INTRODUCTION TO QUANTUM TOPOLOGY I

EXERCISE SHEET 1

Exercise 1.

Let G be a finite group. Consider the \mathbb{C} -vector space $V = \mathbb{C}[G]$ spanned by G. Define $a \in V \otimes V \otimes V$ and $\mu \in (V \otimes V)^*$ by

$$a = \frac{1}{|G|^2} \sum_{\substack{g,h,k \in G \\ ghk=1}} g \otimes h \otimes k \quad \text{and} \quad \mu(g \otimes h) = |G| \, \delta_{gh,1}.$$

Let τ_n be the C-linear automorphism of $V^{\otimes n}$ defined by

$$\overline{x_n}(x_1 \otimes x_2 \otimes \cdots \otimes x_n) = x_2 \otimes \cdots \otimes x_n \otimes x_1$$

and let μ_{ij} denote the contraction of the *i*-th and *j*-th component using μ . Prove that:

$$\begin{aligned} \tau_3(a) &= a, & \tau_4(\mu_{34}(a \otimes a)) &= \mu_{34}(a \otimes a), \\ \mu \tau_2 &= \mu, & (\mu_{19}\mu_{34}\mu_{67})(a \otimes a \otimes a) &= a. \end{aligned}$$

Exercise 2.

Let G be a finite group. The goal of the exercise is to prove that

$$Z_G(\Sigma) = |G|^{\chi(\Sigma)-1} \left| \operatorname{Hom}(\pi_1(\Sigma, *), G) \right|$$

for all oriented closed connected surface Σ and $* \in \Sigma$. To this aim, consider a triangulation \mathcal{T} of Σ such that * is a vertex of \mathcal{T} . Let \mathcal{O} be the set of oriented edges of \mathcal{T} . By a *G*-state of \mathcal{T} , we mean a map $c: \mathcal{O} \to G$ such that for all $e \in \mathcal{O}$ and all triangles Δ of \mathcal{T} ,

$$c(-e) = c(e)^{-1}$$
 and $c(e_1^{\Delta})c(e_2^{\Delta})c(e_3^{\Delta}) = 1$,

where $e_1^{\Delta}, e_2^{\Delta}, e_3^{\Delta}$ are the three edges adjacent to Δ oriented and cyclically ordered by the orientation of Δ induced by that of Σ . Denote by $S_G(\mathcal{T})$ the set of *G*-states of \mathcal{T} . Let \mathcal{V} be the set of vertices of \mathcal{T} . The gauge group of \mathcal{T} is the set \mathcal{G}_* of maps $\phi: \mathcal{V} \to G$ such that $\phi(*) = 1$, endowed with the product defined by

$$(\phi\phi')(v) = \phi(v)\phi'(v)$$

for all $\phi, \phi' \in \mathcal{G}_*$ and all $v \in \mathcal{V}$. **a.** Prove that

$$Z_G(\Sigma) = |G|^{n_1(\mathcal{T}) - 2n_2(\mathcal{T})} \left| S_G(\mathcal{T}) \right|$$

where $n_i(\mathcal{T})$ denotes the numbers of *i*-cells of \mathcal{T} .

b. Prove that \mathcal{G}_* acts freely on the left on $S_G(\mathcal{T})$ by

$$(\phi \cdot c)(e) = \phi(v_e^{\text{in}})c(e)\phi(v_e^{\text{out}})^{-1}$$

for all $\phi \in \mathcal{G}_*$ and $e \in \mathcal{O}$, where $v_e^{\text{in}}, v_e^{\text{out}} \in \mathcal{V}$ are the incoming and outgoing vertices of e, respectively.

- c. Using that any loop in Σ based at * is homotopic to a finite sequence of oriented edges of \mathcal{T} , construct a map $\Gamma: S_G(\mathcal{T}) \to \operatorname{Hom}(\pi_1(\Sigma, *), G)$.
- **d.** Prove that Γ is \mathcal{G}_* -equivariant and induces a bijection

$$S_G(\mathcal{T})/\mathcal{G}_* \cong \operatorname{Hom}(\pi_1(\Sigma, *), G).$$

e. Conclude.