Master class 2016-2017 In geometry, Topology and PHYsics

Introduction to Quantum Topology I

Exercise sheet 7

Exercise.

Let $V=\mathbb{C}^{2}$ with canonical basis $\mathcal{B}=\left(b_{1}, b_{2}\right)$. Consider the following basis of $V \otimes V$:

$$
\mathcal{B} \otimes \mathcal{B}=\left(b_{1} \otimes b_{1}, b_{1} \otimes b_{2}, b_{2} \otimes b_{1}, b_{2} \otimes b_{2}\right)
$$

Pick a parameter $t \in \mathbb{C}$ and define \mathbb{C}-linear morphisms $R: V \otimes V \rightarrow V \otimes V$ and $h: V \rightarrow V$ by

$$
\operatorname{Mat}_{\mathcal{B} \otimes \mathcal{B}}(R)=\left(\begin{array}{cccc}
t^{-\frac{1}{2}} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & t^{-\frac{1}{2}}-t^{\frac{1}{2}} & 0 \\
0 & 0 & 0 & -t^{\frac{1}{2}}
\end{array}\right) \quad \text { and } \quad \operatorname{Mat}_{\mathcal{B}}(h)=\left(\begin{array}{cc}
t^{\frac{1}{2}} & 0 \\
0 & -t^{\frac{1}{2}}
\end{array}\right) .
$$

a. Prove that R and h satisfy

$$
\begin{gathered}
(h \otimes h) R=R(h \otimes h), \\
\operatorname{tr}_{2}\left(\left(\mathrm{id}_{V} \otimes h\right) R^{ \pm 1}\right)=\mathrm{id}_{V}, \\
\left(R^{-1}\right)^{\circlearrowleft}\left(\left(\mathrm{id}_{V} \otimes h\right) R\left(h^{-1} \otimes \operatorname{id}_{V}\right)\right)^{\circ}=\mathrm{id}_{V \otimes V^{*}}, \\
\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \operatorname{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)=\left(R \otimes \mathrm{id}_{V}\right)\left(\operatorname{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right) .
\end{gathered}
$$

b. Consider the isotopy invariant $F=F_{(V, R, h)}$ of oriented tangles.

Prove that $F(L)=0$ for all oriented link.
c. Prove that for an oriented $(1,1)$-tangle T, there is $c_{T} \in \mathbb{C}$ such that

$$
F(T)=c_{T} \mathrm{id}_{V} .
$$

d. For an oriented link L, set

$$
\Delta_{L}(t)=c_{T}
$$

where T is any oriented (1,1)-tangle whose closure is L. Prove that $\Delta_{L}(t)$ is a well-defined isotopy invariant of L satisfying the skein relation:

$$
\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)=\left(t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right) \Delta_{L_{0}}(t)
$$

