the two factors at the right-hand side. The C(q)-algebra
automorphism W of Uy (sl2) ®c(q) Uy(sl2) in Example 2.7 restricts to an A-algebra au-
tomorphism of U ® 4 U still denoted by V. Its evaluation at ¢ = ¢ induces an algebra
automorphism U, ® U, factorizes through the quotient map U, ® U, — U, ® Us,.
Let W, denote the resulting algebra automorphism of U, ® U..

The quasi R-matrix R(2) has coefficients in U ® 4 U. By Proposition 2.6:

R(2)¥U(A, (7)) = ALP(2)R(2) € (U4 U)((2)) for z € U.

After evaluation at ¢ = &, the power series R(z) truncates to a polynomial in z. To-
gether with the polynomiality of A,(z) and AZ°P(z) by definition, we can evaluate z
at 1 to get the relation

RV (A(z)) = AP(2)R. € U. ® U, for z € U..
To show that R.1. is a universal R-matrix, as in the proof of Theorem 3.4 we need
to establish the following assertions:
(i) The element . € ﬁ?Q is invertible and W.(X) = ¢. X! for X € ﬁ?Q.
(ii) We have in ﬁ?g the equations
(A & Id) (%) = ¢5,13¢€,237 (Id & A)(¢E) = 77[)5,131;[}5,127
ﬁlQ(Kéi)we,m = 13R12,  Roz(K(3))Ve13 = ¥e13Ra3.

One checks directly that %Zf,}io e 2 K" ® K7 is the inverse of 1).; here the relation
K% =1 is necessary. Furthermore, if z € U, satisfies Kz = 22K then

-1 -1
be(z®1) = Z 220 iy o K — Z S2ij+2im . pri o
i,5=0 i,j=0

/-1
_ (.%' Q K—m) Z E21’(]’-%771)1(2' ® Kitm — (.le ® K—m>w€.
3,j=0
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It follows that ¥ (zx ® 1) = ¢.(x ® 1)y !, Similarly, ¥.(1® x) = (1 ® z)y~!. This
proves (i). For (ii), the first equation follows from

1 ¢

¢€,l3¢8,23 — 672 Z 82ij+28tKi ® KS ® Kj+t
i.j,5,t=0
= -1 '
=% Z K@ K*® KP Z€2U+28(p—3)
,8,p=0 7=0
1 /—1 . /—1 N
== z 5251)[(1 QK*® KpZ€2j(z—s)
¢ ,8,p=0 7=0
1 /—1
=3 Y EPKT @ K @ KP = (A @1d) ().
s,p=0

Here we used the identity zg;é £2Im = {50 for 1 — ¢ < m < £ — 1. The remaining
three equations are proved in the same way. ]

Let T, denote the subalgebra of U, generated by E,F,K. Then it is a finite-
dimensional quasi-triangular Hopf algebra since R. € U, ® U..

Lemma 4.8. Let mg, mq, 19,71 € Z such that 0 < mg,rg < £ and ri > 0. Then
mo+4mi\ _ (mo) (M
ro + fry S_ ro) . \11 /)

Proposition 4.9. The algebra U, is generated by K, E, F, E®) F®).

Proof. For m € N, let m = mg + ¢my be the euclidean division of m by ¢, so that
mg, my are positive integers and 0 < mg < £. In the A-algebra U we have

<m> Em) _ ((””L)q' Em) _ pmo) glemy).
q mo

mo )q'(fml)q'
Evaluating ¢ at € and noticing (;Z))a =1 we get E(™ = Emo) pltm1) ¢ U,
Next, in the A-algebra U we have E™0 = (mo)q!E(mO). Evaluating ¢ at ¢ and
noticing that (mg)e! € C* we get E(m0) = (mi)E!EmO e U..

In the A-algebra U we have for n > 0:

M+ 8\ pnere) _ pind) glo),
t/y
Evaluating ¢ at ¢ and noticing (nﬁ;—f)g =n+1 we get EMOEO) = (n+ 1)EMHD ¢ U,
It follows by induction on m; > 0 that E(™1) = n%l!(E(g))m1 e U..

In summary, we have

1

gm - -
(mo)e!mll

EM(EWY™ ¢ U..

Similarly, F(™ can be expressed in terms of F and F©). O
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5. REPRESENTATIONS OF THE QUANTUM GROUP U,

5.1. Negligible modules. The category of finite-dimensional U.-modules is monoidal.
It has left duality and right duality (because S(x) = K~ 'zK for z € U,)
_frrev—c fc—vev
v fov— f(v), v L= v,
. Jvevr—c _ [c—oviev
"Vreve (K, T 1 0 @ Kug,
oy :V—V*™ v Kl
Here (v;) is a basis of V' and (v}) is the dual basis of V* = Homc(V, C).

Definition 5.1. Let V' be a finite-dimensional U.-module.

(i) The quantum trace of a module morphism f : V. — V' is qtr(f) := try (K f).
The quantum dimension of V' is qdim(V') := qtr(Id) = try (K).
(ii) Call V' negligible if qtr(f) = 0 for all module morphisms f:V — V.

By Krull-Schmidt decomposition, such a module is a direct sum of indecomposable
submodules. It is negligible if and only if each indecomposable submodule is negligible.
Proposition 5.2. Let U,V and W be finite-dimensional U.-modules.

(i) If W is indecomposable, then W is negligible if and only if qdimW = 0.
(ii) If W is negligible, then so is V@ W.

(iii) If W is negligible and U and V are simple non-negligible, then any module

morphism of the form U — W — V is zero.

Proof. (i) By Fitting Lemma, each module morphism f : W — W is either an auto-
morphism or nilpotent. Let A € C be an eigenvalue of f. Then f — Aldyy is nilpotent.
So is K(f — Mdw ) and it is traceless. It follows that

qtr(f) = tr(AK + K (f — Mldy)) = Mr(K) = A x qdim(W).

(ii) Recall the module morphisms ¢y : C — V*®@ V and ey : V* ®@ V — C. Given
a module morphism f: V @ W — V ® W, we obtain another module morphism

f=(ev @ Idw)(Idy+ ® f)(¢y @ Idw) : W — W.

One verifies directly that try (K f) = tryew (K f) and so qtr(f) = qtr(f) = 0.
(iii) By Schur Lemma such a module morphism, if nonzero, is an isomorphism. So
V' is negligible as an indecomposable submodule of W. O

5.2. Category %.. Let V be a U.-module. For n € Z, define V,, to be the subspace
K.
Vo ={veV | Kv=¢e"v, ( ,m) v = <n+m> v for m € Z and r € N}.
r € r 15

If V,, # {0}, then n is called a weight of V', and V,, the weight space of weight n.

Lemma 5.3. Let V and W be U.-modules. Let m,n € Z and p € N.
(i) The sum of weight spaces of V' is direct.
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(ii) We have EP)V,, C Vi 49y and FP)V,, C V,_op.
(iii) We have V,,, @ Wy, C(V @ W), for myn € Z.
(iv) If V is a finite sum of weight spaces, then so is V* and (V;,)* = (V*)_,.

Proof. (i) follows from Lemma 4.8, and the rest from Proposition 4.4(i)—(ii). O

Let .#. denote the full subcategory of finite-dimensional U.-modules which are direct
sums of weight spaces. The module structure factorizes through the quotient map
U. — U.. So .%. is braided as a full subcategory of finite-dimensional modules
over the quasi-triangular Hopf algebra U,. Category .%. is closed under submodule,
quotient, tensor product and dual.

Lemma 5.4. Let V' be a Uc.-module in category F#. and n € Z such that dimV,, = 1.
Then V admits a indecomposable direct factor containing V,. Moreover, such a direct
factor is unique up to isomorphism.

Proof. By Krull-Schmidt decomposition V is a direct sum of indecomposable submod-
ules T' @ T? @ --- @ T". Since dimV,, = 1, there exists a unique 1 < i < r such
that (T%),, = V,, and (T7), = {0} for j #i. If V. = S1 @ S? @ ©S? is another Krull-
Schmidt decomposition, then there exists another 1 < k <t such that (S*),, =V, and
(SY),, = {0} for | # k. It follows from uniqueness that S* = S*. O

Example 5.5. For n € N we define the Weyl module W (n) over U, in two ways.

(i) Recall the irreducible U(sly)-module L(n) of highest weight ¢", defined over
the field C(q). Fix wg a highest weight vector. Set w, := Fyy for r € N.
Then (wog, w1, - -+ ,wy,) forms a C(g)-basis of L(n) with Uy(slz)-action:

K:
Kilwr = qi(anT),wh ( ’m) Wy = <n * m> Wr,
p q p q

p

Here wy, := 0 if p < 0 or p > n. It follows that ®!_,Aw, is a U-submodule of
L(n), denoted by L_4(n). Define the Weyl module W (n) to be

W(n) := La(n) ®4 Ce = La(n)/(q —)La(n).
We have W(n)p—2, = Cw, for 0 < r < n. The Weyl module W (n) is inde-
comosable of quantum dimension (n + 1), and it is negligible if and only if ¢
divides n+ 1. If n < ¢ — 1, then W (n) is simple and self dual.
(ii) The Weyl module W (n) is the U.-module generated by wg subject to the fol-
lowing relations for p € N and m € Z:

K.
B0ty = FOPH 0 =0, Kwy = £™wo, < ,m) wo = (n + m> wo.
p £ p 13

Example 5.6. For n € N, the tensor power W (1)®™ is a module in category .Z. and
(W(1)®"),, = Cw™. Up to isomorphism it contains a unique indecomposable direct
factor containing w§™, denoted by T'(n) and called a tilting module.

For m,n € N, by uniqueness T'(m + n) is a direct factor of T'(m) ® T'(n).
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5.3. Semi-simplification. Call a U.-module V of highest weight n € Z if it is gener-
ated by a nonzero vector v € Vj, such that Ev = 0 for all » > 0. For example, the
Weyl module W (m) is of highest weight m € N.

Proposition 5.7. If V is a finite-dimensional Us-module of highest weight n € Z, then
n >0 and V_,, # {0}. Moreover, V is a quotient of the Weyl module W (n).

Proof. Choose a nonzero vector v € V,,. We need to prove that n € N, F("y £ 0 and
F®)y =0 for s >n. Let n=ng+ ¢ny and s = sg + £s; be the euclidean divisions of n
and s by £, so that 0 < ng,sg < £ — 1. Then s > n implies s; > ny.

Since V is finite-dimensional, F(MV, C V,_y, and F(™) = %(F( ™ for m € N,
there exists m € N such that F(™)y £ 0 and Fy = 0 for r > m. Apply the
following relation to v:

Fr(mt+0) Z ot plme+t—t) g <K§ 2t —ml — %) Ele=t)
t>0 t £

We get (”_me) =0 =mn1 —m. It follows that n = ng + fny = ng + fm > 0.
Since F(M8y £ 0 and F" 0y = 0, there exists 0 < p < £—1 such that F®tm8y £
0 and F (pH*"lZ)v = 0. Apply the following relation to v:

EF(p+1+’n1f) — F(p+1+n1£)E 4 EF(p+n1€)K71 <K; iy 2 n1£> .
1 g
We get (n —p — n1€)5 = 0, namely, ¢ divides n — p — n1f. This forces p = n;. As a
consequence, F(™y £ 0 and F(*+Yy = 0.
If S1 >Ny, then
F)y = plo) plsitly — 0,
If s1 = nq, then s > n implies sy > ng and

( 5 )p(sn:( s )F<s>U:F<s—n—1>F<n+1>U:o.
ng+ 1 c n+1 .

Since 1 < ng + 1 < sg < £, we have (nosoﬂ)s # 0 and F®)y = 0. O

Lowest weight modules are defined by replacing £ with F' everywhere. In particular,
if V' is finite-dimensional of lowest weight n, then n < 0 and V_,, # {0}.

Corollary 5.8. Let V' be a nonzero U.-module in category F.. Then there exists a
unique my € N such that Vip,, # {0} and V,, # {0} only if —m1 < m < my. Any
surjective module morphism V- — W (my) splits.

Proof. Since V is a finite direct sum of the V;,, there exist two integers my < mq such
that Vi, # {0} # Vi, and V,, # {0} only if mg < m < m;. Choose a nonzero vector
v1 € V- Then Vj := U, is a submodule of highest weight m;. Proposition 5.7 forces
my > 0 and V_,,, # {0}. This implies my < —mj. On the other hand, any nonzero
vector of V,, generates a submodule of lowest weight mg, so mg < 0 and V_,,, # {0}.
This implies —mg < my. As a consequence, mg + my = 0.

Let f : V. — W(m1) be a surjective module morphism. Choose a pre-image v € V,,,,
of wg € W(my). We have E®)v € Vi, 1o, = {0} and F™+Ply € V_,, o, = {0} for
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p > 0. So all the defining relations of W(m;) are satisfied and we have a module
morphism W(my) — V sending wg to v. This gives the desired splitting. [l

Theorem 5.9. Let V be a Uc-module in category F.. Suppose that V is the sum of
the Vi, for1—0 <m < {f—1. Then V is isomorphic to a direct sum of the simple Weyl
modules W (n) for 0 <n < /{—1.

Proof. We proceed by induction on dim V. The case dimV = 0 is trivial. Assume
dim V' > 0 so that V is nonzero. Choose m; € N as in Corollary 5.8. Then V;,,, # {0}
implies m; < ¢—1. Choose a nonzero vector v; € V,,,. Then the submodule V; = U, vy,
being finite-dimensional of highest weight m1, is isomorphic to the simple self dual Weyl
module W (m;y). This gives an injective module morphism W (m;) — V. Taking duals
gives a surjective module morphism V* — W (m;). By Corollary 5.8 such a surjective
module morphism splits, meaning that V; is a direct factor of V. Apply the induction
hypothesis to V/V; and conclude. O

Corollary 5.10. If 0 < n < ¢ —2, then T'(n) = W(n) is simple non-negligible. If
n > —1, then T(n) is negligible. In all cases, T'(n) is self dual.

Proof. For n < ¢ — 1, the tilting module T'(n) as an indecomposable submodule of
the semi-simple module W (1)®" is isomorphic to the simple Weyl module W (n). It is
negligible if and only if n = /¢ — 1.

Assume T'(n) negligible. Then W (1) ® T'(n) = T'(1) ® T'(n) is negligible. By Propo-
sition 5.2(ii), its direct factor T'(n + 1) is negligible. O

Definition 5.11. (i) Category .. is the full subcategory of category .#. with the
additional condition that V is the sum of the V,,, for 2 — ¢ <m < /¢ — 2.
(ii) Category 7 is the full subcategory of .%, with the additional condition that V'
is isomorphic to a direct sum of tilting modules.

By Theorem 5.9 category .. is semi-simple with finitely many simple objects: W (n)
for 0 <n <{¢—2. We have #. C 7. C Z.. Category 7. is not abelian. Category .Z.
is not closed under tensor product.

By definition and uniqueness of Krull-Schmidt decomposition, a module V' in cate-
gory 7. has a unique splitting V' = M(V) @ Z(V') where:

(i) the submodule M(V) is a direct sum of simple non-negligible tilting modules;
(ii) the submodule Z(V) is a direct sum of negligible tilting modules.

fvm fMZ)

A morphism f: V — W in category 7, is encoded in a square matrix < 7 f
ZM 7z
whose entries fxy : Y(V) — X(W) for X,Y € {Z,M} are module morphisms.

Proposition 5.12. The assignments V. — M(V) and f — fyvm define a functor
M : . — M. whose restriction to the subcategory M. is the identity functor. We
have M(V') = {0} if and only if V is negligible.

Proof. Let f:U — V and g : V. — W be morphisms in category 7.. We need to
show that gmzfzm = 0. This is a morphism of the form M(U) — Z(V) — M(W).

By construction M(U) and M(W) are direct sums of simple non-negligible modules
and Z(V) is negligible. Apply Proposition 5.2(iii). O
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5.4. Fusion rule and quantum 6j-symbol. We record the following deep result
in representation theory of quantum groups at roots of unity. Its proof requires an
alternative characterization of tilting modules in terms of Weyl module filtrations.

Theorem 5.13 (Andersen, Paradowski). Category ;. is closed under tensor product.

Since negligible modules are stable under tensor product by an arbitrary module,
the monoidal structure on category 7z induces a monoidal structure ® on category .
defined in objects U,V and morphisms f, g as follows:

UV =MU®eV), feg:=M[f®g).
Theorem 5.14 (Reshetikhin-Turaev). Let 0 < m,n < ¢ — 2. In the semi-simple
monoidal category M. we have
min(m,n,f—2—m—2—n)
T(m) @ T(n) = D T(|n —m| + 2p).
p=0
Call a triple (m,n, k) of integers admissible if 0 < m,n,k < £ —2 and T(k) is a
direct factor of T'(m) ® T'(n). For such a triple, setting j = mH2=F
U.-module morphism lefw :T(k) — T(m) ® T(n):
J
wh = wi =Y (=1 T D (i) M0 = i)l @ W]
=0
Fix (a,d, ¢, f) four integers between 0 and ¢ —2. For all d such that (d, ¢, f) and (a, b, d)
are admissible, we have a module morphism in category .7:
(Yah ® L)Y« T(f) — T(d) @ T(e) — T(a) @ T(b) ® T(c).

Here 1. denotes the identity map of T'(c). Their images by the functor M form a basis
of the space of morphisms in category .#. from T'(f) to T'(a) ® T'(b) ® T(c). Likewise,
for all e such that (a,e, f) and (b, ¢, e) are admissible, we have a module morphism

(1a Y)Y : T(f) — T(a) ® T(e) — T(a) @ T(b) @ T(c).

Their images by the functor M form a basis of the same morphism space. We obtain

therefore the so-called quantum 67-symbol {CCL ? Cel} such that
€

we have a nonzero

e a b d
(111 ® vac)Ya]; = Z { f } (Yacg; ® 1C)Yd];'
€

(& &
d



