MASTER CLASS 2016-2017 IN GEOMETRY, TOPOLOGY AND PHYSICS

Introduction to Quantum Topology I

ExERCISE SHEET 2

By a state sum triple, we mean a triple (V, a, μ), where V is a finite-dimensional vector space over a field $\mathbb{k}, a \in V \otimes V \otimes V$, and $\mu \in(V \otimes V)^{*}$, such that

$$
\tau_{3}(a)=a, \quad \mu \tau_{2}=\mu, \quad \mu_{34}(a \otimes a)=\tau_{4}\left(\mu_{34}(a \otimes a)\right), \quad \mu_{19} \mu_{34} \mu_{67}(a \otimes a \otimes a)=a
$$

Here $\otimes=\otimes_{\mathbb{k}}$, the map τ_{n} is the \mathbb{k}-linear automorphism of $V^{\otimes n}$ defined by

$$
\tau_{n}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}\right)=x_{2} \otimes \cdots \otimes x_{n} \otimes x_{1}
$$

and $\mu_{i j}$ denotes the contraction of the i-th and j-th component using μ. Recall that each state sum triple defines a topological invariant of closed oriented surfaces.

Exercise 1. (Product and coproduct of a state sum triple)

Let (V, a, μ) be a state sum triple. Set

$$
\Delta=\left(\mu \otimes \operatorname{id}_{V \otimes 2}\right)\left(\mathrm{id}_{V} \otimes a\right): V \rightarrow V \otimes V \quad \text { and } \quad m=\left(\mu \otimes \operatorname{id}_{V}\right)\left(\mathrm{id}_{V} \otimes \Delta\right): V \otimes V \rightarrow V .
$$

a. Prove that Δ is coassociative, m is associative, and

$$
\left(m \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes \Delta\right)=\Delta m=\left(\mathrm{id}_{V} \otimes m\right)\left(\Delta \otimes \mathrm{id}_{V}\right)
$$

b. Prove that the \mathbb{k}-linear map $\pi=m \Delta: V \rightarrow V$ satisfies

$$
m=\pi m=m\left(\mathrm{id}_{V} \otimes \pi\right)=m\left(\pi \otimes \mathrm{id}_{V}\right)
$$

and is a projector (i.e., $\pi^{2}=\pi$).
c. Assume that μ is non-degenerate. Prove that

$$
\operatorname{Im}(\pi)=\operatorname{Im}(m)=\left\{\left(\operatorname{id}_{V} \otimes \phi\right)(a) \mid \phi \in(V \otimes V)^{*}\right\}
$$

and

$$
(V, m) \text { has a unit } \Leftrightarrow \pi=\operatorname{id}_{V} \Leftrightarrow V=\left\{\left(\operatorname{id}_{V} \otimes \phi\right)(a) \mid \phi \in(V \otimes V)^{*}\right\} .
$$

Exercise 2.

Let (V, a, μ) be a state sum triple. Consider the kernel $\operatorname{Ker}(\mu)=\{x \in V \mid \mu(x \otimes \cdot)=0\}$ of μ and the canonical projection map

$$
p: V \rightarrow \bar{V}=V / \operatorname{Ker}(\mu) .
$$

a. Prove that there is a unique $\bar{\mu} \in(\bar{V} \otimes \bar{V})^{*}$ such that $\mu=\bar{\mu}(p \otimes p)$.
b. Prove that $\bar{\mu}$ is non-degenerate.
c. Prove that $(\bar{V}, \bar{a}, \bar{\mu})$ is a state sum triple, where $\bar{a}=(p \otimes p \otimes p)(a)$.

Exercise 3.

Let (V, a, μ) be a state sum triple. Set

$$
\widetilde{V}=\left\{\left(\operatorname{id}_{V} \otimes \phi\right)(a) \mid \phi \in(V \otimes V)^{*}\right\} .
$$

a. Prove that \widetilde{V} is the smallest vector subspace of V such that $a \in \widetilde{V} \otimes \widetilde{V} \otimes \widetilde{V}$.
b. Prove that $(\widetilde{V}, \widetilde{a}, \widetilde{\mu})$ is a state sum triple, where $\widetilde{a}=a$ and $\widetilde{\mu}=\mu_{\mid \tilde{V} \otimes \tilde{V}}$.
c. Prove that if μ is non-degenerate, then so is $\widetilde{\mu}$.

Exercise 4.

Let (V, a, μ) be a state sum triple such that $V=\left\{\left(\operatorname{id}_{V} \otimes \phi\right)(a) \mid \phi \in(V \otimes V)^{*}\right\}$ and μ is nondegenerate. Consider the center A of the \mathbb{k}-algebra (V, m). Prove that $\mu_{\mid A \otimes A}$ is non-degenerate.

