MASTER CLASS 2016-2017 IN GEOMETRY, TOPOLOGY AND PHYSICS

INTRODUCTION TO QUANTUM TOPOLOGY I

EXERCISE SHEET 7

Exercise.

Let $V = \mathbb{C}^2$ with canonical basis $\mathcal{B} = (b_1, b_2)$. Consider the following basis of $V \otimes V$: $\mathcal{B} \otimes \mathcal{B} = (b_1 \otimes b_1, b_1 \otimes b_2, b_2 \otimes b_1, b_2 \otimes b_2).$

Pick a parameter $t \in \mathbb{C}$ and define \mathbb{C} -linear morphisms $R: V \otimes V \to V \otimes V$ and $h: V \to V$ by

$$\operatorname{Mat}_{\mathcal{B}\otimes\mathcal{B}}(R) = \begin{pmatrix} t^{-\frac{1}{2}} & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & t^{-\frac{1}{2}} - t^{\frac{1}{2}} & 0\\ 0 & 0 & 0 & -t^{\frac{1}{2}} \end{pmatrix} \quad \text{and} \quad \operatorname{Mat}_{\mathcal{B}}(h) = \begin{pmatrix} t^{\frac{1}{2}} & 0\\ 0 & -t^{\frac{1}{2}} \end{pmatrix}$$

a. Prove that R and h satisfy

$$(h \otimes h)R = R(h \otimes h),$$

$$\operatorname{tr}_{2}((\operatorname{id}_{V} \otimes h)R^{\pm 1}) = \operatorname{id}_{V},$$

$$(R^{-1})^{\circ}((\operatorname{id}_{V} \otimes h)R(h^{-1} \otimes \operatorname{id}_{V}))^{\circ} = \operatorname{id}_{V \otimes V^{*}},$$

$$(\operatorname{id}_{V} \otimes R)(R \otimes \operatorname{id}_{V})(\operatorname{id}_{V} \otimes R) = (R \otimes \operatorname{id}_{V})(\operatorname{id}_{V} \otimes R)(R \otimes \operatorname{id}_{V})$$

b. Consider the isotopy invariant $F = F_{(V,R,h)}$ of oriented tangles.

- Prove that F(L) = 0 for all oriented link.
- **c.** Prove that for an oriented (1, 1)-tangle T, there is $c_T \in \mathbb{C}$ such that

$$F(T) = c_T \operatorname{id}_V.$$

d. For an oriented link L, set

$$\Delta_L(t) = c_T$$

where T is any oriented (1, 1)-tangle whose closure is L. Prove that $\Delta_L(t)$ is a well-defined isotopy invariant of L satisfying the skein relation:

$$\Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) = (t^{-\frac{1}{2}} - t^{\frac{1}{2}})\Delta_{L_{0}}(t)$$