MASTER CLASS 2016-2017 IN GEOMETRY, TOPOLOGY AND PHYSICS

Introduction to Quantum Topology I

ExERCISE SHEET 3

Exercise 1.

Consider the 2-dimensional TQFT $Z=Z_{(V, a, \mu)}$ associated to a state sum triple (V, a, μ). Let C be a closed oriented 1-manifold and t be a triangulation of C. Prove that the vector space $Z(C)$ is isomorphic to the image of the projector $p_{t, t}^{C}$.

Exercise 2.

Let G be a finite group. Consider the 2-dimensional TQFT $Z=Z_{(\mathbb{C}[G], a, \mu)}$ where

$$
a=\frac{1}{|G|^{2}} \sum_{\substack{g, h, k \in G \\ g h k=1}} g \otimes h \otimes k \quad \text { and } \quad \mu(g \otimes h)=|G| \delta_{g h, 1} .
$$

Compute the dimension of the \mathbb{C}-vector space $Z\left(S^{1}\right)$.

Exercise 3.

Let (V, a, μ) be a state sum triple. The goal of this exercise is to determine the Frobenius algebra associated to the 2-dimensional TQFT $Z_{(V, a, \mu)}$. We say that two state sum triples are equivalent if they define isomorphic TQFTs.
a. Let $(\bar{V}, \bar{a}, \bar{\mu})$ be the state sum triple of Exercise 2 of Sheet 2.

Prove that the state sum triples $(\bar{V}, \bar{a}, \bar{\mu})$ et (V, a, μ) are équivalent.
b. Let $(\widetilde{V}, \widetilde{a}, \widetilde{\mu})$ be the state sum triple of Exercise 3 of Sheet 2 .

Prove that the state sum triples $(\widetilde{V}, \widetilde{a}, \widetilde{\mu})$ et (V, a, μ) are équivalent.
c. Assume that $V=\left\{\left(\operatorname{id}_{V} \otimes \phi\right)(a) \mid \phi \in(V \otimes V)^{*}\right\}$ and μ is non-degenerate.

Prove that the Frobenius algebra associated to the 2-dimensional TQFT $Z_{(V, a, \mu)}$ is isomorphic to the center of the \mathbb{k}-algebra (V, m), where

$$
m=\left(\mu \otimes \operatorname{id}_{V} \otimes \mu\right)\left(\mathrm{id}_{V} \otimes a \otimes \operatorname{id}_{V}\right): V \otimes V \rightarrow V
$$

(See Exercise 4 of Sheet 2.)
d. Conclude by noticing that the state sum triple $(\widetilde{\bar{V}}, \widetilde{\bar{a}}, \widetilde{\bar{\mu}})$ satisfies the assumptions of question c .

