MASTER CLASS 2016-2017 IN GEOMETRY, TOPOLOGY AND PHYSICS

INTRODUCTION TO QUANTUM TOPOLOGY I

EXERCISE SHEET 4

Exercise 1.

Let Z be a n-dimensional TQFT (over \Bbbk) and M be a closed oriented n-manifold. Then the tuple $(M, \emptyset, \emptyset, \mathrm{id}_{\emptyset})$ is a n-cobordism and the \Bbbk -linear map

$$Z_0^{-1}Z(M, \emptyset, \emptyset, \mathrm{id}_{\emptyset})Z_0 \colon \mathbb{k} \to \mathbb{k}$$

is the multiplication by a scalar $Z(M) \in \mathbb{k}$. Prove that Z(M) is a topological invariant of M.

Exercise 2.

Let Z be a n-dimensional TQFT (over \Bbbk) and C be a closed oriented (n-1)-manifold. Prove that the \Bbbk -vector space Z(C) is finite-dimensional.

Exercise 3.

Prove that any 1-dimensional TQFT (over k) is entirely determined (up to equivalence) by an non-negative integer (the dimension of the k-vector space associated by the TQFT to the point).

Exercise 4. (Mednykh's identity)

a. Let $(A, m, u, \Delta, \varepsilon)$ be a semisimple commutative Frobenius C-algebra and let e_1, \ldots, e_n be its primitive idempotents. Consider the 2-dimensional TQFT Z_A associated to A. Prove that for any closed connected oriented surface Σ of genus g,

$$Z_A(\Sigma) = \sum_{i=1}^n \varepsilon(e_i)^{1-g}.$$

b. Let G be a finite group. Denote by Irr(G) the set of isomorphic classes of irreducible complex representations of G. Prove that for any closed connected orientable surface Σ ,

$$\left|\operatorname{Hom}(\pi_1(\Sigma), G)\right| = |G|^{1-\chi(\Sigma)} \sum_{V \in \operatorname{Irr}(G)} \dim(V)^{\chi(\Sigma)}$$

where $\chi(\Sigma)$ is the Euler characteristic of Σ .

Hint : consider the state sum triple $(\mathbb{C}[G], a, \mu)$ of Exercise 1 in Sheet 1.