MASTER CLASS 2016-2017 IN GEOMETRY, TOPOLOGY AND PHYSICS

INTRODUCTION TO QUANTUM TOPOLOGY I

EXERCISE SHEET 8

Exercise 1. (The restricted dual)

We denote the dual of a k-vector space V by $V^* = \operatorname{Hom}_{\Bbbk}(V, \Bbbk)$ and the transpose of a linear map $f: V \to W$ by $f^*: W^* \to V^*$. Let A be an k-algebra with product $\mu: A \otimes A \to A$ and unit $\eta: \Bbbk \to A$. We view $A^* \otimes A^*$ as a subset of $(A \otimes A)^*$ as follows: for any $f, g \in A^*$, we define $f \otimes g \in (A \otimes A)^*$ by setting

$$(f \otimes g)(a \otimes b) = f(a)g(b)$$

for all $a, b \in A$. The restricted dual of the algebra A is the subspace of the dual A^* defined by

$$A^{\circ} = (\mu^*)^{-1} (A^* \otimes A^*)$$

where $\mu^* \colon A^* \to (A \otimes A)^*$ is the transpose of μ .

- **a.** Prove that a form $f \in A^*$ belongs to A° if and only if there is an ideal I of A such that $\dim(A/I) < \infty$ and f(I) = 0.
- **b.** Prove that A° is the largest subspace of A^* such that $\mu^*(A^{\circ}) \subset A^{\circ} \otimes A^{\circ}$.
- c. Prove that A° is a coalgebra with coproduct and counit

$$\Delta_{A^{\circ}} = \mu^* \colon A^{\circ} \to A^{\circ} \otimes A^{\circ} \quad \text{and} \quad \varepsilon_{A^{\circ}} = \eta^* \colon A^{\circ} \subset A^* \to \Bbbk^* = \Bbbk.$$

d. Assume that A is a Hopf algebra with coproduct $\Delta: A \to A \otimes A$, counit $\varepsilon: A \to \Bbbk$, and antipode $S: A \to A$. Prove that

$$\Delta^*(A^\circ \otimes A^\circ) \subset A^\circ, \qquad \varepsilon^*(\Bbbk^*) \subset A^\circ, \qquad S^*(A^\circ) \subset A^\circ$$

Deduce that the restricted dual A° of A is a Hopf algebra with product, unit, and antipode defined by

$$\mu_{A^{\circ}} = \Delta^* \colon A^{\circ} \otimes A^{\circ} \to A^{\circ}, \quad \eta_{A^{\circ}} = \varepsilon^* \colon \Bbbk = \Bbbk^* \to A^{\circ}, \quad S_{A^{\circ}} = S^* \colon A^{\circ} \to A^{\circ}.$$

e. Let A be a finite-dimensional Hopf algebra. Then $A^{\circ} = A^*$, so that A^* is a Hopf algebra. Liklewise $A^{**} = (A^*)^*$ is a Hopf algebra. Prove that $A^{**} \simeq A$ as Hopf algebras.

Exercise 2.

Let G be a finite group, so that the group algebra $\Bbbk[G]$ and the algebra F(G) of \Bbbk -valued functions on G are finite-dimensional. Prove that

$$F(G)^* \simeq \Bbbk[G]$$
 and $\Bbbk[G]^* \simeq F(G)$

as Hopf algebras.

Exercise 3. (Grouplike elements)

Let A be a Hopf algebra. An element $g \in A$ is grouplike if $\Delta(g) = g \otimes g$ and $\varepsilon(g) = 1$.

a. Prove that the set G(A) of grouplike elements of A is a group (under multiplication).

b. Prove that the grouplike elements of A are linearly independent.

c. Prove that the grouplike elements of the restricted dual A° are the algebra morphisms $A \to \Bbbk$.

Exercise 4.

Let A be a Hopf algebra with coproduct Δ and counit ε . Consider the kernel I of ε . **a.** Prove that $A = \mathbb{k} \oplus I$ as vector spaces. **b.** Prove that for all $a \in I$,

$$\Delta(a) = a \otimes 1 + 1 \otimes a \mod I \otimes I.$$