INTRODUCTION TO QUANTUM TOPOLOGY I

Exercise sheet 9

In what follows, k is a field.

Exercise 1.

Let G be a finite group and D(G) be the Drinfeld double of the group algebra $\mathbb{k}[G]$.

a. Prove that a left D(G)-module is left G-module M endowed with a direct sum decomposition

$$M = \bigoplus_{g \in G} M_g$$

such that

$$gM_h \subset M_{aha^{-1}}$$

for all $g, h \in G$.

b. Let $M = \bigoplus_{g \in G} M_g$ and $N = \bigoplus_{g \in G} N_g$ be two left D(G)-modules. Prove that the braiding

$$c_{M,N} \colon M \otimes N \to N \otimes M$$

induced by the R-matrix of D(G) is computed by

$$c_{M,N}(m\otimes n)=n\otimes gm$$

for all $g \in G$, $m \in M$, and $n \in N_g$.

Exercise 2. (Yetter-Drinfeld modules)

Let $A = (A, \mu, \eta, \Delta, \varepsilon, S)$ be a finite-dimensional Hopf \mathbb{k} -algebra. A Yetter-Drinfeld A-module is a \mathbb{k} -vector space endowed with \mathbb{k} -linear maps $r: A \otimes M \to M$ and $\rho: M \to M \otimes A$ such that

• (M, r) is a left A-module, that is,

$$r(\mathrm{id}_A \otimes r) = r(\mu \otimes \mathrm{id}_M)$$
 and $r(\eta \otimes \mathrm{id}_M) = \mathrm{id}_M$;

• (M, ρ) is a right A-comodule, that is,

$$(\rho \otimes \mathrm{id}_A)\rho = (\mathrm{id}_M \otimes \Delta)\rho \quad \text{and} \quad (\mathrm{id}_M \otimes \varepsilon)\rho = \mathrm{id}_M;$$

• the following diagram commutes:

$$\begin{array}{c} A \otimes M \xrightarrow{\Delta \otimes \rho} A \otimes A \otimes M \otimes A \xrightarrow{\operatorname{id}_A \otimes \tau_{A,M} \otimes \operatorname{id}_A} A \otimes M \otimes A \otimes A \xrightarrow{r \otimes \mu} M \otimes A \\ & & & & & & & & & & & & \\ \Delta \otimes \operatorname{id}_A & & & & & & & & & & \\ A \otimes A \otimes M \xrightarrow{\operatorname{id}_A \otimes r} A \otimes M \xrightarrow{\tau_{A,M}} A \otimes M \xrightarrow{\tau_{A,M}} M \otimes A \xrightarrow{\rho \otimes \operatorname{id}_A} M \otimes A \otimes A \end{array}$$

Prove that there is a bijective correspondence between:

- (i) Yetter-Drinfeld A-modules,
- (ii) left modules over the Drinfeld double D(A) of A.