MASTER CLASS 2016-2017 IN GEOMETRY, TOPOLOGY AND PHYSICS

Introduction to Quantum Topology I

EXERCISE SHEET 9

In what follows, \mathbb{k} is a field.

Exercise 1.

Let G be a finite group and $D(G)$ be the Drinfeld double of the group algebra $\mathbb{k}[G]$.
a. Prove that a left $D(G)$-module is left G-module M endowed with a direct sum decomposition

$$
M=\bigoplus_{g \in G} M_{g}
$$

such that

$$
g M_{h} \subset M_{g h g^{-1}}
$$

for all $g, h \in G$.
b. Let $M=\bigoplus_{g \in G} M_{g}$ and $N=\bigoplus_{g \in G} N_{g}$ be two left $D(G)$-modules. Prove that the braiding

$$
c_{M, N}: M \otimes N \rightarrow N \otimes M
$$

induced by the R-matrix of $D(G)$ is computed by

$$
c_{M, N}(m \otimes n)=n \otimes g m
$$

for all $g \in G, m \in M$, and $n \in N_{g}$.

Exercise 2. (Yetter-Drinfeld modules)

Let $A=(A, \mu, \eta, \Delta, \varepsilon, S)$ be a finite-dimensional Hopf \mathbb{k}-algebra. A Yetter-Drinfeld A-module is a \mathbb{k}-vector space endowed with \mathbb{k}-linear maps $r: A \otimes M \rightarrow M$ and $\rho: M \rightarrow M \otimes A$ such that

- (M, r) is a left A-module, that is,

$$
r\left(\mathrm{id}_{A} \otimes r\right)=r\left(\mu \otimes \mathrm{id}_{M}\right) \quad \text { and } \quad r\left(\eta \otimes \operatorname{id}_{M}\right)=\operatorname{id}_{M} ;
$$

- (M, ρ) is a right A-comodule, that is,

$$
\left(\rho \otimes \operatorname{id}_{A}\right) \rho=\left(\operatorname{id}_{M} \otimes \Delta\right) \rho \quad \text { and } \quad\left(\operatorname{id}_{M} \otimes \varepsilon\right) \rho=\operatorname{id}_{M} ;
$$

- the following diagram commutes:

Prove that there is a bijective correspondence between:
(i) Yetter-Drinfeld A-modules,
(ii) left modules over the Drinfeld double $D(A)$ of A.

